1
|
Effah W, Khalil M, Hwang DJ, Miller DD, Narayanan R. Advances in the understanding of androgen receptor structure and function and in the development of next-generation AR-targeted therapeutics. Steroids 2024; 210:109486. [PMID: 39111362 PMCID: PMC11380798 DOI: 10.1016/j.steroids.2024.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Androgen receptor (AR) and its ligand androgens are important for development and physiology of various tissues. AR and its ligands also play critical role in the development of various diseases, making it a valuable therapeutic target. AR ligands, both agonists and antagonists, are being widely used to treat pathological conditions, including prostate cancer and hypogonadism. Despite AR being studied widely over the last five decades, the last decade has seen striking advances in the knowledge on AR and discoveries that have the potential to translate to the clinic. This review provides an overview of the advances in AR biology, AR molecular mechanisms of action, and next generation molecules that are currently in development. Several of the areas described in the review are just unraveling and the next decade will bring more clarity on these developments that will put AR at the forefront of both basic biology and drug development.
Collapse
Affiliation(s)
- Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marjana Khalil
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
2
|
Kulkarni S, Gupta K, Ratre P, Mishra PK, Singh Y, Biharee A, Thareja S. Polycystic ovary syndrome: Current scenario and future insights. Drug Discov Today 2023; 28:103821. [PMID: 37935329 DOI: 10.1016/j.drudis.2023.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) prevails in approximately 33% of females of reproductive age globally. Although the root cause of the disease is unknown, attempts are made to clinically manage the disturbed hormone levels and symptoms arising due to hyperandrogenism, a hallmark of PCOS. This review presents detailed insights on the etiology, risk factors, current treatment strategies, and challenges therein. Medicinal agents currently in clinical trials and those in the development pipeline are emphasized. The significance of the inclusion of herbal supplements in PCOS and the benefits of improved lifestyle are also explained. Last, emerging therapeutic targets for treating PCOS are elaborated. The present review will assist the research fraternity working in the concerned domain to access significant knowledge associated with PCOS.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Khushi Gupta
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pooja Ratre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India; Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh 462030, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh 462030, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Avadh Biharee
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
3
|
Yaragani M, Yadlapalli P, Raghavan S, Giridhar T, Mandava VBR, Singh RV, Kottapalli RP, Chinnusamy S. Electronic effect-dependent intramolecular non-covalent interactions on the activity of 4,4-dimethylimidazolidin-2-one pharmacophore-based androgen receptor antagonists. Chem Biol Drug Des 2023; 101:614-625. [PMID: 36198102 DOI: 10.1111/cbdd.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Because androgen receptor (AR) signalling is important for the development and progression of prostate cancer (PC), AR antagonists are utilized in clinical practices to treat PC and are referred to as androgen deprivation therapy (ADT). However, continued administration of AR antagonists often results in the development of resistance, known as castration-resistant prostate cancer (CRPC). Despite castration, it has been demonstrated that AR signalling continues to be fundamental to tumour growth. In this regard, a series of readily synthesizable 4,4-dimethylimidazolidine-2-one pharmacophore-based AR antagonists (FAR01-FAR11) were designed and synthesized. Androgen-dependent LNCaP PC cell line was used to test the AR-antagonist activity of these compounds in vitro and compared with the U.S. Food and Drug Administration (FDA) approved second-generation enzalutamide. In our previous work, rigid thiohydantoin pharmacophore in enzalutamide is replaced by the flexible 4,4-dimethylimidazolidin-2-one. In order to improve the flexibility further, one methylene group is introduced between the pharmacophore and one of the aromatic ring. Despite the fact that the amide functional group is a crucial characteristic for building AR antagonists, this class of molecules lacks one. FAR06 has the exact same activity as enzalutamide (IC50 : 0.782 μM) with an IC50 value of 0.801 μM among the series of compounds.
Collapse
Affiliation(s)
- Muralikrishna Yaragani
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | | | - Sriram Raghavan
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - Thota Giridhar
- Sigma-Aldrich Chemicals Pvt. Ltd, Bangalure, Karnataka, India
| | | | | | | | - Saravanan Chinnusamy
- Center for Advanced Organic Materials (Sona-AROMA), Department of Chemistry, Sona College of Technology, Salem, Tamil Nadu, India
| |
Collapse
|
4
|
An Overview of Next-Generation Androgen Receptor-Targeted Therapeutics in Development for the Treatment of Prostate Cancer. Int J Mol Sci 2021; 22:ijms22042124. [PMID: 33672769 PMCID: PMC7924596 DOI: 10.3390/ijms22042124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional endocrine therapy for prostate cancer (PCa) has been directed at suppression of the androgen receptor (AR) signaling axis since Huggins et al. discovered that diethylstilbestrol (DES; an estrogen) produced chemical castration and PCa tumor regression. Androgen deprivation therapy (ADT) still remains the first-line PCa therapy. Insufficiency of ADT over time leads to castration-resistant PCa (CRPC) in which the AR axis is still active, despite castrate levels of circulating androgens. Despite the approval and use of multiple generations of competitive AR antagonists (antiandrogens), antiandrogen resistance emerges rapidly in CRPC due to several mechanisms, mostly converging in the AR axis. Recent evidence from multiple groups have defined noncompetitive or noncanonical direct binding sites on AR that can be targeted to inhibit the AR axis. This review discusses new developments in the PCa treatment paradigm that includes the next-generation molecules to noncanonical sites, proteolysis targeting chimera (PROTAC), or noncanonical N-terminal domain (NTD)-binding of selective AR degraders (SARDs). A few lead compounds targeting each of these novel noncanonical sites or with SARD activity are discussed. Many of these ligands are still in preclinical development, and a few early clinical leads have emerged, but successful late-stage clinical data are still lacking. The breadth and diversity of targets provide hope that optimized noncanonical inhibitors and/or SARDs will be able to overcome antiandrogen-resistant CRPC.
Collapse
|
5
|
Jędrejko K, Lazur J, Muszyńska B. Risk Associated with the Use of Selected Ingredients in Food Supplements. Chem Biodivers 2021; 18:e2000686. [PMID: 33410585 DOI: 10.1002/cbdv.202000686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
This review focuses on four new product categories of food supplements: pre-workout, fat burner/thermogenic, brain/cognitive booster, and hormone/testosterone booster. Many food supplements have been shown to be contaminated with unauthorized substances. In some cases, the ingredients in the new categories of dietary supplements were medicinal products or new synthetic compounds added without performing clinical trials. Some of the new ingredients in dietary supplements are plant materials that are registered in the pharmacopoeia as herbal medicines. In other cases, dietary supplements may contain plant materials that have no history of human use and are often used as materials to 'camouflage' stimulants. In the European Union, new ingredients of dietary supplements, according to European Food Safety Authority or unauthorized novel food. Furthermore, selected ingredients in dietary supplements may be prohibited in sports and are recognized as doping agents by World Anti-Doping Agency.
Collapse
Affiliation(s)
- Karol Jędrejko
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Botany, Medyczna 9 Street, PL, 30-688, Kraków, Poland
| | - Jan Lazur
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Botany, Medyczna 9 Street, PL, 30-688, Kraków, Poland
| | - Bożena Muszyńska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Botany, Medyczna 9 Street, PL, 30-688, Kraków, Poland
| |
Collapse
|
6
|
Wen Y, Wu X, Peng H, Li C, Jiang Y, Su Z, Liang H, Liu J, He J, Liang W. Breast cancer risk in patients with polycystic ovary syndrome: a Mendelian randomization analysis. Breast Cancer Res Treat 2020; 185:799-806. [PMID: 33128677 DOI: 10.1007/s10549-020-05973-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The association between polycystic ovary syndrome (PCOS) and breast cancer remains inconclusive. Conventional observational studies are susceptible to inverse causality and potential confounders. With a Mendelian randomization (MR) approach, we aimed to investigate the causal relationship between genetically predicted PCOS and breast cancer risk. METHODS Our study included 11 PCOS-associated single nucleotide polymorphisms as instrumental variables identified by the latest genome-wide association study. Individual-level genetic summary data of participants were obtained from the Breast Cancer Association Consortium, with a total of 122,977 cases and 105,974 controls. The inverse-variance weighted method was applied to estimate the causality between genetically predicted PCOS and breast cancer risk. To further evaluate the pleiotropy, the weighted median and MR-Egger regression methods were implemented as well. RESULTS Our study demonstrated that genetically predicted PCOS was causally associated with an increased risk of overall breast cancer (odds ratio (OR) = 1.07; 95% confidence interval (CI) 1.02-1.12, p = 0.005). The subgroup analyses according to immunohistochemical type further illustrated that genetically predicted PCOS was associated with an increased risk of estrogen receptor (ER)-positive breast cancer (OR = 1.09; 95% CI 1.03-1.15, p = 0.002), while no causality was observed for ER-negative breast cancer (OR = 1.02; 95% CI 0.96-1.09, p = 0.463). In addition, no pleiotropy was found in our study. CONCLUSIONS Our findings indicated that PCOS was likely to be a causal factor in the development of ER-positive breast cancer, providing a better understanding for the etiology of breast cancer and the prevention of breast cancer.
Collapse
Affiliation(s)
- Yaokai Wen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.,Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Xiangrong Wu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.,Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Haoxin Peng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.,Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Yu Jiang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.,Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Zixuan Su
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.,Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
| |
Collapse
|
7
|
Design and synthesis of novel tetrahydrofuran cyclic urea derivatives as androgen receptor antagonists. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01833-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Subhahar MB, Karakka Kal AK, Philip M, K Karatt T, N I, Vazhat RA, M P MA. Detection and identification of ACP-105 and its metabolites in equine urine using LC/MS/MS after oral administration. Drug Test Anal 2020; 13:299-317. [PMID: 32852865 DOI: 10.1002/dta.2918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
ACP-105 is a novel nonsteroidal selective androgen receptor modulator (SARM) with a tissue-specific agonist effect and does not have side effects associated with the use of common androgens. This research reports a comprehensive study for the detection of ACP-105 and its metabolites in racehorses after oral administration (in vivo) and postulating its structures using mass spectrometric techniques. To obtain the metabolic profile of ACP-105, a selective and reliable LC-MS/MS method was developed. The chemical structures of the metabolites were determined based on their fragmentation pattern, accurate mass, and retention time. Under the current experimental condition, a total of 19 metabolites were detected in ACP-105 drug administered equine urine samples. The study results suggest the following: (1) ACP-105 is prone to oxidation, which gives corresponding monohydroxylated, dihydroxylated, and trihydroxylated metabolites; (2) along with oxidation, there is a possibility of elimination of water molecule (dehydration) from the third position of the tropine moiety, resulting in the dehydrated analogs of corresponding monohydroxylated, dihydroxylated, and trihydroxylated metabolites; (3) from the study on the metabolites using LC-MS/MS, it is clear that the fragmentation pattern is identical and a great number of fragment ions are common in all the metabolites and the parent drug. (4) The ACP-105 and its metabolites were detected for up to 72 h; thus, the result is a valuable tool for evaluating its use and/or misuse in sport.
Collapse
Affiliation(s)
| | | | - Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Ibrahimwaseem N
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Ramees Abdulla Vazhat
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Muhammed Ajeebsanu M P
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| |
Collapse
|
9
|
Carvalho MJ, Subtil S, Rodrigues Â, Oliveira J, Figueiredo-Dias M. Controversial association between polycystic ovary syndrome and breast cancer. Eur J Obstet Gynecol Reprod Biol 2019; 243:125-132. [PMID: 31693949 DOI: 10.1016/j.ejogrb.2019.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/07/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) risk factors overlap with breast cancer, and the hormonal profile may be implicated in breast cancer pathogenesis. This study aims to report a literature review considering epidemiological and molecular mechanisms that correlate PCOS and breast cancer, as well as the influence of PCOS treatment on the incidence of breast cancer. Epidemiological studies failed to adjust potential variables that affect the risk and have thus provided inconclusive results. Molecular effects of androgenic pathways in breast cancer have been studied and androgens seem to have an inhibitory effect on mammary epithelial proliferation. However, increased bioavailable androgens were associated with recurrence of breast cancer due to conversion to oestrogens. Sex hormone-binding globulin has a role in hormone-dependent cancers and can be considered a marker for PCOS; a gene profile has already been linked to breast cancer risk in these patients. PCOS medical treatment is a promising tool for stratifying breast cancer risk due to the metabolic influence and hormonal environment. Clinical reports are inconsistent, emphasizing the need for further studies with a prospective design. In the future, the role of pharmacological interventions in PCOS will increase knowledge and awareness of breast cancer pathogenesis and will help to refine breast cancer risk stratification.
Collapse
Affiliation(s)
- Maria João Carvalho
- University Clinic of Gynaecology, Faculty of Medicine, University of Coimbra, Clinical Academic Centre of Coimbra, CACC, Coimbra, Portugal; Gynaecology Service, Coimbra Hospital and University Centre, Coimbra, Portugal.
| | - Simone Subtil
- University Clinic of Gynaecology, Faculty of Medicine, University of Coimbra, Clinical Academic Centre of Coimbra, CACC, Coimbra, Portugal; Gynaecology Service, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Ângela Rodrigues
- University Clinic of Gynaecology, Faculty of Medicine, University of Coimbra, Clinical Academic Centre of Coimbra, CACC, Coimbra, Portugal; Gynaecology Service, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Joana Oliveira
- University Clinic of Gynaecology, Faculty of Medicine, University of Coimbra, Clinical Academic Centre of Coimbra, CACC, Coimbra, Portugal; Gynaecology Service, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Margarida Figueiredo-Dias
- University Clinic of Gynaecology, Faculty of Medicine, University of Coimbra, Clinical Academic Centre of Coimbra, CACC, Coimbra, Portugal; Gynaecology Service, Coimbra Hospital and University Centre, Coimbra, Portugal
| |
Collapse
|
10
|
Schroeder A, Rhen T. Role for androgens in determination of ovarian fate in the common snapping turtle, Chelydra serpentina. Gen Comp Endocrinol 2019; 281:7-16. [PMID: 31059691 PMCID: PMC6784546 DOI: 10.1016/j.ygcen.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/28/2019] [Accepted: 05/02/2019] [Indexed: 02/03/2023]
Abstract
Sex steroids are involved in sex determination in almost all vertebrates, including species with temperature-dependent sex determination (TSD). It is well established that aromatase and estrogens are involved in ovary determination in TSD species. In contrast, the role of non-aromatizable androgens in TSD is less clear. In this study, we used dihydrotestosterone (DHT) and an antagonist of the mammalian androgen receptor (flutamide) to examine the impact of androgens on sex determination in the snapping turtle. We incubated eggs at a male-producing temperature and treated embryos with drug delivery vehicle (5 L ethanol), DHT in vehicle, or flutamide in vehicle during the sex-determining period. We then measured expression of markers for ovarian and testicular development and genes involved in steroidogenesis. A subset of embryos and hatchlings were collected for histological analysis of gonad differentiation and sex determination. DHT and flutamide both induced ovarian development: 100% of vehicle-treated hatchlings had testes, while 60% of DHT-treated and 32% flutamide-treated hatchlings had ovaries. DHT and flutamide treatments also had feminizing effects on gene expression patterns and the structure of embryonic gonads. DHT treatment increased expression of FoxL2, androgen receptor, aromatase and several steroidogenic genes. Flutamide produced a similar, but weaker, pattern of gene expression. Genes involved in testis development (Sox9 and Amh) were influenced by flutamide treatment. Our findings support the hypothesis that androgens and the androgen receptor are involved in ovary determination in the common snapping turtle.
Collapse
Affiliation(s)
- Anthony Schroeder
- Department of Biology, Box 9019, University of North Dakota, Grand Forks, ND 58202, United States; Math, Science, and Technology Department, 2900 University Avenue, University of Minnesota - Crookston, Crookston, MN 56716, United States
| | - Turk Rhen
- Department of Biology, Box 9019, University of North Dakota, Grand Forks, ND 58202, United States.
| |
Collapse
|
11
|
Cancer of Reproductive System: Receptors and Targeting Strategies. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [PMCID: PMC7122620 DOI: 10.1007/978-3-030-29168-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carcinogenesis in the different organs of the reproductive system, particularly, prostate, ovarian, and cervical tissues, involves aberrant expression of various physiological receptors belonging to different superfamilies. This chapter provides insights into the physiological receptors that are associated with the genesis, progression, metastasis, management, as well as the prognosis of the cancers of the male and female reproductive systems. It also highlights the structural and binding characteristics of the highly predominant receptors, namely, androgen, estrogen, progesterone, and gonadotropin-releasing hormone (GnRH) receptors, which are overexpressed in these cancers and discusses various strategies to target them.
Collapse
|
12
|
Liu Y, Wu M, Wang T, Xie Y, Cui X, He L, He Y, Li X, Liu M, Hu L, Cen S, Zhou J. Structural Based Screening of Antiandrogen Targeting Activation Function-2 Binding Site. Front Pharmacol 2018; 9:1419. [PMID: 30555332 PMCID: PMC6284051 DOI: 10.3389/fphar.2018.01419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/19/2018] [Indexed: 11/22/2022] Open
Abstract
Androgen receptor (AR) plays a critical role in the development and progression of prostate cancer (PCa). Current antiandrogen therapies induce resistant mutations at the hormone binding pocket (HBP) that convert the activity of these agents from antagonist to agonist. Thus, there is a high unmet medical need for the development of novel antiandrogens which circumvent mutation-based resistance. Herein, through the analysis of AR structures with ligands binding to the activation function-2 (AF2) site, we built a combined pharmacophore model. In silico screening and the subsequent biological evaluation lead to the discovery of the novel lead compound IMB-A6 that binds to the AF2 site, which inhibits the activity of either wild-type (WT) or resistance mutated ARs. Our work demonstrates structure-based drug design is an efficient strategy to discover new antiandrogens, and provides a new class of small molecular antiandrogens for the development of novel treatment agents against PCa.
Collapse
Affiliation(s)
- Yangguang Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianqi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongli Xie
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangling Cui
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Liujun He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Laixing Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Spady ES, Wyche TP, Rollins NJ, Clardy J, Way JC, Silver PA. Mammalian Cells Engineered To Produce New Steroids. Chembiochem 2018; 19:1827-1833. [PMID: 29931794 PMCID: PMC6156985 DOI: 10.1002/cbic.201800214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 11/12/2022]
Abstract
Steroids can be difficult to modify through traditional organic synthesis methods, but many enzymes regio- and stereoselectively process a wide variety of steroid substrates. We tested whether steroid-modifying enzymes could make novel steroids from non-native substrates. Numerous genes encoding steroid-modifying enzymes, including some bacterial enzymes, were expressed in mammalian cells by transient transfection and found to be active. We made three unusual steroids by stable expression, in HEK293 cells, of the 7α-hydroxylase CYP7B1, which was selected because of its high native product yield. These cells made 7α,17α-dihydroxypregnenolone and 7β,17α-dihydroxypregnenolone from 17α-hydroxypregnenolone and produced 11α,16α-dihydroxyprogesterone from 16α-hydroxyprogesterone. The last two products were the result of CYP7B1-catalyzed hydroxylation at previously unobserved sites. A Rosetta docking model of CYP7B1 suggested that these substrates' D-ring hydroxy groups might prevent them from binding in the same way as the native substrates, bringing different carbon atoms close to the active ferryl oxygen atom. This new approach could potentially use other enzymes and substrates to produce many novel steroids for drug candidate testing.
Collapse
Affiliation(s)
- Emma S. Spady
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Laboratory of Systems Pharmacology, Harvard University – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| | - Thomas P. Wyche
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School – Boston, MA 02115, United States
| | - Nathanael J. Rollins
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School – Boston, MA 02115, United States
| | - Jeffrey C. Way
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| |
Collapse
|
14
|
Novel androgen receptor full antagonists: Design, synthesis, and a docking study of glycerol and aminoglycerol derivatives that contain p -carborane cages. Bioorg Med Chem 2018; 26:3805-3811. [DOI: 10.1016/j.bmc.2018.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
|
15
|
Georgieva KN, Angelova PA, Gerginska FD, Terzieva DD, Shishmanova-Doseva MS, Delchev SD, Vasilev VV. The effect of flutamide on the physical working capacity and activity of some of the key enzymes for the energy supply in adult rats. Asian J Androl 2018; 19:444-448. [PMID: 27030085 PMCID: PMC5507090 DOI: 10.4103/1008-682x.177842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of the study was to assess the effects of androgen receptor antagonists on the physical working capacity and activity of some of the key muscle enzymes for the energy supply in rats. Young adult male Wistar rats were divided into two groups. One group received 15 mg kg−1 of flutamide daily for 6 days a week and the other group served as control for 8 weeks. At the beginning and at the end of the experiment, all rats were subjected to submaximal running endurance (SRE), maximum time to exhaustion (MTE), and maximal sprinting speed (MSS) tests. At the end of the trial, maximum oxygen consumption (VO2max) test was performed and the levels of testosterone, erythrocytes, hemoglobin as well as enzyme activity of succinate dehydrogenase (SDH), lactate dehydrogenase (LDH), and NAD.H2-cytochrome-c reductase (NAD.H2) of the gastrocnemius muscle were measured. Serum testosterone of the flutamide-treated rats was higher than that of the controls, which verifies the effectiveness of the dose chosen. MTE and SRE of the anti-androgen-treated group were lower compared with the initial values. Flutamide treatment decreased the activity of SDH and NAD.H2 compared with the controls. We found no effect of the anti-androgen treatment on MSS, VO2max, running economy, LDH activity, and hematological variables. Our findings indicate that the maintenance of the submaximal and maximal running endurance as well as the activity of some of the key enzymes associated with muscle oxidative capacity is connected with androgen effects mediated by androgen receptors.
Collapse
Affiliation(s)
- Katerina N Georgieva
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Penka A Angelova
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Fani D Gerginska
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Dora D Terzieva
- Department of Clinical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Mihaela S Shishmanova-Doseva
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Slavi D Delchev
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Valentine V Vasilev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| |
Collapse
|
16
|
Aikawa K, Asano M, Ono K, Habuka N, Yano J, Wilson K, Fujita H, Kandori H, Hara T, Morimoto M, Santou T, Yamaoka M, Nakayama M, Hasuoka A. Synthesis and biological evaluation of novel selective androgen receptor modulators (SARMs) Part III: Discovery of 4-(5-oxopyrrolidine-1-yl)benzonitrile derivative 2f as a clinical candidate. Bioorg Med Chem 2017; 25:3330-3349. [DOI: 10.1016/j.bmc.2017.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/23/2022]
|
17
|
Asano M, Hitaka T, Imada T, Yamada M, Morimoto M, Shinohara H, Hara T, Yamaoka M, Santou T, Nakayama M, Imai Y, Habuka N, Yano J, Wilson K, Fujita H, Hasuoka A. Synthesis and biological evaluation of novel selective androgen receptor modulators (SARMs). Part II: Optimization of 4-(pyrrolidin-1-yl)benzonitrile derivatives. Bioorg Med Chem Lett 2017; 27:1897-1901. [DOI: 10.1016/j.bmcl.2017.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022]
|
18
|
Grzesiak M, Knapczyk-Stwora K, Slomczynska M. The impact of flutamide on prostaglandin F 2α synthase and prostaglandin F 2α receptor expression, and prostaglandin F 2α concentration in the porcine corpus luteum of pregnancy. Domest Anim Endocrinol 2017; 59:81-89. [PMID: 28038404 DOI: 10.1016/j.domaniend.2016.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 11/29/2022]
Abstract
Recently, we have indicated that flutamide-induced androgen deficiency diminished progesterone production in the porcine corpus luteum (CL) during late pregnancy and before parturition, as a sign of functional luteolysis. In pigs, the main luteolytic factor is prostaglandin F2α (PGF2α), which acts via specific receptors (PTGFRs), and its biosynthesis is catalyzed by prostaglandin F2α synthase (PGFS). The present study investigated the impact of flutamide on luteal PGFS and PTGFR expression, as well as intraluteal PGF2α content during pregnancy in pigs. Flutamide (50 mg/kg BW per day, for 7 d) or corn oil (control groups) were administered subcutaneously into pregnant gilts (n = 3 per group) between 83 and 89 (GD90) or 101-107 (GD108) days of gestation (GD). On GD90 and GD108 ovaries were collected and CLs were obtained. Real-time PCR and Western blot analyses were conducted to quantify PGFS and PTGFR mRNA and protein expression, respectively. In addition, immunohistochemical localization of both proteins was performed and the concentration of PGF2α was analyzed by enzyme immunoassay method. Flutamide caused upregulation of PGFS mRNA and protein in GD90F (P = 0.008; P = 0.008, respectively) and GD108F (P = 0.041; P = 0.009, respectively) groups. The level of PTGFR mRNA increased only in the GD90F (P = 0.007) group, whereas PTGFR protein expression was greater in both gestational periods (P = 0.035; P = 0.038, respectively). On GD90 PGFS was immunolocalized in the cytoplasm of large luteal cells only, whereas on GD108, sparse small luteal cells also displayed positive staining. PTGFR showed membranous localization within large luteal cells on both days of pregnancy. In luteal tissue, PGF2α concentration was greater after flutamide exposure on both days (P = 0.041; P = 0.038, respectively), when compared with control groups. Overall, the enhanced luteal PGF2α content due to increased PGFS expression after flutamide administration might contribute to premature CL regression. Moreover, higher PTGFR protein levels indicate enhanced sensitivity of luteal cells to PGF2α under androgen deficiency.
Collapse
Affiliation(s)
- M Grzesiak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-383 Krakow, Poland; Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - K Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-383 Krakow, Poland
| | - M Slomczynska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-383 Krakow, Poland
| |
Collapse
|
19
|
Monaghan AE, McEwan IJ. A sting in the tail: the N-terminal domain of the androgen receptor as a drug target. Asian J Androl 2017; 18:687-94. [PMID: 27212126 PMCID: PMC5000789 DOI: 10.4103/1008-682x.181081] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen therapies employed to combat the disease in recent years. However, their efficacy has often been limited by the emergence of resistance, mediated through point mutations, and receptor truncations. As a result, the prognosis for patients with malignant castrate resistant disease remains poor. The amino-terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been dismissed in the past. The recent emergence of the small molecule EPI-001 has provided evidence that AR-NTD can be targeted therapeutically, independent of the LBD. Targeting of AR-NTD has the potential to disrupt multiple intermolecular interactions between AR and its coregulatory binding partners, in addition to intramolecular cross-talk between the domains of the AR. Therapeutics targeting these protein-protein interactions or NTD directly should also have efficacy against emerging AR splice variants which may play a role in PCa progression. This review will discuss the role of intrinsic disorder in AR function and illustrate how emerging therapies might target NTD in PCa.
Collapse
Affiliation(s)
- Amy E Monaghan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Iain J McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
20
|
Cabeza M, Sánchez-Márquez A, Garrido M, Silva A, Bratoeff E. Recent Advances in Drug Design and Drug Discovery for Androgen- Dependent Diseases. Curr Med Chem 2016; 23:792-815. [PMID: 26861003 PMCID: PMC5412001 DOI: 10.2174/0929867323666160210125642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 12/28/2015] [Accepted: 02/09/2016] [Indexed: 11/22/2022]
Abstract
This article summarizes the importance of different targets such as 5α-reductase, 17β-HSD, CYP17A, androgen receptor and protein kinase A for the treatment of prostate cancer and benign prostatic hyperplasia. It is a well known fact that dihydrotestosterone (DHT) is associated with the development of androgen-dependent afflictions. At the present time, several research groups are attempting to develop new steroidal and non-steroidal molecules with the purpose of inhibiting the synthesis and biological response of DHT. This review also discusses the most recent studies reported in the literature that describe the therapeutic potential of novel compounds, as well as the new drugs, principally inhibitors of 5α-reductase.
Collapse
Affiliation(s)
- Marisa Cabeza
- Departamento De Sistemas Biológicos, Universidad Autónoma Metropolitana- Xochimilco Calzada Del Hueso No. 1100, México, D.F., C.P. 04960, México.
| | | | | | | | | |
Collapse
|
21
|
Johnson J, Skoda EM, Zhou J, Parrinello E, Wang D, O’Malley K, Eyer BR, Kazancioglu M, Eisermann K, Johnston PA, Nelson JB, Wang Z, Wipf P. Small Molecule Antagonists of the Nuclear Androgen Receptor for the Treatment of Castration-Resistant Prostate Cancer. ACS Med Chem Lett 2016; 7:785-90. [PMID: 27563404 PMCID: PMC4983742 DOI: 10.1021/acsmedchemlett.6b00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/27/2016] [Indexed: 01/29/2023] Open
Abstract
After a high-throughput screening campaign identified thioether 1 as an antagonist of the nuclear androgen receptor, a zone model was developed for structure-activity relationship (SAR) purposes and analogues were synthesized and evaluated in a cell-based luciferase assay. A novel thioether isostere, cyclopropane (1S,2R)-27, showed the desired increased potency and structural properties (stereospecific SAR response, absence of a readily oxidized sulfur atom, low molecular weight, reduced number of flexible bonds and polar surface area, and drug-likeness score) in the prostate-specific antigen luciferase assay in C4-2-PSA-rl cells to qualify as a new lead structure for prostate cancer drug development.
Collapse
Affiliation(s)
- James
K. Johnson
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Erin M. Skoda
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jianhua Zhou
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Erica Parrinello
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Dan Wang
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Katherine O’Malley
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Benjamin R. Eyer
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mustafa Kazancioglu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kurtis Eisermann
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Paul A. Johnston
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Joel B. Nelson
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Zhou Wang
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Peter Wipf
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
22
|
Donner DG, Elliott GE, Beck BR, Forwood MR, Du Toit EF. The effects of visceral obesity and androgens on bone: trenbolone protects against loss of femoral bone mineral density and structural strength in viscerally obese and testosterone-deficient male rats. Osteoporos Int 2016; 27:1073-1082. [PMID: 26438310 DOI: 10.1007/s00198-015-3345-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/25/2015] [Indexed: 12/21/2022]
Abstract
SUMMARY In males, visceral obesity and androgen deficiency often present together and result in harmful effects on bone. Our findings show that both factors are independently associated with adverse effects on femoral bone structure and strength, and trenbolone protects rats from diet-induced visceral obesity and consequently normalises femoral bone structural strength. INTRODUCTION In light of the rapidly increasing incidence of obesity and osteoporosis globally, and recent conjecture regarding the effects of visceral adiposity and testosterone deficiency on bone health, we investigated the effects of increased visceral adipose tissue (VAT) mass on femoral bone mineral density (BMD), structure and strength in normal weight rats with testosterone deficiency. METHODS Male Wistar rats (n = 50) were fed either standard rat chow (CTRL, n = 10) or a high-fat/high-sugar diet (HF/HS, n = 40). Following 8 weeks of feeding, rats underwent sham surgery (CTRL, n = 10; HF/HS, n = 10) or orchiectomy (HF/HS + ORX, n = 30). Following a 4-week recovery period, mini-osmotic pumps containing either vehicle (CTRL, n = 10; HF/HS, n = 10; HF/HS + ORX, n = 10), 2.0 mg kg day(-1), testosterone (HF/HS + ORX + TEST, n = 10) or 2.0 mg kg day(-1) trenbolone (HF/HS + ORX + TREN, n = 10) were implanted for 8 weeks of treatment. Dual-energy X-ray absorptiometry and three-point bending tests were used to assess bone mass, structure and strength of femora. RESULTS Diet-induced visceral obesity resulted in decreased bone mineral area (BMA) and content (BMC) and impaired femoral stiffness and strength. Orchiectomy further impaired BMA, BMC and BMD and reduced energy to failure in viscerally obese animals. Both TEST and TREN treatment restored BMA, BMC, BMD and energy to failure. Only TREN reduced visceral adiposity and improved femoral stiffness and strength. CONCLUSIONS Findings support a role for both visceral adiposity and testosterone deficiency as independent risk factors for femoral osteoporosis, adverse bone geometry and impaired bone strength in male rats. Trenbolone may be a more effective candidate for androgen replacement therapy than testosterone in viscerally obese testosterone-deficient males.
Collapse
Affiliation(s)
- D G Donner
- Heart Foundation Research Centre, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| | - G E Elliott
- Heart Foundation Research Centre, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - B R Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - M R Forwood
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - E F Du Toit
- Heart Foundation Research Centre, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
23
|
Sugawara T, Lejeune P, Köhr S, Neuhaus R, Faus H, Gelato KA, Busemann M, Cleve A, Lücking U, von Nussbaum F, Brands M, Mumberg D, Jung K, Stephan C, Haendler B. BAY 1024767 blocks androgen receptor mutants found in castration-resistant prostate cancer patients. Oncotarget 2016; 7:6015-28. [PMID: 26760770 PMCID: PMC4868737 DOI: 10.18632/oncotarget.6864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/24/2015] [Indexed: 11/25/2022] Open
Abstract
Androgen receptor (AR) mutations arise in patients developing resistance to hormone deprivation therapies. Here we describe BAY 1024767, a thiohydantoin derivative with strong antagonistic activity against nine AR variants with mutations located in the AR ligand-binding domain (LBD), and against wild-type AR. Antagonism was maintained, though reduced, at increased androgen levels. Anti-tumor efficacy was evidenced in vivo in the KuCaP-1 prostate cancer model which bears the W741C bicalutamide resistance mutation and in the syngeneic prostate cancer rat model Dunning R3327-G. The prevalence of six selected AR mutations was determined in plasma DNA originating from 100 resistant patients and found to be at least 12%. Altogether the results show BAY 1024767 to be a strong antagonist for several AR mutants linked to therapy resistance, which opens the door for next-generation compounds that can benefit patients based on their mutation profile.
Collapse
Affiliation(s)
| | | | - Silke Köhr
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | | | | | | | | | - Arwed Cleve
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | | | | | | | | | - Klaus Jung
- Berlin Institute of Urologic Research, Berlin, Germany
- Department of Urology, Charité University Hospital, Berlin, Germany
| | - Carsten Stephan
- Berlin Institute of Urologic Research, Berlin, Germany
- Department of Urology, Charité University Hospital, Berlin, Germany
| | | |
Collapse
|
24
|
Joseph JF, Parr MK. Synthetic androgens as designer supplements. Curr Neuropharmacol 2016; 13:89-100. [PMID: 26074745 PMCID: PMC4462045 DOI: 10.2174/1570159x13666141210224756] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/25/2014] [Accepted: 10/25/2014] [Indexed: 01/02/2023] Open
Abstract
Anabolic androgenic steroids (AAS) are some of the most common performance
enhancing drugs (PED) among society. Despite the broad spectrum of adverse effects and legal
consequences, AAS are illicitly marketed and distributed in many countries. To circumvent existing
laws, the chemical structure of AAS is modified and these designer steroids are sold as nutritional
supplements mainly over the Internet. Several side effects are linked with AAS abuse. Only little is
known about the pharmacological effects and metabolism of unapproved steroids due to the absence
of clinical studies. The large number of designer steroid findings in dietary supplements and the
detection of new compounds combined with legal loopholes for their distribution in many countries
show that stricter regulations and better information policy are needed.
Collapse
Affiliation(s)
- Jan Felix Joseph
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Maria Kristina Parr
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| |
Collapse
|
25
|
Donner DG, Elliott GE, Beck BR, Bulmer AC, Lam AK, Headrick JP, Du Toit EF. Trenbolone Improves Cardiometabolic Risk Factors and Myocardial Tolerance to Ischemia-Reperfusion in Male Rats With Testosterone-Deficient Metabolic Syndrome. Endocrinology 2016; 157:368-81. [PMID: 26584015 DOI: 10.1210/en.2015-1603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The increasing prevalence of obesity adds another dimension to the pathophysiology of testosterone (TEST) deficiency (TD) and potentially impairs the therapeutic efficacy of classical TEST replacement therapy. We investigated the therapeutic effects of selective androgen receptor modulation with trenbolone (TREN) in a model of TD with the metabolic syndrome (MetS). Male Wistar rats (n=50) were fed either a control standard rat chow (CTRL) or a high-fat/high-sucrose (HF/HS) diet. After 8 weeks of feeding, rats underwent sham surgery or an orchiectomy (ORX). Alzet miniosmotic pumps containing either vehicle, 2-mg/kg·d TEST or 2-mg/kg·d TREN were implanted in HF/HS+ORX rats. Body composition, fat distribution, lipid profile, and insulin sensitivity were assessed. Infarct size was quantified to assess myocardial damage after in vivo ischaemia reperfusion, before cardiac and prostate histology was performed. The HF/HS+ORX animals had increased sc and visceral adiposity; circulating triglycerides, cholesterol, and insulin; and myocardial damage, with low circulating TEST compared with CTRLs. Both TEST and TREN protected HF/HS+ORX animals against sc fat accumulation, hypercholesterolaemia, and myocardial damage. However, only TREN protected against visceral fat accumulation, hypertriglyceridaemia, and hyperinsulinaemia and reduced myocardial damage relative to CTRLs. TEST caused widespread cardiac fibrosis and prostate hyperplasia, which were less pronounced with TREN. We propose that TEST replacement therapy may have contraindications for males with TD and obesity-related MetS. TREN treatment may be more effective in restoring androgen status and reducing cardiovascular risk in males with TD and MetS.
Collapse
Affiliation(s)
- Daniel G Donner
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Grace E Elliott
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Belinda R Beck
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Andrew C Bulmer
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Alfred K Lam
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - John P Headrick
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Eugene F Du Toit
- Heart Foundation Research Centre (D.G.D., G.E.E., A.C.B., J.P.H., E.F.D.T.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia; School of Allied Health Science (B.R.B.), Griffith University, Gold Coast, Queensland 4222, Australia; and Cancer Molecular Pathology (A.K.L.), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
26
|
Pihlajamaa P, Sahu B, Jänne OA. Determinants of Receptor- and Tissue-Specific Actions in Androgen Signaling. Endocr Rev 2015; 36:357-84. [PMID: 26052734 DOI: 10.1210/er.2015-1034] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The physiological androgens testosterone and 5α-dihydrotestosterone regulate the development and maintenance of primary and secondary male sexual characteristics through binding to the androgen receptor (AR), a ligand-dependent transcription factor. In addition, a number of nonreproductive tissues of both genders are subject to androgen regulation. AR is also a central target in the treatment of prostate cancer. A large number of studies over the last decade have characterized many regulatory aspects of the AR pathway, such as androgen-dependent transcription programs, AR cistromes, and coregulatory proteins, mostly in cultured cells of prostate cancer origin. Moreover, recent work has revealed the presence of pioneer/licensing factors and chromatin modifications that are important to guide receptor recruitment onto appropriate chromatin loci in cell lines and in tissues under physiological conditions. Despite these advances, current knowledge related to the mechanisms responsible for receptor- and tissue-specific actions of androgens is still relatively limited. Here, we review topics that pertain to these specificity issues at different levels, both in cultured cells and tissues in vivo, with a particular emphasis on the nature of the steroid, the response element sequence, the AR cistromes, pioneer/licensing factors, and coregulatory proteins. We conclude that liganded AR and its DNA-response elements are required but are not sufficient for establishment of tissue-specific transcription programs in vivo, and that AR-selective actions over other steroid receptors rely on relaxed rather than increased stringency of cis-elements on chromatin.
Collapse
Affiliation(s)
- Päivi Pihlajamaa
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Biswajyoti Sahu
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Olli A Jänne
- Department of Physiology (P.P., B.S., O.A.J.), and Research Programs Unit, Genome-Scale Biology (P.P., B.S.), Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
27
|
Tian X, He Y, Zhou J. Progress in antiandrogen design targeting hormone binding pocket to circumvent mutation based resistance. Front Pharmacol 2015; 6:57. [PMID: 25852559 PMCID: PMC4371693 DOI: 10.3389/fphar.2015.00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/05/2015] [Indexed: 12/30/2022] Open
Abstract
Androgen receptor (AR) plays a critical role in the development and progression of prostate cancer (PCa). Current clinically used antiandrogens such as flutamide, bicalutamide, and newly approved enzalutamide mainly target the hormone binding pocket (HBP) of AR. However, over time, drug resistance invariably develops and switches these antiandrogens from antagonist to agonist of the AR. Accumulated evidence indicates that AR mutation is an important cause for the drug resistance. This review will give an overview of the mutation based resistance of the current clinically used antiandrogens and the rational drug design to overcome the resistance, provides a promising strategy for the development of the new generation of antiandrogens targeting HBP.
Collapse
Affiliation(s)
- Xiaohong Tian
- Lady Davis Institute, Jewish General Hospital, Mcgill University Montreal, QC, Canada
| | - Yang He
- Immunology, Institute of Medicinal Biotechnology Chinese Academy of Medical Science Beijing, China
| | - Jinming Zhou
- Immunology, Institute of Medicinal Biotechnology Chinese Academy of Medical Science Beijing, China
| |
Collapse
|
28
|
Sundén H, Holland MC, Poutiainen PK, Jääskeläinen T, Pulkkinen JT, Palvimo JJ, Olsson R. Synthesis and Biological Evaluation of Second-Generation Tropanol-Based Androgen Receptor Modulators. J Med Chem 2015; 58:1569-74. [DOI: 10.1021/jm501995n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Henrik Sundén
- Department
of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Mareike C. Holland
- Department
of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Pekka K. Poutiainen
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Harvard
Medical School, Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Tiina Jääskeläinen
- Institute
of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Institute
of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Juha T. Pulkkinen
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jorma J. Palvimo
- Institute
of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department
of Pathology, Kuopio University Hospital, FI-70029 Kuopio, Finland
| | - Roger Olsson
- Department
of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Sölvegatan 19, BMC DIO, S-22184 Lund, Sweden
| |
Collapse
|
29
|
Donner DG, Beck BR, Bulmer AC, Lam AK, Du Toit EF. Improvements in body composition, cardiometabolic risk factors and insulin sensitivity with trenbolone in normogonadic rats. Steroids 2015; 94:60-9. [PMID: 25554582 DOI: 10.1016/j.steroids.2014.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/11/2014] [Accepted: 12/17/2014] [Indexed: 11/24/2022]
Abstract
Trenbolone (TREN) is used for anabolic growth-promotion in over 20 million cattle annually and continues to be misused for aesthetic purposes in humans. The current study investigated TREN's effects on body composition and cardiometabolic risk factors; and its tissue-selective effects on the cardiovascular system, liver and prostate. Male rats (n=12) were implanted with osmotic infusion pumps delivering either cyclodextrin vehicle (CTRL) or 2mg/kg/day TREN for 6 weeks. Dual-energy X-ray Absorptiometry assessment of body composition; organ wet weights and serum lipid profiles; and insulin sensitivity were assessed. Cardiac ultrasound examinations were performed before in vivo studies assessed myocardial susceptibility to ischemia-reperfusion (I/R) injury. Circulating sex hormones and liver enzyme activities; and prostate and liver histology were examined. In 6 weeks, fat mass increased by 34±7% in CTRLs (p<0.01). Fat mass decreased by 37±6% and lean mass increased by 11±4% with TREN (p<0.05). Serum triglycerides, HDL and LDL were reduced by 62%, 57% and 78% (p<0.05) respectively in TREN rats. Histological examination of the prostates from TREN-treated rats indicated benign hyperplasia associated with an increased prostate mass (149% compared to CTRLs, p<0.01). No evidence of adverse cardiac or hepatic effects was observed. In conclusion, improvements in body composition, lipid profile and insulin sensitivity (key risk factors for cardiometabolic disease) were achieved with six-week TREN treatment without evidence of adverse cardiovascular or hepatic effects that are commonly associated with traditional anabolic steroid misuse. Sex hormone suppression and benign prostate hyperplasia were confirmed as adverse effects of the treatment.
Collapse
Affiliation(s)
- Daniel G Donner
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia.
| | - Belinda R Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Andrew C Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Eugene F Du Toit
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
30
|
Elancheran R, Maruthanila VL, Ramanathan M, Kabilan S, Devi R, Kunnumakara A, Kotoky J. Recent discoveries and developments of androgen receptor based therapy for prostate cancer. MEDCHEMCOMM 2015; 6:746-768. [DOI: 10.1039/c4md00416g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The main focus of this review is to discuss the discoveries and developments of various therapies for prostate cancer.
Collapse
Affiliation(s)
- R. Elancheran
- Drug Discovery Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - V. L. Maruthanila
- Department of Bioscience
- E. G. S. Pillai Arts and Science College
- India
| | - M. Ramanathan
- Department of Pharmacology
- PSG College of Pharmacy
- Coimbatore-641 004
- India
| | - S. Kabilan
- Department of Chemistry
- Annamalai University
- India
| | - R. Devi
- Drug Discovery Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - A. Kunnumakara
- Department of Biotechnology
- Indian Institute of Technology
- Guwahti
- India
| | - Jibon Kotoky
- Drug Discovery Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| |
Collapse
|
31
|
OHTSU Y, R. THAKKER D, A. GIBBONS J, TSUBOTA K, OTSUKA S, ARAI H. Determination of the Androgen Receptor Inhibitor Enzalutamide and its Metabolites in Animal Plasma and Brain Homogenates Using LC-MS/MS and its Application to Pharmacokinetic Studies. CHROMATOGRAPHY 2015. [DOI: 10.15583/jpchrom.2015.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiaki OHTSU
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| | - Dhiren R. THAKKER
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill
| | | | | | - Shohei OTSUKA
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd
| | - Hiroshi ARAI
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| |
Collapse
|
32
|
Chen Y, Cheng F, Sun L, Li W, Liu G, Tang Y. Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:280-287. [PMID: 25282305 DOI: 10.1016/j.ecoenv.2014.08.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
Rapidly and correctly identifying endocrine-disrupting chemicals (EDCs) is an important issue in environmental risk assessment. Major EDCs are associated with the androgen receptor (AR) and oestrogen receptors (ERs). Because of the high cost and time-consuming nature of experimental tests, in silico methods are valuable alternative tools for the identification of EDCs. In this study, a large dataset related to EDCs was constructed. Each molecule was represented with seven fingerprints, and computational models were subsequently developed to predict AR and ER binders via machine learning methods including k-nearest neighbour (kNN), C4.5 decision tree (C4.5 DT), naïve Bayes (NB), and support vector machine (SVM) algorithms. The best model for predicting AR binders was PubChem Fingerprint-SVM, which exhibited an accuracy of 0.84. For ER binders, the best method was Extended Fingerprint-SVM with an accuracy of 0.79. Moreover, several representative substructure alerts for characterizing EDCs, such as phenol, trifluoromethyl, and annelated rings, were identified using the combination of information gain and substructure frequency analysis. Our study involved a systematic computational assessment of EDCs related to AR and ERs, and provides significant information on the structural characteristics of these chemicals, which are a great help in identifying EDCs.
Collapse
Affiliation(s)
- Yingjie Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feixiong Cheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lu Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
33
|
Synthesis and preliminary investigations into novel 1,2,3-triazole-derived androgen receptor antagonists inspired by bicalutamide. Bioorg Med Chem Lett 2014; 24:4948-53. [PMID: 25301770 DOI: 10.1016/j.bmcl.2014.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
Abstract
A versatile and high yielding synthesis of novel androgen receptor (AR) antagonists is presented. Using this methodology, six 1,4-substituted-1,2,3-triazole derived bicalutamide mimics were synthesised in five steps and in isolated overall yields from 41% to 85%. Evaluation of these compounds for their anti-proliferative properties against androgen dependent (LNCaP) and independent (PC-3) cells showed promising IC50 values of 34-45 μM and 29-151 μM, respectively. The data suggest that the latter compounds may be an excellent starting point for the development of prostate cancer therapeutics for both androgen dependent and independent forms of this disease. Docking of these compounds (each enantiomer) in silico into the T877A mutated androgen receptor, as possessed by LNCaP cells, was also undertaken.
Collapse
|
34
|
Alterations in luteal production of androstenedione, testosterone, and estrone, but not estradiol, during mid- and late pregnancy in pigs: Effects of androgen deficiency. Theriogenology 2014; 82:720-33. [DOI: 10.1016/j.theriogenology.2014.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/23/2022]
|
35
|
Poutiainen PK, Huhtala T, Jääskeläinen T, Petsalo A, Küblbeck J, Kaikkonen S, Palvimo JJ, Raunio H, Närvänen A, Peräkylä M, Juvonen RO, Honkakoski P, Laatikainen R, Pulkkinen JT. Preclinical pharmacology of FL442, a novel nonsteroidal androgen receptor modulator. Mol Cell Endocrinol 2014; 387:8-18. [PMID: 24565895 DOI: 10.1016/j.mce.2014.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/14/2014] [Accepted: 02/15/2014] [Indexed: 11/29/2022]
Abstract
The preclinical profiles of two most potent compounds of our recently published cycloalkane[d]isoxazole pharmacophore-based androgen receptor (AR) modulators, FL442 (4-(3a,4,5,6,7,7a-hexahydro-benzo[d]isoxazol-3-yl)-2-(trifluoromethyl)benzonitrile) and its nitro analog FL425 (3-(4-nitro-3-(trifluoromethyl)phenyl)-3a,4,5,6,7,7a-hexahydrobenzo[d]isoxazole), were explored to evaluate their druggability for the treatment of AR dependent prostate cancer. The studies revealed that both compounds are selective to AR over other closely related steroid hormone receptors and that FL442 exhibits equal inhibition efficiency towards the androgen-responsive LNCaP prostate cancer cell line as the most widely used antiandrogen bicalutamide and the more recently discovered enzalutamide. Notably, FL442 maintains antiandrogenic activity with enzalutamide-activated AR mutant F876L. In contrast to bicalutamide, FL442 does not stimulate the VCaP prostate cancer cells which express elevated levels of the AR. Distribution analyses showed that [(14)CN]FL442 accumulates strongly in the mouse prostate. In spite of its low plasma concentration obtained by intraperitoneal administration, FL442 significantly inhibited LNCaP xenograft tumor growth. These findings provide a preclinical proof for FL442 as a promising AR targeted candidate for a further optimization.
Collapse
Affiliation(s)
- Pekka K Poutiainen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tuulia Huhtala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aleksanteri Petsalo
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, P.O. Box 5000, FI-90014, Finland
| | - Jenni Küblbeck
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sanna Kaikkonen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hannu Raunio
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ale Närvänen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mikael Peräkylä
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Risto O Juvonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Reino Laatikainen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Juha T Pulkkinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
36
|
Altimari JM, Niranjan B, Risbridger GP, Schweiker SS, Lohning AE, Henderson LC. Preliminary investigations into triazole derived androgen receptor antagonists. Bioorg Med Chem 2014; 22:2692-706. [PMID: 24726305 DOI: 10.1016/j.bmc.2014.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/05/2014] [Accepted: 03/13/2014] [Indexed: 11/29/2022]
Abstract
A range of 1,4-substituted-1,2,3-N-phenyltriazoles were synthesized and evaluated as non-steroidal androgen receptor (AR) antagonists. The motivation for this study was to replace the N-phenyl amide portion of small molecule antiandrogens with a 1,2,3-triazole and determine effects, if any, on biological activity. The synthetic methodology presented herein is robust, high yielding and extremely rapid. Using this methodology a series of 17 N-aryl triazoles were synthesized from commercially available starting materials in less than 3h. After preliminary biological screening at 20 and 40 μM, the most promising three compounds were found to display IC50 values of 40-50 μM against androgen dependent (LNCaP) cells and serve as a starting point for further structure-activity investigations. All compounds in this work were the focus of an in silico study to dock the compounds into the human androgen receptor ligand binding domain (hARLBD) and compare their predicted binding affinity with known antiandrogens. A comparison of receptor-ligand interactions for the wild type and T877A mutant AR revealed two novel polar interactions. One with Q738 of the wild type site and the second with the mutated A877 residue.
Collapse
Affiliation(s)
- Jarrad M Altimari
- Strategic Research Center for Chemistry and Biotechnology, Deakin University, Pigdons Road, Waurn Ponds Campus, Geelong 3216, Victoria, Australia
| | - Birunthi Niranjan
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria 3800, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria 3800, Australia
| | - Stephanie S Schweiker
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast 4229, Queensland, Australia
| | - Anna E Lohning
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast 4229, Queensland, Australia
| | - Luke C Henderson
- Strategic Research Center for Chemistry and Biotechnology, Deakin University, Pigdons Road, Waurn Ponds Campus, Geelong 3216, Victoria, Australia; Institute for Frontier Materials, Deakin University, Pigdons Road, Waurn Ponds Campus, Geelong 3216, Victoria, Australia.
| |
Collapse
|
37
|
Abstract
Androgenic steroids are important for male development in utero and secondary sexual characteristics at puberty. In addition, androgens play a role in non-reproductive tissues, such as bone and muscle in both sexes. The actions of the androgens testosterone and dihydrotestosterone are mediated by a single receptor protein, the androgen receptor. Over the last 60–70 years there has been considerable research interest in the development of inhibitors of androgen receptor for the management of diseases such as prostate cancer. However, more recently, there is also a growing appreciation of the need for selective androgen modulators that would demonstrate tissue-selective agonist or antagonist activity. The chemistry and biology of selective agonists, antagonists and selective androgen receptor modulators will be discussed in this review.
Collapse
|
38
|
Salvador JAR, Carvalho JFS, Neves MAC, Silvestre SM, Leitão AJ, Silva MMC, Sá e Melo ML. Anticancer steroids: linking natural and semi-synthetic compounds. Nat Prod Rep 2013; 30:324-74. [PMID: 23151898 DOI: 10.1039/c2np20082a] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Steroids, a widespread class of natural organic compounds occurring in animals, plants and fungi, have shown great therapeutic value for a broad array of pathologies. The present overview is focused on the anticancer activity of steroids, which is very representative of a rich structural molecular diversity and ability to interact with various biological targets and pathways. This review encompasses the most relevant discoveries on steroid anticancer drugs and leads through the last decade and comprises 668 references.
Collapse
Affiliation(s)
- Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, 3000-508, Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
39
|
Hoppé E, Bouvard B, Royer M, Chappard D, Audran M, Legrand E. Is androgen therapy indicated in men with osteoporosis? Joint Bone Spine 2013; 80:459-65. [PMID: 23587643 DOI: 10.1016/j.jbspin.2013.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2013] [Indexed: 01/25/2023]
Abstract
Male osteoporosis is not rare, and its management is a public health issue. The clinical evaluation must include investigations for one or more etiological factors such as hypogonadism, which is found in 5% to 15% of men with osteoporosis. Gradual development of moderate hypogonadism is the most common situation, and the prevalence of hypogonadism increases with advancing age. The wealth of scientific data establishing a major role for sex hormones in growth, bone turnover, and the osteoporotic fracture risk is in striking contrast to the paucity of therapeutic trials. Androgen therapy did not consistently produce bone mass gains, and no data on potential anti-fracture effects are available. Androgen therapy was not associated with significant increases in mortality, prostate disorders, or cardiovascular events, but few data were obtained in patients older than 75 years. In practice, in a male patient with osteoporosis, a diagnosis of marked and persistent hypogonadism requires investigations for treatable causes. In patients younger than 75 years of age, androgen replacement therapy should be started, in collaboration with an endocrinologist. A history of fractures indicates a need for additional osteoporosis pharmacotherapy. The risk/benefit ratio of androgen therapy is unclear in men older than 75 years, in whom a reasonable option consists in combining fall-prevention measures, vitamin D supplementation, and a medication proven to decrease the risk of proximal femoral fractures.
Collapse
Affiliation(s)
- Emmanuel Hoppé
- Service de rhumatologie, CHU d'Angers, 4, rue Larrey, 49933 Angers cedex 9, France; Groupe Etude sur le Remodelage Osseux et les bioMatériaux (GEROM), UPRES EA 4658, IRIS-IBS, Institut de Biologie en Santé, CHU d'Angers, Angers, France.
| | | | | | | | | | | |
Collapse
|
40
|
Starcevic B, Ahrens BD, Butch AW. Detection of the selective androgen receptor modulator S-4 (Andarine) in a doping control sample. Drug Test Anal 2013; 5:377-9. [DOI: 10.1002/dta.1466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Borislav Starcevic
- UCLA Olympic Analytical Laboratory, Department of Pathology & Laboratory Medicine; Geffen School of Medicine, Reagan UCLA Medical Center; Los Angeles; CA; USA
| | - Brian D. Ahrens
- UCLA Olympic Analytical Laboratory, Department of Pathology & Laboratory Medicine; Geffen School of Medicine, Reagan UCLA Medical Center; Los Angeles; CA; USA
| | - Anthony W. Butch
- UCLA Olympic Analytical Laboratory, Department of Pathology & Laboratory Medicine; Geffen School of Medicine, Reagan UCLA Medical Center; Los Angeles; CA; USA
| |
Collapse
|
41
|
Belikov S, Öberg C, Jääskeläinen T, Rahkama V, Palvimo JJ, Wrange Ö. FoxA1 corrupts the antiandrogenic effect of bicalutamide but only weakly attenuates the effect of MDV3100 (Enzalutamide™). Mol Cell Endocrinol 2013; 365:95-107. [PMID: 23063623 DOI: 10.1016/j.mce.2012.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/26/2012] [Accepted: 10/02/2012] [Indexed: 01/04/2023]
Abstract
Prostate cancer growth depends on androgens. Synthetic antiandrogens are used in the cancer treatment. However, antiandrogens, such as bicalutamide (BIC), have a mixed agonist/antagonist activity. Here we compare the antiandrogenic capacity of BIC to a new antiandrogen, MDV3100 (MDV) or Enzalutamide™. By reconstitution of a hormone-regulated enhancer in Xenopus oocytes we show that both antagonists trigger the androgen receptor (AR) translocation to the nucleus, albeit with a reduced efficiency for MDV. Once in the nucleus, both AR-antagonist complexes can bind sequence specifically to DNA in vivo. The forkhead box transcription factor A (FoxA1) is a negative prognostic indicator for prostate cancer disease. FoxA1 expression presets the enhancer chromatin and makes the DNA more accessible for AR binding. In this context the BIC-AR antiandrogenic effect is seriously compromised as demonstrated by a significant chromatin remodeling and induction of a robust MMTV transcription whereas the MDV-AR complex displays a more persistent antagonistic character.
Collapse
Affiliation(s)
- S Belikov
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
42
|
Buvat J, Maggi M, Guay A, Torres LO. Testosterone Deficiency in Men: Systematic Review and Standard Operating Procedures for Diagnosis and Treatment. J Sex Med 2013; 10:245-84. [DOI: 10.1111/j.1743-6109.2012.02783.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Flutamide Enhances Neuroprotective Effects of Testosterone during Experimental Cerebral Ischemia in Male Rats. ISRN NEUROLOGY 2012; 2013:592398. [PMID: 23401794 PMCID: PMC3562684 DOI: 10.1155/2013/592398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 12/18/2012] [Indexed: 12/30/2022]
Abstract
Testosterone has been shown to worsen histological and neurological impairment during cerebral ischemia in animal models. Cell culture studies revealed that testosterone is implicated in protecting neural and glial cells against insults, and they started to elucidate testosterone pathways that underlie these protective effects. These studies support the hypothesis that testosterone can be neuroprotective throughout an episode of cerebral ischemia. Therefore, we evaluated the mechanisms underlying the shift between testosterone protective and deleterious effects via block testosterone aromatization and androgen receptors in rats subjected to 60-minute middle cerebral artery occlusion. Fifty rats were divided into five equal groups: gonadally intact male; castrated male; intact male + flutamide; intact male + letrozole; intact male + combination flutamide and letrozole. Our results indicated that castration has the ability to reduce histological damage and to improve neurological score 24 hours after middle cerebral artery occlusion. Moreover, flutamide improved histologic and neurological impairment better than castration. Letrozole induced increases in striatal infarct volume and seizures in gonadally intact rats. Combination of flutamide and letrozole showed that letrozole can reverse beneficial effects of flutamide. In conclusion, it seems that the beneficial effects of flutamide are the prevention of the deleterious effects and enhancement of neuroprotective effects of testosterone during cerebral ischemia.
Collapse
|
44
|
Zhang X, Sui Z. Deciphering the selective androgen receptor modulators paradigm. Expert Opin Drug Discov 2012; 8:191-218. [DOI: 10.1517/17460441.2013.741582] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xuqing Zhang
- Janssen Research and Development, LLC, Welsh and McKean Roads, PO Box 776, Spring House, PA 19477, USA
| | - Zhihua Sui
- Janssen Research and Development, LLC, Welsh and McKean Roads, PO Box 776, Spring House, PA 19477, USA
| |
Collapse
|
45
|
Mohler ML, Coss CC, Duke CB, Patil SA, Miller DD, Dalton JT. Androgen receptor antagonists: a patent review (2008-2011). Expert Opin Ther Pat 2012; 22:541-65. [PMID: 22583332 DOI: 10.1517/13543776.2012.682571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Androgen receptor (AR) antagonists are predominantly used as chemical castration to treat prostate cancer (i.e., in conjunction with androgen deprivation therapy (ADT)). Unfortunately, castration-resistant prostate cancer (CRPC) typically develops that is refractory to targeted therapy. Insights into CRPC biology have led to the emergence of a promising clinical candidate MDV3100 (1) and a resurgence in this field. A pipeline of preclinical competitive (C-terminally directed) antagonists was discovered using a variety of innovative screening paradigms. Some inhibit nuclear translocation, selectively downregulate or degrade AR (SARD), antagonize wild-type and escape mutant AR (pan-antagonists) and/or antagonize AR target organs in vivo. Separately, the N-terminal domain has emerged as a promising novel target for noncompetitive antagonists. AREAS COVERED AR antagonists whose patents published between 2008 and 2011 are reviewed. Antagonists are organized based on the screening paradigm reported as discussed above. EXPERT OPINION Novel mechanisms provide a more informed basis for selecting a competitive antagonist; however, high potency and favorable in vivo properties remain paramount. Noncompetitive antagonists have theoretical advantages suggestive of improved clinical efficacy, but no clinical proof of concept as of yet.
Collapse
Affiliation(s)
- Michael L Mohler
- Preclinical Research and Development, GTx, Inc., 3 North Dunlap Street, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
46
|
Poutiainen PK, Oravilahti T, Peräkylä M, Palvimo JJ, Ihalainen JA, Laatikainen R, Pulkkinen JT. Design, Synthesis, and Biological Evaluation of Nonsteroidal Cycloalkane[d]isoxazole-Containing Androgen Receptor Modulators. J Med Chem 2012; 55:6316-27. [DOI: 10.1021/jm300233k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Janne A. Ihalainen
- Nanoscience Center, Department
of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, FI-40014 University
of Jyväskylä, Finland
| | | | | |
Collapse
|
47
|
Cleve A, Fritzemeier KH, Haendler B, Heinrich N, Möller C, Schwede W, Wintermantel T. Pharmacology and clinical use of sex steroid hormone receptor modulators. Handb Exp Pharmacol 2012:543-587. [PMID: 23027466 DOI: 10.1007/978-3-642-30726-3_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sex steroid receptors are ligand-triggered transcription factors. Oestrogen, progesterone and androgen receptors form, together with the glucocorticoid and mineralocorticoid receptors, a subgroup of the superfamily of nuclear receptors. They share a common mode of action, namely translating a hormone-i.e. a small-molecule signal-from outside to changes in gene expression and cell fate, and thereby represent "natural" pharmacological targets.For pharmacological therapy, these receptors have originally been addressed by hormones and synthetic hormone analogues in order to overcome pathologies related to deficiencies in the natural ligands. Another major use for female sex hormone receptor modulators is oral contraception, i.e. birth control.On the other side, blocking the activity of sex steroid receptors has become an established way to treat hormone-dependent malignancies, such as breast and prostate cancer.In this review, we will discuss how the experience gained from the classical pharmacology of these receptors and their molecular similarities led to new options for the treatment of gender-specific diseases and highlight recent progress in medicinal chemistry of sex hormone-modulating drugs.
Collapse
Affiliation(s)
- A Cleve
- Bayer Pharma AG, Muellerstr. 178, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Thum T, Springer J. Breakthrough in cachexia treatment through a novel selective androgen receptor modulator?! J Cachexia Sarcopenia Muscle 2011; 2:121-123. [PMID: 21966638 PMCID: PMC3177042 DOI: 10.1007/s13539-011-0040-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 08/26/2011] [Indexed: 01/06/2023] Open
Abstract
Cachexia, and particularly the loss of metabolically active lean tissue, leads to increased morbidity and mortality in affected patients. An impairment of strength and functional status is usually associated with cachexia. A variety of anabolic and appetite-stimulating agents have been studied in patients with cachexia caused by various underlying diseases. Overall, these studies have demonstrated that treatment can increase body weight and/or lean body mass. However, these therapies may have severe side effects, particularly when utilizing testosterone and related anabolic steroids targeting the androgen receptor. These side effects include cardiovascular problems, prostate hyperplasia and cancer in men, as well as virilization in women.
Collapse
Affiliation(s)
- Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover
- Centre for Clinical and Basic Research; IRCCS San Raffaele; Rome
| | - Jochen Springer
- Applied Cachexia Research, Department of Cardiology; Charité Campus Virchow-Klinikum Berlin
- Center for Cardiovascular Research; Charite Medical School; Berlin
- Norwich Medical School; University of East Anglia; Norwich
| |
Collapse
|