1
|
Tan XL, Wang Z, Liao S, Yi M, Tao D, Zhang X, Leng X, Shi J, Xie S, Yang Y, Liu YQ. NR0B1 augments sorafenib resistance in hepatocellular carcinoma through promoting autophagy and inhibiting apoptosis. Cancer Sci 2024; 115:465-476. [PMID: 37991109 PMCID: PMC10859617 DOI: 10.1111/cas.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
NR0B1 is frequently activated in hepatocellular carcinoma (HCC). However, the role of NR0B1 is controversial in HCC. In this study, we observed that NR0B1 was an independent poor prognostic factor, negatively correlated with the overall survival of HCC and the relapse-free survival of patients treated with sorafenib. Meanwhile, NR0B1 promoted the proliferation, migration, and invasion of HCC cells, inhibited sorafenib-induced apoptosis, and elevated the IC50 of sorafenib in HCC cells. NR0B1 was further displayed to increase sorafenib-induced autophagic vesicles and activate Beclin1/LC3-II-dependent autophagy pathway. Finally, NR0B1 was revealed to transcriptionally suppress GSK3β that restrains AMPK/mTOR-driven autophagy and increases BAX-mediated apoptosis. Collectively, our study uncovered that the ectopic expression of NR0B1 augmented sorafenib-resistance in HCC cells by activating autophagy and inhibiting apoptosis. Our findings supported that NR0B1 was a detrimental factor for HCC prognosis.
Collapse
Affiliation(s)
- Xiao lan Tan
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhaokun Wang
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Shunyao Liao
- Institute of Gerontology and Center for Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ming Yi
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Dachang Tao
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Xinyue Zhang
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Xiangyou Leng
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Jiaying Shi
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Shengyu Xie
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yuan Yang
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yun qiang Liu
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Development of Human Adrenocortical Adenoma (HAA1) Cell Line from Zona Reticularis. Int J Mol Sci 2022; 24:ijms24010584. [PMID: 36614027 PMCID: PMC9820690 DOI: 10.3390/ijms24010584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
The human adrenal cortex is composed of distinct zones that are the main source of steroid hormone production. The mechanism of adrenocortical cell differentiation into several functionally organized populations with distinctive identities remains poorly understood. Human adrenal disease has been difficult to study, in part due to the absence of cultured cell lines that faithfully represent adrenal cell precursors in the early stages of transformation. Here, Human Adrenocortical Adenoma (HAA1) cell line derived from a patient's macronodular adrenocortical hyperplasia and was treated with histone deacetylase inhibitors (HDACis) and gene expression was examined. We describe a patient-derived HAA1 cell line derived from the zona reticularis, the innermost zone of the adrenal cortex. The HAA1 cell line is unique in its ability to exit a latent state and respond with steroidogenic gene expression upon treatment with histone deacetylase inhibitors. The gene expression pattern of differentiated HAA1 cells partially recreates the roster of genes in the adrenal layer that they have been derived from. Gene ontology analysis of whole genome RNA-seq corroborated increased expression of steroidogenic genes upon HDAC inhibition. Surprisingly, HDACi treatment induced broad activation of the Tumor Necrosis Factor (TNF) alpha pathway. This novel cell line we developed will hopefully be instrumental in understanding the molecular and biochemical mechanisms controlling adrenocortical differentiation and steroidogenesis.
Collapse
|
3
|
Bueno AC, Stecchini MF, Marrero-Gutiérrez J, More CB, Leal LF, Gomes DC, de Lima Neto DF, Brandalise SR, Cardinalli IA, Yunes JA, Junqueira T, Scrideli CA, Molina CAF, Ramalho FS, Tucci S, Coeli-Lacchini FB, Moreira AC, Ramalho L, Vêncio RZN, De Castro M, Antonini SRR. Vitamin D receptor hypermethylation as a biomarker for pediatric adrenocortical tumors. Eur J Endocrinol 2022; 186:573-585. [PMID: 35290212 DOI: 10.1530/eje-21-0879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Pediatric adrenocortical tumors (pACT) display complex genomic backgrounds, lacking robust prognostic markers and targeted therapeutic options. Vitamin D3 receptor (VDR) promoter hypermethylation and underexpression were reported in adrenocortical carcinomas from adult patients. In this study, we aimed to investigate VDR expression levels and methylation status in pACT and their clinical and prognostic significance. DESIGN Retrospective cross-sectional study enrolling pediatric patients with ACT from two tertiary referral institutions. METHODS We evaluated clinicopathological features, VDR mRNA (qPCR) and protein (immunohistochemistry) expression, and VDR-wide methylation of ACT samples from 108 pediatric patients. Fourteen pediatric and 32 fetal and postnatal normal adrenals were used as controls. RESULTS Unlike in pre- and post-natal normal adrenals, most pACT lacked nuclear VDR expression and had reduced mRNA levels, especially the carcinomas. Unsupervised analysis of VDR methylation data revealed two groups of pACT with distinct disease features and outcomes. Tumors with high VDR methylation presented lower mRNA levels, and the respective patients presented advanced disease and reduced disease-free and overall survival. CONCLUSIONS VDR has a role in normal adrenocortical development and homeostasis, which is impaired during tumorigenesis. VDR hypermethylation and underexpression may be both predictive and prognostic biomarkers for pACT.
Collapse
Affiliation(s)
- Ana Carolina Bueno
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mônica F Stecchini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Junier Marrero-Gutiérrez
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Candy Bellido More
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Leticia Ferro Leal
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Daniel Ferreira de Lima Neto
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | | | - José Andres Yunes
- Boldrini Children's Center, State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Thais Junqueira
- Boldrini Children's Center, State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Carlos Alberto Scrideli
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos Augusto Fernandes Molina
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando Silva Ramalho
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Silvio Tucci
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Ayrton Custodio Moreira
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Leandra Ramalho
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ricardo Zorzetto Nicoliello Vêncio
- Department of Computation and Mathematics, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of São Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Margaret De Castro
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Sonir Roberto R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
4
|
Zhou J, Azizan EAB, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Argentesi G, Cottrell E, Amar L, Wu X, O'Toole S, Goodchild E, Marker A, Senanayake R, Garg S, Åkerström T, Backman S, Jordan S, Polubothu S, Berney DM, Gluck A, Lines KE, Thakker RV, Tuthill A, Joyce C, Kaski JP, Karet Frankl FE, Metherell LA, Teo AED, Gurnell M, Parvanta L, Drake WM, Wozniak E, Klinzing D, Kuan JL, Tiang Z, Gomez Sanchez CE, Hellman P, Foo RSY, Mein CA, Kinsler VA, Björklund P, Storr HL, Zennaro MC, Brown MJ. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat Genet 2021; 53:1360-1372. [PMID: 34385710 PMCID: PMC9082578 DOI: 10.1038/s41588-021-00906-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/29/2021] [Indexed: 01/05/2023]
Abstract
Most aldosterone-producing adenomas (APAs) have gain-of-function somatic mutations of ion channels or transporters. However, their frequency in aldosterone-producing cell clusters of normal adrenal gland suggests a requirement for codriver mutations in APAs. Here we identified gain-of-function mutations in both CTNNB1 and GNA11 by whole-exome sequencing of 3/41 APAs. Further sequencing of known CTNNB1-mutant APAs led to a total of 16 of 27 (59%) with a somatic p.Gln209His, p.Gln209Pro or p.Gln209Leu mutation of GNA11 or GNAQ. Solitary GNA11 mutations were found in hyperplastic zona glomerulosa adjacent to double-mutant APAs. Nine of ten patients in our UK/Irish cohort presented in puberty, pregnancy or menopause. Among multiple transcripts upregulated more than tenfold in double-mutant APAs was LHCGR, the receptor for luteinizing or pregnancy hormone (human chorionic gonadotropin). Transfections of adrenocortical cells demonstrated additive effects of GNA11 and CTNNB1 mutations on aldosterone secretion and expression of genes upregulated in double-mutant APAs. In adrenal cortex, GNA11/Q mutations appear clinically silent without a codriver mutation of CTNNB1.
Collapse
Affiliation(s)
- Junhua Zhou
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elena A B Azizan
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK.
- Department of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia.
| | - Claudia P Cabrera
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | | | - Giulia Argentesi
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emily Cottrell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Laurence Amar
- Université de Paris, PARCC, Inserm, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension Artérielle, Paris, France
| | - Xilin Wu
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sam O'Toole
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emily Goodchild
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alison Marker
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | - Russell Senanayake
- Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Sumedha Garg
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Suzanne Jordan
- Cellular Pathology Department, Royal London Hospital, London, UK
| | - Satyamaanasa Polubothu
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Daniel M Berney
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Anna Gluck
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kate E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Antoinette Tuthill
- Department of Endocrinology and Diabetes, Cork University Hospital, Cork, Ireland
| | - Caroline Joyce
- Clinical Biochemistry, Cork University Hospital, Cork, Ireland
| | - Juan Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital and University College London Institute of Cardiovascular Science, London, UK
| | - Fiona E Karet Frankl
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Lou A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ada E D Teo
- Dept of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mark Gurnell
- Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Laila Parvanta
- Department of Surgery, St Bartholomew's Hospital, London, UK
| | - William M Drake
- Department of Endocrinology, St Bartholomew's Hospital, London, UK
| | - Eva Wozniak
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - David Klinzing
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jyn Ling Kuan
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zenia Tiang
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Celso E Gomez Sanchez
- G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Roger S Y Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charles A Mein
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | | | - Peyman Björklund
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Maria-Christina Zennaro
- Université de Paris, PARCC, Inserm, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| | - Morris J Brown
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK.
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Yaglova NV, Tsomartova DA, Obernikhin SS, Nazimova SV, Ivanova MY, Chereshneva EV, Yaglov VV, Lomanovskaya TA. Transcription factors β-catenin and Hex in postnatal development of the rat adrenal cortex: implication in proliferation control. Heliyon 2021; 7:e05932. [PMID: 33490685 PMCID: PMC7809185 DOI: 10.1016/j.heliyon.2021.e05932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Transcriptional regulation of growth, maturation, and cell turnover in adrenal cortex during postnatal development has been significantly less studied than in embryonic period, while elucidation of factors mediating its normal postnatal morphogenesis could clarify mechanisms of tumorigenesis in adrenal cortex. Expression of transcription factors Hex, β-catenin, and Wnt signaling in the adrenal cortex of male pubertal and postpubertal Wistar rats were examined. Adrenal cortex morphology and hormone production during postnatal development were also studied. Adrenocortical zones demonstrated similar reduction of Ki-67-expressing cells, but different patterns of morphological and functional changes. Age-dependent decrease in percentage of cells with membrane localization of β-catenin and stable rate of cells with nuclear β-catenin, indicative of Wnt signaling activation, were revealed in each cortical zone. Nuclear β-catenin was not observed in immature areas of zona fasciculata. No association between Wnt signaling activation and rates of proliferation as well as changes in secretion of adrenocortical hormones was observed in postnatal development of rat adrenal cortex. Hex, known as antiproliferative factor, showed up-regulation of expression after puberty. Strong inverse correlations between ratio of Hex-positive cells and proliferating cells were found in zona glomerulosa and zona fasciculata. Zona reticularis demonstrated moderate correlation. Thus, these findings suggest a role for Hex in proliferation control during postnatal development of the rat adrenal cortex and possible implication of Hex down-regulation in adrenocortical dysplasia and neoplasia, which requires further study. Evaluation of Hex expression may also be considered a potent tool in assessment of cell proliferation in rat adrenal cortex.
Collapse
Affiliation(s)
- Natalya V Yaglova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Dibakhan A Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia.,Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey S Obernikhin
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Svetlana V Nazimova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Marina Y Ivanova
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elizaveta V Chereshneva
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Valentin V Yaglov
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Tatiana A Lomanovskaya
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
Seccia TM, Caroccia B, Gomez-Sanchez EP, Vanderriele PE, Gomez-Sanchez CE, Rossi GP. Review of Markers of Zona Glomerulosa and Aldosterone-Producing Adenoma Cells. Hypertension 2017; 70:867-874. [PMID: 28947616 DOI: 10.1161/hypertensionaha.117.09991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Teresa M Seccia
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson
| | - Brasilina Caroccia
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson
| | - Elise P Gomez-Sanchez
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson
| | - Paul-Emmanuel Vanderriele
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson
| | - Celso E Gomez-Sanchez
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson
| | - Gian Paolo Rossi
- From the Department of Medicine-DIMED, University of Padua, Italy (T.M.S., B.C., P.-E.V., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.) and Division of Endocrinology (C.E.G.-S.), G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson.
| |
Collapse
|
7
|
Cheng JY, Brown TC, Murtha TD, Stenman A, Juhlin CC, Larsson C, Healy JM, Prasad ML, Knoefel WT, Krieg A, Scholl UI, Korah R, Carling T. A novel FOXO1-mediated dedifferentiation blocking role for DKK3 in adrenocortical carcinogenesis. BMC Cancer 2017; 17:164. [PMID: 28249601 PMCID: PMC5333434 DOI: 10.1186/s12885-017-3152-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 02/22/2017] [Indexed: 11/17/2022] Open
Abstract
Background Dysregulated WNT signaling dominates adrenocortical malignancies. This study investigates whether silencing of the WNT negative regulator DKK3 (Dickkopf-related protein 3), an implicated adrenocortical differentiation marker and an established tumor suppressor in multiple cancers, allows dedifferentiation of the adrenal cortex. Methods We analyzed the expression and regulation of DKK3 in human adrenocortical carcinoma (ACC) by qRT-PCR, immunofluorescence, promoter methylation assay, and copy number analysis. We also conducted functional studies on ACC cell lines, NCI-H295R and SW-13, using siRNAs and enforced DKK3 expression to test DKK3’s role in blocking dedifferentiation of adrenal cortex. Results While robust expression was observed in normal adrenal cortex, DKK3 was down-regulated in the majority (>75%) of adrenocortical carcinomas (ACC) tested. Both genetic (gene copy loss) and epigenetic (promoter methylation) events were found to play significant roles in DKK3 down-regulation in ACCs. While NCI-H295R cells harboring β-catenin activating mutations failed to respond to DKK3 silencing, SW-13 cells showed increased motility and reduced clonal growth. Conversely, exogenously added DKK3 also increased motility of SW-13 cells without influencing their growth. Enforced over-expression of DKK3 in SW-13 cells resulted in slower cell growth by an extension of G1 phase, promoted survival of microcolonies, and resulted in significant impairment of migratory and invasive behaviors, largely attributable to modified cell adhesions and adhesion kinetics. DKK3-over-expressing cells also showed increased expression of Forkhead Box Protein O1 (FOXO1) transcription factor, RNAi silencing of which partially restored the migratory proficiency of cells without interfering with their viability. Conclusions DKK3 suppression observed in ACCs and the effects of manipulation of DKK3 expression in ACC cell lines suggest a FOXO1-mediated differentiation-promoting role for DKK3 in the adrenal cortex, silencing of which may allow adrenocortical dedifferentiation and malignancy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3152-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joyce Y Cheng
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Taylor C Brown
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Timothy D Murtha
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Adam Stenman
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - James M Healy
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Manju L Prasad
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Wolfram T Knoefel
- Department of Surgery, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas Krieg
- Department of Surgery, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ute I Scholl
- Department of Nephrology, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Reju Korah
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Tobias Carling
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA. .,Department of Surgery, Yale University School of Medicine, 333 Cedar Street, FMB130A, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Steenblock C, Rubin de Celis MF, Androutsellis-Theotokis A, Sue M, Delgadillo Silva LF, Eisenhofer G, Andoniadou CL, Bornstein SR. Adrenal cortical and chromaffin stem cells: Is there a common progeny related to stress adaptation? Mol Cell Endocrinol 2017; 441:156-163. [PMID: 27637345 DOI: 10.1016/j.mce.2016.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
The adrenal gland is a highly plastic organ with the capacity to adapt the body homeostasis to different physiological needs. The existence of stem-like cells in the adrenal cortex has been revealed in many studies. Recently, we identified and characterized in mice a pool of glia-like multipotent Nestin-expressing progenitor cells, which contributes to the plasticity of the adrenal medulla. In addition, we found that these Nestin progenitors are actively involved in the stress response by giving rise to chromaffin cells. Interestingly, we also observed a Nestin-GFP-positive cell population located under the adrenal capsule and scattered through the cortex. In this article, we discuss the possibility of a common progenitor giving rise to subpopulations of cells both in the adrenal cortex and medulla, the isolation and characterization of this progenitor as well as its clinical potential in transplantation therapies and in pathophysiology.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
| | | | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Stem Cells, Tissue Engineering and Modelling (STEM), Division of Cancer and Stem Cells, University of Nottingham, Nottingham, UK
| | - Mariko Sue
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - Graeme Eisenhofer
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Cynthia L Andoniadou
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Endocrinology and Diabetes, King's College London, London, UK
| |
Collapse
|
9
|
Pignatti E, Leng S, Carlone DL, Breault DT. Regulation of zonation and homeostasis in the adrenal cortex. Mol Cell Endocrinol 2017; 441:146-155. [PMID: 27619404 PMCID: PMC5235909 DOI: 10.1016/j.mce.2016.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
The adult adrenal cortex is organized into concentric zones, each specialized to produce distinct steroid hormones. Cellular composition of the cortex is highly dynamic and subject to diverse signaling controls. Cortical homeostasis and regeneration rely on centripetal migration of steroidogenic cells from the outer to the inner cortex, which is accompanied by direct conversion of zona glomerulosa (zG) into zona fasciculata (zF) cells. Given the important impact of tissue structure and growth on steroidogenic function, it is essential to understand the mechanisms governing adrenal zonation and homeostasis. Towards this end, we review the distinctions between each zone by highlighting their morphological and ultra-structural features, discuss key signaling pathways influencing zonal identity, and evaluate current evidence for long-term self-renewing stem cells in the adult cortex. Finally, we review data supporting zG-to-zF transdifferentiation/direct conversion as a major mechanism of adult cortical renewal.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Lerario AM, Finco I, LaPensee C, Hammer GD. Molecular Mechanisms of Stem/Progenitor Cell Maintenance in the Adrenal Cortex. Front Endocrinol (Lausanne) 2017; 8:52. [PMID: 28386245 PMCID: PMC5362593 DOI: 10.3389/fendo.2017.00052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/03/2017] [Indexed: 01/10/2023] Open
Abstract
The adrenal cortex is characterized by three histologically and functionally distinct zones: the outermost zona glomerulosa (zG), the intermediate zona fasciculata, and the innermost zona reticularis. Important aspects of the physiology and maintenance of the adrenocortical stem/progenitor cells have emerged in the last few years. Studies have shown that the adrenocortical cells descend from a pool of progenitors that are localized in the subcapsular region of the zG. These cells continually undergo a process of centripetal displacement and differentiation, which is orchestrated by several paracrine and endocrine cues, including the pituitary-derived adrenocorticotrophic hormone, and angiotensin II. However, while several roles of the endocrine axes on adrenocortical function are well established, the mechanisms coordinating the maintenance of an undifferentiated progenitor cell pool with self-renewal capacity are poorly understood. Local factors, such as the composition of the extracellular matrix (ECM) with embedded signaling molecules, and the activity of major paracrine effectors, including ligands of the sonic hedgehog and Wnt signaling pathways, are thought to play a major role. Particularly, the composition of the ECM, which exhibits substantial differences within each of the three histologically distinct concentric zones, has been shown to influence the differentiation status of adrenocortical cells. New data from other organ systems and different experimental paradigms strongly support the conclusion that the interactions of ECM components with cell-surface receptors and secreted factors are key determinants of cell fate. In this review, we summarize established and emerging data on the paracrine and autocrine regulatory loops that regulate the biology of the progenitor cell niche and propose a role for bioengineered ECM models in further elucidating this biology in the adrenal.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Christopher LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Gary Douglas Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Center for Organogenesis, University of Michigan, Ann Arbor, MI, USA
- *Correspondence: Gary Douglas Hammer,
| |
Collapse
|
11
|
Vinson GP. Functional Zonation of the Adult Mammalian Adrenal Cortex. Front Neurosci 2016; 10:238. [PMID: 27378832 PMCID: PMC4908136 DOI: 10.3389/fnins.2016.00238] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022] Open
Abstract
The standard model of adrenocortical zonation holds that the three main zones, glomerulosa, fasciculata, and reticularis each have a distinct function, producing mineralocorticoids (in fact just aldosterone), glucocorticoids, and androgens respectively. Moreover, each zone has its specific mechanism of regulation, though ACTH has actions throughout. Finally, the cells of the cortex originate from a stem cell population in the outer cortex or capsule, and migrate centripetally, changing their phenotype as they progress through the zones. Recent progress in understanding the development of the gland and the distribution of steroidogenic enzymes, trophic hormone receptors, and other factors suggests that this model needs refinement. Firstly, proliferation can take place throughout the gland, and although the stem cells are certainly located in the periphery, zonal replenishment can take place within zones. Perhaps more importantly, neither the distribution of enzymes nor receptors suggest that the individual zones are necessarily autonomous in their production of steroid. This is particularly true of the glomerulosa, which does not seem to have the full suite of enzymes required for aldosterone biosynthesis. Nor, in the rat anyway, does it express MC2R to account for the response of aldosterone to ACTH. It is known that in development, recruitment of stem cells is stimulated by signals from within the glomerulosa. Furthermore, throughout the cortex local regulatory factors, including cytokines, catecholamines and the tissue renin-angiotensin system, modify and refine the effects of the systemic trophic factors. In these and other ways it more and more appears that the functions of the gland should be viewed as an integrated whole, greater than the sum of its component parts.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
12
|
Galac S. Cortisol-secreting adrenocortical tumours in dogs and their relevance for human medicine. Mol Cell Endocrinol 2016; 421:34-9. [PMID: 26123587 DOI: 10.1016/j.mce.2015.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Spontaneous cortisol-secreting adrenocortical tumours in pet dogs are an attractive animal model for their human counterparts. Adrenal morphology and function are similar in dogs and humans, and adrenocortical tumours have comparable clinical and pathological characteristics. Their relatively high incidence in pet dogs represents a potential source of adrenocortical tumour tissue to facilitate research. The molecular characteristics of canine cortisol-secreting adrenocortical tumours suggest that they will be useful for the study of angiogenesis, the cAMP/protein kinase A pathway, and the role of Steroidogenic Factor-1 in adrenal tumourigenesis. Pet dogs with spontaneous cortisol-secreting adrenocortical tumours may also be useful in clinical testing of new drugs and in investigating the molecular background of adrenocortical tumours.
Collapse
Affiliation(s)
- Sara Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
13
|
Chen J, Yao ZX, Chen JS, Gi YJ, Muñoz NM, Kundra S, Herlong HF, Jeong YS, Goltsov A, Ohshiro K, Mistry NA, Zhang J, Su X, Choufani S, Mitra A, Li S, Mishra B, White J, Rashid A, Wang AY, Javle M, Davila M, Michaely P, Weksberg R, Hofstetter WL, Finegold MJ, Shay JW, Machida K, Tsukamoto H, Mishra L. TGF-β/β2-spectrin/CTCF-regulated tumor suppression in human stem cell disorder Beckwith-Wiedemann syndrome. J Clin Invest 2016; 126:527-42. [PMID: 26784546 DOI: 10.1172/jci80937] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a human stem cell disorder, and individuals with this disease have a substantially increased risk (~800-fold) of developing tumors. Epigenetic silencing of β2-spectrin (β2SP, encoded by SPTBN1), a SMAD adaptor for TGF-β signaling, is causally associated with BWS; however, a role of TGF-β deficiency in BWS-associated neoplastic transformation is unexplored. Here, we have reported that double-heterozygous Sptbn1+/- Smad3+/- mice, which have defective TGF-β signaling, develop multiple tumors that are phenotypically similar to those of BWS patients. Moreover, tumorigenesis-associated genes IGF2 and telomerase reverse transcriptase (TERT) were overexpressed in fibroblasts from BWS patients and TGF-β-defective mice. We further determined that chromatin insulator CCCTC-binding factor (CTCF) is TGF-β inducible and facilitates TGF-β-mediated repression of TERT transcription via interactions with β2SP and SMAD3. This regulation was abrogated in TGF-β-defective mice and BWS, resulting in TERT overexpression. Imprinting of the IGF2/H19 locus and the CDKN1C/KCNQ1 locus on chromosome 11p15.5 is mediated by CTCF, and this regulation is lost in BWS, leading to aberrant overexpression of growth-promoting genes. Therefore, we propose that loss of CTCF-dependent imprinting of tumor-promoting genes, such as IGF2 and TERT, results from a defective TGF-β pathway and is responsible at least in part for BWS-associated tumorigenesis as well as sporadic human cancers that are frequently associated with SPTBN1 and SMAD3 mutations.
Collapse
|
14
|
Nielsen HM, How-Kit A, Guerin C, Castinetti F, Vollan HKM, De Micco C, Daunay A, Taieb D, Van Loo P, Besse C, Kristensen VN, Hansen LL, Barlier A, Sebag F, Tost J. Copy number variations alter methylation and parallel IGF2 overexpression in adrenal tumors. Endocr Relat Cancer 2015; 22:953-67. [PMID: 26400872 PMCID: PMC4621769 DOI: 10.1530/erc-15-0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Overexpression of insulin growth factor 2 (IGF2) is a hallmark of adrenocortical carcinomas and pheochromocytomas. Previous studies investigating the IGF2/H19 locus have mainly focused on a single molecular level such as genomic alterations or altered DNA methylation levels and the causal changes underlying IGF2 overexpression are still not fully established. In the current study, we analyzed 62 tumors of the adrenal gland from patients with Conn's adenoma (CA, n=12), pheochromocytomas (PCC, n=10), adrenocortical benign tumors (ACBT, n=20), and adrenocortical carcinomas (ACC, n=20). Gene expression, somatic copy number variation of chr11p15.5, and DNA methylation status of three differential methylated regions of the IGF2/H19 locus including the H19 imprinting control region were integratively analyzed. IGF2 overexpression was found in 85% of the ACCs and 100% of the PCCs compared to 23% observed in CAs and ACBTs. Copy number aberrations of chr11p15.5 were abundant in both PCCs and ACCs but while PCCs retained a diploid state, ACCs were frequently tetraploid (7/19). Loss of either a single allele or loss of two alleles of the same parental origin in tetraploid samples resulted in a uniparental disomy-like genotype. These copy number changes correlated with hypermethylation of the H19 ICR suggesting that the lost alleles were the unmethylated maternal alleles. Our data provide conclusive evidence that loss of the maternal allele correlates with IGF2 overexpression in adrenal tumors and that hypermethylation of the H19 ICR is a consequence thereof.
Collapse
Affiliation(s)
- Helene Myrtue Nielsen
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Alexandre How-Kit
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Carole Guerin
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Frederic Castinetti
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Hans Kristian Moen Vollan
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Catherine De Micco
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Antoine Daunay
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - David Taieb
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Peter Van Loo
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Celine Besse
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Vessela N Kristensen
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Lise Lotte Hansen
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Anne Barlier
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Frederic Sebag
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Jörg Tost
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
15
|
Röhrig T, Pihlajoki M, Ziegler R, Cochran RS, Schrade A, Schillebeeckx M, Mitra RD, Heikinheimo M, Wilson DB. Toying with fate: Redirecting the differentiation of adrenocortical progenitor cells into gonadal-like tissue. Mol Cell Endocrinol 2015; 408:165-77. [PMID: 25498963 PMCID: PMC4417465 DOI: 10.1016/j.mce.2014.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023]
Abstract
Cell fate decisions are integral to zonation and remodeling of the adrenal cortex. Animal models exhibiting ectopic differentiation of gonadal-like cells in the adrenal cortex can shed light on the molecular mechanisms regulating steroidogenic cell fate. In one such model, prepubertal gonadectomy (GDX) of mice triggers the formation of adrenocortical neoplasms that resemble luteinized ovarian stroma. Transcriptomic analysis and genome-wide DNA methylation mapping have identified genetic and epigenetic markers of GDX-induced adrenocortical neoplasia. Members of the GATA transcription factor family have emerged as key regulators of cell fate in this model. Expression of Gata4 is pivotal for the accumulation of gonadal-like cells in the adrenal glands of gonadectomized mice, whereas expression of Gata6 limits the spontaneous and GDX-induced differentiation of gonadal-like cells in the adrenal cortex. Additionally, Gata6 is essential for proper development of the adrenal X-zone, a layer analogous to the fetal zone of the human adrenal cortex. The relevance of these observations to developmental signaling pathways in the adrenal cortex, to other animal models of altered adrenocortical cell fate, and to human diseases is discussed.
Collapse
Affiliation(s)
- Theresa Röhrig
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim - University of Applied Sciences, Mannheim 68163, Germany
| | - Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Ricarda Ziegler
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim - University of Applied Sciences, Mannheim 68163, Germany
| | - Rebecca S Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Anja Schrade
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Maximiliaan Schillebeeckx
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Shaikh LH, Zhou J, Teo AED, Garg S, Neogi SG, Figg N, Yeo GS, Yu H, Maguire JJ, Zhao W, Bennett MR, Azizan EAB, Davenport AP, McKenzie G, Brown MJ. LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal. J Clin Endocrinol Metab 2015; 100:E836-44. [PMID: 25915569 PMCID: PMC4454794 DOI: 10.1210/jc.2015-1734] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022]
Abstract
CONTEXT Aldosterone synthesis and cellularity in the human adrenal zona glomerulosa (ZG) is sparse and patchy, presumably due to salt excess. The frequency of somatic mutations causing aldosterone-producing adenomas (APAs) may be a consequence of protection from cell loss by constitutive aldosterone production. OBJECTIVE The objective of the study was to delineate a process in human ZG, which may regulate both aldosterone production and cell turnover. DESIGN This study included a comparison of 20 pairs of ZG and zona fasciculata transcriptomes from adrenals adjacent to an APA (n = 13) or a pheochromocytoma (n = 7). INTERVENTIONS Interventions included an overexpression of the top ZG gene (LGR5) or stimulation by its ligand (R-spondin-3). MAIN OUTCOME MEASURES A transcriptome profile of ZG and zona fasciculata and aldosterone production, cell kinetic measurements, and Wnt signaling activity of LGR5 transfected or R-spondin-3-stimulated cells were measured. RESULTS LGR5 was the top gene up-regulated in ZG (25-fold). The gene for its cognate ligand R-spondin-3, RSPO3, was 5-fold up-regulated. In total, 18 genes associated with the Wnt pathway were greater than 2-fold up-regulated. ZG selectivity of LGR5, and its absence in most APAs, were confirmed by quantitative PCR and immunohistochemistry. Both R-spondin-3 stimulation and LGR5 transfection of human adrenal cells suppressed aldosterone production. There was reduced proliferation and increased apoptosis of transfected cells, and the noncanonical activator protein-1/Jun pathway was stimulated more than the canonical Wnt pathway (3-fold vs 1.3-fold). ZG of adrenal sections stained positive for apoptosis markers. CONCLUSION LGR5 is the most selectively expressed gene in human ZG and reduces aldosterone production and cell number. Such conditions may favor cells whose somatic mutation reverses aldosterone inhibition and cell loss.
Collapse
Affiliation(s)
- Lalarukh Haris Shaikh
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Junhua Zhou
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Ada E D Teo
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Sumedha Garg
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Sudeshna Guha Neogi
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Nichola Figg
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Giles S Yeo
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Haixiang Yu
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Janet J Maguire
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Wanfeng Zhao
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Martin R Bennett
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Elena A B Azizan
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Anthony P Davenport
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Grahame McKenzie
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Morris J Brown
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| |
Collapse
|
17
|
Abstract
Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
18
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
19
|
Schillebeeckx M, Pihlajoki M, Gretzinger E, Yang W, Thol F, Hiller T, Löbs AK, Röhrig T, Schrade A, Cochran R, Jay PY, Heikinheimo M, Mitra RD, Wilson DB. Novel markers of gonadectomy-induced adrenocortical neoplasia in the mouse and ferret. Mol Cell Endocrinol 2015; 399:122-30. [PMID: 25289806 PMCID: PMC4262703 DOI: 10.1016/j.mce.2014.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 07/18/2014] [Accepted: 09/29/2014] [Indexed: 12/25/2022]
Abstract
Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse strains and in the domestic ferret. Transcriptome analysis and DNA methylation mapping were used to identify novel genetic and epigenetic markers of GDX-induced adrenocortical neoplasia in female DBA/2J mice. Markers were validated using a combination of laser capture microdissection, quantitative RT-PCR, in situ hybridization, and immunohistochemistry. Microarray expression profiling of whole adrenal mRNA from ovariectomized vs. intact mice demonstrated selective upregulation of gonadal-like genes including Spinlw1 and Insl3 in GDX-induced adrenocortical tumors of the mouse. A complementary candidate gene approach identified Foxl2 as another gonadal-like marker expressed in GDX-induced neoplasms of the mouse and ferret. That both "male-specific" (Spinlw1) and "female-specific" (Foxl2) markers were identified is noteworthy and implies that the neoplasms exhibit mixed characteristics of male and female gonadal somatic cells. Genome-wide methylation analysis showed that two genes with hypomethylated promoters, Igfbp6 and Foxs1, are upregulated in GDX-induced adrenocortical neoplasms. These new genetic and epigenetic markers may prove useful for studies of steroidogenic cell development and for diagnostic testing.
Collapse
Affiliation(s)
- Maximiliaan Schillebeeckx
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Elisabeth Gretzinger
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Franziska Thol
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Theresa Hiller
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Ann-Kathrin Löbs
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Theresa Röhrig
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Anja Schrade
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Rebecca Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Patrick Y Jay
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Mitsui Y, Yasumoto H, Nagami T, Hiraki M, Arichi N, Ishikawa N, Araki A, Maruyama R, Tanaka Y, Dahiya R, Shiina H. Extracellular activation of Wnt signaling through epigenetic dysregulation of Wnt inhibitory factor-1 (Wif-1) is associated with pathogenesis of adrenocortical tumor. Oncotarget 2015; 5:2198-207. [PMID: 24755523 PMCID: PMC4039156 DOI: 10.18632/oncotarget.1889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Wnt/β-catenin signaling is considered to be an essential regulator of adrenocortical oncogenesis. Wnt inhibitory factor-1 (Wif-1), an extracellular regulator of Wnt signaling, is frequently down-regulated by hypermethylation of the promoter CpG. We investigated epigenetic regulation of Wif-1 and its association with adrenocortical (AC) tumor pathogenesis in light of Wnt activation. The AC tumors showed a high prevalence of Wif-1 promoter methylation and low prevalence of Wif-1 mRNA transcription as compared to the normal adrenal (NA) samples. Furthermore, a significant correlation was found between Wif-1 promoter methylation and mRNA transcription in the tumors. Either intracellular β-catenin accumulation or β-catenin mRNA transcription was significantly elevated in the AC tumors, which also showed an inverse correlation with Wif-1 mRNA transcription. Cyclin D1, a target gene of Wnt signaling, was also up-regulated in the AC tumors as compared with the NA samples. In addition, down-regulation of Wif-1 was correlated with increased cyclin D1 at both mRNA and protein levels. However, despite the proposed activation of Wnt signaling in AC tumors, only 2 of 20 with intracellular β-catenin accumulation showed β-catenin mutations. Thus, genetic alterations of β-catenin and epigenetics-related Wif-1 promoter hypermethylation may be important mechanisms underlying AC tumor formation though aberrant canonical Wnt/β-catenin signaling activation.
Collapse
Affiliation(s)
- Yozo Mitsui
- Departments of Urology, Shimane University Faculty of Medicine, 89-1 Enya-cho, 693-8501 Izumo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pihlajoki M, Dörner J, Cochran RS, Heikinheimo M, Wilson DB. Adrenocortical zonation, renewal, and remodeling. Front Endocrinol (Lausanne) 2015; 6:27. [PMID: 25798129 PMCID: PMC4350438 DOI: 10.3389/fendo.2015.00027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/16/2015] [Indexed: 12/12/2022] Open
Abstract
The adrenal cortex is divided into concentric zones. In humans the major cortical zones are the zona glomerulosa, zona fasciculata, and zona reticularis. The adrenal cortex is a dynamic organ in which senescent cells are replaced by newly differentiated ones. This constant renewal facilitates organ remodeling in response to physiological demand for steroids. Cortical zones can reversibly expand, contract, or alter their biochemical profiles to accommodate needs. Pools of stem/progenitor cells in the adrenal capsule, subcapsular region, and juxtamedullary region can differentiate to repopulate or expand zones. Some of these pools appear to be activated only during specific developmental windows or in response to extreme physiological demand. Senescent cells can also be replenished through direct lineage conversion; for example, cells in the zona glomerulosa can transform into cells of the zona fasciculata. Adrenocortical cell differentiation, renewal, and function are regulated by a variety of endocrine/paracrine factors including adrenocorticotropin, angiotensin II, insulin-related growth hormones, luteinizing hormone, activin, and inhibin. Additionally, zonation and regeneration of the adrenal cortex are controlled by developmental signaling pathways, such as the sonic hedgehog, delta-like homolog 1, fibroblast growth factor, and WNT/β-catenin pathways. The mechanisms involved in adrenocortical remodeling are complex and redundant so as to fulfill the offsetting goals of organ homeostasis and stress adaptation.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Helsinki University Central Hospital, Children’s Hospital, University of Helsinki, Helsinki, Finland
| | - Julia Dörner
- Hochschule Mannheim – University of Applied Sciences, Mannheim, Germany
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca S. Cochran
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Markku Heikinheimo
- Helsinki University Central Hospital, Children’s Hospital, University of Helsinki, Helsinki, Finland
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - David B. Wilson
- St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
- *Correspondence: David B. Wilson, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO 63110, USA e-mail:
| |
Collapse
|
22
|
Larsen AR, Bai RY, Chung JH, Borodovsky A, Rudin CM, Riggins GJ, Bunz F. Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Mol Cancer Ther 2014; 14:3-13. [PMID: 25376612 DOI: 10.1158/1535-7163.mct-14-0755-t] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hedgehog (Hh) signaling pathway is activated in many types of cancer and therefore presents an attractive target for new anticancer agents. Here, we show that mebendazole, a benzamidazole with a long history of safe use against nematode infestations and hydatid disease, potently inhibited Hh signaling and slowed the growth of Hh-driven human medulloblastoma cells at clinically attainable concentrations. As an antiparasitic, mebendazole avidly binds nematode tubulin and causes inhibition of intestinal microtubule synthesis. In human cells, mebendazole suppressed the formation of the primary cilium, a microtubule-based organelle that functions as a signaling hub for Hh pathway activation. The inhibition of Hh signaling by mebendazole was unaffected by mutants in the gene that encodes human Smoothened (SMO), which are selectively propagated in cell clones that survive treatment with the Hh inhibitor vismodegib. Combination of vismodegib and mebendazole resulted in additive Hh signaling inhibition. Because mebendazole can be safely administered to adults and children at high doses over extended time periods, we propose that mebendazole could be rapidly repurposed and clinically tested as a prospective therapeutic agent for many tumors that are dependent on Hh signaling.
Collapse
Affiliation(s)
- Andrew R Larsen
- Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Ren-Yuan Bai
- Department of Neurosurgery, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Jon H Chung
- Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Alexandra Borodovsky
- Department of Neurosurgery, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Charles M Rudin
- Memorial Hospital Research Laboratories, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gregory J Riggins
- Department of Neurosurgery, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland.
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland.
| |
Collapse
|
23
|
Germline PRKACA amplification leads to Cushing syndrome caused by 3 adrenocortical pathologic phenotypes. Hum Pathol 2014; 46:40-9. [PMID: 25449630 DOI: 10.1016/j.humpath.2014.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 11/22/2022]
Abstract
We describe the pathology of 5 patients with germline PRKACA copy number gain and Cushing syndrome: 4 males and 1 female, aged 2 to 43 years, including a mother and son. Imaging showed normal or slightly enlarged adrenal glands in 4 patients and a unilateral mass in the fifth. Biochemically, the patients had corticotropin-independent hypercortisolism. Four underwent bilateral adrenalectomy; unilateral adrenalectomy was performed in the patient with the adrenal mass. Pathologically, 3 patients, including the 1 with the tumor (adenoma), had primary pigmented nodular adrenocortical disease with extranodular cortical atrophy and mild intracapsular and extracapsular extension of cortical cells. The other 2 patients had cortical hyperplasia and prominent capsular and extracapsular micronodular cortical hyperplasia. Immunoperoxidase staining revealed differences for synaptophysin, inhibin-A, and Ki-67 (nuclei) in the atrophic cortices (patients 1, 2, and 3) and hyperplastic cortices (patients 4 and 5) and for Ki-67 (nuclei) and vimentin in the extracortical nodules in the 2 groups of patients. β-Catenin stained the cell membrane, cytoplasm, and nuclei of the adenoma. The patients were well at follow-up (1-23 years); 24-hour urinary cortisol excretion was elevated in the patient who had unilateral adrenalectomy.
Collapse
|
24
|
Mermejo LM, Leal LF, Colli LM, Fragoso MCBV, Latronico AC, Tone LG, Scrideli CA, Tucci S, Martinelli CE, Yunes JA, Mastellaro MJ, Seidinger AL, Brandalise SR, Moreira AC, Ramalho LN, Antonini SR, Castro M. Altered expression of noncanonical Wnt pathway genes in paediatric and adult adrenocortical tumours. Clin Endocrinol (Oxf) 2014; 81:503-10. [PMID: 24717047 DOI: 10.1111/cen.12462] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/29/2014] [Indexed: 11/29/2022]
Abstract
CONTEXT The role of planar cell polarity (Wnt/PCP) and calcium-dependent (Wnt/Ca) noncanonical Wnt pathways in adrenocortical tumours (ACTs) is unknown. OBJECTIVES To investigate the gene expression of Wnt/PCP and Wnt/Ca pathways and its association with TP53 p.R337H and CTNNB1 mutations in paediatric and adult ACTs and to correlate these findings with clinical outcome. PATIENTS Expression of noncanonical Wnt-related genes was evaluated in 91 ACTs (66 children and 25 adults) by qPCR and the expression of beta-catenin, P53 and protein effectors of Wnt/Ca (NFAT) and Wnt/PCP (JNK) by immunohistochemistry. TP53 and CTNNB1 genes were sequenced. RESULTS TP53 p.R337H mutation frequency was higher in children (86% vs 28%), while CTNNB1 mutation was higher in adults (32% vs 6%). Mortality was higher in adults harbouring TP53 p.R337H and in children with CTNNB1 mutations. Overexpression of WNT5A, Wnt/Ca ligand, was observed in children and adults. Overexpression of MAPK8 and underexpression of PRICKLE, Wnt/PCP mediators, were observed in paediatric but not in adult cases. Cytoplasmic/nuclear beta-catenin and P53 accumulation was observed in the majority of paediatric and adult ACTs as well as NFAT and JNK. Overexpression of MAPK8 and underexpression of PRICKLE were associated with mortality in children, while overexpression of WNT5A and underexpression of PRICKLE were associated with mortality in adults. CONCLUSIONS In our study, TP53 p.R337H and CTNNB1 mutations correlated with poor prognosis in adults and children, respectively. We demonstrate, for the first time, the activation of Wnt/PCP and Wnt/Ca noncanonical pathway genes, and their association with poor outcome in children and adults, suggesting their putative involvement in ACTs aggressiveness.
Collapse
Affiliation(s)
- Livia M Mermejo
- Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Antonini SR, Leal LF, Cavalcanti MM. Pediatric adrenocortical tumors: diagnosis, management and advancements in the understanding of the genetic basis and therapeutic implications. Expert Rev Endocrinol Metab 2014; 9:445-464. [PMID: 30736208 DOI: 10.1586/17446651.2014.941813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenocortical tumors (ACTs) may be sporadic or related to inherited genetic syndromes. Uncovering the molecular defects underlying these genetic syndromes has revealed key signaling pathways involved in adrenocortical tumorigenesis. Although the understanding of ACT biology has improved, to date, very few potential prognostic molecular markers of childhood ACTs have been identified. In this review, we summarize the current knowledge of the epidemiology, clinical presentation, diagnosis, prognosis and treatment options for pediatric patients with ACTs. A review of the genetic basis of adrenocortical tumorigenesis is presented, focusing on the main molecular abnormalities involved in the tumorigenic process and potential novel therapy targets that have been generated, or are being generated, with the discovery of these molecular defects.
Collapse
Affiliation(s)
| | - Letícia F Leal
- a Department of Pediatrics, Ribeirao Preto Medical-School - University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo M Cavalcanti
- a Department of Pediatrics, Ribeirao Preto Medical-School - University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
27
|
Gomes DC, Leal LF, Mermejo LM, Scrideli CA, Martinelli CE, Fragoso MCBV, Latronico AC, Tone LG, Tucci S, Yunes JA, Cardinalli IA, Mastellaro MJ, Brandalise SR, Ramalho F, Moreira AC, Ramalho LN, de Castro M, Antonini SRR. Sonic hedgehog signaling is active in human adrenal cortex development and deregulated in adrenocortical tumors. J Clin Endocrinol Metab 2014; 99:E1209-16. [PMID: 24712566 DOI: 10.1210/jc.2013-4098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The sonic hedgehog (SHH) pathway plays a key role in rodent adrenal cortex development and is involved in tumorigenesis in several human tissues, but data in human adrenal glands are limited. OBJECTIVES The objectives of the study were to analyze the involvement of the SHH pathway in human adrenal development and tumorigenesis and the effects of SHH inhibition on an adrenocortical tumor (ACT) cell line. PATIENTS AND METHODS Expression of SHH pathway components was evaluated by immunohistochemistry in 51 normal adrenals (33 fetal) and 34 ACTs (23 pediatric) and by quantitative PCR in 81 ACTs (61 pediatric) and 19 controls (10 pediatric). The effects of SHH pathway inhibition on gene expression and cell viability in the NCI-H295A adrenocortical tumor cell line after cyclopamine treatment were analyzed. RESULTS SHH pathway proteins were present in fetal and postnatal normal adrenals and showed distinct patterns of spatiotemporal expression throughout development. Adult adrenocortical carcinomas presented with higher expression of PTCH1, SMO, GLI3, and SUFU compared with normal adult adrenal cortices. Conversely, pediatric ACTs showed lower mRNA expression of SHH, PTCH1, SMO, GLI1, and GLI3 compared with normal pediatric adrenal cortices. In vitro treatment with cyclopamine resulted in decreased GLI3, SFRP1, and CTNNB1 mRNA expression and β-catenin staining as well as decreased cell viability. CONCLUSIONS The SHH pathway is active in human fetal and postnatal adrenals, up-regulated in adult adrenocortical carcinomas, and down-regulated in pediatric ACTs. SHH pathway antagonism impaired cell viability. The SHH pathway is deregulated in ACTs and might provide a new target therapy to be explored.
Collapse
Affiliation(s)
- Débora C Gomes
- School of Medicine (D.C.G., L.F.L., L.M.M., C.A.S., C.E.M., L.G.T., S.T., F.R., A.C.M., L.N.R., M.C., S.R.R.A.), Ribeirao Preto Medical School-University of Sao Paulo, 14090-900 Ribeirao Preto, Brazil; School of Medicine (M.C.B.V.F., A.C.L.), University of Sao Paulo, 01246-903 Sao Paulo, Brazil; and Boldrini Children's Center (J.A.Y., S.R.B., I.A.C., M.J.M.), 13083-210 Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nishimoto K, Harris RBS, Rainey WE, Seki T. Sodium deficiency regulates rat adrenal zona glomerulosa gene expression. Endocrinology 2014; 155:1363-72. [PMID: 24422541 PMCID: PMC3959598 DOI: 10.1210/en.2013-1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aldosterone is the primary adrenocortical hormone regulating sodium retention, and its production is under the control of the renin-angiotensin-aldosterone system (RAAS). In vitro, angiotensin II can induce aldosterone production in adrenocortical cells without causing cell proliferation. In vivo, a low-sodium diet activates the RAAS and aldosterone production, at least in part, through an expansion of the adrenal zona glomerulosa (zG) layer. Although these mechanisms have been investigated, RAAS effects on zG gene expression have not been fully elucidated. In this study, we took an unbiased approach to define the complete list of zG transcripts involved in RAAS activation. Adrenal glands were collected from 11-week old Sprague-Dawley rats fed either sodium-deficient (SDef), normal sodium (NS), or high-sodium (HS) diet for 72 hours, and laser-captured zG RNA was analyzed on microarrays containing 27 342 probe sets. When the SDef transcriptome was compared with NS transcriptome (SDef/NS comparison), only 79 and 10 probe sets were found to be up- and down-regulated more than two-fold in SDef, respectively. In SDef/HS comparison, 201 and 68 probe sets were up- and down-regulated in SDef, respectively. Upon gene ontology (GO) analysis of these gene sets, we identified three groups of functionally related GO terms: cell proliferation-associated (group 1), response to stimulus-associated (group 2), and cholesterol/steroid metabolism-associated (group 3) GO terms. Although genes in group 1 may play a critical role in zG layer expansion, those in groups 2 and 3 may have important functions in aldosterone production, and further investigations on these genes are warranted.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- Department of Molecular and Integrative Physiology (K.N., W.E.R.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology (R.B.S.H., T.S.), Georgia Regents University, Augusta, Georgia 30912; and Department of Urology (K.N.), Tachikawa Hospital, Tachikawa, 190-0022 Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Marjut Pihlajoki
- Box 8208, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110.
| | | | | |
Collapse
|
30
|
Wood MA, Acharya A, Finco I, Swonger JM, Elston MJ, Tallquist MD, Hammer GD. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus. Development 2013; 140:4522-32. [PMID: 24131628 PMCID: PMC3817941 DOI: 10.1242/dev.092775] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The lineage relationships of fetal adrenal cells and adrenal capsular cells to the differentiated adrenal cortex are not fully understood. Existing data support a role for each cell type as a progenitor for cells of the adult cortex. This report reveals that subsets of capsular cells are descendants of fetal adrenocortical cells that once expressed Nr5a1. These fetal adrenocortical cell descendants within the adrenal capsule express Gli1, a known marker of progenitors of steroidogenic adrenal cells. The capsule is also populated by cells that express Tcf21, a known inhibitor of Nr5a1 gene expression. We demonstrate that Tcf21-expressing cells give rise to Nr5a1-expressing cells but only before capsular formation. After the capsule has formed, capsular Tcf21-expressing cells give rise only to non-steroidogenic stromal adrenocortical cells, which also express collagen 1a1, desmin and platelet-derived growth factor (alpha polypeptide) but not Nr5a1. These observations integrate prior observations that define two separate origins of adult adrenocortical steroidogenic cells (fetal adrenal cortex and/or the adrenal capsule). Thus, these observations predict a unique temporal and/or spatial role of adult cortical cells that arise directly from either fetal cortical cells or from fetal cortex-derived capsular cells. Last, the data uncover the mechanism by which two populations of fetal cells (fetal cortex derived Gli1-expressing cells and mesenchymal Tcf21-expressing mesenchymal cells) participate in the establishment of the homeostatic capsular progenitor cell niche of the adult cortex.
Collapse
Affiliation(s)
- Michelle A. Wood
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessica M. Swonger
- Molecular and Cell Biology Program, University of Hawaii, Honolulu, HI 96813, USA
| | - Marlee J. Elston
- Molecular and Cell Biology Program, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle D. Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Gary D. Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA., University of Michigan Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA., Author for correspondence ()
| |
Collapse
|
31
|
Abstract
A growing body of evidence suggests that a subset of orphan nuclear receptors are amplified and prognostic for some human cancers. However, the specific roles of these orphan nuclear receptors in tumor progression and their utility as drug targets are not fully understood. In this review, we summarize recent progress in elucidating the direct and indirect involvement of orphan nuclear receptors in cancer as well as their therapeutic potential in a variety of human cancers. Furthermore, we contrast the role of orphan nuclear receptors in cancer with the known roles of estrogen receptor and androgen receptor in hormone-dependent cancers.
Collapse
Affiliation(s)
- Sung Hee Baek
- School of Biological Sciences, Creative Research Initiative Center for Chromatin Dynamics, Seoul National University, Seoul 151-742, South Korea;
| | | |
Collapse
|
32
|
Suppression of primary aldosteronism and resistant hypertension by the peroxisome proliferator-activated receptor gamma agonist pioglitazone. Am J Med Sci 2013; 345:497-500. [PMID: 23313950 DOI: 10.1097/maj.0b013e31827ad893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPAR γ) agonists have been reported to have antiproliferative and tumor-suppressive effects. We report a case of 55-year-old man with primary aldosteronism (PA) whose hyperaldosteronism was suppressed with the PPAR γ agonist pioglitazone. He had drug-resistant hypertension, hypokalemia, and diabetes mellitus. The diagnosis of PA was confirmed by the oral sodium loading test (20.5 μg/d of urinary aldosterone) and Captopril challenge test (19.5 ng/dL of plasma aldosterone). Computed tomography imaging revealed no apparent adrenal mass. The result of the posture stimulation test was consistent with the diagnosis of idiopathic adrenal hyperplasia. On administration of pioglitazone (30 mg/d) and nifedipine (40 mg/d), hypertension and hypokalemia improved and plasma aldosterone decreased for more than 6 months. The sodium loading test done after 6 months of the administration revealed the near normal results (11.2 ng/dL of plasma aldosterone and 13.1 μg/d of urinary aldosterone). The findings indicated that pioglitazone suppressed PA.
Collapse
|
33
|
Nishimoto K, Rainey WE, Bollag WB, Seki T. Lessons from the gene expression pattern of the rat zona glomerulosa. Mol Cell Endocrinol 2013; 371:107-13. [PMID: 23287491 PMCID: PMC3625490 DOI: 10.1016/j.mce.2012.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 12/24/2022]
Abstract
We recently identified hundreds of transcripts with differential expression in rat zona glomerulosa (zG) and zona fasciculata. Although the genes up-regulated in the zG may be playing important roles in aldosterone production, the relationship between most of these genes and aldosterone production has not been uncovered. Because aldosterone, in the presence of a high sodium diet, is now considered a significant cardiovascular risk factor, in this review we performed gene ontology and pathway analyses on the same microarray data to better define the genes that may influence zG function. Overall, we identified a number of genes that may be involved in aldosterone production through transforming growth factor β (TGF-β), WNT, calcium, potassium, and ACTH signaling pathways. The list of genes we present in the current report may become an important tool for researchers working on primary aldosteronism and aldosterone-related cardiovascular diseases.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
- Department of Urology, Tachikawa Hospital, Tokyo 190-8531, Japan
| | - William E. Rainey
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
- Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Tsugio Seki
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
- Corresponding author: Tsugio Seki, Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, 1120 15th Street, CA3064, Augusta, GA 30912; Tel., +1-706-721-1321; Fax., +1-706-721-7299
| |
Collapse
|
34
|
Pihlajoki M, Gretzinger E, Cochran R, Kyrönlahti A, Schrade A, Hiller T, Sullivan L, Shoykhet M, Schoeller EL, Brooks MD, Heikinheimo M, Wilson DB. Conditional mutagenesis of Gata6 in SF1-positive cells causes gonadal-like differentiation in the adrenal cortex of mice. Endocrinology 2013; 154:1754-67. [PMID: 23471215 PMCID: PMC3628026 DOI: 10.1210/en.2012-1892] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription factor GATA6 is expressed in the fetal and adult adrenal cortex and has been implicated in steroidogenesis. To characterize the role of transcription factor GATA6 in adrenocortical development and function, we generated mice in which Gata6 was conditionally deleted using Cre-LoxP recombination with Sf1-cre. The adrenal glands of adult Gata6 conditional knockout (cKO) mice were small and had a thin cortex. Cytomegalic changes were evident in fetal and adult cKO adrenal glands, and chromaffin cells were ectopically located at the periphery of the glands. Corticosterone secretion in response to exogenous ACTH was blunted in cKO mice. Spindle-shaped cells expressing Gata4, a marker of gonadal stroma, accumulated in the adrenal subcapsule of Gata6 cKO mice. RNA analysis demonstrated the concomitant upregulation of other gonadal-like markers, including Amhr2, in the cKO adrenal glands, suggesting that GATA6 inhibits the spontaneous differentiation of adrenocortical stem/progenitor cells into gonadal-like cells. Lhcgr and Cyp17 were overexpressed in the adrenal glands of gonadectomized cKO vs control mice, implying that GATA6 also limits sex steroidogenic cell differentiation in response to the hormonal changes that accompany gonadectomy. Nulliparous female and orchiectomized male Gata6 cKO mice lacked an adrenal X-zone. Microarray hybridization identified Pik3c2g as a novel X-zone marker that is downregulated in the adrenal glands of these mice. Our findings offer genetic proof that GATA6 regulates the differentiation of steroidogenic progenitors into adrenocortical cells.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lloyd RV, Hardin H, Montemayor-Garcia C, Rotondo F, Syro LV, Horvath E, Kovacs K. Stem cells and cancer stem-like cells in endocrine tissues. Endocr Pathol 2013; 24:1-10. [PMID: 23435637 DOI: 10.1007/s12022-013-9235-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer stem-like cells are a subpopulation of self-renewing cells that are more resistant to chemotherapy and radiation therapy than the other surrounding cancer cells. The cancer stem cell model predicts that only a subset of cancer cells possess the ability to self-renew and produce progenitor cells that can reconstitute and sustain tumor growth. Evidence supporting the existence of cancer stem-like cells in the thyroid, pituitary, and in other endocrine tissues is rapidly accumulating. These cells have been studied using specific biomarkers including: CD133, CD44, Nestin, Nanog, and aldehyde dehydrogenase enzyme. Putative cancer stem-like cells can be studied in vitro using serum-free media supplemented with basic fibroblast growth factor and epidermal growth factor grown in low attachment plates or in extracellular matrix leading to sphere formation in vitro. Cancer stem-like cells can also be separated by fluorescent cell sorting and used for in vitro or in vivo studies. Injection of enriched populations of cancer stem-like cells (also referred to as tumor initiating cells) into immunodeficient mice results in growth of xenografts which express cancer stem-like biomarkers. Human cancer stem-like cells have been identified in thyroid cancer cell lines, in primary thyroid cancers, in normal pituitary, and in pituitary tumors. Other recent studies suggest the existence of stem cells and cancer stem-like cells in endocrine tumors of the gastrointestinal tract, pancreas, lungs, adrenal, parathyroid, and skin. New discoveries in this field may lead to more effective therapies for highly aggressive and lethal endocrine cancers.
Collapse
Affiliation(s)
- Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, K4/436 CSC 8550, Madison, WI 53705, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chrusciel M, Vuorenoja S, Mohanty B, Rivero-Müller A, Li X, Toppari J, Huhtaniemi I, Rahman NA. Transgenic GATA-4 expression induces adrenocortical tumorigenesis in C57Bl/6 mice. J Cell Sci 2013; 126:1845-57. [PMID: 23444372 DOI: 10.1242/jcs.119347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A link between elevated luteinizing hormone (LH) levels, GATA-4 and LH receptor (LHCGR) expression and gonadotropin-dependent adrenocortical tumorigenesis in humans and mice has been shown. To assess the mechanistic tumorigenic interrelationships between these factors, we transgenically expressed Gata4 under the 21-hydroxylase promoter (Cyp21a1, 21-OH) in C57Bl/6N mice. There was a gradual age-dependent increase of GATA-4 expression only in 21-OH-GATA-4 (TG) female adrenals, in association with slowly progressing neoplasia of non-steroidogenic spindle-shaped A cells in the subcapsular cortex. Gonadectomy (GDX), apparently through direct action of elevated serum LH, markedly enhanced the adrenocortical neoplasia, which now also appeared in GDX TG males. The neoplastic areas of the post-GDX TG adrenals contained, besides A cells, larger lipid-laden, steroidogenically active and LHCGR-positive B cells. Prolonged (>10 months) exposure to elevated post-GDX LH levels resulted in formation of adrenocortical adenomas in the TG mice. Intact and GDX TG mouse adrenals displayed elevated FOG-2 and decreased GATA-6 expression. Additionally, increased expression/activation of components of the Inhbb-Acvr2a-Acvr1c-Smad2/3 signaling system was observed in 12-month-old GDX TG adrenals. Our findings show that two distinct GATA-4-dependent populations of neoplastic adrenocortical cells form: non-steroidogenic LH-independent A cells and steroidogenic LH-dependent B cells.
Collapse
Affiliation(s)
- Marcin Chrusciel
- Department of Physiology, Institute of Biomedicine, University of Turku, FIN-20520, Finland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Insulin growth factor receptor (IGF-1R) antibody cixutumumab combined with the mTOR inhibitor temsirolimus in patients with metastatic adrenocortical carcinoma. Br J Cancer 2013; 108:826-30. [PMID: 23412108 PMCID: PMC3590681 DOI: 10.1038/bjc.2013.46] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine malignancy without an available effective systemic chemotherapy. Insulin growth factor 2 (IGF-2) overexpression leading to the activation of the IGF-1 receptor (IGF-1R)/mammalian target of rapamycin (mTOR) pathway is well described in ACC. Cixutumumab, a fully human IgG1 monoclonal antibody directed at IGF-1R was combined with temsirolimus on the basis of preclinical data. Methods: Patients received cixutumumab, 3–6 mg kg−1 intravenously (IV) weekly, and temsirolimus, 25–37.5 mg IV weekly (4-week cycles), with restaging after 8 weeks. Results: Twenty-six patients were enrolled (13 (50%) men); median age, 47 years; median number of prior therapies, 4. Five patients previously received an IGF-1R inhibitor and one, temsirolimus. The most frequent toxicities, at least possibly drug related, were grade 1–2 thrombocytopenia (38%), mucositis (58%), hypercholesterolaemia (31%), hypertriglyceridemia (35%), and hyperglycaemia (31%). In all, 11 of 26 patients (42%) achieved stable disease (SD) >6 months (duration range=6–21 months) with 3 of the 11 having received a prior IGF-1R inhibitor. Conclusion: Cixutumumab combined with temsirolimus was well tolerated and >40% of patients achieved prolonged SD.
Collapse
|
38
|
|