1
|
Huang C, Lin J, Chen L, Sun W, Xia J, Wu M. Upregulation of C1QC as a Mediator of Blood-Brain Barrier Damage in Type 2 Diabetes Mellitus. Mol Neurobiol 2025; 62:5234-5251. [PMID: 39531193 DOI: 10.1007/s12035-024-04615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The blood-brain barrier (BBB) is a neurovascular structure that safeguards the brain by inhibiting the passage of harmful substances. In individuals with type 2 diabetes mellitus (T2DM), the heightened blood glucose may cause damage to endothelial cells and neurons, increase collagen protein content, and elevate BBB permeability. Although the impact of blood glucose regulation on the structure and function of BBB has been documented, the exact mechanism remains incompletely elucidated. The primary aim of this investigation was to uncover the pivotal dysregulation of specific genes observed within the cerebral microvascular endothelial cells of diabetic patients, with a particular focus on understanding its biological implications in the disruption of the BBB. By integrating bioinformatics analysis, we identified C1QC as a potential upregulated marker. The expression level of C1QC was subsequently verified in both in vivo and in vitro models. Our experiments have discovered that, under diabetic conditions, suppressing C1QC leads to the mitigation of BBB damage. The presence of a high level of C1QC, through its binding to discoidin domain receptor 2 (DDR2), may trigger the activation of its downstream MMP9, a calcium-dependent enzyme that is capable of degrading protein components in the extracellular matrix, consequently leading to the structural and functional disruption of BBB. In summary, the findings of this study indicate that the aberrantly upregulated expression of C1QC may exert deleterious effects on the BBB under diabetes. To alleviate neurological impairments in individuals with T2DM, C1QC may emerge as a promising therapeutic target worthy of further investigation.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxing Lin
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lan Chen
- Taylor's University, Subang Jaya, Malaysia
| | - Wenzhe Sun
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinjun Xia
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Min Wu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
2
|
Liang ZH, Lin SS, Qiu ZY, Pan YC, Pan NF, Liu Y. GLI family zinc finger protein 2 promotes skin fibroblast proliferation and DNA damage repair by targeting the miR-200/ataxia telangiectasia mutated axis in diabetic wound healing. Kaohsiung J Med Sci 2024; 40:422-434. [PMID: 38385859 DOI: 10.1002/kjm2.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a serious complication of diabetic patients which negatively affects their foot health. This study aimed to estimate the role and mechanism of the miR-200 family in DNA damage of diabetic wound healing. Human foreskin fibroblasts (HFF-1 cells) were stimulated with high glucose (HG). Db/db mice were utilized to conduct the DFU in vivo model. Cell viability was evaluated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays. Superoxide dismutase activity was determined using detection kits. Reactive oxygen species determination was conducted via dichlorodihydrofluorescein-diacetate assays. Enzyme-linked immunosorbent assay was used to evaluate 8-oxo-7,8-dihydro-2'deoxyguanosine levels. Genes and protein expression were analyzed by quantitative real-time polymerase chain reaction, western blotting, or immunohistochemical analyses. Luciferase reporter gene and RNA immunoprecipitation assays determined the interaction with miR-200a/b/c-3p and GLI family zinc finger protein 2 (GLI2) or ataxia telangiectasia mutated (ATM) kinase. HG repressed cell proliferation and DNA damage repair, promoted miR-200a/b/c-3p expression, and suppressed ATM and GLI2. MiR-200a/b/c-3p inhibition ameliorated HG-induced cell proliferation and DNA damage repair repression. MiR-200a/b/c-3p targeted ATM. Then, the silenced ATM reversed the miR-200a/b/c-3p inhibition-mediated alleviative effects under HG. Next, GLI2 overexpression alleviated the HG-induced cell proliferation and DNA damage repair inhibition via miR-200a/b/c-3p. MiR-200a/b/c-3p inhibition significantly promoted DNA damage repair and wound healing in DFU mice. GLI2 promoted cell proliferation and DNA damage repair by regulating the miR-200/ATM axis to enhance diabetic wound healing in DFU.
Collapse
Affiliation(s)
- Zun-Hong Liang
- Department of Burn & Skin Repair Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Shi-Shuai Lin
- Department of Burn & Skin Repair Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Zhi-Yang Qiu
- Department of Burn & Skin Repair Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Yun-Chuan Pan
- Department of Burn & Skin Repair Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Nan-Fang Pan
- Department of Burn & Skin Repair Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Yun Liu
- Department of Plastic and Cosmetic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, P.R. China
| |
Collapse
|
3
|
Dayer D, Bayati V, Ebrahimi M. Manipulation of Sonic Hedgehog Signaling Pathway in Maintenance, Differentiation, and Endocrine Activity of Insulin-Producing Cells: A Systematic Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:65-76. [PMID: 38356490 PMCID: PMC10862108 DOI: 10.30476/ijms.2023.95425.2678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 02/16/2024]
Abstract
Background Some studies have evaluated the manipulation of the sonic hedgehog (Shh) signaling pathway to generate more efficient insulin-producing cells (IPCs). In a systematic review, we evaluated in vitro and in vivo studies on the effect of inhibition or activation of the Shh pathway on the production, differentiation, maintenance, and endocrine activity of IPCs. Methods A systematic review was conducted using all available experimental studies published between January 2000 and November 2022. The review aimed at determining the effect of Shh manipulation on the differentiation of stem cells (SCs) into IPCs. Keywords and phrases using medical subject headings were extracted, and a complete search was performed in Web of Science, Embase, ProQuest, PubMed, Scopus, and Cochrane Library databases. The inclusion criteria were manipulation of Shh in SCs, SCs differentiation into IPCs, and endocrine activity of mature IPCs. Articles with incomplete data and duplications were excluded. Results A total of 208 articles were initially identified, out of which 11 articles were included in the study. The effect of Shh inhibition in the definitive endoderm stage to produce functional IPCs were confirmed. Some studies showed the importance of Shh re-activation at late-stage differentiation for the generation of efficient IPCs. It is proposed that baseline concentrations of Shh in mature pancreatic β-cells affect insulin secretion and endocrine activities of the cells. However, Shh overexpression in pancreatic β-cells ultimately leads to improper endocrine function and inadequate glucose-sensing insulin secretion. Conclusion Accurate manipulation of the Shh signaling pathway can be an effective approach in the production and maintenance of functional IPCs.
Collapse
Affiliation(s)
- Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomy, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ebrahimi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Li Y, Cai J, Liu Y, Li C, Chen X, Wong WL, Jiang W, Qin Y, Zhang G, Hou N, Yuan W. CcpA-Knockout Staphylococcus aureus Induces Abnormal Metabolic Phenotype via the Activation of Hepatic STAT5/PDK4 Signaling in Diabetic Mice. Pathogens 2023; 12:1300. [PMID: 38003764 PMCID: PMC10674825 DOI: 10.3390/pathogens12111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Catabolite control protein A (CcpA), an important global regulatory protein, is extensively found in S. aureus. Many studies have reported that CcpA plays a pivotal role in regulating the tricarboxylic acid cycle and pathogenicity. Moreover, the CcpA-knockout Staphylococcus aureus (S. aureus) in diabetic mice, compared with the wild-type, showed a reduced colonization rate in the tissues and organs and decreased inflammatory factor expression. However, the effect of CcpA-knockout S. aureus on the host's energy metabolism in a high-glucose environment and its mechanism of action remain unclear. S. aureus, a common and major human pathogen, is increasingly found in patients with obesity and diabetes, as recent clinical data reveal. To address this issue, we generated CcpA-knockout S. aureus strains with different genetic backgrounds to conduct in-depth investigations. In vitro experiments with high-glucose-treated cells and an in vivo model study with type 1 diabetic mice were used to evaluate the unknown effect of CcpA-knockout strains on both the glucose and lipid metabolism phenotypes of the host. We found that the strains caused an abnormal metabolic phenotype in type 1 diabetic mice, particularly in reducing random and fasting blood glucose and increasing triglyceride and fatty acid contents in the serum. In a high-glucose environment, CcpA-knockout S. aureus may activate the hepatic STAT5/PDK4 pathway and affect pyruvate utilization. An abnormal metabolic phenotype was thus observed in diabetic mice. Our findings provide a better understanding of the molecular mechanism of glucose and lipid metabolism disorders in diabetic patients infected with S. aureus.
Collapse
Affiliation(s)
- Yilang Li
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China;
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Jiaxuan Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Yinan Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Conglin Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Xiaoqing Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China;
| | - Wenyue Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China;
| | - Yuan Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Guiping Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Ning Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China;
| |
Collapse
|
5
|
Wang J, Zhan H, Wang M, Song H, Sun J, Zhao G. Sonic hedgehog signaling promotes angiogenesis of endothelial progenitor cells to improve pressure ulcers healing by PI3K/AKT/eNOS signaling. Aging (Albany NY) 2023; 15:10540-10548. [PMID: 37815888 PMCID: PMC10599757 DOI: 10.18632/aging.205093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Pressure ulcer is a severe disease in the paralyzed and aging populations. Endothelial progenitor cells (EPCs) are able to regulate ulcer healing by modulating angiogenesis, but the molecular mechanism is still obscure. Sonic hedgehog (SHH) signaling contributes to angiogenesis in various diseases and has been identified to modulate EPCs function. Here, we aimed to explore the significance of SHH signaling in EPCs function during pressure ulcers. METHODS The EPCs were isolated and characterized by the expression of DiI-acLDL and bind fluorescein iso-thiocyanate UEA-1. Cell proliferation was detected by cell counting kit 8 (CCK-8). The DiI-acLDL and bind fluorescein iso-thiocyanate UEA-1 were analyzed by immunofluorescent analysis. The angiogenesis of EPCs was analyzed by tube formation assay. The pressure ulcers rat model was constructed, the wound injury was analyzed by H&E staining and angiogenesis was analyzed by the accumulation of CD31 based on immunofluorescent analysis. RESULTS The expression of patched-1 and Gli-1 was enhanced by SHH activator SAG but reduced by SHH inhibitor cyclopamine in the EPCsThe PI3K, Akt, eNOS expression and the Akt phosphorylation were induced by SAG, while the treatment of cyclopamine presented a reversed result. The proliferation and migration of EPCs were enhanced by SAG but repressed by cyclopamine or PI3K/AKT/eNOS signaling inhibitor Y294002, in which the co-treatment of Y294002 could reverse the effect of SAG. CONCLUSIONS Thus, we found that SHH signaling activated angiogenesis properties of EPCs to improve pressure ulcers healing by PI3K/AKT/eNOS signaling. SHH signaling may serve as the potential target for attenuating pressure ulcers.
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Orthopaedics, Jinan Central Hospital, Jinan, Shandong Province, China
| | - Hongyan Zhan
- Department of B-Ultrasound, Fourth People’s Hospital of Jinan, Jinan, Shandong Province, China
| | - Mingming Wang
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong Province, China
| | - Hua Song
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong Province, China
| | - Jianhua Sun
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong Province, China
| | - Gang Zhao
- Department of Orthopaedics, Jinan Central Hospital, Jinan, Shandong Province, China
| |
Collapse
|
6
|
Identification and Experimental Validation of Marker Genes between Diabetes and Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8122532. [PMID: 35996379 PMCID: PMC9391608 DOI: 10.1155/2022/8122532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
Abstract
Currently, Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are widely prevalent in the elderly population, and accumulating evidence implies a strong link between them. For example, patients with T2DM have a higher risk of developing neurocognitive disorders, including AD, but the exact mechanisms are still unclear. This time, by combining bioinformatics analysis and in vivo experimental validation, we attempted to find a common biological link between AD and T2DM. We firstly downloaded the gene expression profiling (AD: GSE122063; T2DM: GSE161355) derived from the temporal cortex. To find the associations, differentially expressed genes (DEGs) of the two datasets were filtered and intersected. Based on them, enrichment analysis was carried out, and the least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to identify the specific genes. After verifying in the external dataset and in the samples from the AD and type 2 diabetes animals, the shared targets of the two diseases were finally determined. Based on them, the ceRNA networks were constructed. Besides, the logistic regression and single-sample gene set enrichment analysis (ssGSEA) were performed. As a result, 62 DEGs were totally identified between AD and T2DM, and the enrichment analysis indicated that they were much related to the function of synaptic vesicle and MAPK signaling pathway. Based on the evidence from external dataset and RT-qPCR, CARTPT, EPHA5, and SERPINA3 were identified as the marker genes in both diseases, and their clinical significance and biological functions were further analyzed. In conclusion, discovering and exploring the marker genes that are dysregulated in both 2 diseases could help us better comprehend the intrinsic relationship between T2DM and AD, which may inspire us to develop new strategies for facing the dilemmas of clinical or basic research in cognitive dysfunction.
Collapse
|
7
|
TLR4 Modulates Senescence and Paracrine Action in Placental Mesenchymal Stem Cells via Inhibiting Hedgehog Signaling Pathway in Preeclampsia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7202837. [PMID: 35757501 PMCID: PMC9214654 DOI: 10.1155/2022/7202837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/10/2023]
Abstract
Preeclampsia (PE) is a heterogeneous disease closely associated with the accelerated senescence of the placentas. Placental mesenchymal stem cells (PMSCs) modulate placental development, which is abnormally senescent in PE together with abnormal paracrine. Both pivotal in the placenta development, Toll-like receptor 4 (TLR4) and Hedgehog (HH) pathway are also tightly involved in regulating cellular senescence. This study was aimed at demonstrating that TLR4/HH pathway modulated senescence of placentas and PMSCs in vitro and in vivo. Preeclamptic and normal PMSCs were isolated. Smoothed agonist (SAG) and cyclopamine were used to activate and inhibit HH pathway, respectively. Lipopolysaccharide (LPS) was used to activate TLR4 in vitro and establish the classic PE-like rat model. qRT-PCR, Western blotting, and immunofluorescence were used to detect the expression of TLR4 and HH components (SHH, SMO, and Gli1). Cellular biological function such as proliferation, apoptosis, and migration was compared. Cell cycle analysis, β-galactosidase staining, and the protein expressions of p16 and p53 were detected to analyze the cellular senescence. The secretion levels of human matrix metalloproteinase 9 (MMP-9) and soluble fms-like tyrosine kinase-1 (sFlt-1) were measured in the conditioned medium. Cell migration, invasion, and tube formation were analyzed in HTR8/SVneo cells or human umbilical vein endothelial cells (HUVECs). Our study demonstrated that activation of TLR4 accelerated senescence of PMSCs via suppressing HH pathway both in vitro and in vivo, accompanied by the detrimental paracrine to impair the uterine spiral artery remodeling and placental angiogenesis. Meanwhile, induction of HH pathway could alleviate PE-like manifestations, improve pregnancy outcomes, and ameliorate multiorgan injuries, suggesting that strengthening the HH pathway may serve as a potential therapy in PE.
Collapse
|
8
|
The crosstalk of hedgehog, PI3K and Wnt pathways in diabetes. Arch Biochem Biophys 2020; 698:108743. [PMID: 33382998 DOI: 10.1016/j.abb.2020.108743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Hyperglycaemia causes pancreatic β-cells to release insulin that then attaches to a specific expression of receptor isoform and reverses high glucose concentrations. It is well known that insulin is capable of initiating insulin-receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling pathways in target cells; such as liver, adipose tissues, and muscles. However, recent discoveries indicate that many other pathways, such as the Hedgehog (Hh) and growth factor-stimulating Wingless-related integration (Wnt) signaling pathways; are activated in hyperglycaemia as well. Although these two pathways are traditionally thought to have a decisive role in cellular growth and differentiation only, recent reports show that they are involved in regulating cellular homeostasis and energy balance. While insulin-activated IRS/PI3K/PKB pathway cascades are primarily known to reduce glucose production, it was recently discovered to increase the Hh signaling pathway's stability, thereby activating the PI3K/PKB/mammalian target of rapamycin complex 2 (mTORC2) signaling pathway. The Hh signaling pathway not only plays a role in lipid metabolism, insulin sensitivity, inflammatory response, diabetes-related complications, but crosstalks with the Wnt signaling pathway resulting in improved insulin sensitivity and decrease inflammatory response in diabetes.
Collapse
|
9
|
Sun Q, Zeng J, Liu Y, Chen J, Zeng QC, Chen YQ, Tu LL, Chen P, Yang F, Zhang M. microRNA-9 and -29a regulate the progression of diabetic peripheral neuropathy via ISL1-mediated sonic hedgehog signaling pathway. Aging (Albany NY) 2020; 12:11446-11465. [PMID: 32544883 PMCID: PMC7343507 DOI: 10.18632/aging.103230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
In this study, we tested the hypothesis that overexpression of miR-9 and miR-29a may contribute to DPN development and progression. We performed a meta-analysis of miR expression profile studies in human diabetes mellitus (DM) and the data suggested that miR-9 and miR-29a were highly expressed in patients with DM, which was further verified in serum samples collected from 30 patients diagnosed as DM. Besides, ISL1 was confirmed to be a target gene of miR-9 and miR-29a. Lentivirus-mediated forced expression of insulin gene enhancer binding protein-1 (ISL1) activated the sonic hedgehog (SHH) signaling pathway, increased motor nerve conduction velocity and threshold of nociception, and modulated expression of neurotrophic factors in sciatic nerves in rats with DM developed by intraperitoneal injection of 0.45% streptozotocin, suggesting that ISL1 could delay DM progression and promote neural regeneration and repair after sciatic nerve damage. However, lentivirus-mediated forced expression of miR-9 or miR-29a exacerbated DM and antagonized the beneficial effect of ISL1 on DPN. Collectively, this study revealed potential roles of miR-9 and miR-29a as contributors to DPN development through the SHH signaling pathway by binding to ISL1. Additionally, the results provided an experimental basis for the targeted intervention treatment of miR-9 and miR-29a.
Collapse
Affiliation(s)
- Qin Sun
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Jun Zeng
- Chengdu Medical College, Chengdu 610500, P. R. China
| | - Yang Liu
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - JingYan Chen
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Qing-Cui Zeng
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Yan-Qiu Chen
- Department of Neurology, People's Hospital of Chongqing Yubei, Chongqing 401120, P. R. China
| | - Li-Li Tu
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Ping Chen
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Fan Yang
- Department of General Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Min Zhang
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| |
Collapse
|
10
|
Li Y, Mai Y, Qiu X, Chen X, Li C, Yuan W, Hou N. Effect of long-term treatment of Carvacrol on glucose metabolism in Streptozotocin-induced diabetic mice. BMC Complement Med Ther 2020; 20:142. [PMID: 32393384 PMCID: PMC7216511 DOI: 10.1186/s12906-020-02937-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Carvacrol is a food additive with various bioactivities, including reducing the blood glucose level as well as improvement of heart function, in diabetic mice. We explored the antihyperglycemic effect of carvacrol and its effect on the key hepatic enzymes accounting for glucose metabolism. METHODS A streptozotocin (STZ)-induced diabetes-mellitus model in mice was used. Mice were divided randomly into a control group, diabetic group, low dose carvacrol-treated diabetic group (10 mg/kg body weight [BW]), and high dose carvacrol-treated diabetic group (20 mg/kg BW). Carvacrol was injected intraperitoneally (i.p.) in each carvacrol-treated group daily for 4 weeks and 6 weeks, respectively. The level of random plasma glucose, fasting plasma glucose, and plasma insulin was determined at 4 weeks and 6 weeks after carvacrol administration. The plasma level of total cholesterol (TC), triglycerides (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and the activity of hepatic key enzymes related to glucose metabolism were determined. RESULTS Carvacrol treatment decreased the levels of random plasma glucose and fasting plasma glucose, significantly in a dose-dependent manner. A significant improvement in glucose tolerance and a significant decrease in the plasma level of TG were observed in carvacrol-treated diabetic mice at a dose of 20 mg/kg BW compared with that in vehicle-treated diabetic mice. There was no significant difference in the plasma level of TC and insulin between vehicle-treated diabetic mice and carvacrol-treated diabetic mice. Carvacrol treatment at a dose of 20 mg/kg BW significantly reduced the plasma level of LDH but not AST, ALT, or ALP, compared with that in the vehicle-treated diabetic group. The activity of hexokinase (HK), 6-phosphofructokinase (PFK), and citrate synthetase (CS) was increased by carvacrol treatment in diabetic mice. CONCLUSIONS Carvacrol exerted an anti-hyperglycemic effect in STZ-induced diabetic mice. This was achieved through regulating glucose metabolism by increasing the activity of the hepatic enzymes HK, PFK, and CS.
Collapse
Affiliation(s)
- Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yunpei Mai
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoxia Qiu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Conglin Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
11
|
Sahinturk V, Kacar S, Sahin E, Aykanat NEB. Investigation of endoplasmic reticulum stress and sonic hedgehog pathway in diabetic liver injury in mice. Life Sci 2020; 246:117416. [PMID: 32035927 DOI: 10.1016/j.lfs.2020.117416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/31/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
AIMS Diabetes is a common metabolic disease which damages many organs including the liver and causes endoplasmic reticulum (ER) stress, which originates from non-folded proteins. Sonic hedgehog (Shh) pathway plays a role in liver regeneration and repair. To our knowledge, there is no study showing the relation between ER stress and Shh pathway in the liver in diabetes. Thus, the aim of this study was to investigate the interaction between ER stress and Shh pathway in the liver of diabetic mice. MAIN METHODS Six groups of male mice were formed as control, diabetes (streptozotocine-treated), Shh activator (SAG-treated), Shh inhibitor (SANT1-treated), diabetes + SAG and diabetes + SANT1. At the end of the experiment, mice were weighed, anaesthetized and euthanized. Blood samples were collected, livers were excised and weighed. Thereafter, blood glucose, serum ALT and AST levels, TOS and TAC levels in liver tissue were measured. ER stress marker (GRP78) and Shh pathway molecules (Gli1 and Smo) were evaluated by immunohistochemistry, H-score and western blot analyses. Besides, histopathological examination was performed. KEY FINDINGS Results showed that GRP78, Gli1 and Smo were increased in liver due to Type 1 diabetes. The SAG agent decreased GRP78 and increased Gli1 and Smo, leading to liver repair, while the inhibitor SANT1 increased GRP78 and decreased Gli1and Smo, causing progression of the liver stress induced by diabetes. SIGNIFICANCE In conclusion, the Shh pathway is related to ER stress and may provide a new strategy for its treatment, especially liver stress induced by diabetes.
Collapse
Affiliation(s)
- Varol Sahinturk
- Ekisehir Osmangazi University, Faculty of Medicine, Department of Histology and Embryology, Eskisehir, Turkey.
| | - Sedat Kacar
- Ekisehir Osmangazi University, Faculty of Medicine, Department of Histology and Embryology, Eskisehir, Turkey
| | - Erhan Sahin
- Ekisehir Osmangazi University, Faculty of Medicine, Department of Histology and Embryology, Eskisehir, Turkey
| | - Nuriye Ezgi Bektur Aykanat
- Ekisehir Osmangazi University, Faculty of Medicine, Department of Histology and Embryology, Eskisehir, Turkey
| |
Collapse
|
12
|
Giarretta I, Gaetani E, Bigossi M, Tondi P, Asahara T, Pola R. The Hedgehog Signaling Pathway in Ischemic Tissues. Int J Mol Sci 2019; 20:ijms20215270. [PMID: 31652910 PMCID: PMC6862352 DOI: 10.3390/ijms20215270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) proteins are prototypical morphogens known to regulate epithelial/mesenchymal interactions during embryonic development. In addition to its pivotal role in embryogenesis, the Hh signaling pathway may be recapitulated in post-natal life in a number of physiological and pathological conditions, including ischemia. This review highlights the involvement of Hh signaling in ischemic tissue regeneration and angiogenesis, with particular attention to the heart, the brain, and the skeletal muscle. Updated information on the potential role of the Hh pathway as a therapeutic target in the ischemic condition is also presented.
Collapse
Affiliation(s)
- Igor Giarretta
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Eleonora Gaetani
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Margherita Bigossi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Paolo Tondi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Roberto Pola
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
13
|
Hou N, Mai Y, Qiu X, Yuan W, Li Y, Luo C, Liu Y, Zhang G, Zhao G, Luo JD. Carvacrol Attenuates Diabetic Cardiomyopathy by Modulating the PI3K/AKT/GLUT4 Pathway in Diabetic Mice. Front Pharmacol 2019; 10:998. [PMID: 31572181 PMCID: PMC6751321 DOI: 10.3389/fphar.2019.00998] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM), a common complication of diabetes mellitus, eventually leads to heart failure. Carvacrol is a food additive with diverse bioactivities. We aimed to study the protective effects and mechanisms of carvacrol in DCM. Methods: We used a streptozotocin-induced and db/db mouse model of types 1 and 2 diabetes mellitus (T1DM and T2DM), respectively. Both study groups received daily intraperitoneal injections of carvacrol for 6 weeks. Cardiac remodeling was evaluated by histological analysis. We determined gene expression of cardiac remodeling markers (Nppa and Myh7) by quantitative real-time PCR and cardiac function by echocardiography. Changes of PI3K/AKT signaling were determined with Western blotting. GLUT4 translocation was evaluated by Western blotting and immunofluorescence staining. Results: Compared with control mice, both T1DM and T2DM mice showed cardiac remodeling and left ventricular dysfunction. Carvacrol significantly reduced blood glucose levels and suppressed cardiac remodeling in mice with T1DM and T2DM. At the end of the treatment period, both T1DM and T2DM mice showed lesser cardiac hypertrophy, Nppa and Myh7 mRNA expressions, and cardiac fibrosis, compared to mice administered only the vehicle. Moreover, carvacrol significantly restored PI3K/AKT signaling, which was impaired in mice with T1DM and T2DM. Carvacrol increased levels of phosphorylated PI3K, PDK1, AKT, and AS160 and inhibited PTEN phosphorylation in mice with T1DM and T2DM. Carvacrol treatment promoted GLUT4 membrane translocation in mice with T1DM and T2DM. Metformin was used as the positive drug control in T2DM mice, and carvacrol showed comparable effects to that of metformin on cardiac remodeling and modulation of signaling pathways. Conclusion: Carvacrol protected against DCM in mice with T1DM and T2DM by restoring PI3K/AKT signaling-mediated GLUT4 membrane translocation and is a potential treatment of DCM.
Collapse
Affiliation(s)
- Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunpei Mai
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Medical Technology, Forevergen Biosciences Center, Guangzhou, China
| | - Xiaoxia Qiu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenchang Yuan
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengfeng Luo
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guiping Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ganjiang Zhao
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Dong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Xiao Q, Zhao XY, Jiang RC, Chen XH, Zhu X, Chen KF, Chen SY, Zhang XL, Qin Y, Liu YH, Luo JD. Increased expression of Sonic hedgehog restores diabetic endothelial progenitor cells and improves cardiac repair after acute myocardial infarction in diabetic mice. Int J Mol Med 2019; 44:1091-1105. [PMID: 31524224 PMCID: PMC6657988 DOI: 10.3892/ijmm.2019.4277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Damaged endothelial progenitor cells (EPCs) are associated with poor prognosis in diabetic myocardial infarction (DMI). Our previous studies revealed that an impaired Sonic hedgehog (Shh) pathway contributes to insufficient function in diabetic EPCs; however, the roles of the Shh pathway in diabetic EPC apoptosis under basal and hypoxic/ischemic conditions remain unknown. Therefore, the present study investigated whether Shh revitalized diabetic EPCs and consequently improved the deteriorative status of DMI. For this purpose, streptozotocin injection was used in male C57/BL6 mice to induce type-1 diabetes, and diabetic EPCs were isolated from the bone marrow. Apoptosis, cell function, and protein expression were investigated in EPCs in vitro. Mouse hearts were injected with adenovirus Shh-modified diabetic EPCs (DM-EPCShh) or control DM-EPCNull immediately after coronary artery ligation in vivo. Cardiac function, capillary numbers, fibrosis, and cell apoptosis were then detected. First, the in vitro results demonstrated that the apoptosis of diabetic EPCs was reduced following treatment with Shh protein for 24 h, under normal or hypoxic conditions. BMI1 proto-oncogene (Bmi1), an antiapoptotic protein found in several cells, was reduced in diabetic EPCs under normal or hypoxic conditions, but was upregulated after Shh protein stimulation. When Bmi1-siRNA was administered, the antiapoptotic effect of Shh protein was significantly reversed. In addition, p53, a Bmi1-targeted gene, was demonstrated to mediate the antiapoptotic effect of the Shh/Bmi1 pathway in diabetic EPCs. The Shh/Bmi1/p53 axis also enhanced the diabetic EPC function. In vivo, Shh-modified diabetic EPCs exhibited increased EPC retention and decreased apoptosis at 3 days post-DMI. At 14 days post-DMI, these cells presented enhanced capillary density, reduced myocardial fibrosis and improved cardiac function. In conclusion, the present results demonstrated that the Shh pathway restored diabetic EPCs through the Shh/Bmi1/p53 axis, suppressed myocardial apoptosis and improved myocardial angiogenesis, thus reducing cardiac fibrosis and finally restoring myocardial repair and cardiac function in DMI. Thus, the Shh pathway may serve as a potential target for autologous cell therapy in diabetic myocardial ischemia.
Collapse
Affiliation(s)
- Qing Xiao
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiao-Ya Zhao
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ru-Chao Jiang
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiu-Hui Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiang Zhu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Kai-Feng Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Sheng-Ying Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiao-Ling Zhang
- Maternal and Children Hospital of Guangdong Province, Guangzhou, Guangdong 510260, P.R. China
| | - Yuan Qin
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ying-Hua Liu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jian-Dong Luo
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
15
|
Role of Hedgehog Signaling in Vasculature Development, Differentiation, and Maintenance. Int J Mol Sci 2019; 20:ijms20123076. [PMID: 31238510 PMCID: PMC6627637 DOI: 10.3390/ijms20123076] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
The role of Hedgehog (Hh) signaling in vascular biology has first been highlighted in embryos by Pepicelli et al. in 1998 and Rowitch et al. in 1999. Since then, the proangiogenic role of the Hh ligands has been confirmed in adults, especially under pathologic conditions. More recently, the Hh signaling has been proposed to improve vascular integrity especially at the blood–brain barrier (BBB). However, molecular and cellular mechanisms underlying the role of the Hh signaling in vascular biology remain poorly understood and conflicting results have been reported. As a matter of fact, in several settings, it is currently not clear whether Hh ligands promote vessel integrity and quiescence or destabilize vessels to promote angiogenesis. The present review relates the current knowledge regarding the role of the Hh signaling in vasculature development, maturation and maintenance, discusses the underlying proposed mechanisms and highlights controversial data which may serve as a guideline for future research. Most importantly, fully understanding such mechanisms is critical for the development of safe and efficient therapies to target the Hh signaling in both cancer and cardiovascular/cerebrovascular diseases.
Collapse
|
16
|
Giarretta I, Gatto I, Marcantoni M, Lupi G, Tonello D, Gaetani E, Pitocco D, Iezzi R, Truma A, Porfidia A, Visonà A, Tondi P, Pola R. Microparticles Carrying Sonic Hedgehog Are Increased in Humans with Peripheral Artery Disease. Int J Mol Sci 2018; 19:ijms19123954. [PMID: 30544841 PMCID: PMC6320804 DOI: 10.3390/ijms19123954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 02/03/2023] Open
Abstract
Sonic hedgehog (Shh) is a prototypical angiogenic agent with a crucial role in the regulation of angiogenesis. Experimental studies have shown that Shh is upregulated in response to ischemia. Also, Shh may be found on the surface of circulating microparticles (MPs) and MPs bearing Shh (Shh + MPs) have shown the ability to contribute to reparative neovascularization after ischemic injury in mice. The goal of this study was to test the hypothesis that, in humans with peripheral artery disease (PAD), there is increased number of circulating Shh + MPs. This was done by assessing the number of Shh + MPs in plasma of patients with PAD and control subjects without PAD. We found significantly higher number of Shh + MPs in plasma of subjects with PAD, compared to controls, while the global number of MPs—produced either by endothelial cells, platelets, leukocytes, and erythrocytes—was not different between PAD patients and controls. We also found a significant association between the number of Shh + MPs and the number of collateral vessels in the ischemic limbs of PAD patients. Interestingly, the concentration of Shh protein unbound to MPs—which was measured in MP-depleted plasma—was not different between subjects with PAD and the controls, indicating that, in the setting of PAD, the call for Shh recapitulation does not lead to secretion of protein into the blood but to binding of the protein to the membrane of MPs. These findings provide novel information on Shh signaling during ischemia in humans, with potentially important biological and clinical implications.
Collapse
Affiliation(s)
- Igor Giarretta
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Ilaria Gatto
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Margherita Marcantoni
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Giulia Lupi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Diego Tonello
- Unit of Angiology, S. Giacomo Hospital, 31033 Castelfranco Veneto, Italy.
| | - Eleonora Gaetani
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Dario Pitocco
- Diabetology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Roberto Iezzi
- Department of Radiological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Addolorata Truma
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Angelo Porfidia
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Adriana Visonà
- Unit of Angiology, S. Giacomo Hospital, 31033 Castelfranco Veneto, Italy.
| | - Paolo Tondi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Roberto Pola
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
17
|
Salybekov AA, Salybekova AK, Pola R, Asahara T. Sonic Hedgehog Signaling Pathway in Endothelial Progenitor Cell Biology for Vascular Medicine. Int J Mol Sci 2018; 19:E3040. [PMID: 30301174 PMCID: PMC6213474 DOI: 10.3390/ijms19103040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/08/2023] Open
Abstract
The Hedgehog (HH) signaling pathway plays an important role in embryonic and postnatal vascular development and in maintaining the homeostasis of organs. Under physiological conditions, Sonic Hedgehog (SHH), a secreted protein belonging to the HH family, regulates endothelial cell growth, promotes cell migration and stimulates the formation of new blood vessels. The present review highlights recent advances made in the field of SHH signaling in endothelial progenitor cells (EPCs). The canonical and non-canonical SHH signaling pathways in EPCs and endothelial cells (ECs) related to homeostasis, SHH signal transmission by extracellular vesicles (EVs) or exosomes containing single-strand non-coding miRNAs and impaired SHH signaling in cardiovascular diseases are discussed. As a promising therapeutic tool, the possibility of using the SHH signaling pathway for the activation of EPCs in patients suffering from cardiovascular diseases is further explored.
Collapse
Affiliation(s)
- Amankeldi A Salybekov
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 2591193, Japan.
| | - Ainur K Salybekova
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 2591193, Japan.
| | - Roberto Pola
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 2591193, Japan.
| |
Collapse
|
18
|
Oh JY, Suh HN, Choi GE, Lee HJ, Jung YH, Ko SH, Kim JS, Chae CW, Lee CK, Han HJ. Modulation of sonic hedgehog-induced mouse embryonic stem cell behaviours through E-cadherin expression and integrin β1-dependent F-actin formation. Br J Pharmacol 2018; 175:3548-3562. [PMID: 29933500 DOI: 10.1111/bph.14423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The sonic hedgehog pathway (Shh) plays a central role in maintaining stem cell function and behaviour in various processes related to self-renewal and tissue regeneration. However, the therapeutic effect of Shh on mouse embryonic stem cells (mESCs) has not yet been clearly elucidated. Thus, we investigated the effect of Shh on the regulation of mESC behaviour as well as the effect of Shh-pretreated mESCs in skin wound healing. EXPERIMENTAL APPROACH The underlying mechanisms of Shh signalling pathway in growth and motility of mESCs were investigated using Western blot analysis, a cell proliferation assay and cell migration assay. In addition, the effect of Shh-pretreated mESCs in skin wound healing was determined using a mouse excisional wound splinting model. KEY RESULTS Shh disrupted the adherens junction through proteolysis by activating MMPs. In addition, the release of β-catenin from adherens junctions mediated by Shh led to cell cycle-dependent mESC proliferation. Shh-mediated Gli1 expression led to integrin β1 up-regulation, followed by FAK and Src phosphorylation. Furthermore, among the Rho-GTPases, Rac1 and Cdc42 were activated in a Shh-dependent manner while F-actin expression was suppressed by Rac1 and Cdc42 siRNA transfection. Consistent with the in vitro results, the skin wound healing assay revealed that Shh-treated mESCs increased angiogenesis and skin wound repair compared to that in Shh-treated mESCs transfected with integrin β1 siRNA in vivo. CONCLUSIONS AND IMPLICATIONS Our results imply that Shh induces adherens junction disruption and integrin β1-dependent F-actin formation by a mechanism involving FAK/Src and Rac1/Cdc42 signalling pathways in mESCs.
Collapse
Affiliation(s)
- Ji Young Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea.,Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Han Na Suh
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea.,Minipig Model Group, Animal Model Center, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - So Hee Ko
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang, Kangwon do, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Gao J, Zhao G, Li W, Zhang J, Che Y, Song M, Gao S, Zeng B, Wang Y. MiR-155 targets PTCH1 to mediate endothelial progenitor cell dysfunction caused by high glucose. Exp Cell Res 2018; 366:55-62. [PMID: 29545091 DOI: 10.1016/j.yexcr.2018.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/31/2022]
Abstract
Endothelial progenitor cells (EPCs) are involved in diabetes-associated complications, including diabetic foot ulcer (DFU). Recent reports showed that miR-155 downregulation promotes wound healing in diabetic rats and ameliorates endothelial injury induced by high glucose, but its role in DFU is unknown. We found that miR-155 was overexpressed in EPCs from patients with DFU and in high glucose-induced EPCs from healthy people. Reductions in cell viability, migration, tube formation and nitric oxide production, as well as increases in lactated hydrogenase, cell apoptosis, and reactive oxygen species induced by high glucose, were enhanced by miR-155 overexpression and restrained by miR-155 inhibition. Additionally, dual-luciferase reporter assay demonstrated that miR-155 directly targeted the 3' untranslated region of patched-1 (PTCH1), a receptor of the sonic hedgehog signaling pathway, and downregulated the mRNA and protein expression of PTCH1. qRT-PCR and Western blot results revealed that the PTCH1 was downregulated in EPCs treated with high glucose. Silencing PTCH1 by PTCH1 siRNA alleviated the protective effect of anti-miR-155 on high glucose-induced EPC dysfunction. Our results indicate that miR-155 worsened high glucose-induced EPC function by downregulating PTCH1. These findings suggest that miR-155 may be a potential therapeutic target for DFU.
Collapse
Affiliation(s)
- Jie Gao
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China
| | - Gang Zhao
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China
| | - Wei Li
- Heilongjiang fire hospital, Harbin, Heilongjiang 150026, China
| | - Jiayuan Zhang
- Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yanling Che
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China
| | - Meiyu Song
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Shan Gao
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Bin Zeng
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Yuanhong Wang
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
20
|
Bhatwadekar AD, Duan Y, Korah M, Thinschmidt JS, Hu P, Leley SP, Caballero S, Shaw L, Busik J, Grant MB. Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: Implications for bone marrow rejuvenation. Vision Res 2017; 139:211-220. [PMID: 29042190 DOI: 10.1016/j.visres.2017.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
The widespread nature of diabetes affects all organ systems of an individual including the bone marrow. Long-term damage to the cellular and extracellular components of the bone marrow leads to a rapid decline in the bone marrow-hematopoietic stem/progenitor cells (HS/PCs) compartment. This review will highlight the importance of bone marrow microenvironment in maintaining bone marrow HS/PC populations and the contribution of these key populations in microvascular repair during the natural history of diabetes. The autonomic nervous system can initiate and propagate bone marrow dysfunction in diabetes. Systemic pharmacological strategies designed to protect the bone marrow-HS/PC population from diabetes induced-oxidative stress and advanced glycation end product accumulation represent a new approach to target diabetic retinopathy progression. Protecting HS/PCs ensures their participation in vascular repair and reduces the risk of vasogdegeneration occurring in the retina.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA.
| | - Yaqian Duan
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Maria Korah
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA
| | | | - Ping Hu
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Sameer P Leley
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Sergio Caballero
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA
| | - Lynn Shaw
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Julia Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Maria B Grant
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
21
|
Huaitong X, Yuanyong F, Yueqin T, Peng Z, Wei S, Kai S. Microvesicles releasing by oral cancer cells enhance endothelial cell angiogenesis via Shh/RhoA signaling pathway. Cancer Biol Ther 2017; 18:783-791. [PMID: 28886265 DOI: 10.1080/15384047.2017.1373213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to investigate the significance of hedgehog signaling pathway in association with clinicopathology parameters and its effect on angiogenesis in oral squamous cell carcinoma (OSCC). The expression of Sonic Hh (Shh) and Gli1 were done on primary tumors and metastatic lymph nodes in OSCC samples from 80 patients by immunohistochemical analysis. The western blot was used to examine the expression of Shh in OSCC cell lines and OSCC-derived microvesicles (MVs). The role of Shh carried by MVs to induce endothelial cell angiogenesis was further investigated by matrigel assay. Our results indicated that the expression of Shh was positive associated with microvesseldentisty(MVD), TNM stage, tumor recurrence and lymph node metastasis. Moreover, Shh and Gli1 expression were higher in paired metastatic lymph nodes compared with expression of their primary tumors. The expression of Shh was abundant in Cal27, and present in SCC4, SCC9, and the amount of Shh protein in Cal27 targeting MVs was increased significantly than Cal27 cell group, up to ∼ fifth-fold. The Cal27 derived MVs increased significantly angiogenesis of HUVECs in vitro, and this effect was blocked with exoenzyme C3 transferase (C3) and shRNA targeting RhoA by suppressing RhoA expression and activation. The data suggested that OSCC derived Shh carried by MVs may facilitate the tumor growth and modulate the preparation of a vascular network in primary tumor and/or premetastatic niche.
Collapse
Affiliation(s)
- Xiao Huaitong
- a School of Stomatology , Qingdao University , Shandong Province , China
| | - Feng Yuanyong
- a School of Stomatology , Qingdao University , Shandong Province , China
| | - Tao Yueqin
- a School of Stomatology , Qingdao University , Shandong Province , China
| | - Zhao Peng
- a School of Stomatology , Qingdao University , Shandong Province , China
| | - Shang Wei
- a School of Stomatology , Qingdao University , Shandong Province , China.,b Department of Oral & Maxillofacial Surgery , the Affiliated Hospital of Qingdao University , Shandong Province , China
| | - Song Kai
- a School of Stomatology , Qingdao University , Shandong Province , China.,b Department of Oral & Maxillofacial Surgery , the Affiliated Hospital of Qingdao University , Shandong Province , China
| |
Collapse
|
22
|
You J, Sun J, Ma T, Yang Z, Wang X, Zhang Z, Li J, Wang L, Ii M, Yang J, Shen Z. Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells. Stem Cell Res Ther 2017; 8:182. [PMID: 28774328 PMCID: PMC5543575 DOI: 10.1186/s13287-017-0636-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/22/2017] [Accepted: 07/21/2017] [Indexed: 01/01/2023] Open
Abstract
Background Neovascularization is impaired in diabetes mellitus, which leads to the development of peripheral arterial disease and is mainly attributed to the dysfunction of endothelial progenitor cells (EPCs). Previous studies proved the promotional effect of curcumin on neovascularization in wound healing of diabetes. Thus, we hypothesize that curcumin could promote neovascularization at sites of hindlimb ischemia in diabetes and might take effect via modulating the function of EPCs. Methods Streptozotocin-induced type 1 diabetic mice and nondiabetic mice both received unilateral hindlimb ischemic surgery. Curcumin was then administrated to the mice by lavage for 14 days consecutively. Laser Doppler perfusion imaging was conducted to demonstrate the blood flow reperfusion. Capillary density was measured in the ischemic gastrocnemius muscle. In addition, angiogenesis, migration, proliferation abilities, and senescence were determined in EPCs isolated from diabetic and nondiabetic mice. Quantitative PCR was then used to determine the mRNA expression of vascular endothelial growth factor (VEGF) and angiopoetin-1 (Ang-1) in EPCs. Results Curcumin application to type 1 diabetic mice significantly improved blood reperfusion and increased the capillary density in ischemic hindlimbs. The in-vitro study also revealed that the angiogenesis, migration, and proliferation abilities of EPCs and the number of senescent EPCs were reversed by curcumin application. Quantitative PCR confirmed the overexpression of VEGF-A and Ang-1 in EPCs after curcumin treatment. Conclusion Curcumin could enhance neovascularization via promoting the function of EPCs in a diabetic mouse hindlimb ischemia model. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0636-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinzhi You
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Teng Ma
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Xu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhiwei Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Longgang Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Masaaki Ii
- Division of Research Animal Laboratory and Translational Medicine, Osaka Medical College, Osaka, Japan
| | - Junjie Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| |
Collapse
|
23
|
Henno P, Grassin-Delyle S, Belle E, Brollo M, Naline E, Sage E, Devillier P, Israël-Biet D. In smokers, Sonic hedgehog modulates pulmonary endothelial function through vascular endothelial growth factor. Respir Res 2017; 18:102. [PMID: 28535764 PMCID: PMC5442874 DOI: 10.1186/s12931-017-0590-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Background Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. Methods The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase–quantitative polymerase chain reactions. Results Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10−4M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring’s endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. Conclusion SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.
Collapse
Affiliation(s)
- Priscilla Henno
- Sorbonne Paris Cité, Université Paris-Descartes, Paris, France. .,AP-HP, Hôpital Européen Georges Pompidou, Service de Physiologie, Explorations Fonctionnelles Respiratoires et du Sommeil, 75015, Paris, France. .,UPRES EA220, Université Versailles Saint-Quentin, Université Paris-Saclay, F-92150, Suresnes, France.
| | - Stanislas Grassin-Delyle
- Plateforme de Spectrométrie de Masse & INSERM UMR1173, UFR Sciences de la Santé Simone Veil, Université Versailles Saint Quentin, Université Paris-Saclay, 78180, Montigny-le-Bretonneux, France.,Département des Maladies des Voies Respiratoires, Hôpital Foch, F-92150, Suresnes, France
| | - Emeline Belle
- UPRES EA220, Université Versailles Saint-Quentin, Université Paris-Saclay, F-92150, Suresnes, France
| | - Marion Brollo
- UPRES EA220, Université Versailles Saint-Quentin, Université Paris-Saclay, F-92150, Suresnes, France
| | - Emmanuel Naline
- UPRES EA220, Université Versailles Saint-Quentin, Université Paris-Saclay, F-92150, Suresnes, France.,Département des Maladies des Voies Respiratoires, Hôpital Foch, F-92150, Suresnes, France
| | - Edouard Sage
- Service de Chirurgie Thoracique, Département des Maladies des Voies Respiratoires, Hôpital Foch, F-92150, Suresnes, France
| | - Philippe Devillier
- UPRES EA220, Université Versailles Saint-Quentin, Université Paris-Saclay, F-92150, Suresnes, France.,Département des Maladies des Voies Respiratoires, Hôpital Foch, F-92150, Suresnes, France
| | - Dominique Israël-Biet
- Sorbonne Paris Cité, Université Paris-Descartes, Paris, France.,AP-HP; Hôpital Européen Georges Pompidou, Service de Pneumologie, 75015, Paris, France
| |
Collapse
|
24
|
Hh signaling in regeneration of the ischemic heart. Cell Mol Life Sci 2017; 74:3481-3490. [PMID: 28523343 PMCID: PMC5589787 DOI: 10.1007/s00018-017-2534-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/23/2022]
Abstract
Myocardial infarction (MI) is caused by the occlusion of a coronary artery due to underlying atherosclerosis complicated by localized thrombosis. The blockage of blood flow leads to cardiomyocyte (CM) death in the infarcted area. Adult mammalian cardiomyocytes have little capacity to proliferate in response to injury; however, some pathways active during embryogenesis and silent during adult life are recruited in response to tissue injury. One such example is hedgehog (Hh) signaling. Hh is involved in the embryonic development of the heart and coronary vascular system. Pathological conditions including ischemia activate Hh signaling in adult tissues. This review highlights the involvement of Hh signaling in ischemic tissue regeneration with a particular emphasis on heart regeneration and discusses its potential role as a therapeutic agent.
Collapse
|