1
|
Chen J, Markworth JF, Ferreira C, Zhang C, Kuang S. Lipid droplets as cell fate determinants in skeletal muscle. Trends Endocrinol Metab 2024:S1043-2760(24)00274-1. [PMID: 39613547 DOI: 10.1016/j.tem.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 12/01/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - James F Markworth
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christina Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Hu Q, Gui Y, Cao C, Xie J, Tang H. Single-cell sequencing reveals transcriptional dynamics regulated by ERα in mouse ovaries. PLoS One 2024; 19:e0313867. [PMID: 39570927 PMCID: PMC11581351 DOI: 10.1371/journal.pone.0313867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
CONTEXT Estrogen receptor α (ERα) is a key regulator of reproductive function, particularly in ovarian development and function, yet the specifics of its role at the molecular level remain unclear. AIMS The study aims to elucidate the molecular mechanisms of ERα-regulated transcriptional dynamics in ovarian cells using ERα knockout (αERKO) mice created via CRISPR/Cas9. METHODS Single-cell RNA sequencing (scRNA-seq) was used to compare transcriptomes from individual ovarian cells in both wild type and αERKO mice. Bioinformatics analyses identified distinct cell populations and their transcriptional profiles post ERα deletion. KEY RESULTS Distinct oocyte and granulosa cell populations were identified, with ERα deletion disrupting the regulation of genes linked to ovarian infertility, the ovulation cycle, and steroidogenesis. Greb1 expression in granulosa cells was found to be ERα-dependent. CONCLUSIONS ERα deletion significantly alters the transcriptional landscape of ovarian cells, affecting genes and pathways central to ovarian function and the ovulation process. IMPLICATIONS The findings provide an in-depth, single-cell view of ERα's role in the reproductive system, offering insights that may lead to novel treatments for ovarian disorders.
Collapse
Affiliation(s)
- Qicai Hu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, P. R. China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, P. R. China
| | - Yiqian Gui
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congcong Cao
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Jun Xie
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Huiru Tang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Cheerland Watson Precision Medicine Co. LTD, Shenzhen, China
| |
Collapse
|
3
|
Li Y, Liu Y, Li Y, Cao Y, Zhang H, Yuan P, Dong B, Shen L. Integrated lipidomics and network pharmacology analysis to determine how Gu Fu Sheng Capsule improves lipid metabolism in rats with steroid-induced osteonecrosis of the femoral head. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
4
|
Schultz C, Wegner T, Heusel C, Gallagher T, Zheng Y, Werner M, Wegner SV, Meyer-Zedler T, Werz O, Schmitt M, Popp J, Glorius F. Alkyne-tagged imidazolium-based membrane cholesterol analogs for Raman imaging applications. Chem Sci 2024:d4sc03155e. [PMID: 39156930 PMCID: PMC11325193 DOI: 10.1039/d4sc03155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Cholesterol is an important lipid playing a crucial role in mediating essential cellular processes as well as maintaining the basic structural integrity of biological membranes. Given its vast biological importance, there is an unabated need for sophisticated strategies to investigate cholesterol-mediated biological processes. Raman-tagged sterol analogs offer the advantage of being visualizable without the need for a bulky dye that potentially affects natural membrane integration and cellular interactions as it is the case for many conventionally used fluorescent analogs. Herein, we report a series of alkyne-tagged imidazolium-based cholesterol analogs (CHIMs) with large Raman scattering cross-sections that readily integrate into HEK cells and primary monocyte-derived macrophages and allow (multiplexed) cellular Raman imaging. We envision Raman-tagged CHIM analogs to be a powerful platform for the investigation of cholesterol-mediated cellular processes complementary to other established methods, such as the use of fluorescent analogs.
Collapse
Affiliation(s)
- Constanze Schultz
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI) Albert-Einstein-Str. 9 07745 Jena Germany
| | - Tristan Wegner
- University of Münster, Institute of Organic Chemistry Corrensstraße 40 48149 Münster Germany
| | - Corinna Heusel
- University of Münster, Institute of Organic Chemistry Corrensstraße 40 48149 Münster Germany
| | - Tim Gallagher
- University of Münster, Institute of Organic Chemistry Corrensstraße 40 48149 Münster Germany
| | - Yanjun Zheng
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry Waldeyerstraße 15 48149 Münster Germany
| | - Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena Philosophenweg 14 07743 Jena Germany
| | - Seraphine V Wegner
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry Waldeyerstraße 15 48149 Münster Germany
| | - Tobias Meyer-Zedler
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI) Albert-Einstein-Str. 9 07745 Jena Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena Philosophenweg 14 07743 Jena Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI) Albert-Einstein-Str. 9 07745 Jena Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Frank Glorius
- University of Münster, Institute of Organic Chemistry Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
5
|
Mallick R, Basak S, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Fatty Acids and their Proteins in Adipose Tissue Inflammation. Cell Biochem Biophys 2024; 82:35-51. [PMID: 37794302 PMCID: PMC10867084 DOI: 10.1007/s12013-023-01185-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Chronic low-grade adipose tissue inflammation is associated with metabolic disorders. Inflammation results from the intertwined cross-talks of pro-inflammatory and anti-inflammatory pathways in the immune response of adipose tissue. In addition, adipose FABP4 levels and lipid droplet proteins are involved in systemic and tissue inflammation. Dysregulated adipocytes help infiltrate immune cells derived from bone marrow responsible for producing cytokines and chemokines. When adipose tissue expands in excess, adipocyte exhibits increased secretion of adipokines and is implicated in metabolic disturbances due to the release of free fatty acids. This review presents an emerging concept in adipose tissue fat metabolism, fatty acid handling and binding proteins, and lipid droplet proteins and their involvement in inflammatory disorders.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ranjit K Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, Queretaro, 76130, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
6
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
8
|
Bello UM, Madekurozwa MC, Groenewald HB, Arukwe A, Aire TA. Changes in testicular histomorphometry and ultrastructure of Leydig cells in adult male Japanese quail exposed to di (n-butyl) phthalate (DBP) during the prepubertal period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55402-55413. [PMID: 36894732 PMCID: PMC10121545 DOI: 10.1007/s11356-023-25767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters, such as di(n-butyl) phthalate, (DBP), are synthetic chemical pollutants commonly used as plasticizers in the manufacture of plastics. In the present study, we investigated the effects of DBP in the testes of adult male quails (Coturnix cortunix japonica) exposed by oral gavage to variable doses of DBP (0 [control], 1, 10, 50, 200, and 400 mg/kgbw-d), for 30 days during the prepubertal period, using histo-morphometric and ultrastructural techniques. Generally, significant decreases in seminiferous tubular diameter (STD) and epithelial height (SEH) were observed predominantly at the highest DBP doses (200 and 400 mg/kg), as compared to medium (50 mg/kg), and lowest doses (1 and 10 mg/kg) as well as the control group. Ultrastructurally, apparent dose-specific degenerative changes were observed in the Leydig cells. The lowest DBP doses (1 and 10 mg/kg) did not produce significant effects on Leydig cell ultrastructure, whereas, at the highest doses (200 and 400 mg/kg), the Leydig cells were remarkably conspicuous in the interstitium and appeared foamy. There was a preponderance of electron-lucent lipid droplets which crowded out the normal organelles of the cell, as well as increases in the number of dense bodies in the cytoplasm. The smooth endoplasmic reticulum (sER) was less obvious, compacted, and wedged between the abundant lipid droplets and mitochondria. Taken together, these findings indicate that pre-pubertal exposure of precocious quail birds to DBP, produced parameter-specific histometric tubular changes, as well as dose-dependent cyto-structural derangement of the Leydig cells; which consequently may lead to overt reproductive impairments in the adult bird in the environment.
Collapse
Affiliation(s)
- Umar M Bello
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
- Laboratory of Cell Biology and Histology, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Mary-Cathrine Madekurozwa
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Hermanus B Groenewald
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Tom A Aire
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, True-Blue, St. George's, Grenada
| |
Collapse
|
9
|
Liu MX, Chen XB, Liu WY, Zou GY, Yu YL, Chen S, Wang JH. Dual Functional Full-Color Carbon Dot-Based Organelle Biosensor Array for Visualization of Lipid Droplet Subgroups with Varying Lipid Composition in Living Cells. Anal Chem 2023; 95:5087-5094. [PMID: 36892999 DOI: 10.1021/acs.analchem.2c05789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In situ visualization of lipid composition diversity in lipid droplets (LDs) is essential for decoding lipid metabolism and function. However, effective probes for simultaneously localizing and reflecting the lipid composition of LDs are currently lacking. Here, we synthesized full-color bifunctional carbon dots (CDs) that can target LDs as well as respond to the nuance in internal lipid compositions with highly sensitive fluorescence signals, due to lipophilicity and surface state luminescence. Combined with microscopic imaging, uniform manifold approximation and projection, and sensor array concept, the capacity of cells to produce and maintain LD subgroups with varying lipid composition was clarified. Moreover, in oxidative stress cells, LDs with characteristic lipid compositions were deployed around mitochondria, and the proportion of LD subgroups changed, which gradually disappeared when treated with oxidative stress therapeutics. The CDs demonstrate great potential for in situ investigation of the LD subgroups and metabolic regulations.
Collapse
Affiliation(s)
- Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xiao-Bing Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wen-Ye Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Guang-Yue Zou
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
10
|
Otávio KS, Passos JRS, Silva RF, Lima LF, Cadenas J, Paes VM, Correia HHV, Ferreira ACA, Canafístula FG, Bezerra MJB, Oliveira LLB, Carvalho GGC, Paier CRK, Pessoa C, Guerreiro DG, Moraes MEA, Figueiredo JR, Moura AA. Comprehensive proteomic profiling of early antral follicles from sheep. Anim Reprod Sci 2023; 248:107153. [PMID: 36502761 DOI: 10.1016/j.anireprosci.2022.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The present study evaluates the proteome of early antral follicles from Ovis aries. Fifty follicles were collected from ovaries of adult ewes and extracted proteins were trypsin-digested, desalted and analyzed by LC-MS/MS. Genes were screened for potential modulation by miRNAs and protein data, subjected to functional enrichment analysis. Label-free mass spectrometry allowed the identification of 2503 follicle proteins, confirming vimentin, actin, lamin, heat shock proteins and histones as the most abundant ones. In silico analyses indicated that miRNAs modulate the expression of genes coding proteins of the sheep follicles involved in cell cycle, cell differentiation, aging, apoptosis, cell death, adipocyte differentiation, cell division. The most important biological processes associated with the follicle proteins were innate immune response, translation, adaptive immune response and protein folding, while molecular functions linked to the proteome of sheep antral follicles related to metal ion binding, ATP binding, oxygen binding, RNA binding and GTP binding, among others. Upload of 2503 Uniport accession codes through DAVID platform matched 1274 genes, associated with translation, metabolic process, proteolysis involved in cellular protein catabolic process, zona pellucida receptor complex and others. KEEG pathways analysis indicated genes correlated with ovine follicular development, with major pathways listed as carbon metabolism, biosynthesis of amino acids, glutathione metabolism, oxidative phosphorylation, fatty acid degradation and oocyte meiosis. This represents a comprehensive atlas of proteins expressed in sheep early antral follicles and will contribute to future identification of biomarkers for follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Kamila S Otávio
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - José R S Passos
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Renato F Silva
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Laritza F Lima
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Jesús Cadenas
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Victor M Paes
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Hudson H V Correia
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | | | | | | | - Laís L B Oliveira
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Guilherme G C Carvalho
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos R K Paier
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Denise G Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Elisabete A Moraes
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
11
|
Shen WJ, Cortez Y, Singh A, Chen W, Azhar S, Kraemer FB. Mice deficient in ER protein seipin have reduced adrenal cholesteryl ester lipid droplet formation and utilization. J Lipid Res 2022; 63:100309. [PMID: 36332685 PMCID: PMC9703635 DOI: 10.1016/j.jlr.2022.100309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Cholesteryl ester (CE)-rich lipid droplets (LDs) accumulate in steroidogenic tissues under physiological conditions and constitute an important source of cholesterol as the precursor for the synthesis of all steroid hormones. The mechanisms specifically involved in CE-rich LD formation have not been directly studied and are assumed by most to occur in a fashion analogous to triacylglycerol-rich LDs. Seipin is an endoplasmic reticulum protein that forms oligomeric complexes at endoplasmic reticulum-LD contact sites, and seipin deficiency results in severe alterations in LD maturation and morphology as seen in Berardinelli-Seip congenital lipodystrophy type 2. While seipin is critical for triacylglycerol-rich LD formation, no studies have directly addressed whether seipin is important for CE-rich LD biogenesis. To address this issue, mice with deficient expression of seipin specifically in adrenal, testis, and ovary, steroidogenic tissues that accumulate CE-rich LDs under normal physiological conditions, were generated. We found that the steroidogenic-specific seipin-deficient mice displayed a marked reduction in LD and CE accumulation in the adrenals, demonstrating the pivotal role of seipin in CE-rich LD accumulation/formation. Moreover, the reduction in CE-rich LDs was associated with significant defects in adrenal and gonadal steroid hormone production that could not be completely reversed by addition of exogenous lipoprotein cholesterol. We conclude that seipin has a heretofore unappreciated role in intracellular cholesterol trafficking.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Stanford, CA, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Yuan Cortez
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Amar Singh
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Weiqin Chen
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Stanford, CA, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
12
|
Interplay between Prostate Cancer and Adipose Microenvironment: A Complex and Flexible Scenario. Int J Mol Sci 2022; 23:ijms231810762. [PMID: 36142673 PMCID: PMC9500873 DOI: 10.3390/ijms231810762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose tissue is part of the prostate cancer (PCa) microenvironment not only in the periprostatic area, but also in the most frequent metastatic sites, such as bone marrow and pelvic lymph nodes. The involvement of periprostatic adipose tissue (PPAT) in the aggressiveness of PCa is strongly suggested by numerous studies. Many molecules play a role in the reciprocal interaction between adipocytes and PCa cells, including adipokines, hormones, lipids, and also lipophilic pollutants stored in adipocytes. The crosstalk has consequences not only on cancer cell growth and metastatic potential, but also on adipocytes. Although most of the molecules released by PPAT are likely to promote tumor growth and the migration of cancer cells, others, such as the adipokine adiponectin and the n-6 or n-3 polyunsaturated fatty acids (PUFAs), have been shown to have anti-tumor properties. The effects of PPAT on PCa cells might therefore depend on the balance between the pro- and anti-tumor components of PPAT. In addition, genetic and environmental factors involved in the risk and/or aggressiveness of PCa, including obesity and diet, are able to modulate the interactions between PPAT and cancer cells and their consequences on the growth and the metastatic potential of PCa.
Collapse
|
13
|
Koganti PP, Zhao AH, Selvaraj V. Exogenous cholesterol acquisition signaling in LH-responsive MA-10 Leydig cells and in adult mice. J Endocrinol 2022; 254:187-199. [PMID: 35900012 PMCID: PMC9840751 DOI: 10.1530/joe-22-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 01/17/2023]
Abstract
MA-10 cells, established 4 decades ago from a murine Leydig cell tumor, has served as a key model system for studying steroidogenesis. Despite a precipitous loss in their innate ability to respond to luteinizing hormone (LH), the use of a cell-permeable cAMP analog for induction ensured their continued use. In parallel, a paradigm that serum-free conditions are essential for trophic steroidogenic stimulation was rationalized. Through the selection of LH-responsive single-cell MA-10Slip clones, we uncovered that Leydig cells remain responsive in the presence of serum in vitro and that exogenous cholesterol delivery by lipoproteins provided a significantly elevated steroid biosynthetic response (>2-fold). In scrutinizing the underlying regulation, systems biology of the MA-10 cell proteome identified multiple Rho-GTPase signaling pathways as highly enriched. Testing Rho function in steroidogenesis revealed that its modulation can negate the specific elevation in steroid biosynthesis observed in the presence of lipoproteins/serum. This signaling modality primarily linked to the regulation of endocytic traffic is evident only in the presence of exogenous cholesterol. Inhibiting Rho function in vivo also decreased hCG-induced testosterone production in mice. Collectively, our findings dispel a long-held view that the use of serum could confound or interfere with trophic stimulation and underscore the need for exogenous lipoproteins when dissecting physiological signaling and cholesterol trafficking for steroid biosynthesis in vitro. The LH-responsive MA-10Slip clones derived in this study present a reformed platform enabling biomimicry to study the cellular and molecular basis of mammalian steroidogenesis.
Collapse
Affiliation(s)
- Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Amy H. Zhao
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence should be addressed to: Vimal Selvaraj, Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853; ; Tel. 607-255-6138; Fax. 607-255-9829
| |
Collapse
|
14
|
Liu G, Wang X, Fan X, Luo X. Metabolomics profiles in acute-on-chronic liver failure: Unveiling pathogenesis and predicting progression. Front Pharmacol 2022; 13:953297. [PMID: 36059949 PMCID: PMC9437334 DOI: 10.3389/fphar.2022.953297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) usually develops based on acute decompensation (AD) of cirrhosis and is characterized by intense systemic inflammation, multiple organ failure, and high short-term mortality. Validated biomarkers for the diagnosis and prognosis of ACLF remain to be clarified. Metabolomics is an emerging method used to measure low-molecular-weight metabolites and is currently frequently implemented to understand pathophysiological processes involved in disease progression, as well as to search for new diagnostic or prognostic biomarkers of various disorders. The characterization of metabolites in ACLF has recently been described via metabolomics. The role of metabolites in the pathogenesis of ACLF deserves further investigation and improvement and could be the basis for the development of new diagnostic and therapeutic strategies. In this review, we focused on the contributions of metabolomics on uncovering metabolic profiles in patients with ACLF, the key metabolic pathways that are involved in the progression of ACLF, and the potential metabolite-associated therapeutic targets for ACLF.
Collapse
Affiliation(s)
- Guofeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefeng Luo
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Zhu Q, Guo L, An W, Huang Z, Liu H, Zhao J, Lu W, Wang J. Melatonin inhibits testosterone synthesis in Roosters Leydig cells by regulating lipolysis of lipid droplets. Theriogenology 2022; 189:118-126. [PMID: 35753225 DOI: 10.1016/j.theriogenology.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Leydig cells are important component of testis cells, which can synthesize testosterone with free cholesterol derived from lipid droplets (LDs). It is well known that melatonin could regulate synthesis of testosterone. However, it is still unclear whether melatonin participates in the synthesis of testosterone by regulating the lipolysis of LDs in Leydig cells. The purpose of this study was to elucidate the effect of melatonin on synthesis of testosterone in roosters Leydig cells by regulating lipolysis of LDs. The results showed that melatonin decreased synthesis of testosterone and intracellular free cholesterol in roosters Leydig cells. Exogenous addition of 22-OH-Cholesterol counteracted the inhibitory effect of melatonin on synthesis of testosterone. Furthermore, melatonin increased the LDs content and expression of perilipin 1 (PLIN1), and decreased expression of hormone-sensitive lipase (HSL) and triacylglycerol hydrolase (ATGL) in roosters Leydig cells. In addition, silencing PLIN1 reversed the inhibitory effect of melatonin on synthesis of testosterone in roosters Leydig cells by increasing free cholesterol content and expression of HSL and ATGL, and decreasing the lipid droplet content. Activation of cAMP/PKA pathway by using the pathway activators Forskolin and 8-Bromo-cAMP attenuated the inhibitory effect of melatonin on synthesis of testosterone accompanied by increasing level of free cholesterol content and expression of HSL and ATGL, and decreasing level of lipid droplet content and expression of PLIN1 in roosters Leydig cells. These results suggested that melatonin could inhibit the synthesis of testosterone in roosters Leydig cells by reducing the content of intracellular free cholesterol in which expression of PLIN1 and cAMP/PKA pathway were inhibited to reduce the lipolysis of LDs.
Collapse
Affiliation(s)
- Qingyu Zhu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lewei Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Wen An
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhuncheng Huang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Liu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhao
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Jun Wang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
16
|
Ravindran A, Piyarathna DWB, Gohlke J, Putluri V, Soni T, Lloyd S, Castro P, Pennathur S, Jones JA, Ittmann M, Putluri N, Michailidis G, Rajendiran TM, Sreekumar A. Lipid Alterations in African American Men with Prostate Cancer. Metabolites 2021; 12:metabo12010008. [PMID: 35050130 PMCID: PMC8779756 DOI: 10.3390/metabo12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
African-American (AA) men are more than twice as likely to die of prostate cancer (PCa) than European American (EA) men. Previous in silico analysis revealed enrichment of altered lipid metabolic pathways in pan-cancer AA tumors. Here, we performed global unbiased lipidomics profiling on 48 matched localized PCa and benign adjacent tissues (30 AA, 24 ancestry-verified, and 18 EA, 8 ancestry verified) and quantified 429 lipids belonging to 14 lipid classes. Significant alterations in long chain polyunsaturated lipids were observed between PCa and benign adjacent tissues, low and high Gleason tumors, as well as associated with early biochemical recurrence, both in the entire cohort, and within AA patients. Alterations in cholesteryl esters, and phosphatidyl inositol classes of lipids delineated AA and EA PCa, while the levels of lipids belonging to triglycerides, phosphatidyl glycerol, phosphatidyl choline, phosphatidic acid, and cholesteryl esters distinguished AA and EA PCa patients with biochemical recurrence. These first-in-field results implicate lipid alterations as biological factors for prostate cancer disparities.
Collapse
Affiliation(s)
- Anindita Ravindran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (A.R.); (D.W.B.P.); (J.G.); (S.L.); (N.P.)
- Center for Metabolism and Experimental Therapeutics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Danthasinghe Waduge Badrajee Piyarathna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (A.R.); (D.W.B.P.); (J.G.); (S.L.); (N.P.)
- Center for Metabolism and Experimental Therapeutics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jie Gohlke
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (A.R.); (D.W.B.P.); (J.G.); (S.L.); (N.P.)
- Center for Metabolism and Experimental Therapeutics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Vasanta Putluri
- Advanced Technology Core, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48105, USA; (T.S.); (T.M.R.)
| | - Stacy Lloyd
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (A.R.); (D.W.B.P.); (J.G.); (S.L.); (N.P.)
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (J.A.J.); (M.I.)
| | - Patricia Castro
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
- Human Tissue Acquisition & Pathology Shared Resource, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 84105, USA
| | - Jeffrey A. Jones
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (J.A.J.); (M.I.)
- Department of Urology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Operative Care Line, Urology Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Michael Ittmann
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (J.A.J.); (M.I.)
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (A.R.); (D.W.B.P.); (J.G.); (S.L.); (N.P.)
- Center for Metabolism and Experimental Therapeutics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Advanced Technology Core, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (J.A.J.); (M.I.)
| | - George Michailidis
- Informatics Institute, University of Florida, Gainesville, FL 32611, USA;
| | - Thekkelnaycke M. Rajendiran
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48105, USA; (T.S.); (T.M.R.)
- Department of Pathology, University of Michigan, Ann Arbor, MI 48105, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (A.R.); (D.W.B.P.); (J.G.); (S.L.); (N.P.)
- Center for Metabolism and Experimental Therapeutics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (J.A.J.); (M.I.)
- Correspondence:
| |
Collapse
|
17
|
Chang X, Zhao Y, Qin S, Wang H, Wang B, Zhai L, Liu B, Gu HM, Zhang DW. Loss of Hepatic Surf4 Depletes Lipid Droplets in the Adrenal Cortex but Does Not Impair Adrenal Hormone Production. Front Cardiovasc Med 2021; 8:764024. [PMID: 34859075 PMCID: PMC8631933 DOI: 10.3389/fcvm.2021.764024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
The adrenal gland produces steroid hormones to play essential roles in regulating various physiological processes. Our previous studies showed that knockout of hepatic Surf4 (Surf4LKO) markedly reduced fasting plasma total cholesterol levels in adult mice, including low-density lipoprotein and high-density lipoprotein cholesterol. Here, we found that plasma cholesterol levels were also dramatically reduced in 4-week-old young mice and non-fasted adult mice. Circulating lipoprotein cholesterol is an important source of the substrate for the production of adrenal steroid hormones. Therefore, we investigated whether adrenal steroid hormone production was affected in Surf4LKO mice. We observed that lacking hepatic Surf4 essentially eliminated lipid droplets and significantly reduced cholesterol levels in the adrenal gland; however, plasma levels of aldosterone and corticosterone were comparable in Surf4LKO and the control mice under basal and stress conditions. Further analysis revealed that mRNA levels of genes encoding enzymes important for hormone synthesis were not altered, whereas the expression of scavenger receptor class B type I (SR-BI), low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methyl-glutaryl-CoA reductase was significantly increased in the adrenal gland of Surf4LKO mice, indicating increased de novo cholesterol biosynthesis and enhanced LDLR and SR-BI-mediated lipoprotein cholesterol uptake. We also observed that the nuclear form of SREBP2 was increased in the adrenal gland of Surf4 LKO mice. Taken together, these findings indicate that the very low levels of circulating lipoprotein cholesterol in Surf4LKO mice cause a significant reduction in adrenal cholesterol levels but do not significantly affect adrenal steroid hormone production. Reduced adrenal cholesterol levels activate SREBP2 and thus increase the expression of genes involved in cholesterol biosynthesis, which increases de novo cholesterol synthesis to compensate for the loss of circulating lipoprotein-derived cholesterol in the adrenal gland of Surf4LKO mice.
Collapse
Affiliation(s)
- Xiaole Chang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Yongfang Zhao
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Shucun Qin
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Hao Wang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Bingxiang Wang
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Lei Zhai
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Boyan Liu
- Institute of Atherosclerosis, College of Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an, China
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Huang W, Gao F, Zhang Y, Chen T, Xu C. Lipid Droplet-Associated Proteins in Cardiomyopathy. ANNALS OF NUTRITION AND METABOLISM 2021; 78:1-13. [PMID: 34856540 DOI: 10.1159/000520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The heart requires a high rate of fatty-acid oxidation (FAO) to meet its energy needs. Neutral lipids are the main source of energy for the heart and are stored in lipid droplets (LDs), which are cytosolic organelles that primarily serve to store neutral lipids and regulate cellular lipid metabolism. LD-associated proteins (LDAPs) are proteins either located on the surface of the LDs or reside in the cytosol and contribute to lipid metabolism. Therefore, abnormal cardiac lipid accumulation or FAO can alter the redox state of the heart, resulting in cardiomyopathy, a group of diseases that negatively affect the myocardial function, thereby leading to heart failure and even cardiac death. SUMMARY LDs, along with LDAPs, are pivotal for modulating heart lipid homeostasis. The proper cardiac development and the maintenance of its normal function depend largely on lipid homeostasis regulated by LDs and LDAPs. Overexpression or deletion of specific LDAPs can trigger myocardial dysfunction and may contribute to the development of cardiomyopathy. Extensive connections and interactions may also exist between LDAPs. Key Message: In this review, the various mechanisms involved in LDAP-mediated regulation of lipid metabolism, the association between cardiac development and lipid metabolism, as well as the role of LDAPs in cardiomyopathy progression are discussed.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianhui Chen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Lethongsavarn V, Pinault M, Diedhiou A, Guimaraes C, Guibon R, Bruyère F, Mathieu R, Rioux-Leclercq N, Multigner L, Brureau L, Fournier G, Doucet L, Blanchet P, Fromont G. Tissue cholesterol metabolism and prostate cancer aggressiveness: Ethno-geographic variations. Prostate 2021; 81:1365-1373. [PMID: 34516695 DOI: 10.1002/pros.24234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is more frequent and more aggressive in populations of African descent than in Caucasians. Since the fatty acid composition of peri-prostatic adipose tissue (PPAT) has been shown to differ according to the ethno-geographic origin and is involved in PCa aggressiveness, we aimed to analyze the cholesterol content of PPAT from Caucasian and African-Caribbean patients, in correlation with markers of disease aggressiveness and cholesterol metabolism in cancer tissues. METHODS The quantification of cholesterol in PPAT was analyzed in 52 Caucasian and 52 African-Caribbean PCa patients, with in each group 26 indolent tumors (ISUP Group1 and pT2) and 26 potentially aggressive tumors (ISUP Group 3-5 and/or pT3). The expression of proteins involved in cholesterol metabolism was analyzed by immunohistochemistry on cancer tissue samples included in tissue microarrays. RESULTS The amount of cholesterol esters was lower in PPAT from African-Caribbean patients compared with Caucasians, without any correlation with markers of disease aggressiveness. In cancer tissues from African-Caribbean patients, the expression of ABCA1 (involved in cholesterol efflux) was decreased, and that of SREBP-2 (involved in cholesterol uptake) was increased. In both groups of patients, SREBP-2 expression was strongly associated with that of Zeb1, a key player in the epithelial-to-mesenchymal transition (EMT) process. CONCLUSION These results suggest that cholesterol metabolism differs according to the ethno-geographic origin, in both PPAT and cancer tissues. In African-Caribbeans, the orientation towards accumulation of cholesterol in cancer cells is associated with a more frequent state of EMT, which may promote PCa aggressiveness in this population.
Collapse
Affiliation(s)
- Vincent Lethongsavarn
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
- Department of Pathology, CHU de la Guadeloupe, Guadeloupe, France
- Department of Urology, Université des Antilles, Pointe-à-Pitre, France
| | - Michèle Pinault
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
| | | | - Cyrille Guimaraes
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
| | - Roseline Guibon
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
- Department of Pathology, CHRU Tours, Tours, France
| | | | - Romain Mathieu
- Department of Urology, CHU Rennes, Rennes, France
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
| | - Nathalie Rioux-Leclercq
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
- Department of Pathology, CHU Rennes, Rennes, France
| | - Luc Multigner
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
| | - Laurent Brureau
- Department of Urology, Université des Antilles, Pointe-à-Pitre, France
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
- Department of Urology, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | | | | | - P Blanchet
- Department of Urology, Université des Antilles, Pointe-à-Pitre, France
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
- Department of Urology, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - Gaëlle Fromont
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
- Department of Pathology, CHRU Tours, Tours, France
| |
Collapse
|
20
|
Clària J, Curto A, Moreau R, Colsch B, López-Vicario C, Lozano JJ, Aguilar F, Castelli FA, Fenaille F, Junot C, Zhang I, Vinaixa M, Yanes O, Caraceni P, Trebicka J, Fernández J, Angeli P, Jalan R, Arroyo V. Untargeted lipidomics uncovers lipid signatures that distinguish severe from moderate forms of acutely decompensated cirrhosis. J Hepatol 2021; 75:1116-1127. [PMID: 34245803 DOI: 10.1016/j.jhep.2021.06.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Acute decompensation (AD) of cirrhosis is a heterogeneous clinical entity associated with moderate mortality. In some patients, this condition develops quickly into the more deadly acute-on-chronic liver failure (ACLF), in which other organs such as the kidneys or brain fail. The aim of this study was to characterize the blood lipidome in a large series of patients with cirrhosis and identify specific signatures associated with AD and ACLF development. METHODS Serum untargeted lipidomics was performed in 561 patients with AD (518 without and 43 with ACLF) (discovery cohort) and in 265 patients with AD (128 without and 137 with ACLF) in whom serum samples were available to perform repeated measurements during the 28-day follow-up (validation cohort). Analyses were also performed in 78 patients with AD included in a therapeutic albumin trial (43 patients with compensated cirrhosis and 29 healthy individuals). RESULTS The circulating lipid landscape associated with cirrhosis was characterized by a generalized suppression, which was more manifest during AD and in non-surviving patients. By computing discriminating accuracy and the variable importance projection score for each of the 223 annotated lipids, we identified a sphingomyelin fingerprint specific for AD of cirrhosis and a distinct cholesteryl ester and lysophosphatidylcholine fingerprint for ACLF. Liver dysfunction and infections were the principal net contributors to these fingerprints, which were dynamic and interchangeable between patients with AD whose condition worsened to ACLF and those who improved. Notably, blood lysophosphatidylcholine levels increased in these patients after albumin therapy. CONCLUSIONS Our findings provide insights into the lipid landscape associated with decompensation of cirrhosis and ACLF progression and identify unique non-invasive diagnostic biomarkers of advanced cirrhosis. LAY SUMMARY Analysis of lipids in blood from patients with advanced cirrhosis reveals a general suppression of their levels in the circulation of these patients. A specific group of lipids known as sphingomyelins are useful to distinguish between patients with compensated and decompensated cirrhosis. Another group of lipids designated cholesteryl esters further distinguishes patients with decompensated cirrhosis who are at risk of developing organ failures.
Collapse
Affiliation(s)
- Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain; Hospital Clínic-IDIBAPS, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain; CIBERehd, Barcelona, Spain.
| | - Anna Curto
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain; Inserm, U1149, Centre de Recherche sur l'Inflammation (CRI); UMRS1149, Université de Paris; Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Benoit Colsch
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Cristina López-Vicario
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain; Hospital Clínic-IDIBAPS, Barcelona, Spain
| | | | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Florence A Castelli
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, 91191 Gif-sur-Yvette, France
| | - François Fenaille
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Christophe Junot
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Ingrid Zhang
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain; Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Maria Vinaixa
- Metabolomics Platform, Universitat Rovira i Virgili, Tarragona, Spain; CIBERdem, Tarragona, Spain
| | - Oscar Yanes
- Metabolomics Platform, Universitat Rovira i Virgili, Tarragona, Spain; CIBERdem, Tarragona, Spain
| | | | - Jonel Trebicka
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain; JW Goethe University Hospital, Frankfurt, Germany
| | - Javier Fernández
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain; Hospital Clínic-IDIBAPS, Barcelona, Spain; CIBERehd, Barcelona, Spain
| | - Paolo Angeli
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain; University of Padova, Padova, Italy
| | - Rajiv Jalan
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain; UCL Medical School, Royal Free Hospital, London, United Kingdom
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| |
Collapse
|
21
|
Kothandapani A, Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. Distinctive functioning of STARD1 in the fetal Leydig cells compared to adult Leydig and adrenal cells. Impact of Hedgehog signaling via the primary cilium. Mol Cell Endocrinol 2021; 531:111265. [PMID: 33864885 DOI: 10.1016/j.mce.2021.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
STARD1 stimulates cholesterol transfer to mitochondrial CYP11A1 for conversion to pregnenolone. A cholesterol-binding START domain is guided by an N-terminal domain in a cell selective manner. Fetal and adult Leydig cells (FLC, ALC) show distinct Stard1 regulation. sm- FISH microscopy, which resolves individual molecules of Stard1 mRNA, shows uniformly high basal expression in each FLC. In ALC, in vivo, and cultured MA-10 cells, basal Stard1 expression is minimal. PKA activates loci asynchronously, with delayed splicing/export of 3.5 kb mRNA to mitochondria. After 60 min, ALC transition to an integrated mRNA delivery to mitochondria that is seen in FLC. Sertoli cells cooperate in Stard1 stimulation in FLC by delivering DHH to the primary cilium. There PTCH, SMO and cholesterol cooperate to release GLI3 to activate the Stard1 locus, probably by directing histone changes. ALC lack cilia. PKA then primes locus activation. FLC and ALC share similar SIK/CRTC/CREB regulation characterized for adrenal cells.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
22
|
Mineralocorticoid Receptor Antagonists Eplerenone and Spironolactone Modify Adrenal Cortex Morphology and Physiology. Biomedicines 2021; 9:biomedicines9040441. [PMID: 33924172 PMCID: PMC8074383 DOI: 10.3390/biomedicines9040441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/16/2022] Open
Abstract
Mineralocorticoid receptor antagonists (MRAs) are a class of anti-hypertensive drugs that act by blocking aldosterone action. The aim of this study was to evaluate whether the MRAs spironolactone and eplerenone influence adrenal cortical physiology and morphology. Spontaneous hypertensive rats (SHR, n = 18) and normotensive rats (WKY, n = 18) were randomly exposed to a daily dose of spironolactone (n = 6), eplerenone (n = 6), or no drug (n = 6) over 28 days. After that, aldosterone, corticosterone, and 11-deoxycorticosterone plasma concentrations were quantified. Adrenal glands were subjected to morphological analysis to assess lipid droplets content, capsular width, cell proliferation, and steroidogenic proteins expression. The adrenal cortex in untreated SHR showed higher lipid droplet content as than in WKY. In SHR, MRA treatment was associated with higher circulating aldosterone levels and Ki-67 expression in aldosterone-secreting cells. In WKY, the only difference observed after MRA spironolactone treatment was a narrower capsule. There was no difference in abundance of steroidogenic enzyme between groups. In conclusion, MRAs modify adrenal gland function and morphology in SHR. The effects observed within the adrenal glomerulosa with aldosterone-secreting cell proliferation and higher circulating aldosterone levels suggests that MRA treatment provokes activation of the renin angiotensin system. The prognostic value of hyperaldosteronism secondary to MRAs blockade requires further investigation.
Collapse
|
23
|
Bera A, Chadha NK, Dasgupta S, Chakravarty S, Sawant PB. Hypoxia-mediated inhibition of cholesterol synthesis leads to disruption of nocturnal sex steroidogenesis in the gonad of koi carp, Cyprinus carpio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2421-2435. [PMID: 33034795 DOI: 10.1007/s10695-020-00887-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Reproductively mature koi carps (Cyprinus carpio) showed a prominent diurnal variation of sex steroids with sustained nocturnal rise. Exposure to chronic hypoxia (DO < 0.8 mg/l) disrupted nocturnal sex steroid production in koi carp gonads. Inhibition of sex steroidogenesis is linked to the down-regulation of HMG-Co A reductase (p < 0.05), which acts as a rate-limiting enzyme in the mevalonate pathway for cholesterol production. HMG-CoA reductase inhibition was obvious in the gonads and liver of both sexes during 18.00 h and 21.00 h resulting in hypocholesterolemia (p < 0.05). The levels of sex steroids, such as estradiol, testosterone, and 11-keto-testosterone in gonads were depleted below the optimum levels owing to disruption of de novo cholesterol synthesis along with attenuation of HDL-cholesterol level in serum. Inhibition of melatonin under hypoxic conditions indicates disruption of melatonin effects on the hypothalamus-pituitary-gonadal (HPG) axis of koi carp. Under severe hypoxic stress, koi carp promoted energy conservation by switching over to the triglyceride (TGA) pathway instead of the mevalonate pathway to suppress cholesterol production. Chronic hypoxia inhibited cholesterol synthesis, a prerequisite for gonadal maturation. It promoted TGA production, as an alternative energy source, suggesting a probable mitigation strategy adopted by hypoxia-tolerant fish to deal with low dissolved oxygen frequently occurring in aquatic bodies.
Collapse
Affiliation(s)
- Aritra Bera
- ICAR- Central Institute of Brackishwater Aquaculture , Chennai, Tamil Nadu, 600028, India
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education , Versova, Mumbai, Maharashtra, 400061, India
| | - Subrata Dasgupta
- ICAR-Central Institute of Fisheries Education, Kolkata Centre, Sector V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Srijit Chakravarty
- ICAR-Central Institute of Fisheries Education , Versova, Mumbai, Maharashtra, 400061, India
| | | |
Collapse
|
24
|
Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. STARD1 Functions in Mitochondrial Cholesterol Metabolism and Nascent HDL Formation. Gene Expression and Molecular mRNA Imaging Show Novel Splicing and a 1:1 Mitochondrial Association. Front Endocrinol (Lausanne) 2020; 11:559674. [PMID: 33193082 PMCID: PMC7607000 DOI: 10.3389/fendo.2020.559674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
STARD1 moves cholesterol (CHOL) from the outer mitochondrial membrane (OMM) to the inner membrane (IMM) in steroidogenic cells. This activity is integrated into CHOL trafficking and synthesis homeostasis, involving uptake through SR-B1 and LDL receptors and distribution through endosomes, ER, and lipid droplets. In adrenal cells, STARD1 is imported into the mitochondrial matrix accompanied by delivery of several hundred CHOL molecules. This transfer limits CYP11A1-mediated generation of pregnenolone. CHOL transfer is coupled to translation of STARD1 mRNA at the OMM. In testis cells, slower CHOL trafficking seems to be limiting. STARD1 also functions in a slower process through ER OMM contacts. The START domain of STARD1 is utilized by a family of genes, which includes additional STARD (forms 3-6) and GRAMD1B proteins that transfer CHOL. STARD forms 2 and 7 deliver phosphatidylcholine. STARD1 and STARD7 target their respective activities to mitochondria, via N-terminal domains (NTD) of over 50 amino acids. The NTD is not essential for steroidogenesis but exerts tissue-selective enhancement (testis>>adrenal). Three conserved sites for cleavage by the mitochondrial processing protease (MPP) generate three forms, each potentially with specific functions, as demonstrated in STARD7. STARD1 is expressed in macrophage and cardiac repair fibroblasts. Additional functions include CHOL metabolism by CYP27A1 that directs activation of LXR and CHOL export processes. STARD1 generates 3.5- and 1.6-kb mRNA from alternative polyadenylation. The 3.5-kb form exclusively binds the PKA-induced regulator, TIS11b, which binds at conserved sites in the extended 3'UTR to control mRNA translation and turnover. STARD1 expression also exhibits a novel, slow splicing that delayed splicing delivery of mRNA to mitochondria. Stimulation of transcription by PKA is directed by suppression of SIK forms that activate a CRTC/CREB/CBP promoter complex. This process is critical to pulsatile hormonal activation in vivo. sm-FISH RNA imaging shows a flow of single STARD1 mRNA particles from asymmetric accumulations of primary transcripts at gene loci to 1:1 complex of 3.5-kb mRNA with peri-nuclear mitochondria. Adrenal cells are similar but distinguished from testis cells by appreciable basal expression prior to hormonal activation. This difference is conserved in culture and in vivo.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joan S. Jorgensen
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
25
|
Khan EA, Zhang X, Hanna EM, Bartosova Z, Yadetie F, Jonassen I, Goksøyr A, Arukwe A. Quantitative transcriptomics, and lipidomics in evaluating ovarian developmental effects in Atlantic cod (Gadus morhua) caged at a capped marine waste disposal site. ENVIRONMENTAL RESEARCH 2020; 189:109906. [PMID: 32980003 DOI: 10.1016/j.envres.2020.109906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
In the present study, a previously capped waste disposal site at Kollevåg (Norway) was selected to study the effects of contaminant leakage on biomarkers associated with Atlantic cod (Gadus morhua) reproductive endocrinology and development. Immature cod were caged for 6 weeks at 3 locations, selected to achieve a spatial gradient of contamination, and compared to a reference station. Quantitative transcriptomic, and lipidomic analysis was used to evaluate the effects of the potential complex contaminant mixture on ovarian developmental and endocrine physiology. The number of expressed transcripts, with 0.75 log2-fold differential expression or more, varied among stations and paralleled the severity of contamination. Particularly, significant bioaccumulation of ∑PCB-7, ∑DDTs and ∑PBDEs were observed at station 1, compared to the other station, including the reference station. Respectively 1416, 698 and 719 differentially expressed genes (DEGs), were observed at stations 1, 2 and 3, compared to the reference station, with transcripts belonging to steroid hormone synthesis pathway being significantly upregulation. Transcription factors such as esr2 and ahr2 were increased at all three stations, with highest fold-change at Station 1. MetaCore pathway maps identified affected pathways that are involved in ovarian physiology, where some unique pathways were significantly affected at each station. For the lipidomics, sphingolipid metabolism was particularly affected at station 1, and these effects paralleled the high contaminant burden at this station. Overall, our findings showed a novel and direct association between contaminant burden and ovarian toxicological and endocrine physiological responses in cod caged at the capped Kollevåg waste disposal site.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Eileen M Hanna
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Zdenka Bartosova
- Department of Biotechnology and Food Science, NTNU, N-7491, Trondheim, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| |
Collapse
|
26
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
27
|
Abobaker H, Hu Y, Omer NA, Hou Z, Idriss AA, Zhao R. Maternal betaine suppresses adrenal expression of cholesterol trafficking genes and decreases plasma corticosterone concentration in offspring pullets. J Anim Sci Biotechnol 2019; 10:87. [PMID: 31827786 PMCID: PMC6862747 DOI: 10.1186/s40104-019-0396-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 11/30/2022] Open
Abstract
Background Laying hens supplemented with betaine demonstrate activated adrenal steroidogenesis and deposit higher corticosterone (CORT) in the egg yolk. Here we further investigate the effect of maternal betaine on the plasma CORT concentration and adrenal expression of steroidogenic genes in offspring pullets. Results Maternal betaine significantly reduced (P < 0.05) plasma CORT concentration and the adrenal expression of vimentin that is involved in trafficking cholesterol to the mitochondria for utilization in offspring pullets. Concurrently, voltage-dependent anion channel 1 and steroidogenic acute regulatory protein, the two mitochondrial proteins involved in cholesterol influx, were both down-regulated at mRNA and protein levels. However, enzymes responsible for steroid syntheses, such as cytochrome P450 family 11 subfamily A member 1 and cytochrome P450 family 21 subfamily A member 2, were significantly (P < 0.05) up-regulated at mRNA or protein levels in the adrenal gland of pullets derived from betaine-supplemented hens. Furthermore, expression of transcription factors, such as steroidogenic factor-1, sterol regulatory element-binding protein 1 and cAMP response element-binding protein, was significantly (P < 0.05) enhanced, together with their downstream target genes, such as 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, LDL receptor and sterol regulatory element-binding protein cleavage-activating protein. The promoter regions of most steroidogenic genes were significantly (P < 0.05) hypomethylated, although methyl transfer enzymes, such as AHCYL, GNMT1 and BHMT were up-regulated. Conclusions These results indicate that the reduced plasma CORT in betaine-supplemented offspring pullets is linked to suppressed cholesterol trafficking into the mitochondria, despite the activation of cholesterol and corticosteroid synthetic genes associated with promoter hypomethylation.
Collapse
Affiliation(s)
- Halima Abobaker
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yun Hu
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Nagmeldin A Omer
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,3College of Allied Medical Sciences, University of Nyala, 155 Nyala, Sudan
| | - Zhen Hou
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Abdulrahman A Idriss
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Ruqian Zhao
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| |
Collapse
|
28
|
Cave E, Crowther NJ. Tissue non-specific alkaline phosphatase mediates the accumulation of cholesterol esters in the murine Y1 adrenal cortex cell line. Ann Anat 2019; 227:151420. [PMID: 31563571 DOI: 10.1016/j.aanat.2019.151420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cholesterol esters (CEs) accumulate in the cells of the adrenal cortex and are used for the synthesis of steroid hormones. The full molecular pathways involved in mediating the accumulation of CEs within the adrenal cortex are yet to be elucidated. Tissue non-specific alkaline phosphatase (TNAP) is needed for intracellular lipid accumulation of triglycerides in adipocytes and is also expressed in the cortical cells of the adrenal gland. Therefore we aimed to determine if TNAP is needed for the accumulation of CEs within the murine Y1 adrenal cortex cell line. METHODS Y1 cells were induced to accumulate lipids. Lipid accumulation and TNAP activity and expression were determined throughout intracellular lipid accumulation. The location of TNAP within the cell was determined through immunohistochemical analysis. Lipid accumulation in the cells was associated with a rise in TNAP activity and TNAP was localised to lipid droplets within the Y1 cells. Inhibition of TNAP with a specific inhibitor (levamisole) resulted in the cessation of CE accumulation. DISCUSSION AND CONCLUSIONS These data demonstrate that TNAP plays a role in the control of lipid accumulation in this adrenal cortex cell line. Therefore, in both triglyceride and CE storing cell types TNAP would seem to be essential for intra-cellular lipid storage.
Collapse
Affiliation(s)
- Eleanor Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, National Health Laboratory Service, School of Pathology, Johannesburg, South Africa.
| | - Nigel J Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, National Health Laboratory Service, School of Pathology, Johannesburg, South Africa
| |
Collapse
|
29
|
Jarc E, Petan T. Lipid Droplets and the Management of Cellular Stress. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:435-452. [PMID: 31543707 PMCID: PMC6747940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Lipid droplets are cytosolic fat storage organelles present in most eukaryotic cells. Long regarded merely as inert fat reservoirs, they are now emerging as major regulators of cellular metabolism. They act as hubs that coordinate the pathways of lipid uptake, distribution, storage, and use in the cell. Recent studies have revealed that they are also essential components of the cellular stress response. One of the hallmark characteristics of lipid droplets is their capacity to buffer excess lipids and to finely tune their subsequent release based on specific cellular requirements. This simple feature of lipid droplet biology, buffering and delayed release of lipids, forms the basis for their pleiotropic roles in the cellular stress response. In stressed cells, lipid droplets maintain energy and redox homeostasis and protect against lipotoxicity by sequestering toxic lipids into their neutral lipid core. Their mobility and dynamic interactions with mitochondria enable an efficient delivery of fatty acids for optimal energy production. Lipid droplets are also involved in the maintenance of membrane and organelle homeostasis by regulating membrane composition, preventing lipid peroxidation and removing damaged proteins and lipids. Finally, they also engage in a symbiotic relationship with autophagy and act as reservoirs of bioactive lipids that regulate inflammation and immunity. Thus, lipid droplets are central managers of lipid metabolism that function as safeguards against various types of cellular stress.
Collapse
Affiliation(s)
- Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia,To whom all correspondence should be addressed: Toni Petan, Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Tel: +386 1 477 3713, Fax: +386 1 477 3984,
| |
Collapse
|
30
|
Shen J, Chen L, Cheng J, Jin X, Mu Y, Li Q, Xia L, Gao Y, Xia Y. Circular RNA sequencing reveals the molecular mechanism of the effects of acupuncture and moxibustion on endometrial receptivity in patients undergoing infertility treatment. Mol Med Rep 2019; 20:1959-1965. [PMID: 31257480 DOI: 10.3892/mmr.2019.10386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/20/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the profile of differentially expressed circular RNAs (circRNAs) in infertile patients treated with acupuncture and moxibustion and verify the role of acupuncture and moxibustion in altering endometrial receptivity (ER). High‑throughput RNA sequencing and bioinformatics analysis of samples from six pairs of patients treated with or without acupuncture and moxibustion were conducted. The reliability of high‑throughput RNA sequencing was validated using reverse transcription‑quantitative PCR. The most significant circRNA functions and pathways were selected by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A circRNA‑miR‑mRNA interaction network was constructed to determine the connection between circRNAs, microRNAs (miRs), and mRNAs. High‑throughput RNA sequencing identified 2,653 circRNAs. A total of 86 circRNAs was differentially expressed, of which 57 were upregulated and 29 were downregulated, between the acupuncture and moxibustion group and the control group. In the GO analysis, the identified BP terms were chromatin modification, positive regulation of transcription from RNA polymerase II promoter involved in unfolded protein response, oxidative DNA demethylation, regulation of transcription from RNA polymerase II promoter in response to hypoxia, and regulation of smooth muscle cell differentiation. The identified CC terms were nucleoplasm, nucleolus, nucleus, histone acetyltransferase complex, and annulate lamellae. The identified MF terms were methylcytosine dioxygenase activity, chromatin binding, zinc ion binding, histone binding, and protein binding. In the KEGG pathway analysis, the identified pathways were protein processing in endoplasmic reticulum, degradation of aromatic compounds, shigellosis, mTOR signaling pathway, bacterial invasion of epithelial cells, and prostate cancer. Circ‑SFMBT2, circ‑BACH1, and circ‑LPAR1 were significantly upregulated (P<0.05) and associated with numerous miRs and mRNAs. Acupuncture and moxibustion could impact ER by regulating the expression of circRNAs.
Collapse
Affiliation(s)
- Jie Shen
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Li Chen
- Reproductive Medical Center of Nanjing Jinling Hospital and The Collaborative Innovation Platform for Reproductive Biology and Technology, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Jie Cheng
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xun Jin
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yanyun Mu
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Qian Li
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Liangjun Xia
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Youling Gao
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Youbing Xia
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
31
|
Zhang C, Gong P, Ye Y, Zhang L, Chen M, Hu Y, Gu A, Chen S, Wang Y. NF-κB-vimentin is involved in steroidogenesis stimulated by di- n-butyl phthalate in prepubertal female rats. Toxicol Res (Camb) 2018; 7:826-833. [PMID: 30310660 PMCID: PMC6116176 DOI: 10.1039/c8tx00035b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/17/2018] [Indexed: 11/21/2022] Open
Abstract
This study was aimed at assessing steroidogenesis stimulated by low-dose exposure to DBP in prepubertal female rats. Animals were gavaged with DBP from postnatal day 21 to 33 at 0, 1, 10 and 500 mg kg-1 day-1. 500 mg kg-1 day-1 was selected since it was used in numerous studies and the inhibitory effect could be observed at this dosage. After treatment, hormone levels in serum were detected by enzyme-linked immunosorbent assay. mRNA and protein expressions of vimentin, nuclear factor-κB (NF-κB) p65 and phosphorylation of NF-κB p65 (p-p65) were assayed by quantitative real-time polymerase chain reaction (qRT-PCR) assay, western blotting, and immunohistochemistry, respectively. Uterus weights, progesterone levels in serum, and protein expression of vimentin and p-p65 in ovaries increased significantly after the animals were exposed to DBP at 1 mg kg-1 day-1. Additionally, steroidogenesis and vimentin expression stimulated by DBP were blocked when the activity of NF-κB p65 was inhibited by the NF-κB inhibitor, pyrrolidine dithiocarbamic acid (PDTC). These results strongly suggested that DBP may activate uterus development by up-regulated steroidogenesis through the NF-κB-vimentin signaling pathway.
Collapse
Affiliation(s)
- Chang Zhang
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
| | - Pan Gong
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
| | - Yan Ye
- Donghai Town Community Health Service Center , Qidongcounty , Jiangsu province 226253 , PR China
| | - Lulu Zhang
- Safety Assessment and Research Center for Drug , Pesticide and Veterinary Drug of Jiangsu Province , Nanjing Medical University , Nanjing 211166 , PR China
| | - Minjian Chen
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
| | - Yanhui Hu
- Safety Assessment and Research Center for Drug , Pesticide and Veterinary Drug of Jiangsu Province , Nanjing Medical University , Nanjing 211166 , PR China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
| | - Shanshan Chen
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
- Safety Assessment and Research Center for Drug , Pesticide and Veterinary Drug of Jiangsu Province , Nanjing Medical University , Nanjing 211166 , PR China
| |
Collapse
|
32
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
33
|
Samardzija D, Pogrmic-Majkic K, Fa S, Stanic B, Jasnic J, Andric N. Bisphenol A decreases progesterone synthesis by disrupting cholesterol homeostasis in rat granulosa cells. Mol Cell Endocrinol 2018; 461:55-63. [PMID: 28859904 DOI: 10.1016/j.mce.2017.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/28/2017] [Accepted: 08/27/2017] [Indexed: 11/17/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor used in a variety of consumer products. Exposure to BPA leads to alterations in steroidogenesis of ovarian granulosa cells. Here, we analyzed the mechanism by which BPA alters progesterone biosynthesis in immature rat granulosa cells. BPA increased expression of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase in granulosa cells; however, BPA prevented the basal and the FSH-induced progesterone production. BPA caused sequestration of cholesterol to the perinuclear area, as evident by the Filipin staining. BPA decreased mRNA expression of ATP binding cassette transporter-A1 (Abca1) and increased level of sterol regulatory element binding protein 1. Addition of exogenous cell-permeable cholesterol restored the effect of BPA on Abca1 and Star mRNA expression and partially reversed BPA's effect on progesterone production. These results indicate that exposure to BPA disrupts cholesterol homeostasis leading to decreased progesterone production in immature rat granulosa cells.
Collapse
Affiliation(s)
- Dragana Samardzija
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Svetlana Fa
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Bojana Stanic
- University of Novi Sad, Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, Serbia
| | - Jovana Jasnic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Serbia
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
34
|
Kennedy BE, Charman M, Karten B. Measurement of Mitochondrial Cholesterol Import Using a Mitochondria-Targeted CYP11A1 Fusion Construct. Methods Mol Biol 2018; 1583:163-184. [PMID: 28205173 DOI: 10.1007/978-1-4939-6875-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
All animal membranes require cholesterol as an essential regulator of biophysical properties and function, but the levels of cholesterol vary widely among different subcellular compartments. Mitochondria, and in particular the inner mitochondrial membrane, have the lowest levels of cholesterol in the cell. Nevertheless, mitochondria need cholesterol for membrane maintenance and biogenesis, as well as oxysterol, steroid, and hepatic bile acid production. Alterations in mitochondrial cholesterol have been associated with a range of pathological conditions, including cancer, hepatosteatosis, cardiac ischemia, Alzheimer's, and Niemann-Pick Type C Disease. The mechanisms of mitochondrial cholesterol import are not fully elucidated yet, and may vary in different cell types and environmental conditions. Measuring cholesterol trafficking to the mitochondrial membranes is technically challenging because of its low abundance; for example, traditional pulse-chase experiments with isotope-labeled cholesterol are not feasible. Here, we describe improvements to a method first developed by the Miller group at the University of California to measure cholesterol trafficking to the inner mitochondrial membrane (IMM) through the conversion of cholesterol to pregnenolone. This method uses a mitochondria-targeted, ectopically expressed fusion construct of CYP11A1, ferredoxin reductase and ferredoxin. Pregnenolone is formed exclusively from cholesterol at the IMM, and can be analyzed with high sensitivity and specificity through ELISA or radioimmunoassay of the medium/buffer to reflect mitochondrial cholesterol import. This assay can be used to investigate the effects of genetic or pharmacological interventions on mitochondrial cholesterol import in cultured cells or isolated mitochondria.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building 9G, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Mark Charman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building 9G, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building 9G, 5850 College Street, Halifax, NS, Canada, B3H 4R2.
| |
Collapse
|
35
|
Menzies RI, Zhao X, Mullins LJ, Mullins JJ, Cairns C, Wrobel N, Dunbar DR, Bailey MA, Kenyon CJ. Transcription controls growth, cell kinetics and cholesterol supply to sustain ACTH responses. Endocr Connect 2017; 6:446-457. [PMID: 28720595 PMCID: PMC5574282 DOI: 10.1530/ec-17-0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 01/29/2023]
Abstract
Chronic ACTH exposure is associated with adrenal hypertrophy and steroidogenesis. The underlying molecular processes in mice have been analysed by microarray, histological and immunohistochemical techniques. Synacthen infused for 2 weeks markedly increased adrenal mass and plasma corticosterone levels. Microarray analysis found greater than 2-fold changes in expression of 928 genes (P < 0.001; 397 up, 531 down). These clustered in pathways involved in signalling, sterol/lipid metabolism, cell proliferation/hypertrophy and apoptosis. Signalling genes included some implicated in adrenal adenomas but also upregulated genes associated with cyclic AMP and downregulated genes associated with aldosterone synthesis. Sterol metabolism genes were those promoting cholesterol supply (Scarb1, Sqle, Apoa1) and disposal (Cyp27a1, Cyp7b1). Oil red O staining showed lipid depletion consistent with reduced expression of genes involved in lipid synthesis. Genes involved in steroidogenesis (Star, Cyp11a1, Cyp11b1) were modestly affected (P < 0.05; <1.3-fold). Increased Ki67, Ccna2, Ccnb2 and Tk1 expression complemented immunohistochemical evidence of a 3-fold change in cell proliferation. Growth arrest genes, Cdkn1a and Cdkn1c, which are known to be active in hypertrophied cells, were increased >4-fold and cross-sectional area of fasciculata cells was 2-fold greater. In contrast, genes associated with apoptosis (eg Casp12, Clu,) were downregulated and apoptotic cells (Tunel staining) were fewer (P < 0.001) and more widely distributed throughout the cortex. In summary, long-term steroidogenesis with ACTH excess is sustained by genes controlling cholesterol supply and adrenal mass. ACTH effects on adrenal morphology and genes controlling cell hypertrophy, proliferation and apoptosis suggest the involvement of different cell types and separate molecular pathways.
Collapse
Affiliation(s)
- Robert I Menzies
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Xin Zhao
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Linda J Mullins
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - John J Mullins
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Carolynn Cairns
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Nicola Wrobel
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Donald R Dunbar
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Matthew A Bailey
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Christopher J Kenyon
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
36
|
Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1260-1272. [PMID: 28735096 PMCID: PMC5595650 DOI: 10.1016/j.bbalip.2017.07.006] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Lipid droplets are cytoplasmic organelles that store neutral lipids and are critically important for energy metabolism. Their function in energy storage is firmly established and increasingly well characterized. However, emerging evidence indicates that lipid droplets also play important and diverse roles in the cellular handling of lipids and proteins that may not be directly related to energy homeostasis. Lipid handling roles of droplets include the storage of hydrophobic vitamin and signaling precursors, and the management of endoplasmic reticulum and oxidative stress. Roles of lipid droplets in protein handling encompass functions in the maturation, storage, and turnover of cellular and viral polypeptides. Other potential roles of lipid droplets may be connected with their intracellular motility and, in some cases, their nuclear localization. This diversity highlights that lipid droplets are very adaptable organelles, performing different functions in different biological contexts. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY, United States.
| | | |
Collapse
|
37
|
Zhang C, Gong P, Ye Y, Zhang L, Chen M, Hu Y, Gu A, Chen S, Wang Y. NF-κB-vimentin is involved in steroidogenesis stimulated by mono-butyl phthalate in primary cultured ovarian granulosa cells. Toxicol In Vitro 2017; 45:25-30. [PMID: 28735033 DOI: 10.1016/j.tiv.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/18/2017] [Indexed: 01/20/2023]
Abstract
Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP) are the most common endocrine disrupting chemicals. Many studies indicated the effects of MBP on male steroidogenesis, however, little attention have been paid on the effects of low levels of MBP on female steroidogenesis. This study was aimed to assess steroidogenesis stimulated by low-dose MBP on primary cultured ovarian granulosa cells (mGCs). Ovarian granulosa cells were isolated from ICR female mice. Hormone levels in medium were detected by ELISA, mRNA and protein expressions of vimentin, NF-κB p65 and phosphorylation of NF-κB p65 (p-p65) were assayed by qRT-PCR, western blot and immunohistochemistry, respectively. Besides, confocal immunofluorescence and electrophoretic mobility shift assay (EMSA) were used for detecting vimentin expression and activity of NF-κB p65 binding to the promoter of vimentin, respectively. Progesterone levels, mRNA and protein levels of vimentin and p-p65 in cells were increased significantly in mGCs treated by MBP at 10-10M. Additionally, MBP-induced steroidogenesis was blocked when vimentin protein was knocked down or activity of NF-κB was inhibited. EMSA assay showed that binding activity of NF-κB to the promoter regions of vimentin was boosted after MBP exposure. Accordingly, the results suggested that MBP could up-regulated steroidogenesis through NF-κB-vimentin signal in mGCs.
Collapse
Affiliation(s)
- Chang Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Pan Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Yan Ye
- Donghai Town Community Health Service Center, Qidong County, Jiangsu Province 226253, PR China
| | - Lulu Zhang
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, PR China
| | - Minjian Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Yanhui Hu
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, PR China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Shanshan Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, PR China.
| |
Collapse
|
38
|
El Zowalaty AE, Li R, Zheng Y, Lydon JP, DeMayo FJ, Ye X. Deletion of RhoA in Progesterone Receptor-Expressing Cells Leads to Luteal Insufficiency and Infertility in Female Mice. Endocrinology 2017; 158:2168-2178. [PMID: 28498971 PMCID: PMC5505209 DOI: 10.1210/en.2016-1796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
Ras homolog gene family, member A (RhoA) is widely expressed throughout the female reproductive system. To assess its role in progesterone receptor-expressing cells, we generated RhoA conditional knockout mice RhoAd/d (RhoAf/f-Pgr-Cre+/-). RhoAd/d female mice had comparable mating activity, serum luteinizing hormone, prolactin, and estradiol levels and ovulation with control but were infertile with progesterone insufficiency, indicating impaired steroidogenesis in RhoAd/d corpus luteum (CL). RhoA was highly expressed in wild-type luteal cells and conditionally deleted in RhoAd/d CL. Gestation day 3.5 (D3.5) RhoAd/d ovaries had reduced numbers of CL, less defined corpus luteal cord formation, and disorganized CL collagen IV staining. RhoAd/d CL had lipid droplet and free cholesterol accumulation, indicating the availability of cholesterol for steroidogenesis, but disorganized β-actin and vimentin staining, indicating disrupted cytoskeleton integrity. Cytoskeleton is important for cytoplasmic cholesterol movement to mitochondria and for regulating mitochondria. Dramatically reduced expression of mitochondrial markers heat shock protein 60 (HSP60), voltage-dependent anion channel, and StAR was detected in RhoAd/d CL. StAR carries out the rate-limiting step of steroidogenesis. StAR messenger RNA expression was reduced in RU486-treated D3.5 wild-type CL and tended to be induced in progesterone-treated D3.5 RhoAd/d CL, with parallel changes of HSP60 expression. These data demonstrated the in vivo function of RhoA in CL luteal cell cytoskeleton integrity, cholesterol transport, StAR expression, and progesterone synthesis, and a positive feedback on StAR expression in CL by progesterone signaling. These findings provide insights into mechanisms of progesterone insufficiency.
Collapse
Affiliation(s)
- Ahmed E. El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia 30602
| | - Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia 30602
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Research Foundation, Cincinnati, Ohio 45229
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory/Pregnancy and Female Reproduction Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
39
|
Elustondo P, Martin LA, Karten B. Mitochondrial cholesterol import. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:90-101. [PMID: 27565112 DOI: 10.1016/j.bbalip.2016.08.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
All animal subcellular membranes require cholesterol, which influences membrane fluidity and permeability, fission and fusion processes, and membrane protein function. The distribution of cholesterol among subcellular membranes is highly heterogeneous and the cholesterol content of each membrane must be carefully regulated. Compared to other subcellular membranes, mitochondrial membranes are cholesterol-poor, particularly the inner mitochondrial membrane (IMM). As a result, steroidogenesis can be controlled through the delivery of cholesterol to the IMM, where it is converted to pregnenolone. The low basal levels of cholesterol also make mitochondria sensitive to changes in cholesterol content, which can have a relatively large impact on the biophysical and functional characteristics of mitochondrial membranes. Increased mitochondrial cholesterol levels have been observed in diverse pathological conditions including cancer, steatohepatitis, Alzheimer disease and Niemann-Pick Type C1-deficiency, and are associated with increased oxidative stress, impaired oxidative phosphorylation, and changes in the susceptibility to apoptosis, among other alterations in mitochondrial function. Mitochondria are not included in the vesicular trafficking network; therefore, cholesterol transport to mitochondria is mostly achieved through the activity of lipid transfer proteins at membrane contact sites or by cytosolic, diffusible lipid transfer proteins. Here we will give an overview of the main mechanisms involved in mitochondrial cholesterol import, focusing on the steroidogenic acute regulatory protein StAR/STARD1 and other members of the StAR-related lipid transfer (START) domain protein family, and we will discuss how changes in mitochondrial cholesterol levels can arise and affect mitochondrial function. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Pia Elustondo
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Laura A Martin
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
40
|
Medwid S, Guan H, Yang K. Prenatal exposure to bisphenol A disrupts adrenal steroidogenesis in adult mouse offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:203-208. [PMID: 27017381 DOI: 10.1016/j.etap.2016.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The present study sought to determine if prenatal exposure to bisphenol A (BPA) alters adrenal steroidogenesis in adult offspring. Pregnant mice were exposed to BPA (25mg BPA/kg food pellet) via diet from day 7 to the end of pregnancy. At eight weeks of age, offsprings were sacrificed, blood samples and adrenal glands were collected for hormone assays and western blot analysis, respectively. We found that: (1) BPA increased adrenal gland weight in both males and females; (2) although BPA elevated plasma corticosterone levels in both sexes, it stimulated the expression of StAR and cyp11A1, the two rate-limiting factors in the steroidogenic pathway, only in female adrenal glands; and interestingly (3) BPA did not alter plasma ACTH levels or adrenal expression of the key steroidogenic transcription factor SF-1 in either sex. Taken together, the present study provides novel insights into the long-term consequences of developmental BPA exposure on adrenal steroidogenesis.
Collapse
Affiliation(s)
- Samantha Medwid
- Children's Health Research Institute & Lawson Health Research Institute, Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Western University, 800 Commissioners Rd. E., London, Ontario N6C 2V5, Canada
| | - Haiyan Guan
- Children's Health Research Institute & Lawson Health Research Institute, Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Western University, 800 Commissioners Rd. E., London, Ontario N6C 2V5, Canada
| | - Kaiping Yang
- Children's Health Research Institute & Lawson Health Research Institute, Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Western University, 800 Commissioners Rd. E., London, Ontario N6C 2V5, Canada.
| |
Collapse
|
41
|
Li Y, Hu Y, Dong C, Lu H, Zhang C, Hu Q, Li S, Qin H, Li Z, Wang Y. Vimentin-Mediated Steroidogenesis Induced by Phthalate Esters: Involvement of DNA Demethylation and Nuclear Factor κB. PLoS One 2016; 11:e0146138. [PMID: 26745512 PMCID: PMC4706347 DOI: 10.1371/journal.pone.0146138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/13/2015] [Indexed: 11/29/2022] Open
Abstract
Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP) are the most common endocrine disrupting chemicals. Many studies indicate that high-doses of DBP and/or MBP exhibit toxicity on testicular function, however, little attention have been paid to the effects of low levels of DBP/MBP on steroidogenesis. As we all know, the steroidogenic acute regulatory protein (StAR) is a key regulator involved in the steroidogenesis. Here we found that, in addition to StAR, MBP/DBP increased the steroidogenesis by a cytoskeletal protein, vimentin. Briefly, in murine adrenocortical tumor (Y1) and the mouse Leydig tumor (MLTC-1) cells, vimentin regulated the secretion of progesterone. When these two cells were exposure to MBP, the DNA demethylation in the vimentin promoter was observed. In addition, MBP also induced the activation of nuclear factor kappa B (NF-κB, a transcriptional regulator of vimentin). These two processes improved the transcriptional elevation of vimentin. Knockdown of NF-κB/vimentin signaling blocked the DBP/MBP-induced steroidogenesis. These in vitro results were also confirmed via an in vivo model. By identifying a mechanism whereby DBP/MBP regulates vimentin, our results expand the understanding of the endocrine disrupting potential of phthalate esters.
Collapse
Affiliation(s)
- Yuan Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yanhui Hu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Congcong Dong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongchao Lu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chang Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Hu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shifeng Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Heng Qin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhong Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- * E-mail:
| |
Collapse
|
42
|
Smad2/3 Upregulates the Expression of Vimentin and Affects Its Distribution in DBP-Exposed Sertoli Cells. PPAR Res 2015; 2015:489314. [PMID: 26819576 PMCID: PMC4706965 DOI: 10.1155/2015/489314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Sertoli cells (SCs) in the testes provide physical and nutritional support to germ cells. The vimentin cytoskeleton in SCs is disrupted by dibutyl phthalate (DBP), which leads to SCs dysfunction. In a previous study, we found that peroxisome proliferator-activated receptor alpha (PPARα) influenced the distribution of vimentin by affecting its phosphorylation in DBP-exposed SCs. In the present study, we investigated the role of Smad2/3 in regulating the expression of vimentin in DBP-exposed SCs. We hypothesized that Smad2/3 affects the distribution of vimentin by regulating its expression and that there is cross talk between Smad2/3 and PPARα. The real-time PCR and ChIP-qPCR results showed that SB431542 (an inhibitor of Smad2/3) could significantly attenuate the expression of vimentin induced by DBP in SCs. Phosphorylated and soluble vimentin were both downregulated by SB431542 pretreatment. WY14643 (an agonist of PPARα) pretreatment stimulated, while GW6471 (an antagonist of PPARα) inhibited, the activity of Smad2/3; SB431542 pretreatment also inhibited the activity of PPARα, but it did not rescue the DBP-induced collapse in vimentin. Our results suggest that, in addition to promoting the phosphorylation of vimentin, DBP also stimulates the expression of vimentin by activating Smad2/3 in SCs and thereby induces irregular vimentin distribution.
Collapse
|
43
|
Martinez F, Olvera-Sanchez S, Esparza-Perusquia M, Gomez-Chang E, Flores-Herrera O. Multiple functions of syncytiotrophoblast mitochondria. Steroids 2015; 103:11-22. [PMID: 26435077 DOI: 10.1016/j.steroids.2015.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/16/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
The human placenta plays a central role in pregnancy, and the syncytiotrophoblast cells are the main components of the placenta that support the relationship between the mother and fetus, in apart through the production of progesterone. In this review, the metabolic processes performed by syncytiotrophoblast mitochondria associated with placental steroidogenesis are described. The metabolism of cholesterol, specifically how this steroid hormone precursor reaches the mitochondria, and its transformation into progesterone are reviewed. The role of nucleotides in steroidogenesis, as well as the mechanisms associated with signal transduction through protein phosphorylation and dephosphorylation of proteins is discussed. Finally, topics that require further research are identified, including the need for new techniques to study the syncytiotrophoblast in situ using non-invasive methods.
Collapse
Affiliation(s)
- Federico Martinez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico.
| | - Sofia Olvera-Sanchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Mercedes Esparza-Perusquia
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Erika Gomez-Chang
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| |
Collapse
|
44
|
Habibizad J, Riasi A, Kohram H, Rahmani HR. Effect of feeding greater amounts of dietary energy for a short-term with or without eCG injection on reproductive performance, serum metabolites and hormones in ewes. Anim Reprod Sci 2015; 160:82-9. [PMID: 26250419 DOI: 10.1016/j.anireprosci.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/09/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
This study was conducted to compare the effect of transient high-energy diet in a short-term period with or without eCG injection on ovarian follicle development, twining rate, serum metabolites and hormones in ewes. A total of 45 estrous cyclic Naeini ewes were randomly assigned to three experimental groups: 1-Control (control), 2-High energy short-term feeding (HE), and 3-high energy short-term feeding + eCG injection (HEe). Ewes were housed in individual pens with free access to feed and water. The stage of the estrous cycle of all ewes was synchronized by insertion of intravaginal progesterone sponges. Focus feeding started from 4 days before until 1 day after sponge removal. Follicle development was monitored from 4 days before until 1 day after sponge removal and blood samples were taken during this time. Results showed that ewes fed high energy diets (HE and HEe) had greater (P < 0.05) large follicle numbers compared with the control group. Feeding high energy diets increased (P < 0.05) serum glucose, cholesterol and insulin, but had lesser (P < 0.05) serum urea nitrogen concentrations near the time of ovulation. After the start of experiment, ewes fed high energy diets had less (P < 0.05) serum estradiol. However, 1 day after sponge removal, serum estradiol in HE and HEe groups increased (P < 0.05). It was concluded that short-term (6-day) changes in amount of dietary energy with or without eCG injection increased twin births and had beneficial effects on the blood metabolites and hormone concentrations in Naeini ewes.
Collapse
Affiliation(s)
- Javad Habibizad
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ahmad Riasi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hamid Kohram
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hamid Reza Rahmani
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
45
|
Proteomic analysis of murine testes lipid droplets. Sci Rep 2015; 5:12070. [PMID: 26159641 PMCID: PMC4498221 DOI: 10.1038/srep12070] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/10/2015] [Indexed: 01/12/2023] Open
Abstract
Testicular Leydig cells contain abundant cytoplasmic lipid droplets (LDs) as a cholesteryl-ester store for releasing cholesterols as the precursor substrate for testosterone biosynthesis. Here, we identified the protein composition of testicular LDs purified from adult mice by using mass spectrometry and immunodetection. Among 337 proteins identified, 144 were previously detected in LD proteomes; 44 were confirmed by microscopy. Testicular LDs contained multiple Rab GTPases, chaperones, and proteins involved in glucuronidation, ubiquination and transport, many known to modulate LD formation and LD-related cellular functions. In particular, testicular LDs contained many members of both the perilipin family and classical lipase/esterase superfamily assembled predominately in adipocyte LDs. Thus, testicular LDs might be regulated similar to adipocyte LDs. Remarkably, testicular LDs contained a large number of classical enzymes for biosynthesis and metabolism of cholesterol and hormonal steroids, so steroidogenic reactions might occur on testicular LDs or the steroidogenic enzymes and products could be transferred through testicular LDs. These characteristics differ from the LDs in most other types of cells, so testicular LDs could be an active organelle functionally involved in steroidogenesis.
Collapse
|
46
|
Chen YC, Liang YL, Huang YL, Huang BM. Mechanism of Toona sinensis-stimulated adrenal steroidogenesis in primary rat adrenal cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
47
|
Benabdelkamel H, Masood A, Almidani GM, Alsadhan AA, Bassas AF, Duncan MW, Alfadda AA. Mature adipocyte proteome reveals differentially altered protein abundances between lean, overweight and morbidly obese human subjects. Mol Cell Endocrinol 2015; 401:142-54. [PMID: 25498962 DOI: 10.1016/j.mce.2014.11.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 02/08/2023]
Abstract
Overweight (OW) and obese individuals are considered to be graded parts of the scale having increasing weight as a common feature. They may not, however, be part of the same continuum and may differ metabolically. In this study we applied an untargeted proteomic approach to compare protein abundances in mature adipocytes derived from the subcutaneous adipose tissue of overweight and morbidly obese female subjects to those of lean age matched controls. Mature adipocytes were isolated from liposuction samples of abdominal subcutaneous adipose tissue collected from both lean (L; n = 7, 23.3 ± 0.4 kg/m(2); mean BMI ± SD), overweight (OW; n = 8, 27.9 ± 0.6 kg/m(2); mean BMI ± SD) and morbidly obese (MOB; n = 7, 44.8 ± 3.8 kg/m(2); mean BMI ± SD) individuals. Total protein extracts were then compared by two-dimensional difference in gel electrophoresis (2D DIGE). One hundred and ten differentially expressed protein spots (i.e., fitting the statistical criteria ANOVA test, p < 0.05; fold-change ≥1.5) were detected, and of these, 89 were identified by MALDI-TOF mass spectrometry. Of these, 66 protein spots were common to both groups whereas 23 were unique to the MOB group. Significant differences were evident in the abundances of key proteins involved in glucose and lipid metabolism, energy regulation, cytoskeletal structure and redox control signaling pathways. Differences in the abundance of some chaperones were also evident. The differentially abundant proteins were investigated using Ingenuity Pathway Analysis (IPA) to establish their associations with known biological functions. The network identified in the OW group with the highest score relates to-: cell-to-cell signaling and interaction; in contrast, in the MOB group the major interacting pathways are associated with lipid metabolism, small molecule biochemistry and cancer. The differences in abundance of the differentially regulated proteins were validated by immunoblotting. These findings provide insights into metabolic differences in OW and MOB individuals.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Ghaith M Almidani
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Abdulmajeed A Alsadhan
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Abdulelah F Bassas
- Department of Surgery, Security Forces Hospital, P.O. Box 3643, Riyadh 11481, Saudi Arabia
| | - Mark W Duncan
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, MS8106, E. 19th Avenue, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
48
|
Abstract
Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
49
|
Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr 2014; 48:137-51. [PMID: 25425472 DOI: 10.1007/s10863-014-9592-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.
Collapse
|
50
|
Sahu-Osen A, Montero-Moran G, Schittmayer M, Fritz K, Dinh A, Chang YF, McMahon D, Boeszoermenyi A, Cornaciu I, Russell D, Oberer M, Carman GM, Birner-Gruenberger R, Brasaemle DL. CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization. J Lipid Res 2014; 56:109-21. [PMID: 25421061 PMCID: PMC4274058 DOI: 10.1194/jlr.m055004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS239S240, we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immunoblotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation.
Collapse
Affiliation(s)
- Anita Sahu-Osen
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Gabriela Montero-Moran
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Matthias Schittmayer
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Katarina Fritz
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Anna Dinh
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Yu-Fang Chang
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Derek McMahon
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | | | - Irina Cornaciu
- Institute of Molecular Biosciences, University of Graz, Graz, Austria A-8010
| | - Deanna Russell
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria A-8010
| | - George M Carman
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Ruth Birner-Gruenberger
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Dawn L Brasaemle
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|