1
|
Kriska T, Natarajan J, Herrnreiter A, Park SK, Pfister SL, Thomas MJ, Widiapradja A, Levick SP, Campbell WB. Cellular metabolism of substance P produces neurokinin-1 receptor peptide agonists with diminished cyclic AMP signaling. Am J Physiol Cell Physiol 2024; 327:C151-C167. [PMID: 38798270 PMCID: PMC11371325 DOI: 10.1152/ajpcell.00103.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Substance P (SP) is released from sensory nerves in the arteries and heart. It activates neurokinin-1 receptors (NK1Rs) causing vasodilation, immune modulation, and adverse cardiac remodeling. The hypothesis was tested: SP and SP metabolites activate different second messenger signaling pathways. Macrophages, endothelial cells, and fibroblasts metabolized SP to N- and C-terminal metabolites to varying extents. SP 5-11 was the most abundant metabolite followed by SP 1-4, SP 7-11, SP 6-11, SP 3-11, and SP 8-11. In NK1R-expressing human embryonic kidney 293 (HEK293) cells, SP and some C-terminal SP metabolites stimulate the NK1R, promoting the dissociation of several Gα proteins, including Gαs and Gαq from their βγ subunits. SP increases intracellular calcium concentrations ([Ca]i) and cyclic 3',5'-adenosine monophosphate (cAMP) accumulation with similar -log EC50 values of 8.5 ± 0.3 and 7.8 ± 0.1 M, respectively. N-terminal metabolism of SP by up to five amino acids and C-terminal deamidation of SP produce peptides that retain activity to increase [Ca]i but not to increase cAMP. C-terminal metabolism results in the loss of both activities. Thus, [Ca]i and cAMP signaling are differentially affected by SP metabolism. To assess the role of N-terminal metabolism, SP and SP 6-11 were compared with cAMP-mediated activities in NK1R-expressing 3T3 fibroblasts. SP inhibits nuclear factor κB (NF-κB) activity, cell proliferation, and wound healing and stimulates collagen production. SP 6-11 had little or no activity. Cyclooxygenase-2 (COX-2) expression is increased by SP but not by SP 6-11. Thus, metabolism may select the cellular response to SP by inhibiting or redirecting the second messenger signaling pathway activated by the NK1R.NEW & NOTEWORTHY Endothelial cells, macrophages, and fibroblasts metabolize substance P (SP) to N- and C-terminal metabolites with SP 5-11 as the most abundant metabolite. SP activates neurokinin-1 receptors to increase intracellular calcium and cyclic AMP. In contrast, SP metabolites of N-terminal metabolism and C-terminal deamidation retain the ability to increase calcium but lose the ability to increase cyclic AMP. These new insights indicate that the metabolism of SP directs cellular functions by regulating specific signaling pathways.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jayashree Natarajan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Anja Herrnreiter
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sang-Kyu Park
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alexander Widiapradja
- Robert C. Byrd Health Sciences Center, Department of Physiology and Pharmacology, West Virginia University, Morgantown, Virginia, United States
| | - Scott P Levick
- Robert C. Byrd Health Sciences Center, Department of Physiology and Pharmacology, West Virginia University, Morgantown, Virginia, United States
| | - William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
COX-2 in liver fibrosis. Clin Chim Acta 2020; 506:196-203. [PMID: 32184095 DOI: 10.1016/j.cca.2020.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
As a vital inducible sensor, cyclooxygenase-2 (COX-2) plays an important role in the progress of hepatic fibrogenesis. Activation of hepatic stellate cells (HSCs) in the liver can significantly accelerate the onset and development of liver fibrosis. COX-2 overexpression triggers inflammation that is an important inducer in hepatic fibrosis. Increasing evidence indicates that COX-2 is involved in the main pathogenesis of liver fibrosis, such as inflammation, apoptosis, and cell senescence. Moreover, COX-2 expression is altered in patients and animal models with non-alcoholic fatty liver disease or cirrhosis. These findings suggest that COX-2 has a broad and critical role in the development of liver fibrosis. In this review, we summarize the latest advances in the regulation and signal transduction of COX-2 and its impact on liver fibrosis.
Collapse
|
3
|
Yi X, Liu J, Wu P, Gong Y, Xu X, Li W. The whole transcriptional profiling of cellular metabolism during adipogenesis from hMSCs. J Cell Physiol 2019; 235:349-363. [DOI: 10.1002/jcp.28974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/29/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| |
Collapse
|
4
|
L-PGDS-produced PGD 2 in premature, but not in mature, adipocytes increases obesity and insulin resistance. Sci Rep 2019; 9:1931. [PMID: 30760783 PMCID: PMC6374461 DOI: 10.1038/s41598-018-38453-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is responsible for the production of PGD2 in adipocytes and is selectively induced by a high-fat diet (HFD) in adipose tissue. In this study, we investigated the effects of HFD on obesity and insulin resistance in two distinct types of adipose-specific L-PGDS gene knockout (KO) mice: fatty acid binding protein 4 (fabp4, aP2)-Cre/L-PGDSflox/flox and adiponectin (AdipoQ)-Cre/L-PGDSflox/flox mice. The L-PGDS gene was deleted in adipocytes in the premature stage of the former strain and after maturation of the latter strain. The L-PGDS expression and PGD2 production levels decreased in white adipose tissue (WAT) under HFD conditions only in the aP2-Cre/L-PGDSflox/flox mice, but were unchanged in the AdipoQ-Cre/L-PGDSflox/flox mice. When fed an HFD, aP2-Cre/L-PGDSflox/flox mice significantly reduced body weight gain, adipocyte size, and serum cholesterol and triglyceride levels. In WAT of the HFD-fed aP2-Cre/L-PGDSflox/flox mice, the expression levels of the adipogenic, lipogenic, and M1 macrophage marker genes were decreased, whereas those of the lipolytic and M2 macrophage marker genes were enhanced or unchanged. Insulin sensitivity was improved in the HFD-fed aP2-Cre/L-PGDSflox/flox mice. These results indicate that PGD2 produced by L-PGDS in premature adipocytes is involved in the regulation of body weight gain and insulin resistance under nutrient-dense conditions.
Collapse
|
5
|
Zhu B, Zhao L, Luo D, Xu D, Tan T, Dong Z, Tang Y, Min Z, Deng X, Sun F, Yan Z, Chen G. Furin promotes dendritic morphogenesis and learning and memory in transgenic mice. Cell Mol Life Sci 2018; 75:2473-2488. [PMID: 29302702 PMCID: PMC11105492 DOI: 10.1007/s00018-017-2742-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 01/14/2023]
Abstract
Furin is a proprotein convertase implicated in a variety of pathological processes including neurodegenerative diseases. However, the role of furin in neuronal plasticity and learning and memory remains to be elucidated. Here, we report that in brain-specific furin transgenic (Furin-Tg) mice, the dendritic spine density and proliferation of neural progenitor cells were significantly increased. These mice exhibited enhanced long-term potentiation (LTP) and spatial learning and memory performance, without alterations of miniature excitatory/inhibitory postsynaptic currents. In the cortex and hippocampus of Furin-Tg mice, the ratio of mature brain-derived neurotrophic factor (mBDNF) to pro-BDNF, and the activities of extracellular signal-related kinase (ERK) and cAMP response element-binding protein (CREB) were significantly elevated. We also found that hippocampal knockdown of CREB diminished the facilitation of LTP and cognitive function in Furin-Tg mice. Together, our results demonstrate that furin enhances dendritic morphogenesis and learning and memory in transgenic mice, which may be associated with BDNF-ERK-CREB signaling pathway.
Collapse
Affiliation(s)
- Binglin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Lige Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Dong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Demei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Tao Tan
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Lu, Chongqing, 400014, China
| | - Zhifang Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Lu, Chongqing, 400014, China
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Zhuo Min
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xiaojuan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
6
|
Wei DW, Ma XY, Zhang S, Hong JY, Gui LS, Mei CG, Guo HF, Wang L, Ning Y, Zan LS. Characterization of the promoter region of the bovine SIX1 gene: Roles of MyoD, PAX7, CREB and MyoG. Sci Rep 2017; 7:12599. [PMID: 28974698 PMCID: PMC5626756 DOI: 10.1038/s41598-017-12787-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
The SIX1 gene belongs to the family of six homeodomain transcription factors (TFs), that regulates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and mediate skeletal muscle growth and regeneration. Previous studies have demonstrated that SIX1 is positively correlated with body measurement traits (BMTs). However, the transcriptional regulation of SIX1 remains unclear. In the present study, we determined that bovine SIX1 was highly expressed in the longissimus thoracis. To elucidate the molecular mechanisms involved in bovine SIX1 regulation, 2-kb of the 5' regulatory region were obtained. Sequence analysis identified neither a consensus TATA box nor a CCAAT box in the 5' flanking region of bovine SIX1. However, a CpG island was predicted in the region -235 to +658 relative to the transcriptional start site (TSS). An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay in combination with serial deletion constructs of the 5' flanking region, site-directed mutation and siRNA interference demonstrated that MyoD, PAX7 and CREB binding occur in region -689/-40 and play important roles in bovine SIX1 transcription. In addition, MyoG drives SIX1 transcription indirectly via the MEF3 motif. Taken together these interactions suggest a key functional role for SIX1 in mediating skeletal muscle growth in cattle.
Collapse
Affiliation(s)
- Da-Wei Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xue-Yao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Song- Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jie-Yun Hong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lin-Sheng Gui
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Modern Cattle Biotechnology and Application of National-Local Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chu-Gang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Modern Cattle Biotechnology and Application of National-Local Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong-Fang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li- Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yue- Ning
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Lee SE, Park HR, Kim H, Choi Y, Jin YH, Park CS, Ahn HJ, Cho JJ, Park YS. Effect of crotonaldehyde on the induction of COX-2 expression in human endothelial cells. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0038-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Nishina A, Ukiya M, Fukatsu M, Koketsu M, Ninomiya M, Sato D, Yamamoto J, Kobayashi-Hattori K, Okubo T, Tokuoka H, Kimura H. Effects of Various 5,7-Dihydroxyflavone Analogs on Adipogenesis in 3T3-L1 Cells. Biol Pharm Bull 2016; 38:1794-800. [PMID: 26521830 DOI: 10.1248/bpb.b15-00489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We studied the effects of twelve 5,7-dihydroxyflavone analogs on adipogenesis in 3T3-L1 cells. Among the compounds, luteolin, diosmetin, and chrysoeriol partly inhibited adipogenesis by blocking the accumulation of triacylglycerol in the cells. Conversely, tricetin facilitated triacylglycerol accumulation in the cells. The induction of lipogenesis or lipolysis may depend on the number and bonding position of hydroxyl or methoxy groups on the B ring of 5,7-dihydroxyflavone. The mRNA expression levels of adipogenic and lipogenic genes were suppressed by luteolin treatment in the cells, while the mRNA levels of lipolytic genes were not affected. However, the expression levels of the adipogenic, lipogenic, and lipolytic genes, except for adipocyte protein 2 (aP2), were not affected by the addition of tricetin. Moreover, luteolin suppressed glucose transporter type 4 (GLUT4) gene and protein levels. These results indicate that luteolin decreased triacylglycerol levels in 3T3-L1 cells during adipogenesis through the suppression of adipogenic/lipogenic and GLUT4 genes and GLUT4 protein.
Collapse
|
9
|
Gambo Y, Matsumura M, Fujimori K. Triiodothyronine enhances accumulation of intracellular lipids in adipocytes through thyroid hormone receptor α via direct and indirect mechanisms. Mol Cell Endocrinol 2016; 431:1-11. [PMID: 27132806 DOI: 10.1016/j.mce.2016.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 01/16/2023]
Abstract
Triiodothyronine (T3) enhanced the expression of adipogenic and lipogenic genes with elevation of the intracellular lipids through thyroid hormone receptor (TR) α in mouse 3T3-L1 cells. However, the transcription of the SREBP-1c and HSL genes was decreased by T3. Such T3-mediated alterations were negated by TRα siRNA. Chromatin immunoprecipitation assay showed that the binding of TRα to the TR-responsive element (TRE) of the FAS promoter was elevated by T3. In contrast, the ability of TRα to bind to the TRE of the SREBP-1c promoter was decreased by T3. In addition, the binding of SREBP-1c to the SRE of the HSL promoter was lowered by T3. These results indicate that T3 increased the accumulation of intracellular lipids by enhancing the expression of the FAS gene through direct binding of TRα to the FAS promoter and simultaneously lowered the amount of lipolysis via reduced binding of T3-decreased SREBP-1c to the HSL promoter.
Collapse
Affiliation(s)
- Yurina Gambo
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Miki Matsumura
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
10
|
Xu H, Fu JL, Miao YF, Wang CJ, Han QF, Li S, Huang SZ, Du SN, Qiu YX, Yang JC, Gustafsson JÅ, Breyer RM, Zheng F, Wang NP, Zhang XY, Guan YF. Prostaglandin E2 receptor EP3 regulates both adipogenesis and lipolysis in mouse white adipose tissue. J Mol Cell Biol 2016; 8:518-529. [PMID: 27436752 PMCID: PMC5181317 DOI: 10.1093/jmcb/mjw035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022] Open
Abstract
Among the four prostaglandin E2 receptors, EP3 receptor is the one most abundantly expressed in white adipose tissue (WAT). The mouse EP3 gene gives rise to three isoforms, namely EP3α, EP3β, and EP3γ, which differ only at their C-terminal tails. To date, functions of EP3 receptor and its isoforms in WAT remain incompletely characterized. In this study, we found that the expression of all EP3 isoforms were downregulated in WAT of both db/db and high-fat diet-induced obese mice. Genetic ablation of three EP3 receptor isoforms (EP3-/- mice) or EP3α and EP3γ isoforms with EP3β intact (EP3β mice) led to an obese phenotype with increased food intake, decreased motor activity, reduced insulin sensitivity, and elevated serum triglycerides. Since the differentiation of preadipocytes and mouse embryonic fibroblasts to adipocytes was markedly facilitated by either pharmacological blockade or genetic deletion/inhibition of EP3 receptor via the cAMP/PKA/PPARγ pathway, increased adipogenesis may contribute to obesity in EP3-/- and EP3β mice. Moreover, both EP3-/- and EP3β mice had increased lipolysis in WAT mainly due to the activated cAMP/PKA/hormone-sensitive lipase pathway. Taken together, our findings suggest that EP3 receptor and its α and γ isoforms are involved in both adipogenesis and lipolysis and influence food intake, serum lipid levels, and insulin sensitivity.
Collapse
Affiliation(s)
- Hu Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jia-Lin Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yi-Fei Miao
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Chun-Jiong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qi-Fei Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Sha Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shi-Zheng Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Sheng-Nan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yu-Xiang Qiu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ji-Chun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Nan-Ping Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiao-Yan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.,Department of Physiology, AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - You-Fei Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China .,Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
11
|
Qi Z, Ding S. Obesity-associated sympathetic overactivity in children and adolescents: the role of catecholamine resistance in lipid metabolism. J Pediatr Endocrinol Metab 2016; 29:113-25. [PMID: 26488603 DOI: 10.1515/jpem-2015-0182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/27/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Obesity in children and adolescents is characterized by chronic sympathetic overdrive and reduced epinephrine-stimulated lipolysis. This resistance to catecholamines occurs during the dynamic phase of fat accumulation. This review will focus on the relationship between sympathetic-adrenal activity and lipid metabolism, thereby highlighting the role of catecholamine resistance in the development of childhood obesity. RESULTS AND CONCLUSIONS Catecholamine resistance causes lipid accumulation in adipose tissue by reducing lipolysis, increasing lipogenesis and impeding free fatty acid (FFA) transportation. Exercise improves catecholamine resistance, as evidenced by attenuated systemic sympathetic activity, reduced circulating catecholamine levels and enhanced β-adrenergic receptor signaling. Insulin resistance is mostly a casual result rather than a cause of childhood obesity. Therefore, catecholamine resistance in childhood obesity may promote insulin signaling in adipose tissue, thereby increasing lipogenesis. This review outlines a series of evidence for the role of catecholamine resistance as an upstream mechanism leading to childhood obesity.
Collapse
|
12
|
Hsu CK, Lin CC, Hsiao LD, Yang CM. Mevastatin ameliorates sphingosine 1-phosphate-induced COX-2/PGE2-dependent cell migration via FoxO1 and CREB phosphorylation and translocation. Br J Pharmacol 2015; 172:5360-76. [PMID: 26359950 DOI: 10.1111/bph.13326] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 08/19/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine 1-phosphate (S1P), an important inflammatory mediator, has been shown to regulate COX-2 production and promote various cellular responses such as cell migration. Mevastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA), effectively inhibits inflammatory responses. However, the mechanisms underlying S1P-evoked COX-2-dependent cell migration, which is modulated by mevastatin in human tracheal smooth muscle cells (HTSMCs) remain unclear. EXPERIMENTAL APPROACH The expression of COX-2 was determined by Western blotting, real time-PCR and promoter analyses. The signalling molecules were investigated by pretreatment with respective pharmacological inhibitors or transfection with siRNAs. The interaction between COX-2 promoter and transcription factors was determined by chromatin immunoprecipitation assay. Finally, the effect of mevastatin on HTSMC migration and leukocyte counts in BAL fluid and COX-2 expression induced by S1P was determined by a cell migration assay, cell counting and Western blot. KEY RESULTS S1P stimulated mTOR activation through the Nox2/ROS and PI3K/Akt pathways, which can further stimulate FoxO1 phosphorylation and translocation to the cytosol. We also found that S1P induced CREB activation and translocation via an mTOR-independent signalling pathway. Finally, we showed that pretreatment with mevastatin markedly reduced S1P-induced cell migration and COX-2/PGE2 production via a PPARγ-dependent signalling pathway. CONCLUSIONS AND IMPLICATIONS Mevastatin attenuates the S1P-induced increased expression of COX-2 and cell migration via the regulation of FoxO1 and CREB phosphorylation and translocation by PPARγ in HTSMCs. Mevastatin could be beneficial for prevention of airway inflammation in the future.
Collapse
Affiliation(s)
- Chih-Kai Hsu
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anaesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anaesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
13
|
Berthou F, Ceppo F, Dumas K, Massa F, Vergoni B, Alemany S, Cormont M, Tanti JF. The Tpl2 Kinase Regulates the COX-2/Prostaglandin E2 Axis in Adipocytes in Inflammatory Conditions. Mol Endocrinol 2015; 29:1025-36. [PMID: 26020725 DOI: 10.1210/me.2015-1027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bioactive lipid mediators such as prostaglandin E2 (PGE2) have emerged as potent regulator of obese adipocyte inflammation and functions. PGE2 is produced by cyclooxygenases (COXs) from arachidonic acid, but inflammatory signaling pathways controlling COX-2 expression and PGE2 production in adipocytes remain ill-defined. Here, we demonstrated that the MAP kinase kinase kinase tumor progression locus 2 (Tpl2) controls COX-2 expression and PGE2 secretion in adipocytes in response to different inflammatory mediators. We found that pharmacological- or small interfering RNA-mediated Tpl2 inhibition in 3T3-L1 adipocytes decreased by 50% COX-2 induction in response to IL-1β, TNF-α, or a mix of the 2 cytokines. PGE2 secretion induced by the cytokine mix was also markedly blunted. At the molecular level, nuclear factor κB was required for Tpl2-induced COX-2 expression in response to IL-1β but was inhibitory for the TNF-α or cytokine mix response. In a coculture between adipocytes and macrophages, COX-2 was mainly increased in adipocytes and pharmacological inhibition of Tpl2 or its silencing in adipocytes markedly reduced COX-2 expression and PGE2 secretion. Further, Tpl2 inhibition in adipocytes reduces by 60% COX-2 expression induced by a conditioned medium from lipopolysaccharide (LPS)-treated macrophages. Importantly, LPS was less efficient to induce COX-2 mRNA in adipose tissue explants of Tpl2 null mice compared with wild-type and Tpl2 null mice displayed low COX-2 mRNA induction in adipose tissue in response to LPS injection. Collectively, these data established that activation of Tpl2 by inflammatory stimuli in adipocytes and adipose tissue contributes to increase COX-2 expression and production of PGE2 that could participate in the modulation of adipose tissue inflammation during obesity.
Collapse
Affiliation(s)
- Flavien Berthou
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Franck Ceppo
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Karine Dumas
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Fabienne Massa
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Bastien Vergoni
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Susana Alemany
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Mireille Cormont
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Jean-François Tanti
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
14
|
Watanabe M, Hisatake M, Fujimori K. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4979-4987. [PMID: 25945786 DOI: 10.1021/acs.jafc.5b00821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.
Collapse
Affiliation(s)
- Marina Watanabe
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mitsuhiro Hisatake
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|