1
|
Zhang J, Chen L, Zhao C, Chen Z, Xiao S, Yin X, Wu N, Yang L, Xu J, Zhou H, Wu Q, Shao R, Xu W. Polysaccharides from Cynanchum auriculatum Royle ex Wight ameliorate symptoms of hyperglycemia by regulating gut microbiota in type 2 diabetes mellitus mice. Int J Biol Macromol 2025; 299:139878. [PMID: 39818385 DOI: 10.1016/j.ijbiomac.2025.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder characterized by disrupted carbohydrate and lipid balance, resulting in hyperglycemia. This study evaluated the impact of polysaccharides derived from Cynanchum auriculatum Royle ex Wight (CRP) on mitigating hyperglycemia and modulating intestinal microbiota in T2DM mice. Findings indicated that CRP is mainly linked by →6)α-D-Glcp-(1→ and CRP-H demonstrated greater efficacy than CRP-L in regulating hypoglycemic-related indicators such as serum high-density lipoprotein cholesterol (HDL-c) level. Additionally, CRP at varying doses enhanced the mRNA expression of insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT-1), and glucose transporter 2 (GLUT-2). Following a 4-week CRP-H treatment, a significant reduction in the Firmicutes/Bacteroidetes ratio at the phylum level was observed, alongside a marked increase in the relative abundance of beneficial genera such as Limosillactobacillus and Prevotella. Overall, CRP-H displayed enhanced hypoglycemic properties by activating the IRS-1/PI3K/AKT-1/GLUT-2 pathway and enriching beneficial gut bacteria, including Prevotella and Limosillactobacillus. This study establishes a foundational framework for further development and application of Cynanchum auriculatum Royle ex Wight resources, emphasizing the hypoglycemic potential of CRP.
Collapse
Affiliation(s)
- Jiawei Zhang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chengyu Zhao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhuo Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shiqi Xiao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuemei Yin
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Lei Yang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jianda Xu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, Changzhou 213003, China
| | - Hongcheng Zhou
- School of Medicine, Jiangsu Medical College, Yancheng 224051, China
| | - Qin Wu
- School of Medicine, Jiangsu Medical College, Yancheng 224051, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
2
|
Khamseh ME, Malek M, Jahangiri S, Nobarani S, Hekmatdoost A, Salavatizadeh M, Soltanieh S, Chehrehgosha H, Taheri H, Montazeri Z, Attaran F, Ismail-Beigi F, Alaei-Shahmiri F. Insulin Resistance/Sensitivity Measures as Screening Indicators of Metabolic-Associated Fatty Liver Disease and Liver Fibrosis. Dig Dis Sci 2024; 69:1430-1443. [PMID: 38438774 DOI: 10.1007/s10620-024-08309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Measures of insulin resistance (IR)/sensitivity (IS) are emerging tools to identify metabolic-associated fatty liver disease (MAFLD). However, the comprehensive assessment of the performance of various indicators is limited. Moreover, the utility of measures of IR/IS in detecting liver fibrosis remains unclear. AIMS To evaluate the predictive ability of seventeen IR/IS and two beta cell function indices to identify MAFLD and liver fibrosis. METHODS A cross-sectional study was conducted on individuals aged 25-75 years. Transient elastography was used to estimate liver stiffness and controlled attenuation parameter. The following measures were computed: homeostatic model assessment (HOMA/HOMA2) for IR, IS, and beta cell function; QUICKI; Bennett index; glucose/insulin; FIRI; McAuley index; Reynaud index; SPISE index; TyG; TyG-BMI; TyG-WC; TyG-WHtR; TG/HDL; and METS-IR. Subgroup analyses were performed according to age, gender, diabetes status, and body weight. RESULTS A total of 644 individuals were included in our analysis. MAFLD and significant liver fibrosis were detected in 320 (49.7%) and 80 (12.4%) of the participants, respectively. All measures of IR/IS identified MAFLD and liver fibrosis. However, TyG-WC, TyG-BMI, and TyG-WHtR were the top three indicators that identified MAFLD. Measures that include insulin level in their mathematical calculation, namely, Raynaud index, HOMA-IR, HOMA 2-IR, FIRI, and QUICKI had the best performance in identifying liver fibrosis in the entire population, as well as among the study subgroups. CONCLUSIONS TyG-WC, TyG-BMI, and TyG-WHtR were the best predictors of MAFLD. Insulin-based measures had better performances in the detection of advanced fibrosis. This was independent of age, gender, obesity, or diabetes status.
Collapse
Affiliation(s)
- Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Soodeh Jahangiri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sohrab Nobarani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marieh Salavatizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Soltanieh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Chehrehgosha
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hoda Taheri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zeinab Montazeri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fereshteh Attaran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Fariba Alaei-Shahmiri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
3
|
Duan X, Zhao T, Wang J, Wang J, Zheng Y. Curcumol targets glutaminase 1 to regulate glutamine metabolism and induce senescence of hepatic stellate cells. Eur J Integr Med 2023; 62:102278. [DOI: 10.1016/j.eujim.2023.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
4
|
Doherty DT, Khambalia HA, van Dellen D, Jennings RE, Piper Hanley K. Unlocking the post-transplant microenvironment for successful islet function and survival. Front Endocrinol (Lausanne) 2023; 14:1250126. [PMID: 37711891 PMCID: PMC10497759 DOI: 10.3389/fendo.2023.1250126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Islet transplantation (IT) offers the potential to restore euglycemia for patients with type 1 diabetes mellitus (T1DM). Despite improvements in islet isolation techniques and immunosuppressive regimes, outcomes remain suboptimal with UK five-year graft survivals (5YGS) of 55% and most patients still requiring exogenous insulin after multiple islet infusions. Native islets have a significant non-endocrine component with dense extra-cellular matrix (ECM), important for islet development, cell survival and function. Collagenase isolation necessarily disrupts this complex islet microenvironment, leaving islets devoid of a supporting framework and increasing vulnerability of transplanted islets. Following portal venous transplantation, a liver injury response is potentially induced, which typically results in inflammation and ECM deposition from liver specific myofibroblasts. The impact of this response may have important impact on islet survival and function. A fibroblast response and ECM deposition at the kidney capsule and eye chamber alongside other implantation sites have been shown to be beneficial for survival and function. Investigating the implantation site microenvironment and the interactions of transplanted islets with ECM proteins may reveal therapeutic interventions to improve IT and stem-cell derived beta-cell therapy.
Collapse
Affiliation(s)
- Daniel T. Doherty
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Department of Renal & Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Hussein A. Khambalia
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Department of Renal & Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - David van Dellen
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Department of Renal & Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Rachel E. Jennings
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Department of Endocrinology, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Karen Piper Hanley
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Lee WH, Najjar SM, Kahn CR, Hinds TD. Hepatic insulin receptor: new views on the mechanisms of liver disease. Metabolism 2023; 145:155607. [PMID: 37271372 PMCID: PMC10330768 DOI: 10.1016/j.metabol.2023.155607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Over 65 % of people with obesity display the metabolic-associated fatty liver disease (MAFLD), which can manifest as steatohepatitis, fibrosis, cirrhosis, or liver cancer. The development and progression of MAFLD involve hepatic insulin resistance and reduced insulin clearance. This review discusses the relationships between altered insulin signaling, hepatic insulin resistance, and reduced insulin clearance in the development of MAFLD and how this provides the impetus for exploring the use of insulin sensitizers to curb this disease. The review also explores the role of the insulin receptor in hepatocytes and hepatic stellate cells and how it signals in metabolic and end-stage liver diseases. Finally, we discuss new research findings that indicate that advanced hepatic diseases may be an insulin-sensitive state in the liver and deliberate whether insulin sensitizers should be used to manage late-stage liver diseases.
Collapse
Affiliation(s)
- Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
Creeden JF, Kipp ZA, Xu M, Flight RM, Moseley HNB, Martinez GJ, Lee W, Alganem K, Imami AS, McMullen MR, Roychowdhury S, Nawabi AM, Hipp JA, Softic S, Weinman SA, McCullumsmith R, Nagy LE, Hinds TD. Hepatic kinome atlas: An in-depth identification of kinase pathways in liver fibrosis of humans and rodents. Hepatology 2022; 76:1376-1388. [PMID: 35313030 PMCID: PMC9489820 DOI: 10.1002/hep.32467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/02/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Resolution of pathways that converge to induce deleterious effects in hepatic diseases, such as in the later stages, have potential antifibrotic effects that may improve outcomes. We aimed to explore whether humans and rodents display similar fibrotic signaling networks. APPROACH AND RESULTS We assiduously mapped kinase pathways using 340 substrate targets, upstream bioinformatic analysis of kinase pathways, and over 2000 random sampling iterations using the PamGene PamStation kinome microarray chip technology. Using this technology, we characterized a large number of kinases with altered activity in liver fibrosis of both species. Gene expression and immunostaining analyses validated many of these kinases as bona fide signaling events. Surprisingly, the insulin receptor emerged as a considerable protein tyrosine kinase that is hyperactive in fibrotic liver disease in humans and rodents. Discoidin domain receptor tyrosine kinase, activated by collagen that increases during fibrosis, was another hyperactive protein tyrosine kinase in humans and rodents with fibrosis. The serine/threonine kinases found to be the most active in fibrosis were dystrophy type 1 protein kinase and members of the protein kinase family of kinases. We compared the fibrotic events over four models: humans with cirrhosis and three murine models with differing levels of fibrosis, including two models of fatty liver disease with emerging fibrosis. The data demonstrate a high concordance between human and rodent hepatic kinome signaling that focalizes, as shown by our network analysis of detrimental pathways. CONCLUSIONS Our findings establish a comprehensive kinase atlas for liver fibrosis, which identifies analogous signaling events conserved among humans and rodents.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Mei Xu
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Robert M. Flight
- Department of Molecular & Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
- Resource Center for Stable Isotope Resolved MetabolomicsUniversity of KentuckyLexingtonKentuckyUSA
| | - Hunter N. B. Moseley
- Department of Molecular & Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
- Resource Center for Stable Isotope Resolved MetabolomicsUniversity of KentuckyLexingtonKentuckyUSA
- Institute for Biomedical InformaticsUniversity of KentuckyLexingtonKentuckyUSA
- Center for Clinical and Translational ScienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Genesee J. Martinez
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Wang‐Hsin Lee
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Khaled Alganem
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Ali S. Imami
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Megan R. McMullen
- Department of Inflammation and ImmunityCleveland ClinicClevelandOhioUSA
| | | | - Atta M. Nawabi
- Division of Transplant and HepatobiliaryDepartment of SurgeryThe University of Kansas Medical CenterKansas CityKansasUSA
| | | | - Samir Softic
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Department of PediatricsUniversity of KentuckyLexingtonKentuckyUSA
| | - Steven A. Weinman
- Department of Internal Medicine and Liver CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Robert McCullumsmith
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
- Neurosciences InstituteProMedicaToledoOhioUSA
| | - Laura E. Nagy
- Department of Inflammation and ImmunityCleveland ClinicClevelandOhioUSA
- Department of Gastroenterology and HepatologyCenter for Liver Disease ResearchCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
- Barnstable Brown Diabetes CenterUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| |
Collapse
|
7
|
Pan H, Zhou M, Ju Z, Luo J, Jin J, Shen L, Zhou P, Huang R. Potential role of gut microbiota-LCA-INSR axis in high fat-diet-induced non-alcoholic fatty liver dysfunction: From perspective of radiation variation. Curr Res Food Sci 2022; 5:1685-1700. [PMID: 36204709 PMCID: PMC9530674 DOI: 10.1016/j.crfs.2022.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease of the liver covering a range of conditions from hepatic steatosis to liver fibrosis. NAFLD could be induced by High-fat-diet(HFD). Ionizing radiation is widely used in medical diagnosis and therapy as well as is a common risk factor in occupational environment. Whether the exposure of various dose of radiation has effects on HFD-induced NAFLD remains unclear. Here, we reported that radiation exposure promoted HFD-induced NAFLD in a dose-response manner. Furthermore, the gut microbiota composition had significant difference among mice with or without radiation treatment. Specifically, the Bacteroidetes/Firmicutes ratio, the abundance of A. muciniphila, Butyricococcus, and Clostridiaceae decreased significantly in the mice with co-exposure of high dose of radiation and HFD treatment. A fecal transplantation trial (FMT) further verified the role of gut microbiota in the regulation of the liver response to co-exposure of high dose of radiation and HFD treatment. Notably, the gut microbiome analysis showed plasma lithocholic acid (LCA) level increased in the mice with co-exposure of high dose of radiation and HFD treatment. Following antibiotic and probiotic treatments there was a significantly decreased LCA bile acid concentration and subsequent promotion of INSR/PI3K/Akt insulin signaling in the liver tissues. Our results demonstrate that the co-exposure of radiation and HFD aggravates the HFD-induced NAFLD through gut microbiota-LCA-INSR axis. Probiotics supplementation is a potential way to protect against co-exposure of radiation and HFD-induced liver damage. Meanwhile, our study provide a new insight that population with potential HFD-induced damage should pay more attention on preventing from liver damage while exposing radiation. Gut microbiota-lithocholic acid-insulin receptor (LCA-INSR) axis involves the promotion effects of radiation on HFD-induced NAFLD. Probiotics improve the liver damage induced by co-exposure of radiation and HFD.
Collapse
Affiliation(s)
- Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Jing Jin
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, China
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Corresponding author.
| |
Collapse
|
8
|
Dong Y, Zheng Y, Zhu L, Li T, Guan Y, Zhao S, Wang Q, Wang J, Li L. Hua-Tan-Sheng-Jing Decoction Treats Obesity With Oligoasthenozoospermia by Up-Regulating the PI3K-AKT and Down-Regulating the JNK MAPK Signaling Pathways: At the Crossroad of Obesity and Oligoasthenozoospermia. Front Pharmacol 2022; 13:896434. [PMID: 35559247 PMCID: PMC9086321 DOI: 10.3389/fphar.2022.896434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Oligoasthenozoospermia is the leading cause of male infertility, seriously affecting men's health and increasing the societal medical burden. In recent years, obesity-related oligoasthenozoospermia has attracted increased attention from researchers to find a cure. This study aimed to evaluate the efficacy of Hua-Tan-Sheng-Jing decoction (HTSJD) in treating obesity with oligoasthenozoospermia, determine its active ingredients and identify its mechanism of action. Methods: The ingredients of HTSJD were determined by combining the ultra-performance liquid chromatography with mass spectrometry (UPLC-MS/MS) and systems pharmacology approach. The common pathogenesis of obesity and oligoasthenozoospermia and the potential mechanism of HTSJD against obesity with oligoasthenozoospermia were obtained through target fishing, network construction, and enrichment analyses. Further, molecular docking of the key ingredients with the upstream receptors of the key signaling pathways of the potential mechanism was used to predict their affinity. Finally, high-fat-induced obesity with oligoasthenozoospermia rat model was constructed to determine the effects of HTSJD on semen concentration, sperm motility, body weight, and serum lipid metabolism. The key proteins were validated by immunohistochemistry (IHC). Results: A total of 70 effective components and 847 potential targets of HTSJD (H targets) were identified, of which 743 were common targets related to obesity and oligoasthenozoospermia (O-O targets) mainly enriched in the pathways related to inflammation, oxidative stress and hormone regulation. Finally, 143 common targets (H-O-O targets) for HTSJD against obesity with oligoasthenozoospermia were obtained. Combining the hub genes and the results of Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of H-O-O targets, PI3K-AKT and MAPK signaling pathways were identified as the key pathways. Molecular docking results showed that Diosgenin, Kaempferol, Quercetin, Hederagenin, Isorhamnetin may act on the related pathways by docking EGFR, IGF1R and INSR. The animal-based in vivo experiments confirmed that HTSJD improves the sperm quality of high-fat diet-fed rats by reducing their body weight and blood lipid levels, influencing the PI3K-AKT and MAPK signaling pathways and altering the corresponding protein expressions. Conclusion: HTSJD treats obesity with oligoasthenozoospermia by up-regulating the PI3K-AKT signaling pathway and down-regulating the MAPK signaling pathway, which are at the crossroad of obesity and oligoasthenozoospermia.
Collapse
Affiliation(s)
- Yang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shipeng Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Foresight regarding drug candidates acting on the succinate-GPR91 signalling pathway for non-alcoholic steatohepatitis (NASH) treatment. Biomed Pharmacother 2021; 144:112298. [PMID: 34649219 DOI: 10.1016/j.biopha.2021.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and it is a liver manifestation of metabolic syndrome, with a histological spectrum from simple steatosis to non-alcoholic steatohepatitis (NASH). NASH can evolve into progressive liver fibrosis and eventually lead to liver cirrhosis. The pathological mechanism of NASH is multifactorial, involving a series of metabolic disorders and changes that trigger low-level inflammation in the liver and other organs. In the pathogenesis of NASH, the signal transduction pathway involving succinate and the succinate receptor (G-protein-coupled receptor 91, GPR91) regulates inflammatory cell activation and liver fibrosis. This review describes the mechanism of the succinate-GPR91 signalling pathway in NASH and summarizes the drugs that act on this pathway, with the aim of providing a new approach to NASH treatment.
Collapse
|
10
|
Guzzardi MA, La Rosa F, Campani D, Cacciato Insilla A, De Sena V, Panetta D, Brunetto MR, Bonino F, Collado MC, Iozzo P. Maturation of the Visceral (Gut-Adipose-Liver) Network in Response to the Weaning Reaction versus Adult Age and Impact of Maternal High-Fat Diet. Nutrients 2021; 13:nu13103438. [PMID: 34684436 PMCID: PMC8541006 DOI: 10.3390/nu13103438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic-associated fatty liver disease is a major cause of chronic pathologies, of which maternal obesity is a frequent risk factor. Gut wall and microbiota, visceral fat, and liver form a pre-systemic network for substrates and pro-inflammatory factors entering the body, undergoing accelerated maturation in early-life when the weaning reaction, i.e., a transitory inflammatory condition, affects lifelong health. We aimed to characterize organ metabolism in the above network, in relation to weaning reaction and maternal obesity. Weaning or 6-months-old offspring of high-fat-diet and normal-diet fed dams underwent in vivo imaging of pre-/post-systemic glucose uptake and tissue radiodensity in the liver, visceral fat, and intestine, a liver histology, and microbiota and metabolic pathway analyses. Weaning mice showed the dominance of gut Clostridia and Bacteroidia members, overexpressing pathways of tissue replication and inflammation; adulthood increased proneness to steatohepatitis, and Desulfovibrio and RF39 bacteria, and lipopolysaccharide, bile acid, glycosaminoglycan, and sphingolipid metabolic pathways. In vivo imaging could track organ maturation, liver inflammation, and protective responses. A maternal high-fat diet amplified the weaning reaction, elevating liver glucose uptake, triglyceride levels, and steatohepatitis susceptibility along the lifespan. The visceral network establishes a balance between metabolism and inflammation, with clear imaging biomarkers, and crucial modulation in the weaning time window.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Federica La Rosa
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (D.C.); (A.C.I.)
| | - Andrea Cacciato Insilla
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (D.C.); (A.C.I.)
| | - Vincenzo De Sena
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Daniele Panetta
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
| | - Maurizia Rossana Brunetto
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
- Department of Medical Specialties and Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, 56124 Pisa, Italy
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain;
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.); (V.D.S.); (D.P.)
- Correspondence: ; Tel.: +39-050-315-2789
| |
Collapse
|
11
|
Li H, Bai F, Cong C, Chen B, Xie W, Li S, Liu Q, Chen C, Wu Y. Effects of ligustrazine on the expression of neurotransmitters in the trigeminal ganglion of a rat migraine model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1318. [PMID: 34532455 PMCID: PMC8422085 DOI: 10.21037/atm-21-3423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Background Migraine is one of the most common neurological diseases which has been treated by active substances from traditional Chinese medicine (TCM), such as ligustrazine, an extract of the Chinese herb Chuanxiong. However, the pathogenesis of migraine and the curative mechanisms of ligustrazine have remained unclear. The genes P2X3, TRPV1, ERK, and c-fos have been implicated to play a role. In this work, we attempted to elucidate the analgesic mechanism of ligustrazine using a classic migraine-representative rat model. Methods The migraine rat model was established by administration of nitroglycerin (NTG). Ligustrazine treatment was administered by intravenous injection. The animal's behavior was continuously recorded, and then trigeminal ganglions (TGs) were isolated. Total RNA was extracted from cells and total protein was extracted from TG. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the levels of P2X3, TRPV1, c-Fos, and ERK in TG. Results Ligustrazine could reduce the neurological activities of NTG-induced migraine rats. The rats TG nerve showed varying degrees of expression of P2X3, TRPV1, c-Fos and ERK expression element. Ligustrazine could inhibit over-expression of P2X3, TRPV1, c-fos, and ERK in the TG nerve of NTG-induced migraine rats. Conclusions Our results demonstrated that ligustrazine had potent activity against NTG-induced migraine rats through inhibition of the c-fos/ERK signaling pathway. This work may provide a comprehensive basis for a better understanding of the pathogenesis of migraine and the curative mechanisms of ligustrazine.
Collapse
Affiliation(s)
- Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Fanghui Bai
- Henan Provincial Key Laboratory of Stroke Prevention and Treatment, Nanyang Central Hospital, Nanyang, China
| | - Cong Cong
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baotian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chaojun Chen
- Department of Neurology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Yanhua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Wang F, Tang L, Liang B, Jin C, Gao L, Li Y, Li Z, Shao J, Zhang Z, Tan S, Zhang F, Zheng S. Yi-Qi-Jian-Pi Formula Suppresses RIPK1/RIPK3-Complex-Dependent Necroptosis of Hepatocytes Through ROS Signaling and Attenuates Liver Injury in Vivo and in Vitro. Front Pharmacol 2021; 12:658811. [PMID: 33967802 PMCID: PMC8102982 DOI: 10.3389/fphar.2021.658811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is described as a characteristic of acute jaundice and coagulation dysfunction. Effective treatments for ACLF are unavailable and hence are urgently required. We aimed to define the effect of Yi-Qi-Jian-Pi Formula (YQJPF) on liver injury and further examine the molecular mechanisms. In this study, we established CCl4-, LPS-, and d-galactosamine (D-Gal)-induced ACLF rat models in vivo and LPS- and D-Gal-induced hepatocyte injury models in vitro. We found that YQJPF significantly ameliorates liver injury in vivo and in vitro that is associated with the regulation of hepatocyte necroptosis. Specifically, YQJPF decreased expression of receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and pseudokinase mixed lineage kinase domain-like (MLKL) to inhibit the migration of RIPK1 and RIPK3 into necrosome. YQJPF also reduces the expression of inflammatory cytokines IL-6, IL-8, IL-1β, and TNF-α, which were regulated by RIPK3 mediates cell death. RIPK1 depletion was found to enhance the protective effect of YQJPF. Furthermore, we showed that YQJPF significantly downregulates the mitochondrial reactive oxygen species (ROS) production and mitochondrial depolarization, with ROS scavenger, 4-hydroxy-TEMPO treatment recovering impaired RIPK1-mediated necroptosis and reducing the expression of IL-6, IL-8, IL-1β, and TNF-α. In summary, our study revealed the molecular mechanism of protective effect of YQJPF on hepatocyte necroptosis, targeting RIPK1/RIPK3-complex-dependent necroptosis via ROS signaling. Overall, our results provided a novel perspective to indicate the positive role of YQJPF in ACLF.
Collapse
Affiliation(s)
- Feixia Wang
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Tang
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baoyu Liang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun Jin
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyuan Gao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Asiedu B, Nyakudya TT, Lembede BW, Chivandi E. Early-life exposure to alcohol and the risk of alcohol-induced liver disease in adulthood. Birth Defects Res 2021; 113:451-468. [PMID: 33577143 DOI: 10.1002/bdr2.1881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/10/2022]
Abstract
Alcohol consumption remains prevalent among pregnant and nursing mothers despite the well-documented adverse effects this may have on the offspring. Moderate-to-high levels of alcohol consumption in pregnancy result in fetal alcohol syndrome (FAS) disorders, with brain defects being chief among the abnormalities. Recent findings indicate that while light-to-moderate levels may not cause FAS, it may contribute to epigenetic changes that make the offspring prone to adverse health outcomes including metabolic disorders and an increased propensity in the adolescent-onset of drinking alcohol. On the one hand, prenatal alcohol exposure (PAE) causes epigenetic changes that affect lipid and glucose transcript regulating genes resulting in metabolic abnormalities. On the other hand, it can program offspring for increased alcohol intake, enhance its palatability, and increase acceptance of alcohol's flavor through associative learning, making alcohol a plausible second hit for the development of alcohol-induced liver disease. Adolescent drinking results in alcohol dependence and abuse in adulthood. Adolescent drinking results in alcohol dependence and abuse in adulthood. Alterations on the opioid system, particularly, the mu-opioid system, has been implicated in the mechanism that induces increased alcohol consumption and acceptance. This review proposes a mechanism that links PAE to the development of alcoholism and eventually to alcoholic liver disease (ALD), which results from prolonged alcohol consumption. While PAE may not lead to ALD development in childhood, there are chances that it may lead to ALD in adulthood.
Collapse
Affiliation(s)
- Bernice Asiedu
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Trevor Tapiwa Nyakudya
- Department of Physiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Gezina, South Africa
| | - Busisani Wiseman Lembede
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Eliton Chivandi
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Dolivo D, Weathers P, Dominko T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharm Sin B 2021; 11:322-339. [PMID: 33643815 PMCID: PMC7893118 DOI: 10.1016/j.apsb.2020.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a pathological reparative process that can occur in most organs and is responsible for nearly half of deaths in the developed world. Despite considerable research, few therapies have proven effective and been approved clinically for treatment of fibrosis. Artemisinin compounds are best known as antimalarial therapeutics, but they also demonstrate antiparasitic, antibacterial, anticancer, and anti-fibrotic effects. Here we summarize literature describing anti-fibrotic effects of artemisinin compounds in in vivo and in vitro models of tissue fibrosis, and we describe the likely mechanisms by which artemisinin compounds appear to inhibit cellular and tissue processes that lead to fibrosis. To consider alternative routes of administration of artemisinin for treatment of internal organ fibrosis, we also discuss the potential for more direct oral delivery of Artemisia plant material to enhance bioavailability and efficacy of artemisinin compared to administration of purified artemisinin drugs at comparable doses. It is our hope that greater understanding of the broad anti-fibrotic effects of artemisinin drugs will enable and promote their use as therapeutics for treatment of fibrotic diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- ASP, aspartate aminotransferase
- Artemisia
- Artemisinin
- Artesunate
- BAD, BCL-2-associated agonist of cell death
- BDL, bile duct ligation
- BSA, bovine serum albumin
- BUN, blood urea nitrogen
- CCl4, carbon tetrachloride
- CTGF, connective tissue growth factor
- Col I, type I collagen
- DHA, dihydroartemisinin
- DLA, dried leaf Artemisia
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- FLS, fibroblast-like synoviocyte
- Fibroblast
- Fibrosis
- HA, hyaluronic acid
- HSC, hepatic stellate cell
- HUVEC, human umbilical vein endothelial cell
- LAP, latency-associated peptide
- LDH, lactate dehydrogenase
- MAPK, mitogen-activated protein kinase
- MI, myocardial infarction
- MMP, matrix metalloproteinase
- Myofibroblast
- NAG, N-acetyl-β-d-glucosaminidase
- NICD, Notch intracellular domain
- PCNA, proliferating cell nuclear antigen
- PHN, passive heymann nephritis
- ROS, reactive oxygen species
- STZ, streptozotocin
- Scar
- TGF, β-transforming growth factor-β
- TGF-β
- TIMP, tissue inhibitor of metalloproteinase
- UUO, unilateral ureteral obstruction
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- sCr, serum creatinine
- α-SMA, smooth muscle α-actin
Collapse
Affiliation(s)
- David Dolivo
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pamela Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Tanja Dominko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
15
|
Ma X, Jiang Y, Wen J, Zhao Y, Zeng J, Guo Y. A comprehensive review of natural products to fight liver fibrosis: Alkaloids, terpenoids, glycosides, coumarins and other compounds. Eur J Pharmacol 2020; 888:173578. [PMID: 32976828 DOI: 10.1016/j.ejphar.2020.173578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
The discovery of drugs to treat liver fibrosis has long been a challenge over the past decades due to its complicated pathogenesis. As a primary approach for drug development, natural products account for 30% of clinical drugs used for disease treatment. Therefore, natural products are increasingly important for their medicinal value in liver fibrosis therapy. In this part of the review, special focus is placed on the effect and mechanism of natural compounds, including alkaloids, terpenoids, glycosides, coumarins and others. A total of 36 kinds of natural compounds demonstrate significant antifibrotic effects in various liver fibrosis models in vivo and in hepatic stellate cells (HSCs) in vitro. Revealing the mechanism will provide further basis for clinical conversion, as well as accelerate drug discovery. The mechanism was further summarized with the finding of network regulation by several natural products, such as oxymatrine, paeoniflorin, ginsenoside Rg1 and taurine. Moreover, there are still improvements needed in investigating clinical efficacy, determining mechanisms, and combining applications, as well as semisynthesis and modification. Therefore, natural products area promising resource for agents that protect against liver fibrosis.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
16
|
Zhu Y, Pan X, Du N, Li K, Hu Y, Wang L, Zhang J, Liu Y, Zuo L, Meng X, Hu C, Wu X, Jin J, Wu W, Chen X, Wu F, Huang Y. ASIC1a regulates miR‐350/SPRY2 by N
6
‐methyladenosine to promote liver fibrosis. FASEB J 2020; 34:14371-14388. [DOI: 10.1096/fj.202001337r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Yueqin Zhu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Xuesheng Pan
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Na Du
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Kuayue Li
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yamin Hu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Lili Wang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Jin Zhang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yanyi Liu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Longquan Zuo
- Department of Pharmacy Hospital of Armed Police of Anhui Province Hefei230041China
| | - Xiaoming Meng
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Chengmu Hu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - xian Wu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei230032China
| | - Wenyong Wu
- 4Department of General Surgery First Affiliated Hospital of Anhui Medical University Hefei230022China
| | - Xiangtao Chen
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Fanrong Wu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yan Huang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| |
Collapse
|
17
|
Rosso C, Caviglia GP, Younes R, Ribaldone DG, Fagoonee S, Pellicano R, Bugianesi E. Molecular mechanisms of hepatic fibrosis in chronic liver diseases. MINERVA BIOTECNOL 2020; 32. [DOI: 10.23736/s1120-4826.20.02619-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Protective effect of Nectaroscordum tripedale extract and its bioactive component tetramethylpyrazine against acetaminophen-induced hepatotoxicity in rats. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00431-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Breuer DA, Pacheco MC, Washington MK, Montgomery SA, Hasty AH, Kennedy AJ. CD8 + T cells regulate liver injury in obesity-related nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2020; 318:G211-G224. [PMID: 31709830 PMCID: PMC7052570 DOI: 10.1152/ajpgi.00040.2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) has increased in Western countries due to the prevalence of obesity. Current interests are aimed at identifying the type and function of immune cells that infiltrate the liver and key factors responsible for mediating their recruitment and activation in NASH. We investigated the function and phenotype of CD8+ T cells under obese and nonobese NASH conditions. We found an elevation in CD8 staining in livers from obese human subjects with NASH and cirrhosis that positively correlated with α-smooth muscle actin, a marker of hepatic stellate cell (HSC) activation. CD8+ T cells were elevated 3.5-fold in the livers of obese and hyperlipidemic NASH mice compared with obese hepatic steatosis mice. Isolated hepatic CD8+ T cells from these mice expressed a cytotoxic IL-10-expressing phenotype, and depletion of CD8+ T cells led to significant reductions in hepatic inflammation, HSC activation, and macrophage accumulation. Furthermore, hepatic CD8+ T cells from obese and hyperlipidemic NASH mice activated HSCs in vitro and in vivo. Interestingly, in the lean NASH mouse model, depletion and knockdown of CD8+ T cells did not impact liver inflammation or HSC activation. We demonstrated that under obese/hyperlipidemia conditions, CD8+ T cell are key regulators of the progression of NASH, while under nonobese conditions they play a minimal role in driving the disease. Thus, therapies targeting CD8+ T cells may be a novel approach for treatment of obesity-associated NASH.NEW & NOTEWORTHY Our study demonstrates that CD8+ T cells are the primary hepatic T cell population, are elevated in obese models of NASH, and directly activate hepatic stellate cells. In contrast, we find CD8+ T cells from lean NASH models do not regulate NASH-associated inflammation or stellate cell activation. Thus, for the first time to our knowledge, we demonstrate that hepatic CD8+ T cells are key players in obesity-associated NASH.
Collapse
Affiliation(s)
- Denitra A. Breuer
- 1Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| | - Maria Cristina Pacheco
- 2Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M. Kay Washington
- 2Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephanie A. Montgomery
- 4Department of Pathology and Laboratory Medicine and Lineberger Cancer Center, University North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Alyssa H. Hasty
- 3Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Arion J. Kennedy
- 1Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
20
|
Liu W, Sun H, Zhou Y, Li Y, Qin Y, Li R, Chen Y, Yu L, Zhao M, Zhang W, Xu Y. Goat Milk Consumption Ameliorates Abnormalities in Glucose Metabolism and Enhances Hepatic and Skeletal Muscle AMP-Activated Protein Kinase Activation in Rats Fed with High-Fat Diets. Mol Nutr Food Res 2019; 63:e1900703. [PMID: 31750605 DOI: 10.1002/mnfr.201900703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/13/2019] [Indexed: 12/15/2022]
Abstract
SCOPE Diabetes endangers health and causes serious economic impediment. The aim of this study is to identify the effects of goat milk consumption on glucose metabolism of rats with high-fat (HF) diet. METHODS AND RESULTS Sixty male Sprague Dawley rats are divided into five groups and fed with different diets for 24 weeks: goat-milk-based HF diet (GHF group; goat milk powder+HF diet), cow-milk-based HF diet (CHF group; cow milk powder+HF diet), HF diet, HF diet plus acarbose (HF+A group; acarbose+HF diet), and chow diet (CD group). Fasting glucose in GHF-fed rats are lower than HF-fed rats on weeks 16 and 20. GHF-fed rats display improved insulin sensitivity in oral glucose and insulin tolerance tests. Compared with HF-fed rats, glycated hemoglobin and triglycerides in GHF-fed rats are lower and high-density lipoprotein level is higher. AMP-activated protein kinase activation (AMPK) in the liver and skeletal muscle is higher in GHF rats than HF rats. Phosphoenolpyruvate carboxykinase and glucose 6-phosphatase protein levels in the liver are lower and hexokinase 2 protein level in the skeletal muscle is higher in GHF rats compared with HF rats. CONCLUSION Goat milk consumption can ameliorate abnormalities in glucose metabolism, and AMPK pathway in the liver and skeletal muscle plays an important role in the process.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Han Sun
- Research and Development Department, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Mengya Zhao
- Research and Development Department, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Wei Zhang
- Research and Development Department, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| |
Collapse
|
21
|
Huang Z, Wu L, Zhang J, Sabri A, Wang S, Qin G, Guo C, Wen H, Du B, Zhang D, Kong L, Tian X, Yao R, Li Y, Liang C, Li P, Wang Z, Guo J, Li L, Dong J, Zhang Y. Dual Specificity Phosphatase 12 Regulates Hepatic Lipid Metabolism Through Inhibition of the Lipogenesis and Apoptosis Signal-Regulating Kinase 1 Pathways. Hepatology 2019; 70:1099-1118. [PMID: 30820969 PMCID: PMC6850665 DOI: 10.1002/hep.30597] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide. Due to the growing economic burden of NAFLD on public health, it has become an emergent target for clinical intervention. DUSP12 is a member of the dual specificity phosphatase (DUSP) family, which plays important roles in brown adipocyte differentiation, microbial infection, and cardiac hypertrophy. However, the role of DUSP12 in NAFLD has yet to be clarified. Here, we reveal that DUSP12 protects against hepatic steatosis and inflammation in L02 cells after palmitic acid/oleic acid treatment. We demonstrate that hepatocyte specific DUSP12-deficient mice exhibit high-fat diet (HFD)-induced and high-fat high-cholesterol diet-induced hyperinsulinemia and liver steatosis and decreased insulin sensitivity. Consistently, DUSP12 overexpression in hepatocyte could reduce HFD-induced hepatic steatosis, insulin resistance, and inflammation. At the molecular level, steatosis in the absence of DUSP12 was characterized by elevated apoptosis signal-regulating kinase 1 (ASK1), which mediates the mitogen-activated protein kinase (MAPK) pathway and hepatic metabolism. DUSP12 physically binds to ASK1, promotes its dephosphorylation, and inhibits its action on ASK1-related proteins, JUN N-terminal kinase, and p38 MAPK in order to inhibit lipogenesis under high-fat conditions. Conclusion: DUSP12 acts as a positive regulator in hepatic steatosis and offers potential therapeutic opportunities for NAFLD.
Collapse
Affiliation(s)
- Zhen Huang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Lei‐Ming Wu
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jie‐Lei Zhang
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Abdelkarim Sabri
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPA
| | - Shou‐Jun Wang
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Gui‐Jun Qin
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Chang‐Qing Guo
- Gastroenterology Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Hong‐Tao Wen
- Gastroenterology Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Bin‐Bin Du
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Dian‐Hong Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ling‐Yao Kong
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xin‐Yu Tian
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Rui Yao
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ya‐Peng Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Cui Liang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Peng‐Cheng Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zheng Wang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jin‐Yan Guo
- Department of Rheumatology and Immunologythe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ling Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jian‐Zeng Dong
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Yan‐Zhou Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
22
|
Cheng Q, Li YW, Yang CF, Zhong YJ, Li L. Ethanol-Induced Hepatic Insulin Resistance is Ameliorated by Methyl Ferulic Acid Through the PI3K/AKT Signaling Pathway. Front Pharmacol 2019; 10:949. [PMID: 31555134 PMCID: PMC6726842 DOI: 10.3389/fphar.2019.00949] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
One of the key events during the development of alcoholic liver disease (ALD) is that alcohol inhibits the insulin signaling pathway in liver and leads to disorders of glucose and lipid metabolism. Methyl ferulic acid (MFA) is a biologically active monomer isolated from the root of Securidaca inappendiculata Hasskarl. It has been reported that MFA has a hepatoprotective effect against alcohol-induced liver injury in vivo and in vitro. However, the effect of MFA on ethanol-induced insulin resistance in ALD remains unclear. In this study, we investigated whether MFA could exert protective effects against hepatic insulin resistance in ethanol-induced L-02 cells and ALD rats. ALD was induced in vivo by feeding Lieber-DeCarli diet containing 5% (w/v) alcohol for 16 weeks to Sprague-Dawley rats. Insulin resistance was induced in vitro in human hepatocyte L-02 cells with 200 mM ethanol for 24 h followed by 10-7 nM insulin for 30 min. MFA exhibited the effects of inhibited insulin resistance, reduced enzymatic capacity for hepatic gluconeogenesis, and increased hepatic glycogen synthesis both in vivo and in vitro. In addition, the results of transcriptome sequencing of liver tissues in the ethanol- and MFA-treated groups indicated that "pyruvate metabolism," "glycolysis/gluconeogenesis," and "fatty acid metabolism" were significantly different between ethanol- and MFA-treated groups. Further studies suggested that MFA activated the hepatic phosphatidylinositol 3-kinase (PI3K)/AKT pathway in vivo and in vitro. Taken together, these findings suggested that MFA effectively ameliorated hepatic insulin resistance in ALD at least partially by acting on the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qi Cheng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yong Wen Li
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Cheng Fang Yang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yu Juan Zhong
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Li Li
- College of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
23
|
Inhibitory effects of octreotide on the progression of hepatic fibrosis via the regulation of Bcl-2/Bax and PI3K/AKT signaling pathways. Int Immunopharmacol 2019; 73:515-526. [DOI: 10.1016/j.intimp.2019.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
|
24
|
Wang F, Jia Y, Li M, Wang L, Shao J, Guo Q, Tan S, Ding H, Chen A, Zhang F, Zheng S. Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells. Cell Commun Signal 2019; 17:11. [PMID: 30744642 PMCID: PMC6371416 DOI: 10.1186/s12964-019-0324-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/04/2019] [Indexed: 12/29/2022] Open
Abstract
Background Contraction of hepatic stellate cells (HSCs) plays an important role in the pathogenesis of liver fibrosis by regulating sinusoidal blood flow and extracellular matrix remodeling. Here, we investigated how HSC contraction was affected by the natural compound oroxylin A, and elucidated the underlying mechanism. Methods Cell contraction and glycolysis were examined in cultured human HSCs and mouse liver fibrosis model upon oroxylin A intervention using diversified cellular and molecular assays, as well as genetic approaches. Results Oroxylin A limited HSC contraction associated with inhibiting myosin light chain 2 phosphorylation. Oroxylin A blocked aerobic glycolysis in HSCs evidenced by reduction in glucose uptake and consumption and lactate production. Oroxylin A also decreased extracellular acidification rate and inhibited the expression and activity of glycolysis rate-limiting enzymes (hexose kinase 2, phosphofructokinase 1 and pyruvate kinas type M2) in HSCs. Then, we identified that oroxylin A blockade of aerobic glycolysis contributed to inhibition of HSC contraction. Furthermore, oroxylin A inhibited the expression and activity of lactate dehydrogenase-A (LDH-A) in HSCs, which was required for oroxylin A blockade of glycolysis and suppression of contraction. Oral administration of oroxylin A at 40 mg/kg reduced liver injury and fibrosis, and inhibited HSC glycolysis and contraction in mice with carbon tetrachloride-induced hepatic fibrosis. However, adenovirus-mediated overexpression of LDH-A significantly counteracted the oroxylin A’s effects in fibrotic mice. Conclusions Blockade of aerobic glycolysis by oroxylin A via inhibition of LDH-A reduced HSC contraction and attenuated liver fibrosis, suggesting LDH-A as a promising target for intervention of hepatic fibrosis. Electronic supplementary material The online version of this article (10.1186/s12964-019-0324-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengmeng Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ling Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, China
| | - Shanzhong Tan
- The Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Hai Ding
- The Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
25
|
Ruan W, Pan R, Shen X, Nie Y, Wu Y. CDH11 promotes liver fibrosis via activation of hepatic stellate cells. Biochem Biophys Res Commun 2018; 508:543-549. [PMID: 30509494 DOI: 10.1016/j.bbrc.2018.11.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/22/2018] [Indexed: 01/07/2023]
Abstract
Liver fibrosis, an important health condition associated with chronic liver injury that provides a permissive environment for cancer development, is characterized by the persistent deposition of extracellular matrix components that are mainly derived from activated hepatic stellate cells (HSCs). CDH11 belongs to a group of transmembrane proteins that are principally located in adherens junctions. CDH11 mediates homophilic cell-to-cell adhesion, which may promote the development of cirrhosis. The goal of this study was to determine whether CDH11 regulates liver fibrosis and to examine its mechanism by focusing on HSC activation. Here we demonstrate that CDH11 expression is elevated in human and mouse fibrotic liver tissues and that CDH11 mediates the profibrotic response in activated HSCs. Our data indicate that CDH11 regulates the TGFβ-induced activation of HSCs. Moreover, cells from CDH11 deficient mice displayed decreased HSC activation in vitro, and CDH11 deficient mice developed liver fibrogenesis in response to chronic damage induced by CCl4 administration. In addition, CDH11 expression was positively correlated with liver fibrosis in patients with cirrhosis, and could therefore be a prognostic factor in patients with liver fibrosis. Collectively, our findings demonstrate that CDH11 promotes liver fibrosis by activating HSCs and may represent a potential target for anti-fibrotic therapies.
Collapse
Affiliation(s)
- Wanyuan Ruan
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Runsang Pan
- Department of Orthopedics, Guiyang Children's Hospital, China
| | - Xiaoxu Shen
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yingjie Nie
- Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China.
| | - Yayun Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
26
|
Zhang C, Wang P, Li Y, Huang C, Ni W, Chen Y, Shi J, Chen G, Hu X, Ye M, Duan S, Wang K. Role of MicroRNAs in the Development of Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease. Anat Rec (Hoboken) 2018; 302:193-200. [PMID: 30312023 DOI: 10.1002/ar.23954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/24/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent liver malignancy that can be developed from nonalcoholic fatty liver disease (NAFLD). Numerous pathophysiological alterations, including insulin resistance, specific cytokine release, oxidative stress, and mitochondrial damage, are involved in the transition of NAFLD to cirrhosis and HCC. MicroRNAs, as post-transcriptional modulators, play a critical role in the pathogenesis of NAFLD-related HCC by regulating lipid metabolism, glucose homeostasis, cell proliferation, apoptosis, migration, and differentiation. This review summarizes the current progress of microRNAs in the risk and prognosis of NAFLD-related HCC. Anat Rec, 302:193-200, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ping Wang
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yongqiang Li
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Changxin Huang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wei Ni
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yidan Chen
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junping Shi
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Gongying Chen
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiangrong Hu
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Meng Ye
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Kaifeng Wang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Choi E, Kim W, Joo SK, Park S, Park JH, Kang YK, Jin SY, Chang MS. Expression patterns of STAT3, ERK and estrogen-receptor α are associated with development and histologic severity of hepatic steatosis: a retrospective study. Diagn Pathol 2018; 13:23. [PMID: 29615085 PMCID: PMC5883355 DOI: 10.1186/s13000-018-0698-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatic steatosis renders hepatocytes vulnerable to injury, resulting in the progression of preexisting liver disease. Previous animal and cell culture studies implicated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription-3 (STAT3), extracellular signal-regulated kinase (ERK) and estrogen-receptor α in the pathogenesis of hepatic steatosis and disease progression. However, to date there have been few studies performed using human liver tissue to study hepatic steatosis. We examined the expression patterns of mTOR, STAT3, ERK and estrogen-receptor α in liver tissues from patients diagnosed with hepatic steatosis. METHODS We reviewed the clinical and histomorphological features of 29 patients diagnosed with hepatic steatosis: 18 with non-alcoholic fatty liver disease (NAFLD), 11 with alcoholic fatty acid disease (AFLD), and a control group (16 biliary cysts and 22 hepatolithiasis). Immunohistochemistry was performed on liver tissue using an automated immunostainer. The histologic severity of hepatic steatosis was evaluated by assessing four key histomorphologic parameters common to NAFLD and AFLD: steatosis, lobular inflammation, ballooning degeneration and fibrosis. RESULTS mTOR, phosphorylated STAT3, phosphorylated pERK, estrogen-receptor α were found to be more frequently expressed in the hepatic steatosis group than in the control group. Specifically, mTOR was expressed in 78% of hepatocytes, and ERK in 100% of hepatic stellate cells, respectively, in patients with NAFLD. Interestingly, estrogen-receptor α was diffusely expressed in hepatocytes in all NALFD cases. Phosphorylated (active) STAT3 was expressed in 73% of hepatocytes and 45% of hepatic stellate cells in patients with AFLD, and phosphorylated (active) ERK was expressed in hepatic stellate cells in all AFLD cases. Estrogen-receptor α was expressed in all AFLD cases (focally in 64% of AFLD cases, and diffusely in 36%). Phosphorylated STAT3 expression in hepatocytes and hepatic stellate cells correlated with severe lobular inflammation, severe ballooning degeneration and advanced fibrosis, whereas diffusely expressed estrogen-receptor α correlated with a mild stage of fibrosis. CONCLUSIONS Our data indicate ERK activation and estrogen-receptor α may be relevant in the development of hepatic steatosis. However, diffuse expression of estrogen-receptor α would appear to impede disease progression, including hepatic fibrosis. Finally, phosphorylated STAT3 may also contribute to disease progression.
Collapse
Affiliation(s)
- Euno Choi
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, Korea
| | - Sae Kyung Joo
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, Korea
| | - Sunyoung Park
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Yun Kyung Kang
- Department of Pathology, Seoul Paik Hospital, Inje University College of Medicine, Mareunnae-ro 9, Jung-gu, Seoul, Korea
| | - So-Young Jin
- Department of Pathology, Soon Chun Hyang University Hospital, 59 daesagwan-ro, Yongsan-gu, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea.
| |
Collapse
|
28
|
Zhang F, Lu S, He J, Jin H, Wang F, Wu L, Shao J, Chen A, Zheng S. Ligand Activation of PPARγ by Ligustrazine Suppresses Pericyte Functions of Hepatic Stellate Cells via SMRT-Mediated Transrepression of HIF-1α. Am J Cancer Res 2018; 8:610-626. [PMID: 29344293 PMCID: PMC5771080 DOI: 10.7150/thno.22237] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/22/2017] [Indexed: 12/31/2022] Open
Abstract
Rationale: Hepatic stellate cells (HSCs) are liver-specific pericytes regulating vascular remodeling during hepatic fibrosis. Here, we investigated how ligustrazine affects HSC pericyte functions. Methods: Rat HSC-T6 and human HSC-LX2 cells were cultured, and multiple molecular experiments including real-time PCR, Western blot, flow cytometry, immunofluorescence, electrophoretic mobility shift assay and co-immunoprecipitation were used to elucidate the underlying mechanisms. Molecular simulation and site-directed mutagenesis were performed to uncover the target molecule of ligustrazine. Rats were intoxicated with CCl4 for evaluating ligustrazine's effects in vivo. Results: Ligustrazine inhibited angiogenic cytokine production, migration, adhesion and contraction in HSCs, and activated PPARγ. Selective PPARγ inhibitor GW9662 potently abrogated ligustrazine suppression of HSC pericyte functions. Additionally, HIF-1α inhibitor PX-478 repressed HSC pericyte functions, and ligustrazine inhibited the transcription of HIF-1α, which was diminished by GW9662. Moreover, ligustrazine downregulation of HIF-1α was rescued by knockdown of SMRT, and ligustrazine increased PPARγ physical interaction with SMRT, which was abolished by GW9662. These findings collectively indicated that activation of PPARγ by ligustrazine led to transrepression of HIF-1α via a SMRT-dependent mechanism. Furthermore, molecular docking evidence revealed that ligustrazine bound to PPARγ in a unique double-molecule manner via hydrogen bonding with the residues Ser289 and Ser342. Site-directed mutation of Ser289 and/or Ser342 resulted in the loss of ligustrazine transrepression of HIF-1α in HSCs, indicating that interactions with both the residues were indispensable for ligustrazine effects. Finally, ligustrazine improved hepatic injury, angiogenesis and vascular remodeling in CCl4-induced liver fibrosis in rats. Conclusions: We discovered a novel ligand activation pattern for PPARγ transrepression of the target gene with therapeutic implications in HSC pericyte biology and liver fibrosis.
Collapse
|
29
|
Interaction between autophagy and senescence is required for dihydroartemisinin to alleviate liver fibrosis. Cell Death Dis 2017; 8:e2886. [PMID: 28617435 PMCID: PMC5520911 DOI: 10.1038/cddis.2017.255] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/17/2016] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Autophagy and cellular senescence are stress responses essential for homeostasis. Therefore, they may represent new pharmacologic targets for drug development to treat diseases. In this study, we sought to evaluate the effect of dihydroartemisinin (DHA) on senescence of activated hepatic stellate cells (HSCs), and to further elucidate the underlying mechanisms. We found that DHA treatment induced the accumulation of senescent activated HSCs in rat fibrotic liver, and promoted the expression of senescence markers p53, p16, p21 and Hmga1 in cell model. Importantly, our study identified the transcription factor GATA6 as an upstream molecule in the facilitation of DHA-induced HSC senescence. GATA6 accumulation promoted DHA-induced p53 and p16 upregulation, and contributed to HSC senescence. By contrast, siRNA-mediated knockdown of GATA6 dramatically abolished DHA-induced upregulation of p53 and p16, and in turn inhibited HSC senescence. Interestingly, DHA also appeared to increase autophagosome generation and autophagic flux in activated HSCs, which was underlying mechanism for DHA-induced GATA6 accumulation. Autophagy depletion impaired GATA6 accumulation, while autophagy induction showed a synergistic effect with DHA. Attractively, p62 was found to act as a negative regulator of GATA6 accumulation. Treatment of cultured HSCs with various autophagy inhibitors, led to an inhibition of DHA-induced p62 degradation, and in turn, prevented DHA-induced GATA6 accumulation and HSC senescence. Overall, these results provide novel implications to reveal the molecular mechanism of DHA-induced senescence, by which points to the possibility of using DHA based proautophagic drugs for the treatment of liver fibrosis.
Collapse
|
30
|
Activation of Insulin-PI3K/Akt-p70S6K Pathway in Hepatic Stellate Cells Contributes to Fibrosis in Nonalcoholic Steatohepatitis. Dig Dis Sci 2017; 62:968-978. [PMID: 28194671 DOI: 10.1007/s10620-017-4470-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/20/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Hyperinsulinemia and insulin resistance are hallmark features of nonalcoholic fatty liver disease and steatohepatitis (NASH). It remains unclear whether and how insulin contributes to the development of fibrosis in NASH. In this study, we explored insulin signaling in the regulation of hepatic stellate cell (HSC) activation and the progression of NASH-fibrosis. METHODS Phosphorylation of Akt and p70S6K were examined in primary HSC and in a rat model of NASH-fibrosis induced by high-fat and high-cholesterol diet for 24 weeks. HSC activation was analyzed for the changes in cell morphology, intracellular lipid droplets, expression of α-SMA and cell proliferation. The serum markers and histology for NASH-fibrosis were also characterized in animals. RESULTS Insulin enhanced the expression of smooth muscle actin-α in quiescent but not in activated HSC in culture. Insulin-mediated activation of the PI3K/Akt-p70S6K pathway was involved in the regulation of profibrogenic effects of insulin. Although insulin did not stimulate HSC proliferation directly, the insulin-PI3K/Akt-p70S6K pathway was necessary for serum-enhanced cell proliferation during initial HSC activation. In a rat model of NASH-fibrosis induced by high-fat and high-cholesterol diet, hyperinsulinemia is associated with the activation of p70S6K and enhanced fibrosis. CONCLUSION The insulin-PI3K/Akt-p70S6K pathway plays an important role in the early activation of HSC. The profibrogenic effect of insulin is dependent on the activation stage of HSC. Dysregulation of the insulin pathway likely correlates with the development of fibrosis in NASH, suggesting a potentially novel antifibrotic target of inhibiting insulin signaling in HSC.
Collapse
|
31
|
Zhang F, Hao M, Jin H, Yao Z, Lian N, Wu L, Shao J, Chen A, Zheng S. Canonical hedgehog signalling regulates hepatic stellate cell-mediated angiogenesis in liver fibrosis. Br J Pharmacol 2017; 174:409-423. [PMID: 28052321 DOI: 10.1111/bph.13701] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 12/18/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Hepatic stellate cells (HSCs) are liver-specific pericytes regulating angiogenesis during liver fibrosis. We aimed to elucidate the mechanisms by which hedgehog signalling regulated HSC angiogenic properties and to validate the therapeutic implications. EXPERIMENTAL APPROACH Rats and mice were treated with carbon tetrachloride for in vivo evaluation of hepatic angiogenesis and fibrotic injury. Diversified molecular approaches including real-time PCR, Western blot, luciferase reporter assay, chromatin immunoprecipitation, electrophoretic mobility shift assay and co-immunoprecipitation were used to investigate the underlying mechanisms in vitro. KEY RESULTS Angiogenesis was concomitant with up-regulation of Smoothened (SMO) and hypoxia inducible factor-1α (HIF-1α) in rat fibrotic liver. The SMO inhibitor cyclopamine and Gli1 inhibitor GANT-58 reduced expression of VEGF and angiopoietin 1 in HSCs and suppressed HSC tubulogenesis capacity. HIF-1α inhibitor PX-478 suppressed HSC angiogenic behaviour, and inhibition of hedgehog decreased HIF-1α expression. Furthermore, heat shock protein 90 (HSP90) was characterized as a direct target gene of canonical hedgehog signalling in HSCs. HSP90 inhibitor 17-AAG reduced HSP90 binding to HIF-1α, down-regulated HIF-1α protein abundance and decreased HIF-1α binding to DNA. 17-AAG also abolished 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) (a SMO agonist)-enhanced HSC angiogenic properties. Finally, the natural compound ligustrazine was found to inhibit canonical hedgehog signalling leading to suppressed angiogenic properties of HSCs in vitro and ameliorated liver fibrosis and sinusoidal angiogenesis in mice. CONCLUSION AND IMPLICATIONS We have provided evidence that the canonical hedgehog pathway controlled HSC-mediated liver angiogenesis. Selective inhibition of HSC hedgehog signalling could be a promising therapeutic approach for hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng Hao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Yao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Naqi Lian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Wu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Department of Pharmacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, Saint Louis, MO, USA
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
Negative Immune Regulator TIPE2 Promotes M2 Macrophage Differentiation through the Activation of PI3K-AKT Signaling Pathway. PLoS One 2017; 12:e0170666. [PMID: 28122045 PMCID: PMC5266285 DOI: 10.1371/journal.pone.0170666] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/09/2017] [Indexed: 01/22/2023] Open
Abstract
Macrophages play important roles in the regulation of the innate and adaptive immune responses. Classically activated macrophages and alternatively activated macrophages are the two major forms of macrophages and have opposing functionalities. Tumor necrosis factor-α-induced protein 8-2 is expressed primarily by immune cells and negatively regulates type 1 innate and adaptive immune responses to maintain immune tolerance. While previous studies indicate that TIPE2 promotes M2 but inhibits M1 macrophage differentiation, the underlying molecular mechanism by which TIPE2 promotes M2 macrophage differentiation remains unclear. Our current study shows that TIPE2-deficient bone-marrow cells are defective in IL-4 induced M2 macrophage differentiation in vitro. Mechanistic studies revealed that TIPE2 promotes phosphoinositide metabolism and the activation of the down-stream AKT signaling pathway, which in turn leads to the expression of markers specific for M2 macrophages. In addition, our results showed that Tipe2-deficiency does not affect the activation of the JAK-STAT6 signaling pathway that also plays an important role during M2 macrophage differentiation. Taken together, these results indicate that TIPE2 promotes M2 macrophage differentiation through the activation of PI3K-AKT signaling pathway, and may play an important role during the resolution of inflammation, parasite control, as well as tissue repair.
Collapse
|
33
|
Jin H, Lian N, Zhang F, Bian M, Chen X, Zhang C, Jia Y, Lu C, Hao M, Yao S, Shao J, Wu L, Chen A, Zheng S. Inhibition of YAP signaling contributes to senescence of hepatic stellate cells induced by tetramethylpyrazine. Eur J Pharm Sci 2016; 96:323-333. [PMID: 27717875 DOI: 10.1016/j.ejps.2016.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that hepatic stellate cells (HSCs) are the central mediators and major effectors in the development of hepatic fibrosis. It is well-known that regulation of cell proliferation and apoptosis are potential strategies to block the activation of HSCs. Recently, several studies have revealed that induction of HSC senescence could prevent and cure the liver fibrosis. In our previous work, we have demonstrated that the natural product tetramethylpyrazine (TMP) could inhibit the activation of HSCs and ameliorate hepatic fibrosis. The aim of this study was to identify a new role of TMP in the regulation of activated HSC senescence and to elucidate the underlying mechanisms. In this study, our data showed that TMP could promote HSC senescence in vivo and in vitro. Moreover, TMP affected the cell cycle and telomerase activity. We further demonstrated that P53 siRNA or P53 pharmacological inhibitor PFT-α abrogated the TMP-induced HSC senescence in vitro. Meanwhile, similar results were obtained in vivo. Further studies indicated that TMP promoted the expression of P53 through a YAP inhibition-dependent mechanism. Moreover, silencing YAP enhanced TMP induction of activated HSC senescence. Collectively, our results suggested that TMP inhibited the activation of HSCs by inducing senescence and had therapeutic implication for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Naqi Lian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mianli Bian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingran Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenxi Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Jia
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunfeng Lu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng Hao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shunyu Yao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Department of Pharmacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, MO, USA
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
34
|
Mechanisms and Clinical Application of Tetramethylpyrazine (an Interesting Natural Compound Isolated from Ligusticum Wallichii): Current Status and Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2124638. [PMID: 27668034 PMCID: PMC5030435 DOI: 10.1155/2016/2124638] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/09/2016] [Indexed: 01/09/2023]
Abstract
Tetramethylpyrazine, a natural compound from Ligusticum wallichii (Chuan Xiong), has been extensively used in China for cardiovascular and cerebrovascular diseases for about 40 years. Because of its effectiveness in multisystems, especially in cardiovascular, its pharmacological action, clinical application, and the structural modification have attracted broad attention. In this paper its mechanisms of action, the clinical status, and synthetic derivatives will be reviewed briefly.
Collapse
|
35
|
Ligustrazine disrupts lipopolysaccharide-activated NLRP3 inflammasome pathway associated with inhibition of Toll-like receptor 4 in hepatocytes. Biomed Pharmacother 2016; 78:204-209. [DOI: 10.1016/j.biopha.2016.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
|
36
|
Yoneda A, Sakai-Sawada K, Niitsu Y, Tamura Y. Vitamin A and insulin are required for the maintenance of hepatic stellate cell quiescence. Exp Cell Res 2016; 341:8-17. [PMID: 26812497 DOI: 10.1016/j.yexcr.2016.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 01/26/2023]
Abstract
Transdifferentiation of vitamin A-storing hepatic stellate cells (HSCs) to vitamin A-depleted myofibroblastic cells leads to liver fibrosis. Vitamin A regulates lipid accumulation and gene transcription, suggesting that vitamin A is involved in the maintenance of HSC quiescence under a physiological condition. However, the precise mechanism remains elusive because there is no appropriate in vitro culture system for quiescent HSCs. Here, we show that treatment of quiescent HSCs with vitamin A partially maintained the accumulation of lipid droplets and expression of quiescent HSC markers (glial fibrillary acidic protein, peroxisome proliferator-activator receptor-γ and CCAAT/enhancer-binding protein-α) and also the expression of myofibroblastic markers (α-smooth muscle actin, heat shock protein 47 and collagen type I). On the other hand, combined treatment with vitamin A and insulin sustained the characteristic of HSC quiescence and completely suppressed the expression of myofibroblastic markers through activation of the JAK2/STAT5 signaling pathway and increased expression of sterol regulatory element binding protein-1. These treated HSCs transdifferentiated to myofibroblastic cells under a culture condition with fetal bovine serum. The results suggest an important role of vitamin A and insulin in the maintenance of HSC quiescence under a physiological condition.
Collapse
Affiliation(s)
- Akihiro Yoneda
- Department of Molecular Therapeutics, Center for Food & Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, West-11, North-21, Kita-ku, Sapporo 001-0021, Hokkaido, Japan.
| | - Kaori Sakai-Sawada
- Department of Molecular Therapeutics, Center for Food & Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, West-11, North-21, Kita-ku, Sapporo 001-0021, Hokkaido, Japan
| | - Yoshiro Niitsu
- Department of Molecular Target Exploration, School of Medicine, Sapporo Medical University, Japan
| | - Yasuaki Tamura
- Department of Molecular Therapeutics, Center for Food & Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, West-11, North-21, Kita-ku, Sapporo 001-0021, Hokkaido, Japan
| |
Collapse
|
37
|
Yan YX, Zhao JX, Han S, Zhou NJ, Jia ZQ, Yao SJ, Cao CL, Wang YL, Xu YN, Zhao J, Yan YL, Cui HX. Tetramethylpyrazine induces SH-SY5Y cell differentiation toward the neuronal phenotype through activation of the PI3K/Akt/Sp1/TopoIIβ pathway. Eur J Cell Biol 2015; 94:626-41. [PMID: 26518113 DOI: 10.1016/j.ejcb.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022] Open
Abstract
Tetramethylpyrazine (TMP) is an active compound extracted from the traditional Chinese medicinal herb Chuanxiong. Previously, we have shown that TMP induces human SH-SY5Y neuroblastoma cell differentiation toward the neuronal phenotype by targeting topoisomeraseIIβ (TopoIIβ), a protein implicated in neural development. In the present study, we aimed to elucidate whether the transcriptional factors specificity protein 1 (Sp1) and nuclear factor Y (NF-Y), in addition to the upstream signaling pathways ERK1/2 and PI3K/Akt, are involved in modulating TopoIIβ expression in the neuronal differentiation process. We demonstrated that SH-SY5Y cells treated with TMP (80μM) terminally differentiated into neurons, characterized by increased neuronal markers, tubulin βIII and microtubule associated protein 2 (MAP2), and increased neurite outgrowth, with no negative effect on cell survival. TMP also increased the expression of TopoIIβ, which was accompanied by increased expression of Sp1 in the differentiated neuron-like cells, whereas NF-Y protein levels remained unchanged following the differentiation progression. We also found that the phosphorylation level of Akt, but not ERK1/2, was significantly increased as a result of TMP stimulation. Furthermore, as established by chromatin immunoprecipitation (ChIP) assay, activation of the PI3K/Akt pathway increased Sp1 binding to the promoter of the TopoIIβ gene. Blockage of PI3K/Akt was shown to lead to subsequent inhibition of TopoIIβ expression and neuronal differentiation. Collectively, the results indicate that the PI3K/Akt/Sp1/TopoIIβ signaling pathway is necessary for TMP-induced neuronal differentiation. Our findings offer mechanistic insights into understanding the upstream regulation of TopoIIβ in neuronal differentiation, and suggest potential applications of TMP both in neuroscience research and clinical practice to treat relevant diseases of the nervous system.
Collapse
Affiliation(s)
- Yong-Xin Yan
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Jun-Xia Zhao
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Shuo Han
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Na-Jing Zhou
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Zhi-Qiang Jia
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Sheng-Jie Yao
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Cui-Li Cao
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Yan-Ling Wang
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Yan-Nan Xu
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Juan Zhao
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Yun-Li Yan
- Department of Cell Biology, Hebei Medical University, Hebei, PR China.
| | - Hui-Xian Cui
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Hebei, PR China
| |
Collapse
|
38
|
Lin JB, Zheng CJ, Zhang X, Chen J, Liao WJ, Wan Q. Effects of Tetramethylpyrazine on Functional Recovery and Neuronal Dendritic Plasticity after Experimental Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:394926. [PMID: 26379744 PMCID: PMC4563062 DOI: 10.1155/2015/394926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 12/17/2022]
Abstract
The 2,3,5,6-tetramethylpyrazine (TMP) has been widely used in the treatment of ischemic stroke by Chinese doctors. Here, we report the effects of TMP on functional recovery and dendritic plasticity after ischemic stroke. A classical model of middle cerebral artery occlusion (MCAO) was established in this study. The rats were assigned into 3 groups: sham group (sham operated rats treated with saline), model group (MCAO rats treated with saline) and TMP group (MCAO rats treated with 20 mg/kg/d TMP). The neurological function test of animals was evaluated using the modified neurological severity score (mNSS) at 3 d, 7 d, and 14 d after MCAO. Animals were euthanized for immunohistochemical labeling to measure MAP-2 levels in the peri-infarct area. Golgi-Cox staining was performed to test effect of TMP on dendritic plasticity at 14 d after MCAO. TMP significantly improved neurological function at 7 d and 14 d after ischemia, increased MAP-2 level at 14 d after ischemia, and enhanced spine density of basilar dendrites. TMP failed to affect the spine density of apical dendrites and the total dendritic length. Data analyses indicate that there was significant negative correlation between mNSS and plasticity measured at 14 d after MCAO. Thus, enhanced dendritic plasticity contributes to TMP-elicited functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jun-Bin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chan-Juan Zheng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Rehabilitation Medicine, Center of Brain Department, Hubei Xinhua Hospital, Wuhan 430015, China
| | - Xuan Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Juan Chen
- Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Wei-Jing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qi Wan
- Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
39
|
Tetramethylpyrazine Inhibits Activation of Hepatic Stellate Cells through Hedgehog Signaling Pathways In Vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:603067. [PMID: 26380286 PMCID: PMC4561306 DOI: 10.1155/2015/603067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/12/2015] [Indexed: 01/08/2023]
Abstract
Background and Aim. Tetramethylpyrazine (TMP), a major alkaloid isolated from Ligusticum chuanxiong, has been reported in hepatic fibrosis models. However, the action mechanism remains unclear. In the present study, effects of tetramethylpyrazine (TMP) against hepatic stellate cell (HSC) activation as well as the possible mechanisms were evaluated. Methods. Western blot assay was used to detect TMP effects on protein expression of Smo, Patched, Hhip, and Gli and to investigate the effects of TMP on Cyclin D1, Cyclin E1, CDK2, Bcl-2, Bax, and caspase expression with cyclopamine supplementation. Results. Our results showed that TMP significantly inhibits the expression of Cyclin D1, Cyclin E1, and Cyclin-dependent kinase CDK2 and changes the HSC cycle by inhibiting the proliferation of HSC. Moreover, TMP has also been shown to decrease the expression of Bcl-2 and increase the expression of Bax in HSC-T6 cells. Furthermore, TMP can inhibit the expression of connective tissue growth factor (CTGF), and the inhibitory effect was intensified after the application of joint treatment with TMP and cyclopamine. Conclusion. TMP may be an effective Hh signaling pathway inhibitor for hepatic fibrosis treatment.
Collapse
|
40
|
Li J, Dong N, Cheng S, Li X, Wang W, Xiang Y. Tetramethylpyrazine inhibits CTGF and Smad2/3 expression and proliferation of hepatic stellate cells. BIOTECHNOL BIOTEC EQ 2015; 29:124-131. [PMID: 26019625 PMCID: PMC4433940 DOI: 10.1080/13102818.2014.984382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/27/2014] [Indexed: 12/04/2022] Open
Abstract
To study the effects of tetramethylpyrazine (TMP) on the proliferation of hepatic stellate cells-T6 (HSC-T6), and the expression of connective tissue growth factor (CTGF) and Smad2/3 in these cells, HSC-T6 cells were cultured with TMP at different concentrations after transforming growth factor-β1 (TGF-β1) stimulation. MTT assay was used to assess the cell proliferation. Cells were divided into the control group, TGF-β1-treated group and TMP-treated groups, which were treated with different concentrations of TMP. Immunocytochemistry and western blot were performed to detect the expression levels of CTGF and Smad2/3 in HSC-T6 cells. MTT analysis indicated that TMP significantly inhibited the proliferation of HSC-T6 cells, in dose-dependent and time-dependent manners. Immunocytochemistry detection and western blot showed that TMP could diminish TGF-β1-induced CTGF over-expression in HSC-T6 cells. Similarly, the enhancing effects of TGF-β1 on Smad2/3 expressions in HSC-T6 cells could also be counteracted by TMP treatment. Nuclear translocation of Smad2/3 was blocked by TMP treatment. Correlation analysis suggested a positive correlation between CTGF and Smad2/3 expression levels in HSC-T6 cells. TMP exerts anti-hepatic fibrosis effect through decreasing the expression of CTGF and Smad2/3, as well as inhibiting the proliferation of HSC-T6 cells. Our study provides cellular and molecular bases for further application of TMP in the clinical treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Jun Li
- Department of Endodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University , Chongqing 400010 , China ; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences , Chongqing 401147 , China
| | - Ni Dong
- Department of Endodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University , Chongqing 400010 , China ; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences , Chongqing 401147 , China
| | - Shuang Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Xiaosheng Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Wenli Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| | - Ying Xiang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
| |
Collapse
|
41
|
Zeng XY, Wang J, Zhang YQ, Wu JF. Relationship between microRNAs and signaling pathways associated with hepatic stellate cells. Shijie Huaren Xiaohua Zazhi 2015; 23:1-7. [DOI: 10.11569/wcjd.v23.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation and transdifferentiation of hepatic stellate cells (HSCs) caused by a variety of signal transduction pathways triggered by inflammatory factors and cytokines are a key initiating event in the process of hepatic fibrosis. MicroRNAs (miRNAs) existing in a wide variety of organisms play a role by negative regulation of their target genes at the transcriptional or translational level. Research shows that several signal transduction pathways associated with HSCs can regulate miRNA transcription, processing, maturation and function. At the same time, different miRNAs also regulate HSC activation, proliferation and apoptosis-related signal transduction. This interaction can provide some ideas for the molecular target therapy of hepatic fibrosis and the exploration of its pathogenesis.
Collapse
|
42
|
Ichimura M, Minami A, Nakano N, Kitagishi Y, Murai T, Matsuda S. Cigarette smoke may be an exacerbation factor in nonalcoholic fatty liver disease via modulation of the PI3K/AKT pathway. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.4.427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
43
|
Ren J, An HY. Effects of ROCK inhibitor Y-27632 on TGF-β1/CTGF pathway. Shijie Huaren Xiaohua Zazhi 2014; 22:3932-3936. [DOI: 10.11569/wcjd.v22.i26.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Y-27632, a pyrimidine derivative, is a recently developed synthetic specific inhibitor of Rho associated coiled-coil forming protein kinase (ROCK), and it inhibits the process of hepatic fibrosis by regulating a variety of biological effects mediated by ROCK. Recent studies have found that the transforming growth factor β1 (TGF-β1)/connective tissue growth factor (CTGF) signaling pathway is involved in liver fibrosis. TGF-β1 induces the expression of its downstream molecule CTGF, resulting in the increase of extracellular matrix and liver fibrosis. Y-27632 can inhibit the expression of TGF-β1 and CTGF. This paper attempts to explain the anti-fibrosis effect of Y-27632 in terms of the impact of Y-27632 on the TGF-β1/CTGF pathway, with an aim to better understand the functional target of Y-27632 and provide a theoretical basis for the targeted therapy of liver fibrosis.
Collapse
|
44
|
Xu L, Wei Y, Dong D, Yin L, Qi Y, Han X, Xu Y, Zhao Y, Liu K, Peng J. iTRAQ-based proteomics for studying the effects of dioscin against nonalcoholic fatty liver disease in rats. RSC Adv 2014. [DOI: 10.1039/c4ra03948c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Hu XX, Wang Y, Wang JXY. Handan Ganle inhibits PI3K/Akt signaling pathway in liver fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2014; 22:1915-1920. [DOI: 10.11569/wcjd.v22.i14.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To observe the change of the PI3K/Akt signaling pathway in CCl4 induced liver fibrosis and to explore the effect of Handan Ganle on this signaling pathway in hepatic fibrosis in rats.
METHODS: Thirty SD rats were randomly divided into a normal control group, a liver fibrosis group and a Handan Ganle treated group. The rats of the liver fibrosis group and Handan Ganle treated group were treated by hypodermic injection of 40% CCl4 at 0.3 mL/100 g body weight to induce hepatic fibrosis. Then, the rats in the Handan Ganle group were treated with 1.0 g/kg Handan Ganle once daily for 8 weeks. The expression of Akt1 and phospho-Akt1 was detected by immunohistochemistry and Western blot, and the apoptosis of HSCs was determined by TUNEL assay.
RESULTS: Compared with the normal control group, the expression of Akt1 (2.73 ± 0.52 vs 9.60 ± 2.28, P < 0.01) and phospho-Akt1 (0.92 ± 0.40 vs 6.51 ± 1.39, P < 0.01) in the liver fibrosis group was increased. Handan Ganle treatment decreased the levels of Akt1 (9.60 ± 2.28 vs 5.36 ± 1.59, P < 0.01) and phospho-Akt1 (6.51 ± 1.39 vs 2.08 ± 0.85, P < 0.01) but increased the apoptosis of HSCs (1.07 ± 0.32 vs 4.24 ± 0.86, P < 0.01).
CONCLUSION: The PI3K/Akt signaling pathway may play an important role in CCl4 induced liver fibrosis. Handan Ganle can suppress this signaling pathway and increase the apoptosis of HSCs, which might be related with its anti-hepatic fibrosis activity.
Collapse
|
46
|
Masamune A, Nakano E, Hamada S, Takikawa T, Yoshida N, Shimosegawa T. Alteration of the microRNA expression profile during the activation of pancreatic stellate cells. Scand J Gastroenterol 2014; 49:323-31. [PMID: 24404812 DOI: 10.3109/00365521.2013.876447] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE. Pancreatic stellate cells (PSCs) play a pivotal role in the pancreatic fibrosis associated with chronic pancreatitis and pancreatic cancer. In response to pancreatic injury or inflammation, PSCs are activated to myofibroblast-like cells. MicroRNA (miRNA) is a small RNA, consisting of 17-25 nucleotides, which targets 3'-untranslated region sequences of mRNA. miRNAs regulate a variety of cell functions such as cell proliferation, differentiation, and carcinogenesis. We examined here whether the miRNA expression profiles are altered during the activation of PSCs. MATERIALS AND METHODS. Rat PSCs were isolated from the pancreas tissue of male Wistar rats. PSCs were activated in vitro by culture in serum-containing medium. miRNAs were prepared from quiescent (day 1) PSCs and culture-activated (day 14) PSCs. Agilent's miRNA microarray containing probes for 680 miRNAs was used to identify differentially expressed miRNAs. Ingenuity Pathway Analysis (IPA) was used for the integrated analysis of altered miRNAs. RESULTS. Upon activation, 42 miRNAs were upregulated (>2.0-fold) and 42 miRNAs were downregulated (<0.5-fold). Upregulated miRNAs included miR-31, miR-143, and miR-221. Downregulated miRNAs included miR-126, miR-146a, and miR-150. IPA revealed the most impacted biological processes including cellular development, cellular growth, and cell movement. Interestingly, IPA identified 22 miRNAs affected both in pancreatic cancer and PSC activation. The top network generated by IPA revealed the interactions of altered miRNAs with signaling pathways such as p38 mitogen-activated protein kinase, extracellular-signal-regulated kinase, and Smad2/3. CONCLUSIONS. Our results suggest a novel role of miRNAs in the activation of PSCs.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine , Sendai , Japan
| | | | | | | | | | | |
Collapse
|