1
|
Ma Y, Yang H, Wang X, Huang Y, Li Y, Pan G. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118968. [PMID: 39427739 DOI: 10.1016/j.jep.2024.118968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a globally increasing disease. Despite continuous efforts, the clinical application of treatment drugs has not achieved satisfactory success and faces limitations such as adverse drug reactions. Numerous investigations have found that the pathogenesis of IBD is connected with disturbances in bile acid circulation and metabolism. Traditional Chinese medicine targeting bile acids (BAs) has shown significant therapeutic effects and advantages in treating inflammatory bowel disease. AIM OF THIS REVIEW IThis article reviews the role of bile acids and their receptors in IBD, as well as research progress on IBD therapeutic drugs based on bile acids. It explores bile acid metabolism and its interaction with the intestinal microbiota, summarizes clinical drugs for treating IBD including single herbal medicine, traditional herbal prescriptions, and analyzes the mechanisms of action in treating IBD. MATERIALS AND METHODS IThe electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature up to January 2024, using keywords "bile acid", "bile acid receptor", "inflammatory bowel disease", "intestinal microbiota" and "targeted drugs". RESULTS IImbalance in bile acid levels can lead to intestinal inflammation, while IBD can disrupt the balance of microbes, result in alterations in the bile acid pool's composition and amount. This change can damage of intestinal mucosa healing ability. Bile acids are vital for keeping the gut barrier function intact, regulating gene expression, managing metabolic equilibrium, and influencing the properties and roles of the gut's microbial community. Consequently, focusing on bile acids could offer a potential treatment strategy for IBD. CONCLUSION IIBD can induce intestinal homeostasis imbalance and changes in BA pool, leading to fluctuations in levels of relevant metabolic enzymes, transporters, and nuclear receptors. Therefore, by regulating the balance of BA and key signaling molecules of bile acids, we can treat IBD. Traditional Chinese medicine has great potential and promising prospects in treating IBD. We should focus on the characteristics and advantages of Chinese medicine, promote the development and clinical application of innovative Chinese medicine, and ultimately make Chinese medicine targeting bile acids the mainstream treatment for IBD.
Collapse
Affiliation(s)
- Yueyue Ma
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Haoze Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China.
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| |
Collapse
|
2
|
Biagioli M, Di Giorgio C, Massa C, Marchianò S, Bellini R, Bordoni M, Urbani G, Roselli R, Lachi G, Morretta E, Piaz FD, Charlier B, Fiorillo B, Catalanotti B, Cari L, Nocentini G, Ricci P, Distrutti E, Festa C, Sepe V, Zampella A, Monti MC, Fiorucci S. Microbial-derived bile acid reverses inflammation in IBD via GPBAR1 agonism and RORγt inverse agonism. Biomed Pharmacother 2024; 181:117731. [PMID: 39657506 DOI: 10.1016/j.biopha.2024.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
The interplay between the dysbiotic microbiota and bile acids is a critical determinant for development of a dysregulated immune system in inflammatory bowel disease (IBD). Here we have investigated the fecal bile acid metabolome, gut microbiota composition, and immune responses in IBD patients and murine models of colitis and found that IBD associates with an elevated excretion of primary bile acids while secondary, allo- and oxo- bile acids were reduced. These changes correlated with the disease severity, mucosal expression of pro-inflammatory cytokines and chemokines, and reduced inflow of anti-inflammatory macrophages and Treg in the gut. Analysis of bile acids metabolome in the feces allowed the identification of five bile acids: 3-oxo-DCA, 3-oxo-LCA, allo-LCA, iso-allo-LCA and 3-oxo-UDCA, whose excretion was selectively decreased in IBD patients and diseased mice. By transactivation assay and docking calculations all five bile acids were shown to act as GPBAR1 agonists and RORγt inverse agonists, skewing Th17/Treg ratio and macrophage polarization toward an M2 phenotype. In a murine model of colitis, administration of 3-oxo-DCA suffices to reverse colitis development and intestinal dysbiosis in a GPBAR1-dependent manner. In vivo administration of 3-oxo-DCA to colitic mice also reverses disease severity and RORγt activation induced by a RORγt agonist and IL-23, a Th17 inducing cytokine. These results demonstrated that intestinal excretion of 3-oxoDCA, a dual GPBAR1 agonist and RORγt inverse agonist, is reduced in IBD and in models of colitis and its restitution protects against colitis development, highlighting a potential role for this agent in IBD management.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Bar Pharmaceuticals s.r.l., Via Gramsci 88/A, Reggio Emilia 42124, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ginevra Lachi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Bruno Charlier
- University hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Festa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
3
|
Willemsen S, Yengej FAY, Puschhof J, Rookmaaker MB, Verhaar MC, van Es J, Beumer J, Clevers H. A comprehensive transcriptome characterization of individual nuclear receptor pathways in the human small intestine. Proc Natl Acad Sci U S A 2024; 121:e2411189121. [PMID: 39475639 PMCID: PMC11551338 DOI: 10.1073/pnas.2411189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 11/13/2024] Open
Abstract
Nuclear receptors (NRs) are widely expressed transcription factors that bind small, lipophilic compounds and regulate diverse biological processes. In the small intestine, NRs are known to act as sensors that control transcriptional responses to endogenous and exogenous signals, yet their downstream effects have not been characterized extensively. Here, we investigate the activation of six different NRs individually in human intestinal organoids using small molecules agonists. We observe changes in key enterocyte functions such as lipid, glucose, and amino acid absorption, the regulation of electrolyte balance, and drug metabolism. Our findings reinforce PXR, LXR, FXR, and PPARα as regulators of lipid absorption. Furthermore, known hepatic effects of AHR and VDR activation were recapitulated in the human small intestine. Finally, we identify unique target genes for intestinal PXR activation (ERG28, TMEM97, and TM7SF2), LXR activation (RAB6B), and VDR activation (CA12). This study provides an unbiased and comprehensive transcriptomic description of individual NR pathways in the human small intestine. By gaining a deeper understanding of the effects of individual NRs, we might better harness their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Sam Willemsen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- Junior Research Group Epithelium Microbiome Interactions, German Cancer Research Center, Heidelberg69120, Germany
| | | | | | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- Institute of Human Biology, Roche Innovation Center Basel, Basel4058, Switzerland
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht3584 CS, The Netherlands
- Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, BaselCH-4070, Switzerland
| |
Collapse
|
4
|
Fiorucci S, Urbani G, Biagioli M, Sepe V, Distrutti E, Zampella A. Bile acids and bile acid activated receptors in the treatment of Covid-19. Biochem Pharmacol 2024; 228:115983. [PMID: 38081371 DOI: 10.1016/j.bcp.2023.115983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 09/20/2024]
Abstract
Since its first outbreak in 2020, the pandemic caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) has caused the death of almost 7 million people worldwide. Vaccines have been fundamental in disease prevention and to reduce disease severity especially in patients with comorbidities. Nevertheless, treatment of COVID-19 has been proven difficult and several approaches have failed to prevent disease onset or disease progression, particularly in patients with comorbidities. Interrogation of drug data bases has been widely used since the beginning of pandemic to repurpose existing drugs/natural substances for the prevention/treatment of COVID-19. Steroids, including bile acids such as ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) have shown to be promising for their potential in modulating SARS-CoV-2/host interaction. Bile acids have proven to be effective in preventing binding of spike protein with the Angiotensin Converting Enzyme II (ACE2), thus preventing virus uptake by the host cells and inhibiting its replication, as well as in indirectly modulating immune response. Additionally, the two main bile acid activated receptors, GPBAR1 and FXR, have proven effective in modulating the expression of ACE2, suggesting an indirect role for these receptors in regulating SARS-CoV-2 infectiveness and immune response. In this review we have examined how the potential of bile acids and their receptors as anti-COVID-19 therapies and how these biochemical mechanisms translate into clinical efficacy.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Current Landscape and Evolving Therapies for Primary Biliary Cholangitis. Cells 2024; 13:1580. [PMID: 39329760 PMCID: PMC11429758 DOI: 10.3390/cells13181580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
6
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
7
|
Long J, Xu Y, Zhang X, Wu B, Wang C. Role of FXR in the development of NAFLD and intervention strategies of small molecules. Arch Biochem Biophys 2024; 757:110024. [PMID: 38703803 DOI: 10.1016/j.abb.2024.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a prevailing etiological agent behind hepatocyte diseases like chronic liver disease. The spectrum of processes involved in NAFLD stages includes hepatic steatosis, non-alcoholic fatty liver, and non-alcoholic steatohepatitis (NASH). Without intervention, the progression of NASH can further deteriorate into cirrhosis and ultimately, hepatocellular carcinoma. The cardinal features that characterize NAFLD are insulin resistance, lipogenesis, oxidative stress and inflammation, extracellular matrix deposition and fibrosis. Due to its complex pathogenesis, existing pharmaceutical agents fail to take a curative or ameliorative effect on NAFLD. Consequently, it is imperative to identify novel therapeutic targets and strategies for NAFLD, ideally to improve the aforementioned key features in patients. As an enterohepatic regulator of bile acid homeostasis, lipid metabolism, and inflammation, FarnesoidX receptor (FXR) is an important pharmacological target for the treatment of NAFLD. Manipulating FXR to regulate lipid metabolic signaling pathways is a potential mechanism to mitigate NAFLD. Therefore, elucidating the modulatory character of FXR in regulating lipid metabolism in NAFLD has the potential to yield groundbreaking perspectives for drug design. This review details recent advances in the regulation of lipid depletion in hepatocytes and investigates the pivotal function of FXR in the progress of NAFLD.
Collapse
Affiliation(s)
- Jiachan Long
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuanhang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuerong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bingxing Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Liu S, Yang S, Blazekovic B, Li L, Zhang J, Wang Y. Bioactivities, Mechanisms, Production, and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases. ENGINEERING 2024; 38:13-26. [DOI: 10.1016/j.eng.2023.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
10
|
Yin D, Zhong Y, Liu H, Hu J. Lipid metabolism regulation by dietary polysaccharides with different structural properties. Int J Biol Macromol 2024; 270:132253. [PMID: 38744359 DOI: 10.1016/j.ijbiomac.2024.132253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Lipid metabolism plays an important role in energy homeostasis maintenance in response to stress. Nowadays, hyperlipidemia-related chronic diseases such as obesity, diabetes, atherosclerosis, and fatty liver pose significant health challenges. Dietary polysaccharides (DPs) have gained attention for their effective lipid-lowering properties. This review examines the multifaceted mechanisms that DPs employ to lower lipid levels in subjects with hyperlipidemia. DPs could directly inhibit lipid intake and absorption, promote lipid excretion, and regulate key enzymes involved in lipid metabolism pathways, including triglyceride and cholesterol anabolism and catabolism, fatty acid oxidation, and bile acid synthesis. Additionally, DPs indirectly improve lipid homeostasis by modulating gut microbiota composition and alleviating oxidative stress. Moreover, the lipid-lowering mechanisms of particular structural DPs (including β-glucan, pectin, glucomannan, inulin, arabinoxylan, and fucoidan) are summarized. The relationship between the structure and lipid-lowering activity of DPs is also discussed based on current researches. Finally, potential breakthroughs and future directions in the development of DPs in lipid-lowering activity are discussed. The paper could provide a reference for further exploring the mechanism of DPs for lipid regulations and utilizing DPs as lipid-lowering dietary ingredients.
Collapse
Affiliation(s)
- Dafang Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Huan Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
11
|
Shvets Y, Khranovska N, Senchylo N, Ostapchenko D, Tymoshenko I, Onysenko S, Kobyliak N, Falalyeyeva T. Microbiota substances modulate dendritic cells activity: A critical view. Heliyon 2024; 10:e27125. [PMID: 38444507 PMCID: PMC10912702 DOI: 10.1016/j.heliyon.2024.e27125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Contemporary research in the field of microbiota shows that commensal bacteria influence physiological activity of different organs and systems of a human organism, such as brain, lungs, immune and metabolic systems. This influence is realized by various processes. One of them is trough modulation of immune mechanisms. Interactions between microbiota and the human immune system are known to be complex and ambiguous. Dendritic cells (DCs) are unique cells, which initiate the development and polarization of adaptive immune response. These cells also interconnect native and specific immune reactivity. A large set of biochemical signals from microbiota in the form of different microbiota associated molecular patterns (MAMPs) and bacterial metabolites that act locally and distantly in the human organism. As a result, commensal bacteria influence the maturity and activity of dendritic cells and affect the overall immune reactivity of the human organism. It then determines the response to pathogenic microorganisms, inflammation, associated with different pathological conditions and even affects the effectiveness of vaccination.
Collapse
Affiliation(s)
- Yuliia Shvets
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Natalia Khranovska
- National Cancer Institute of Ukraine, 33/43 Yuliia Zdanovska Str., Kyiv, Ukraine
| | - Natalia Senchylo
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Danylo Ostapchenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Iryna Tymoshenko
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
| | - Svitlana Onysenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Nazarii Kobyliak
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| |
Collapse
|
12
|
Wang K, Zhang Y, Wang G, Hao H, Wang H. FXR agonists for MASH therapy: Lessons and perspectives from obeticholic acid. Med Res Rev 2024; 44:568-586. [PMID: 37899676 DOI: 10.1002/med.21991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Nonalcoholic fatty liver disease, also called metabolic dysfunction-associated steatotic liver disease, is the most common liver disease worldwide and has no approved pharmacotherapy. Due to its beneficial effects on metabolic regulation, inflammation suppression, cell death prevention, and fibrogenesis inhibition, farnesoid X receptor (FXR) is widely accepted as a promising therapeutic target for nonalcoholic steatosis (NASH) or called metabolic dysfunction-associated steatohepatitis (MASH). Many FXR agonists have been developed for NASH/MASH therapy. Obeticholic acid (OCA) is the pioneering frontrunner FXR agonist and the first demonstrating success in clinical trials. Unfortunately, OCA did not receive regulatory approval as a NASH pharmacotherapy because its moderate benefits did not outweigh its safety risks, which may cast a shadow over FXR-based drug development for NASH/MASH. This review summarizes the milestones in the development of OCA for NASH/MASH and discuss its limitations, including moderate hepatoprotection and the undesirable side effects of dyslipidemia, pruritus, cholelithiasis, and liver toxicity risk, in depth. More importantly, we provide perspectives on FXR-based therapy for NASH/MASH, hoping to support a successful bench-to-clinic transition.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuecan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Hu C, Hu W, Tang B, Bao Q, Jiang X, Tang L, Wang H, He L, Lv M, Xiao Y, Liu C, Li X, Liu Y, Li J, Huang G, Dong Z, Li Z, Guo T, Yang S. Plasma and urine proteomics and gut microbiota analysis reveal potential factors affecting COVID-19 vaccination response. iScience 2024; 27:108851. [PMID: 38318387 PMCID: PMC10838952 DOI: 10.1016/j.isci.2024.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
The efficacy of COVID-19 vaccination relies on the induction of neutralizing antibodies, which can vary among vaccine recipients. In this study, we investigated the potential factors affecting the neutralizing antibody response by combining plasma and urine proteomics and gut microbiota analysis. We found that activation of the LXR/FXR pathway in plasma was associated with the production of ACE2-RBD-inhibiting antibodies, while urine proteins related to complement system, acute phase response signaling, LXR/FXR, and STAT3 pathways were correlated with neutralizing antibody production. Moreover, we observed a correlation between the gut microbiota and plasma and urine proteins, as well as the vaccination response. Based on the above data, we built a predictive model for vaccination response (AUC = 0.85). Our study provides insights into characteristic plasma and urine proteins and gut microbiota associated with the ACE2-RBD-inhibiting antibodies, which could benefit our understanding of the host response to COVID-19 vaccination.
Collapse
Affiliation(s)
- Changjiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Weichao Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qiyu Bao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xingyu Jiang
- Laboratory Medicine Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - He Wang
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Lijiao He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xinzhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yunyi Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jie Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Guiping Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Zhen Dong
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Zhongjun Li
- Laboratory Medicine Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Tiannan Guo
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
14
|
Thilakarathna WPDW, Rupasinghe HPV. Proanthocyanidins-Based Synbiotics as a Novel Strategy for Nonalcoholic Fatty Liver Disease (NAFLD) Risk Reduction. Molecules 2024; 29:709. [PMID: 38338453 PMCID: PMC10856248 DOI: 10.3390/molecules29030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid β-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.
Collapse
Affiliation(s)
- Wasitha P. D. W. Thilakarathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
| |
Collapse
|
15
|
Yao S, Li W, Cai C, Wang C, Kang J, Hu H, Wu P, Cao X, Ye Y. Comparative Study on the Effects of Four Plant Protein Sources on the Liver and Intestinal Health of Largemouth Bass, Micropterus salmoides. AQUACULTURE NUTRITION 2024; 2024:6337005. [PMID: 38298207 PMCID: PMC10830314 DOI: 10.1155/2024/6337005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
The effects of plant protein sources (PPSs) on the health of the liver and intestine of the largemouth bass, Micropterus salmoides, were compared to verify the potential damaging effects of dietary fiber (DF). A diet containing 55% fish meal (FM) was used as the control. The test diets contained 25% soybean meal (SBM), rapeseed meal (RSM), cottonseed meal, or peanut meal, and the FM content was decreased to 30%. The protein and lipid contents of these five diets were balanced by casein and oil. Fish were raised for 8 weeks. The fish fed the diet containing PPS showed a trend of decreasing growth and apparent digestibility coefficients. The contents of total bile acid, lipid, and collagen in the liver were increased, and the mRNA expression levels of genes encoding inflammatory factors and enzymes involved in de novo fatty acid synthesis and bile acid synthesis were upregulated. Both the lipid and collagen contents in the liver were positively correlated with the DF content in the diet significantly. Morphology and histology showed reduced liver size, hepatic steatosis, and fibrosis in fish fed diets containing PPS. The lowest hepatosomatic index was observed in fish fed the SBM diet, and the most severe damage was observed in fish fed the RSM diet. No obvious histological abnormalities were observed in the hindgut. The bile acid profile in the liver could be used to distinguish the types of PPS very well by Fisher discriminant analysis. These results indicated that 25% of each of the four PPSs in the diet exceeded the tolerance range of largemouth bass and caused liver damage, which might be mediated by bile acid. DF in PPS might be an important agent contributing to liver damage.
Collapse
Affiliation(s)
- Shibin Yao
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Wenjian Li
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chunfang Cai
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chengrui Wang
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jia Kang
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Honglin Hu
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ping Wu
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiamin Cao
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yuantu Ye
- Key Laboratory of Aquatic Animal Nutrition of Jiangsu, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Puengel T, Tacke F. Role of Kupffer cells and other immune cells. SINUSOIDAL CELLS IN LIVER DISEASES 2024:483-511. [DOI: 10.1016/b978-0-323-95262-0.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Nenkov M, Shi Y, Ma Y, Gaßler N, Chen Y. Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy. Int J Mol Sci 2023; 25:6. [PMID: 38203175 PMCID: PMC10778939 DOI: 10.3390/ijms25010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The farnesoid-X receptor (FXR), a member of the nuclear hormone receptor superfamily, can be activated by bile acids (BAs). BAs binding to FXR activates BA signaling which is important for maintaining BA homeostasis. FXR is differentially expressed in human organs and exists in immune cells. The dysregulation of FXR is associated with a wide range of diseases including metabolic disorders, inflammatory diseases, immune disorders, and malignant neoplasm. Recent studies have demonstrated that FXR influences tumor cell progression and development through regulating oncogenic and tumor-suppressive pathways, and, moreover, it affects the tumor microenvironment (TME) by modulating TME components. These characteristics provide a new perspective on the FXR-targeted therapeutic strategy in cancer. In this review, we have summarized the recent research data on the functions of FXR in solid tumors and its influence on the TME, and discussed the mechanisms underlying the distinct function of FXR in various types of tumors. Additionally, the impacts on the TME by other BA receptors such as takeda G protein-coupled receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic receptors (CHRM2 and CHRM3), have been depicted. Finally, the effects of FXR agonists/antagonists in a combination therapy with PD1/PD-L1 immune checkpoint inhibitors and other anti-cancer drugs have been addressed.
Collapse
Affiliation(s)
- Miljana Nenkov
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yihui Shi
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA;
| | - Yunxia Ma
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| |
Collapse
|
18
|
Marchianò S, Biagioli M, Bordoni M, Morretta E, Di Giorgio C, Vellecco V, Roselli R, Bellini R, Massa C, Cari L, Urbani G, Ricci P, Monti MC, Giordano A, Brancaleone V, Bucci M, Zampella A, Distrutti E, Cieri E, Cirino G, Fiorucci S. Defective Bile Acid Signaling Promotes Vascular Dysfunction, Supporting a Role for G-Protein Bile Acid Receptor 1/Farnesoid X Receptor Agonism and Statins in the Treatment of Nonalcoholic Fatty Liver Disease. J Am Heart Assoc 2023; 12:e031241. [PMID: 37996988 PMCID: PMC10727350 DOI: 10.1161/jaha.123.031241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Patients with nonalcoholic fatty liver disease are at increased risk to develop atherosclerotic cardiovascular diseases. FXR and GPBAR1 are 2 bile acid-activated receptors exploited in the treatment of nonalcoholic fatty liver disease: whether dual GPBAR1/FXR agonists synergize with statins in the treatment of the liver and cardiovascular components of nonalcoholic fatty liver disease is unknown. METHODS AND RESULTS Investigations of human aortic samples obtained from patients who underwent surgery for aortic aneurysms and Gpbar1-/-, Fxr-/-, and dual Gpbar1-/-Fxr-/- mice demonstrated that GPBAR1 and FXR are expressed in the aortic wall and regulate endothelial cell/macrophage interactions. The expression of GPBAR1 in the human endothelium correlated with the expression of inflammatory biomarkers. Mice lacking Fxr and Gpbar1-/-/Fxr-/- display hypotension and aortic inflammation, along with altered intestinal permeability that deteriorates with age, and severe dysbiosis, along with dysregulated bile acid synthesis. Vasomotor activities of aortic rings were altered by Gpbar1 and Fxr gene ablation. In apolipoprotein E-/- and wild-type mice, BAR502, a dual GPBAR1/FXR agonist, alone or in combination with atorvastatin, reduced cholesterol and low-density lipoprotein plasma levels, mitigated the development of liver steatosis and aortic plaque formation, and shifted the polarization of circulating leukocytes toward an anti-inflammatory phenotype. BAR502/atorvastatin reversed intestinal dysbiosis and dysregulated bile acid synthesis, promoting a shift of bile acid pool composition toward FXR antagonists and GPBAR1 agonists. CONCLUSIONS FXR and GPBAR1 maintain intestinal, liver, and cardiovascular homeostasis, and their therapeutic targeting with a dual GPBAR1/FXR ligand and atorvastatin holds potential in the treatment of liver and cardiovascular components of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Silvia Marchianò
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Michele Biagioli
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Martina Bordoni
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Elva Morretta
- Department of PharmacyUniversity of SalernoSalernoItaly
| | | | | | | | - Rachele Bellini
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Carmen Massa
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Luigi Cari
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Ginevra Urbani
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Patrizia Ricci
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | | | | | | | - Angela Zampella
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | - Enrico Cieri
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Giuseppe Cirino
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Stefano Fiorucci
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| |
Collapse
|
19
|
Biagioli M, Marchianò S, Di Giorgio C, Bordoni M, Urbani G, Bellini R, Massa C, Sami Ullah Khan R, Roselli R, Chiara Monti M, Morretta E, Giordano A, Vellecco V, Bucci M, Jilani Iqbal A, Saviano A, Ab Mansour A, Ricci P, Distrutti E, Zampella A, Cieri E, Cirino G, Fiorucci S. Activation of GPBAR1 attenuates vascular inflammation and atherosclerosis in a mouse model of NAFLD-related cardiovascular disease. Biochem Pharmacol 2023; 218:115900. [PMID: 37926268 DOI: 10.1016/j.bcp.2023.115900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
While patients with nonalcoholic fatty liver disease (NAFLD) are at increased risk to develop clinically meaningful cardiovascular diseases (CVD), there are no approved drug designed to target the liver and CVD component of NAFLD. GPBAR1, also known as TGR5, is a G protein coupled receptor for secondary bile acids. In this study we have investigated the effect of GPBAR1 activation by BAR501, a selective GPBAR1 agonist, in Apolipoprotein E deficient (ApoE-/-) mice fed a high fat diet and fructose (Western diet), a validated model of NAFLD-associated atherosclerosis. Using aortic samples from patients who underwent surgery for abdominal aneurism, and ex vivo experiments with endothelial cells and human macrophages, we were able to co-localize the expression of GPBAR1 in CD14+ and PECAM1+ cells. Similar findings were observed in the aortic plaques from ApoE-/- mice. Treating ApoE-/- mice with BAR501, 30 mg/kg for 14 weeks, attenuated the body weight gain while ameliorated the insulin sensitivity by increasing the plasma concentrations of GLP-1 and FGF15. Activation of GPBAR1 reduced the aorta thickness and severity of atherosclerotic lesions and decreased the amount of plaques macrophages. Treating ApoE-/- mice reshaped the aortic transcriptome promoting the expression of anti-inflammatory genes, including IL-10, as also confirmed by tSNE analysis of spleen-derived macrophages. Feeding ApoE-/- mice with BAR501 redirected the bile acid synthesis and the composition of the intestinal microbiota. In conclusion, GPBAR1 agonism attenuates systemic inflammation and improve metabolic profile in a genetic/dietetic model of atherosclerosis. BAR501 might be of utility in the treatment for NAFLD-related CVD.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Antonino Giordano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Anella Saviano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adel Ab Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Enrico Cieri
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
20
|
Di Ciaula A, Bonfrate L, Khalil M, Portincasa P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern Emerg Med 2023; 18:2181-2197. [PMID: 37515676 PMCID: PMC10635993 DOI: 10.1007/s11739-023-03343-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/08/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BA) are amphipathic molecules originating from cholesterol in the liver and from microbiota-driven biotransformation in the colon. In the gut, BA play a key role in fat digestion and absorption and act as potent signaling molecules on the nuclear farnesoid X receptor (FXR) and membrane-associated G protein-coupled BA receptor-1 (GPBAR-1). BA are, therefore, involved in the maintenance of gut barrier integrity, gene expression, metabolic homeostasis, and microbiota profile and function. Disturbed BA homeostasis can activate pro-inflammatory pathways in the gut, while inflammatory bowel diseases (IBD) can induce gut dysbiosis and qualitative and/or quantitative changes of the BA pool. These factors contribute to impaired repair capacity of the mucosal barrier, due to chronic inflammation. A better understanding of BA-dependent mechanisms paves the way to innovative therapeutic tools by administering hydrophilic BA and FXR agonists and manipulating gut microbiota with probiotics and prebiotics. We discuss the translational value of pathophysiological and therapeutic evidence linking BA homeostasis to gut inflammation in IBD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
21
|
Sun X, Chen Z, Yu L, Zeng W, Sun B, Fan H, Bai Y. Bacteroides dorei BDX-01 alleviates DSS-induced experimental colitis in mice by regulating intestinal bile salt hydrolase activity and the FXR-NLRP3 signaling pathway. Front Pharmacol 2023; 14:1205323. [PMID: 37292154 PMCID: PMC10244678 DOI: 10.3389/fphar.2023.1205323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Background: The relationships among intestinal dysbiosis, bile acid (BA) metabolism disorders, and ulcerative colitis pathogenesis are now recognized. However, how specific strains regulate BA metabolism to alleviate colitis is still unclear. This study investigated the effects of Bacteroides dorei on the development of acute colitis and elucidated the underlying mechanisms. Methods: The safety of BDX-01 was evaluated in vitro and in vivo. 2.5% dextran sulfate sodium (DSS) induced colitis in C57BL/6 mice, Caco-2, and J774A.1 cells were used to evaluate the anti-inflammatory effect of BDX-01. qPCR and Western blotting were used to detect the expression of inflammatory pathways. Microbiota composition was analyzed by 16S rRNA gene sequencing. Enzyme activity analysis and targeted metabolomics were used to analyze fecal bile salt hydrolase (BSH) and BA levels. Antibiotic-induced pseudo-germ-free mice were used to investigate the role of gut microbiota in the alleviation of colitis by BDX-01. Results: We confirmed the safety of novel strain Bacteroides dorei BDX-01 in vitro and in vivo. Oral BDX-01 administration significantly ameliorated the symptoms and pathological damage of DSS-induced acute colitis. Moreoever, 16S rRNA sequencing and enzyme activity analysis showed that BDX-01 treatment increased intestinal BSH activity and the abundance of bacteria harboring this enzyme. Targeted metabolomics revealed that BDX-01 significantly increased intestinal BA excretion and deconjugation. Certain BAs act as FXR agonists. The β-muricholic acid (βMCA): taurine β-muricholic acid (T-βMCA) and cholic acid (CA): taurocholic acid (TCA) ratios and the deoxycholic acid (DCA) level decreased markedly in the colitis models but increased substantially in BDX-01-treated mice. The colonic farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15) were upregulated in mice treated with BDX-01. BDX-01 downregulated the expression of colonic proinflammatory cytokines pyrin domain-containing 3 (NLRP3), ASC, cleaved caspase-1, and IL-1β. Antibiotic treatment didn't abolish the protective effect of BDX-01 on colitis. In vitro studies showed TβMCA abolished the effects of BDX-01 on FXR activation and inhibition of the NLRP3 inflammasome activation. Conclusion: BDX-01 improved DSS-induced acute colitis by regulating intestinal BSH activity and the FXR-NLRP3 signaling pathway. Our findings indicate that BDX-01 is a promising probiotic to improve the management of ulcerative colitis.
Collapse
Affiliation(s)
- Xiaowei Sun
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhui Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Yu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weisen Zeng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Boyuan Sun
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongying Fan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Yang Z, Wang L. Current, emerging, and potential therapies for non-alcoholic steatohepatitis. Front Pharmacol 2023; 14:1152042. [PMID: 37063264 PMCID: PMC10097909 DOI: 10.3389/fphar.2023.1152042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been identified as the most common chronic liver disease worldwide, with a growing incidence. NAFLD is considered the hepatic manifestation of a metabolic syndrome that emerges from multiple factors (e.g., oxidative stress, metabolic disorders, endoplasmic reticulum stress, cell death, and inflammation). Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, has been reported to be a leading cause of cirrhosis and hepatic carcinoma, and it is progressing rapidly. Since there is no approved pharmacotherapy for NASH, a considerable number of therapeutic targets have emerged with the deepening of the research on NASH pathogenesis. In this study, the therapeutic potential and properties of regulating metabolism, the gut microbiome, antioxidant, microRNA, inhibiting apoptosis, targeting ferroptosis, and stem cell-based therapy in NASH are reviewed and evaluated. Since the single-drug treatment of NASH is affected by individual heterogeneous responses and side effects, it is imperative to precisely carry out targeted therapy with low toxicity. Lastly, targeted therapeutic agent delivery based on exosomes is proposed in this study, such that drugs with different mechanisms can be incorporated to generate high-efficiency and low-toxicity individualized medicine.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
23
|
Kasztelan-Szczerbinska B, Rycyk-Bojarzynska A, Szczerbinska A, Cichoz-Lach H. Selected Aspects of the Intricate Background of Immune-Related Cholangiopathies-A Critical Overview. Nutrients 2023; 15:760. [PMID: 36771465 PMCID: PMC9921714 DOI: 10.3390/nu15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are rare immune-related cholangiopathies with still poorly explained pathogenesis. Although triggers of chronic inflammation with subsequent fibrosis that affect cholangiocytes leading to obliteration of bile ducts and conversion to liver cirrhosis are unclear, both disorders are regarded to be multifactorial. Different factors can contribute to the development of hepatocellular injury in the course of progressive cholestasis, including (1) body accumulation of bile acids and their toxicity, (2) decreased food intake and nutrient absorption, (3) gut microbiota transformation, and (4) reorganized host metabolism. Growing evidence suggests that intestinal microbiome composition not only can be altered by liver dysfunction, but in turn, it actively impacts hepatic conditions. In this review, we highlight the role of key factors such as the gut-liver axis, intestinal barrier integrity, bile acid synthesis and circulation, and microbiome composition, which seem to be strongly related to PBC and PSC outcome. Emerging treatments and future therapeutic strategies are also presented.
Collapse
Affiliation(s)
- Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Anna Rycyk-Bojarzynska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | | | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| |
Collapse
|
24
|
Yoon JH, Do JS, Velankanni P, Lee CG, Kwon HK. Gut Microbial Metabolites on Host Immune Responses in Health and Disease. Immune Netw 2023; 23:e6. [PMID: 36911800 PMCID: PMC9995988 DOI: 10.4110/in.2023.23.e6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.
Collapse
Affiliation(s)
- Jong-Hwi Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jun-Soo Do
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Priyanka Velankanni
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul 02792, Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
25
|
Dong Q, Bao H, Wang J, Shi W, Zou X, Sheng J, Gao J, Guan C, Xia H, Li J, Kang P, Xu Y, Cui Y, Zhong X. Liver fibrosis and MAFLD: the exploration of multi-drug combination therapy strategies. Front Med (Lausanne) 2023; 10:1120621. [PMID: 37153080 PMCID: PMC10157161 DOI: 10.3389/fmed.2023.1120621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
In recent years, the prevalence of metabolic-associated fatty liver disease (MAFLD) has reached pandemic proportions as a leading cause of liver fibrosis worldwide. However, the stage of liver fibrosis is associated with an increased risk of severe liver-related and cardiovascular events and is the strongest predictor of mortality in MAFLD patients. More and more people believe that MAFLD is a multifactorial disease with multiple pathways are involved in promoting the progression of liver fibrosis. Numerous drug targets and drugs have been explored for various anti-fibrosis pathways. The treatment of single medicines is brutal to obtain satisfactory results, so the strategies of multi-drug combination therapies have attracted increasing attention. In this review, we discuss the mechanism of MAFLD-related liver fibrosis and its regression, summarize the current intervention and treatment methods for this disease, and focus on the analysis of drug combination strategies for MAFLD and its subsequent liver fibrosis in recent years to explore safer and more effective multi-drug combination therapy strategies.
Collapse
Affiliation(s)
- Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinglin Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Changxing, Zhejiang, China
- Yi Xu
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Yunfu Cui
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Xiangyu Zhong
| |
Collapse
|
26
|
Ruan D, Wu S, Fouad AM, Zhu Y, Huang W, Chen Z, Gou Z, Wang Y, Han Y, Yan S, Zheng C, Jiang S. Curcumin alleviates LPS-induced intestinal homeostatic imbalance through reshaping gut microbiota structure and regulating group 3 innate lymphoid cells in chickens. Food Funct 2022; 13:11811-11824. [PMID: 36306140 DOI: 10.1039/d2fo02598a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Gastrointestinal dysfunction is associated with a disturbance of immune homeostasis, changes in the intestinal microbiome, alteration of the composition of the bile acid pool, and dynamic imbalance of group 3 innate lymphoid cells (ILC3s). Curcumin (CUR), a polyphenolic compound isolated from turmeric, has been known to attenuate intestinal inflammation in potential therapies for gastrointestinal diseases. It was hypothesized that CUR could target the gut microbiome to modulate bile acid (BA) metabolism and the function of ILC3s in ameliorating lipopolysaccharide (LPS)-induced imbalance of intestinal homeostasis in chickens. Seven hundred and twenty 1-day-old crossbred chickens were randomly divided into four treatments, namely CON_saline (basal diet + saline control), CUR_saline (basal diet + 300 mg kg-1 curcumin + saline), CON_LPS (basal diet + LPS), and CUR_LPS (basal diet + 300 mg kg-1 curcumin + LPS), each consisting of 6 replicates of 30 birds. On days 14, 17, and 21, the chickens in the CON_LPS and CUR_LPS treatments were intraperitoneally injected with LPS at 0.5 mg per kg BW. Dietary CUR supplementation significantly decreased LPS-induced suppression of growth performance and injury to the intestinal tight junctions and decreased the vulnerability to LPS-induced acute inflammatory response by inhibiting pro-inflammatory (interleukin-1β and tumor necrosis factor-α) cytokines. CUR reshaped the cecal microbial community and BA metabolism, contributing to regulation of the intestinal mucosal immunity by promoting the anti-inflammatory (interleukin 10, IL-10) cytokines and enhancing the concentrations of primary and secondary BA metabolites (chenodexycholic acid, lithocholic acid). LPS decreased farnesoid X receptor (FXR) and G protein-coupled receptor class C group 5 member A synthesis, which was reversed by CUR administration, along with an increase in interleukin 22 (IL-22) production from ILC3s. Dietary supplementation of CUR increased the prevalence of Butyricicoccus and Enterococcus and enhanced the tricarboxylic acid cycle of intestinal epithelial cells. In addition, curcumin supplementation significantly increased sirtuin 1 and sirtuin 5 transcription and protein expression, which contributes to regulating mitochondrial metabolic and oxidative stress responses to alleviate LPS-induced enteritis. Our findings demonstrated that curcumin played a pivotal role in regulating the structure of the intestinal microbiome for health promotion and the treatment of intestinal dysbiosis. The beneficial effects of CUR may be attributed to the modulation of the BA-FXR pathway and inhibition of inflammation that induces IL-22 secretion by ILC3s in the intestinal lamina propria.
Collapse
Affiliation(s)
- Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ahmed Mohamed Fouad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhilong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Yongquan Han
- Guangzhou Cohoo Biotechnology Co., Ltd, Guangzhou 510663, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| |
Collapse
|
27
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|
28
|
Zhou M, Wang D, Li X, Cao Y, Yi C, Wiredu Ocansey DK, Zhou Y, Mao F. Farnesoid-X receptor as a therapeutic target for inflammatory bowel disease and colorectal cancer. Front Pharmacol 2022; 13:1016836. [PMID: 36278234 PMCID: PMC9583386 DOI: 10.3389/fphar.2022.1016836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 12/09/2022] Open
Abstract
Farnesoid-X receptor (FXR), as a nuclear receptor activated by bile acids, is a vital molecule involved in bile acid metabolism. Due to its expression in immune cells, FXR has a significant effect on the function of immune cells and the release of chemokines when immune cells sense changes in bile acids. In addition to its regulation by ligands, FXR is also controlled by post-translational modification (PTM) activities such as acetylation, SUMOylation, and methylation. Due to the high expression of FXR in the liver and intestine, it significantly influences intestinal homeostasis under the action of enterohepatic circulation. Thus, FXR protects the intestinal barrier, resists bacterial infection, reduces oxidative stress, inhibits inflammatory reactions, and also acts as a tumor suppressor to impair the multiplication and invasion of tumor cells. These potentials provide new perspectives on the treatment of intestinal conditions, including inflammatory bowel disease (IBD) and its associated colorectal cancer (CRC). Moreover, FXR agonists on the market have certain organizational heterogeneity and may be used in combination with other drugs to achieve a greater therapeutic effect. This review summarizes current data on the role of FXR in bile acid metabolism, regulation of immune cells, and effects of the PTM of FXR. The functions of FXR in intestinal homeostasis and potential application in the treatment of IBD and CRC are discussed.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Danfeng Wang
- Nanjing Jiangning Hospital, Nanjing, Jiangsu, China
| | - Xiang Li
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Cao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Yuling Zhou
- Nanjing Jiangning Hospital, Nanjing, Jiangsu, China
- *Correspondence: Yuling Zhou, ; Fei Mao,
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Yuling Zhou, ; Fei Mao,
| |
Collapse
|
29
|
Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 2022; 77:1136-1160. [PMID: 35750137 DOI: 10.1016/j.jhep.2022.06.012] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).
Collapse
|