1
|
Ma Z, Liu T, Liu L, Pei Y, Wang T, Wang Z, Guan Y, Zhang X, Zhang Y, Chen X. Epidermal Neural Crest Stem Cell Conditioned Medium Enhances Spinal Cord Injury Recovery via PI3K/AKT-Mediated Neuronal Apoptosis Suppression. Neurochem Res 2024; 49:2854-2870. [PMID: 39023805 PMCID: PMC11365850 DOI: 10.1007/s11064-024-04207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/19/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
This study aimed to assess the impact of conditioned medium from epidermal neural crest stem cells (EPI-NCSCs-CM) on functional recovery following spinal cord injury (SCI), while also exploring the involvement of the PI3K-AKT signaling pathway in regulating neuronal apoptosis. EPI-NCSCs were isolated from 10-day-old Sprague-Dawley rats and cultured for 48 h to obtain EPI-NCSC-CM. SHSY-5Y cells were subjected with H2O2 treatment to induce apoptosis. Cell viability and survival rates were evaluated using the CCK-8 assay and calcein-AM/PI staining. SCI contusion model was established in adult Sprague-Dawley rats to assess functional recovery, utilizing the Basso, Beattie and Bresnahan (BBB) scoring system, inclined test, and footprint observation. Neurological restoration after SCI was analyzed through electrophysiological recordings. Histological analysis included hematoxylin and eosin (H&E) staining and Nissl staining to evaluate tissue organization. Apoptosis and oxidative stress levels were assessed using TUNEL staining and ROS detection methods. Additionally, western blotting was performed to examine the expression of apoptotic markers and proteins related to the PI3K/AKT signaling pathway. EPI-NCSC-CM significantly facilitated functional and histological recovery in SCI rats by inhibiting neuronal apoptosis through modulation of the PI3K/AKT pathway. Administration of EPI-NCSCs-CM alleviated H2O2-induced neurotoxicity in SHSY-5Y cells in vitro. The use of LY294002, a PI3K inhibitor, underscored the crucial role of the PI3K/AKT signaling pathway in regulating neuronal apoptosis. This study contributes to the ongoing exploration of molecular pathways involved in spinal cord injury (SCI) repair, focusing on the therapeutic potential of EPI-NCSC-CM. The research findings indicate that EPI-NCSC-CM exerts a neuroprotective effect by suppressing neuronal apoptosis through activation of the PI3K/AKT pathway in SCI rats. These results highlight the promising role of EPI-NCSC-CM as a potential treatment strategy for SCI, emphasizing the significance of the PI3K/AKT pathway in mediating its beneficial effects.
Collapse
Affiliation(s)
- Ziqian Ma
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Tao Liu
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liang Liu
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yilun Pei
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- Department of Orthopedics, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, 067000, Hebei Province, P.R. China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinwei Zhang
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Xueming Chen
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Khodabakhsh P, Asgari Taei A, Shafaroodi H, Pournajaf S, Dargahi L. Effect of Metformin on Epidermal Neural Crest Stem Cells and Their Potential Application in Ameliorating Paclitaxel-induced Neurotoxicity Phenotype. Stem Cell Rev Rep 2024; 20:394-412. [PMID: 37924435 DOI: 10.1007/s12015-023-10642-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
AIMS Epidermal Neural Crest Stem Cells (EPI-NCSCs) have emerged as prospective ideal candidates to meet the fundamental requirements of cell-based therapies in neurodegenerative disorders. The present study aimed to identify the potential of metformin in driving EPI-NCSCs to neuronal/glial differentiation and express neurotrophic factors as well as assess their therapeutic potential for mitigating the main behavioral manifestations of chemotherapy-induced neurotoxicity (CIN). MAIN METHODS EPI-NCSCs were extracted from the bulge region of hair follicle. Following expansion, transcript and protein expression profiles of key markers for stemness (Nestin, EGR-1, SOX-2 and 10), neurotrophic activity (BDNF, GDNF, NGF, FGF-2, and IL-6), and neuronal (TUB3, DCX, NRF and NeuN) and glial (PDGFRα, NG2, GFAP, and MBP) differentiation were determined on days 1 and 7 post-treatment with 10 and 100 μM metformin using real time-PCR and immunocytochemistry methods. Then, the in vivo function of metformin-treated stem cells was evaluated in the context of paclitaxel CIN. To do so, thermal hyperalgesia, mechanical allodynia, and spatial learning and memory tests were evaluated by Hotplate, Von Frey, and Morris water maze tests. KEY FINDINGS Our result indicated that exposure of EPI-NCSCs to metformin was associated with progressive decline in stemness markers and enhanced expression levels of several neurotrophic, neuron and oligodendrocyte-specific markers. Further, it was observed that intranasal metformin-treated EPI-NCSCs improved the cognitive impairment, and mechanical and thermal hypersensitivity induced by paclitaxel in rats. SIGNIFICANCE Collectively, we reasoned that metformin pretreatment of EPI-NCSCs might further enhance their therapeutic benefits against CIN.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Institute of Physiology, Department Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Nestin is a marker of unipotent embryonic and adult progenitors differentiating into an epithelial cell lineage of the hair follicles. Sci Rep 2022; 12:17820. [PMID: 36280775 PMCID: PMC9592581 DOI: 10.1038/s41598-022-22427-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/14/2022] [Indexed: 01/19/2023] Open
Abstract
Nestin is an intermediate filament protein transiently expressed in neural stem/progenitor cells. We previously demonstrated that outer root sheath (ORS) keratinocytes of adult hair follicles (HFs) in mice descend from nestin-expressing cells, despite being an epithelial cell lineage. This study determined the exact stage when nestin-expressing ORS stem/precursor cells or their descendants appear during HF morphogenesis, and whether they are present in adult HFs. Using Nes-Cre/CAG-CAT-EGFP mice, in which enhanced green fluorescent protein (EGFP) is expressed following Cre-based recombination driven by the nestin promoter, we found that EGFP+ cells appeared in the epithelial layer of embryonic HFs as early as the peg stage. EGFP+ cells in hair pegs were positive for keratin 14 (K14) and K5, but not vimentin, SOX2, SOX10, or S100 alpha 6. Tracing of tamoxifen-induced EGFP+ cells in postnatal Nes-CreERT2/CAG-CAT-EGFP mice revealed labeling of some isthmus HF epithelial cells in the first anagen stage. EGFP+ cells in adult HFs were not immunolabeled for K15, an HF multipotent stem cell marker. However, when hairs were depilated in Nes-CreERT2/CAG-CAT-EGFP mice to induce the anagen stage after tamoxifen injection, the majority of ORS keratinocytes in depilation-induced anagen HFs were labeled for EGFP. Our findings indicate that nestin-expressing unipotent progenitor cells capable of differentiating into ORS keratinocytes are present in HF primordia and adult HFs.
Collapse
|
4
|
Wang Y, Tan Z, Zhang Z, Zhu P, Tam SW, Zhang Z, Jiang X, Lin K, Tian L, Huang Z, Zhang S, Peng YK, Yung KKL. Facet-Dependent Activity of CeO 2 Nanozymes Regulate the Fate of Human Neural Progenitor Cell via Redox Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35423-35433. [PMID: 35905295 DOI: 10.1021/acsami.2c09304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neural progenitor cells (NPCs) therapy, a promising therapeutic strategy for neurodegenerative diseases, has a huge challenge to ensure high survival rate and neuronal differentiation rate. Cerium oxide (CeO2) nanoparticles exhibit multienzyme mimetic activities and have shown the capability of regulating reactive oxygen species (ROS), which is a pivotal mediator for intracellular redox homeostasis in NPCs, regulating biological processes including differentiation, proliferation, and apoptosis. In the present study, the role of facet-dependent CeO2-mediated redox homeostasis in regulating self-renewal and differentiation of NPCs is reported for the first time. The cube-, rod-, and octahedron-shaped CeO2 nanozymes with different facets are prepared. Among the mentioned nanozymes, the cube enclosed by the (100) facet exhibits the highest CAT-like activity, causing it to provide superior protection to NPCs from oxidative stress induced by H2O2; meanwhile, the octahedron enclosed by the (111) facet with the lowest CAT-like activity induces the most ROS production in ReNcell CX cells, which promotes neuronal differentiation by activated AKT/GSK-3β/β-catenin pathways. A further mechanistic study indicated that the electron density of the surface Ce atoms changed continuously with different crystal facets, which led to their different CAT-like activity and modulation of redox homeostasis in NPCs. Altogether, the different surface chemistry and atomic architecture of active sites on CeO2 exert modulation of redox homeostasis and the fate of NPCs.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Sze Wah Tam
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Zhang Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Linyuan Tian
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University, HKSAR 999077, China
| | - Shiqing Zhang
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| |
Collapse
|
5
|
González-Casacuberta I, Vilas D, Pont-Sunyer C, Tobías E, Cantó-Santos J, Valls-Roca L, García-García FJ, Garrabou G, Grau-Junyent JM, Martí MJ, Cardellach F, Morén C. Neuronal induction and bioenergetics characterization of human forearm adipose stem cells from Parkinson’s disease patients and healthy controls. PLoS One 2022; 17:e0265256. [PMID: 35290400 PMCID: PMC8923468 DOI: 10.1371/journal.pone.0265256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/26/2022] [Indexed: 11/18/2022] Open
Abstract
Neurodegenerative diseases, such as Parkinson’s disease, are heterogeneous disorders with a multifactorial nature involving impaired bioenergetics. Stem-regenerative medicine and bioenergetics have been proposed as promising therapeutic targets in the neurologic field. The rationale of the present study was to assess the potential of human-derived adipose stem cells (hASCs) to transdifferentiate into neuronal-like cells (NhASCs and neurospheres) and explore the hASC bioenergetic profile. hASC neuronal transdifferentiation was performed through neurobasal media and differentiation factor exposure. High resolution respirometry was assessed. Increased MAP-2 neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 28–36 days of differentiation) and increased bIII-tubulin neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 6-28-36 days of differentiation) were found. The bioenergetic profile was detectable through high-resolution respirometry approaches in hASCs but did not lead to differential oxidative capacity rates in healthy or clinically diagnosed PD-hASCs. We confirmed the capability of transdifferentiation to the neuronal-like profile of hASCs derived from the forearms of human subjects and characterized the bioenergetic profile. Suboptimal maximal respiratory capacity trends in PD were found. Neuronal induction leading to positive neuronal protein expression markers is a relevant issue that encourages the suitability of NhASC models in neurodegeneration.
Collapse
Affiliation(s)
- Ingrid González-Casacuberta
- Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona, Spain
- Internal Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Madrid, Spain
| | - Dolores Vilas
- Neurodegenerative Diseases Unit, Neurology Service, University Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Claustre Pont-Sunyer
- Neurology Unit, Hospital General de Granollers, Universitat Internacional de Catalunya, Barcelona, Catalonia, Spain
| | - Ester Tobías
- Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona, Spain
- Internal Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Madrid, Spain
| | - Judith Cantó-Santos
- Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona, Spain
- Internal Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Madrid, Spain
| | - Laura Valls-Roca
- Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona, Spain
- Internal Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Madrid, Spain
| | - Francesc Josep García-García
- Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona, Spain
- Internal Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Madrid, Spain
| | - Glòria Garrabou
- Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona, Spain
- Internal Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Madrid, Spain
| | - Josep Maria Grau-Junyent
- Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona, Spain
- Internal Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Madrid, Spain
| | - Maria Josep Martí
- Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona, Spain
- Movement Disorders Unit, Neurology Service, Institut de Neurociències, University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Francesc Cardellach
- Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona, Spain
- Internal Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Madrid, Spain
| | - Constanza Morén
- Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona, Spain
- Internal Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Khodabakhsh P, Pournajaf S, Mohaghegh Shalmani L, Ahmadiani A, Dargahi L. Insulin Promotes Schwann-Like Cell Differentiation of Rat Epidermal Neural Crest Stem Cells. Mol Neurobiol 2021; 58:5327-5337. [PMID: 34297315 DOI: 10.1007/s12035-021-02423-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/05/2021] [Indexed: 10/20/2022]
Abstract
Schwann cells (SCs) are considered potentially attractive candidates for transplantation therapies in neurodegenerative diseases. However, problems arising from the isolation and expansion of the SCs restrict their clinical applications. Establishing an alternative Schwann-like cell type is a prerequisite. Epidermal neural crest stem cells (EPI-NCSCs) are well studied for their autologous accessibility, along with the ability to produce major neural crest derivatives and neurotrophic factors. In the current study, we explored insulin influence, a well-known growth factor, on directing EPI-NCSCs into the Schwann cell (SC) lineage. EPI-NCSCs were isolated from rat hair bulge explants. The viability of cells treated with a range of insulin concentrations (0.05-100 μg/ml) was defined by MTT assay at 24, 48, and 72 h. The gene expression profiles of neurotrophic factors (BDNF, FGF-2, and IL-6), key regulators involved in the development of SC (EGR-1, SOX-10, c-JUN, GFAP, OCT-6, EGR-2, and MBP), and oligodendrocyte (PDGFR-α and NG-2) were quantified 1 and 9 days post-treatment with 0.05 and 5 μg/ml insulin. Furthermore, the protein expression of nestin (stemness marker), SOX-10, PDGFR-α, and MBP was analyzed following the long-term insulin treatment. Insulin downregulated the early-stage SC differentiation marker (EGR-1) and increased neurotrophins (BDNF and IL-6) and pro-myelinating genes, including OCT-6, SOX-10, EGR-2, and MBP, as well as oligodendrocyte differentiation markers, upon exposure for 9 days. Insulin can promote EPI-NCSC differentiation toward SC lineage and possibly oligodendrocytes. Thus, employing insulin might enhance the EPI-NCSCs efficiency in cell transplantation strategies.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safura Pournajaf
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Acetylsalicylic Acid Enhanced Neurotrophic Profile of Epidermal Neural Crest Stem Cells: A Possible Approach for the Combination Therapy. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
9
|
Jones I, Novikova LN, Wiberg M, Carlsson L, Novikov LN. Human Embryonic Stem Cell-derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats. Cell Transplant 2021; 30:963689720988245. [PMID: 33522309 PMCID: PMC7863557 DOI: 10.1177/0963689720988245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury results in irreversible tissue damage and permanent sensorimotor impairment. The development of novel therapeutic strategies that improve the life quality of affected individuals is therefore of paramount importance. Cell transplantation is a promising approach for spinal cord injury treatment and the present study assesses the efficacy of human embryonic stem cell–derived neural crest cells as preclinical cell-based therapy candidates. The differentiated neural crest cells exhibited characteristic molecular signatures and produced a range of biologically active trophic factors that stimulated in vitro neurite outgrowth of rat primary dorsal root ganglia neurons. Transplantation of the neural crest cells into both acute and chronic rat cervical spinal cord injury models promoted remodeling of descending raphespinal projections and contributed to the partial recovery of forelimb motor function. The results achieved in this proof-of-concept study demonstrates that human embryonic stem cell–derived neural crest cells warrant further investigation as cell-based therapy candidates for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Iwan Jones
- 59588Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Mikael Wiberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Leif Carlsson
- 59588Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lev N Novikov
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Ahmadi S, Nabiuni M, Tahmaseb M, Amini E. Enhanced Neural Differentiation of Epidermal Neural Crest Stem Cell by Synergistic Effect of Lithium carbonate and Crocin on BDNF and GDNF Expression as Neurotrophic Factors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:95-106. [PMID: 34567149 PMCID: PMC8457715 DOI: 10.22037/ijpr.2019.15561.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration of nerve cells. Due to the complexity of conditions in neurodegenerative diseases, combination therapy, including cell and drug therapy is important as a new therapeutic strategy. Epidermal neural crest stem cells (EPI-NCSCs) are among the best choices in cell therapy for various neurological diseases. In this study, the effect of Lithium carbonate and Crocin, considering their effects on cellular signaling pathways and neuroprotective properties were investigated on the expression of neurotrophic factors BDNF and GDNF in EPI-NCSCs. EPI-NCSCs were isolated from the hair follicle and treated with different concentrations of drugs [Lithium, Crocin, and lithium + Crocin] for 72h. Then, trial concentrations were selected by MTT assay. The cells were treated with selected concentrations (Lithium 1 mM, Crocin 1.5 mM, and for co-treatment Lithium 1 mM and Crocin 1 mM) for 7 days. The Real-Time PCR results indicated an increasing in expression of BDNF and GDNF in treated cells as compared with control (* p < 0.05, ** p < 0.01 and *** p < 0.001). The results in this study confirmed and supported the neuroprotective/neurogenesis effects of Lithium and Crocin. It also showed that the proposed protocol could be used to increase EPI-NCSCs differentiation potential into neural cells in cell therapy and combination therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mohammad Nabiuni
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mohammad Tahmaseb
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
11
|
Pournajaf S, Valian N, Mohaghegh Shalmani L, Khodabakhsh P, Jorjani M, Dargahi L. Fingolimod increases oligodendrocytes markers expression in epidermal neural crest stem cells. Eur J Pharmacol 2020; 885:173502. [PMID: 32860811 DOI: 10.1016/j.ejphar.2020.173502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
Epidermal neural crest stem cells (EPI-NCSCs) are propitious candidates for cell replacement therapy and supplying neurotrophic factors in the neurological disorders. Considering the potential remyelinating and regenerative effects of fingolimod, in this study, we evaluated its effects on EPI-NCSCs viability and the expression of neurotrophic and oligodendrocyte differentiation factors. EPI-NCSCs, extracted from the bulge of rat hair follicles, were characterized and treated with fingolimod (0, 50, 100, 200, 400, 600, 1000, and 5000 nM). The cell viability was evaluated by MTT assay at 6, 24 and 72 h. The expression of neurotrophic and differentiation factors in the cells treated with 100 and 400 nM fingolimod were measured at 24 and 120 h. Fingolimod at 50-600 nM increased the cells viability after 6 h, with no change at the higher concentrations. The highest concentration (5000nM) induced toxicity at 24 and 72 h. NGF and GDNF genes expression were decreased at 120 h, but on the contrary, brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) were increased by both concentrations at both time points. Oligodendrocyte markers including platelet-derived growth factor receptor A (PDGFRα), neuron-glial antigen 2 (NG2) and growth associated protein 43 (GAP43) were elevated at 120 h, which was accompanied with reduce in stemness markers (Nestin and early growth response 1 (EGR1)). Fingolimod increased the expression of neurotrophic factors in EPI-NCSCs, and guided them to oligodendrocyte fate. Therefore, fingolimod in combination with EPI-NCSCs, can be considered as a promising approach for demyelinating neurological disorders.
Collapse
Affiliation(s)
- Safura Pournajaf
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Tandon A, Singh SJ, Gupta M, Singh N, Shankar J, Arjaria N, Goyal S, Chaturvedi RK. Notch pathway up-regulation via curcumin mitigates bisphenol-A (BPA) induced alterations in hippocampal oligodendrogenesis. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122052. [PMID: 32151947 DOI: 10.1016/j.jhazmat.2020.122052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
CNS myelination process involves proliferation and differentiation of oligodendrocyte progenitor cells (OPCs). Defective myelination causes onset of neurological disorders. Bisphenol-A (BPA), a component of plastic items, exerts adverse effects on human health. Our previous studies indicated that BPA impairs neurogenesis and myelination process stimulating cognitive dysfunctions. But, the underlying mechanism(s) of BPA induced de-myelination and probable neuroprotection by curcumin remains elusive. We found that curcumin protected BPA mediated adverse effects on oligosphere growth kinetics. Curcumin significantly improved proliferation and differentiation of OPCs upon BPA exposure both in-vitro and in-vivo. Curcumin enhanced the mRNA expression and protein levels of myelination markers in BPA treated rat hippocampus. Curcumin improved myelination potential via increasing β-III tubulin-/MBP+ cells (neuron-oligodendrocyte co-culture) and augmented fluoromyelin intensity and neurofilament/MBP+ neurons in vivo. In silico docking studies suggested Notch pathway genes (Notch-1, Hes-1 and Mib-1) as potential targets of BPA and curcumin. Curcumin reversed BPA mediated myelination inhibition via increasing the Notch pathway gene expression. Genetic and pharmacological Notch pathway inhibition by DAPT and Notch-1 siRNA exhibited decreased curcumin mediated neuroprotection. Curcumin improved BPA mediated myelin sheath degeneration and neurobehavioral impairments. Altogether, results suggest that curcumin protected BPA induced de-myelination and behavioural deficits through Notch pathway activation.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Sangh Jyoti Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Manjeet Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India
| | - Nivedita Singh
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Jai Shankar
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India.
| |
Collapse
|
13
|
Aran S, Zahri S, Asadi A, Khaksar F, Abdolmaleki A. Hair follicle stem cells differentiation into bone cells on collagen scaffold. Cell Tissue Bank 2020; 21:181-188. [PMID: 32016616 DOI: 10.1007/s10561-020-09812-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The hair follicle is a dynamic structure which contains different niches for stem cells, therefore; it has been considered as valuable and rich sources of stem cells, due to easy access, multipotency and non-oncogenic properties. In the present study, the differentiation capacities of hair follicle stem cells into bone cells on the natural collagen scaffolds were investigated. The stem cells were extracted from the hair follicle bulge area of male Wistar rats' whisker and cultured until 3rd passage, then osteogenic differentiations were induced by culturing the cells in the specific osteogenic medium. After 3 weeks, the differentiation parameters, including morphological changes, levels of calcification and expression of the bone specific genes were detected. The hydrogel preparation and scaffold fabrication was carried out using the extracted collagen and was studied by scanning electron microscope. Comparison of the stem cells' growth and changes on the scaffold and non-scaffold conditions showed that, in the both situation, the cells revealed differentiation signs of osteocytes, including large and cubic morphology with a star-shaped nucleus. Staining by Alizarin-red and Von-Kossa methods showed the presence of red and black calcium mass on the scaffold. Expression of the osteopontin and alkaline phosphatase genes confirmed the differentiation. Considerable porosity in the surface of the scaffold was recorded by scanning electron microscopy, which made it convenient for cells' attachment and growth. The data showed that the bulge stem cells possess significant capacity for osteoblastic differentiation and collagen scaffolds were found to be an appropriate matrix for growth and differentiation of the cell.
Collapse
Affiliation(s)
- Saeideh Aran
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Fatemeh Khaksar
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
- Bio Science and Biotechnology Research Center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| |
Collapse
|
14
|
Mohaghegh Shalmani L, Valian N, Pournajaf S, Abbaszadeh F, Dargahi L, Jorjani M. Combination therapy with astaxanthin and epidermal neural crest stem cells improves motor impairments and activates mitochondrial biogenesis in a rat model of spinal cord injury. Mitochondrion 2020; 52:125-134. [PMID: 32151747 DOI: 10.1016/j.mito.2020.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2020] [Accepted: 03/04/2020] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI), a multifactorial disease, can lead to irreversible motor and sensory disabilities. Cell therapy in combination with pharmacological agents can be a promising approach to attenuate SCI damages. Epidermal neural crest stem cells (EPI-NCSCs) extracted from bulge hair follicle in adults are attractive candidates due to the possibility of autologous transplantation. This study evaluated the effect of EPI-NCSCs combined with astaxanthin (Ast), a potent antioxidant, on damages induced by SCI. Male rats were treated with Ast (0.2 mM) and EPI-NCSCs (106/10 μl PBS) alone and combined together after SCI contusion. Motor function was assessed by Basso, Beattie and Bresnahan (BBB) test on days 1, 3, 7, 14, 21, 28, 35 and 42 post-injury. Motor neurons number and myelin level were evaluated on days 14 and 42 using Nissl and Luxol Fast Blue staining. The gene expression of mitochondrial biogenesis involved factors (PGC1α, NRF1 and TFAM) was measured by qPCR. All treatments improved motor function, with the highest BBB score in Ast + Cell compared to Ast and Cell. Decreased motor neurons number and myelin level following SCI, were increased by Ast, Cell and Ast + Cell, but combination therapy significantly had a better effect. We observed reduction in PGC1α, NRF1, and TFAM expression in spinal tissue after SCI, and treatment with Cell and Ast + Cell significantly restored NRF1 and TFAM mRNA levels. These results suggested that Ast in combination with EPI-NCSCs has better effects on behavioral dysfunction, motor neuron loss and demyelination after SCI. These protective effects may be attributed to mitochondrial biogenesis activation.
Collapse
Affiliation(s)
- Leila Mohaghegh Shalmani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safura Pournajaf
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Jorjani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Ayoub S, Berbéri A, Fayyad-Kazan M. An update on human periapical cyst-mesenchymal stem cells and their potential applications in regenerative medicine. Mol Biol Rep 2020; 47:2381-2389. [PMID: 32026284 DOI: 10.1007/s11033-020-05298-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
The broad clinical applications of Mesenchymal Stem Cells (MSCs) in the regenerative medicine field is attributed to their ability to self-renew and differentiate into multiple cellular lineages. Nowadays, MSCs can be derived from a variety of adult and fetal tissues including bone marrow, adipose tissue, umbilical cord and placenta. The difficulties associated with the isolation of MSCs from certain tissues such as bone marrow promoted the search for alternative tissues which are easily accessible. Oral derived MSCs include dental pulp stem cells (DPSCs), dental follicle progenitor cells (DFPC), and periodontal ligament stem cells (PDLSC). Being abundant and easily accessible, oral derived MSCs represent an interesting alternative MSC type to be employed in regenerative medicine. Human periapical cyst-mesenchymal stem cells (hPCy-MSCs) correspond to a newly discovered and characterized MSC subtype. Interestingly, hPCy-MSCs are collected from periapical cysts, which are a biological waste, without any influence on the other healthy tissues in oral cavity. hPCy-MSCs exhibit cell surface marker profile similar to that of other oral derived MSCs, show high proliferative potency, and possess the potential to differentiate into different cell types such as osteoblasts, adipocytes and neurons-like cells. hPCy-MSCs, therefore, represent a novel promising MSCs type to be applied in regenerative medicine domain. In this review, we will compare the different types of dental derived MSCs, we will highlight the isolation technique, the characteristics, and the therapeutic potential of hPCy-MSCs.
Collapse
Affiliation(s)
- Sara Ayoub
- Department of Prosthodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Antoine Berbéri
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon. .,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
16
|
Baharvand Z, Nabiuni M, Tahmaseb M, Amini E, Pandamooz S. Investigating the synergic effects of valproic acid and crocin on BDNF and GDNF expression in epidermal neural crest stem cells. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Mehrotra P, Tseropoulos G, Bronner ME, Andreadis ST. Adult tissue-derived neural crest-like stem cells: Sources, regulatory networks, and translational potential. Stem Cells Transl Med 2019; 9:328-341. [PMID: 31738018 PMCID: PMC7031649 DOI: 10.1002/sctm.19-0173] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Neural crest (NC) cells are a multipotent stem cell population that give rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Premigratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC‐like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a postmigratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
18
|
Zhang L, Li B, Liu B, Dong Z. Co-transplantation of Epidermal Neural Crest Stem Cells and Olfactory Ensheathing Cells Repairs Sciatic Nerve Defects in Rats. Front Cell Neurosci 2019; 13:253. [PMID: 31244611 PMCID: PMC6582070 DOI: 10.3389/fncel.2019.00253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-based therapy is an alternative strategy to improve outcomes of peripheral nerve injury (PNI). Epidermal neural crest stem cell (EPI-NCSC) is obtained from autologous tissue without immunological rejection, which could expand quickly in vitro and is suitable candidate for cell-based therapy. Olfactory ensheathing cell (OEC) could secrete multiple neurotrophic factors (NTFs), which is often used to repair PNI individually. However, whether the combination of EPI-NCSC and OEC have better effects on PNI repair remains unclear. Here we use EPI-NCSC and OEC co-transplantation in a rat sciatic nerve defect model to ascertain the effects and potential mechanisms of cells co-transplantation on PNI. The effect of EPI-NCSC and OEC co-transplantation on PNI is assessed by using a combination of immunohistochemistry (IHC), electrophysiological recording and neural function test. Co-transplantation of EPI-NCSC and OEC exerts a beneficial effect upon PNI such as better organized structure, nerve function recovery, and lower motoneuron apoptosis. IHC and enzyme-linked immuno sorbent assay (ELISA) further demonstrate that cells co-transplantation may improve PNI via the expression of brain derived growth factor (BDNF) and nerve growth factor (NGF) up-regulated by EPI-NCSC and OEC synergistically. Eventually, the results from this study reveal that EPI-NCSC and OEC co-transplantation effectively repairs PNI through enhancing the level of BDNF and NGF, indicating that cells co-transplantation may serve as a fruitful avenue for PNI in clinic treatment.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Bingcang Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Bin Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhifang Dong
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| |
Collapse
|
19
|
Kumar A, Xu Y, Yang E, Du Y. Stemness and Regenerative Potential of Corneal Stromal Stem Cells and Their Secretome After Long-Term Storage: Implications for Ocular Regeneration. Invest Ophthalmol Vis Sci 2019; 59:3728-3738. [PMID: 30046814 PMCID: PMC6059729 DOI: 10.1167/iovs.18-23824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To assess the stemness and regenerative potential of cryopreserved corneal stromal stem cells (cryo-CSSCs) after long-term storage. We also used the secretome from these cells to observe the effect on wound-healing capacity of corneal fibroblasts and on the expression of fibrotic markers during wound healing. Methods CSSCs were obtained from three donors and stored in liquid nitrogen for approximately 10 years. Post thaw, cryo-CSSCs were characterized for stemness using phenotypic and genotypic markers along with colony-forming efficiency and three-dimensional spheroid formation. Multilineage differentiation was observed by differentiation into osteocytes, adipocytes, neural cells, and keratocytes. Secretome was harvested by culturing cryo-CSSCs in log phase. Wound-healing capacity was observed by live-cell time-lapse microscopy. Statistical analysis was done using 1-way ANOVA and Tukey posttest. Results CSSCs displayed good viability post thaw and showed >90% expression of stem cell markers CD90, CD73, CD105, STRO1, and CD166. cryo-CSSCs also expressed stem cell genes OCT4, KLF4, and ABCG2, and could also form colonies and three-dimensional spheroids. Multipotency assessment showed that all three cryo-CSSCs could differentiate into osteocytes, adipocytes, neural cells, as shown by β-III tubulin and neurofilament antibody staining and corneal keratocytes as observed by staining for Kera C, J19, and collagen V antibodies. The secretome derived from these three populations could promote the wound healing of corneal fibroblasts and reduce the expression of fibrotic markers SPARC and fibronectin. Conclusions CSSCs maintained their stemness and multipotency after long-term storage, and secretome derived from these cells can be of paramount importance for corneal regeneration and prevention of fibrosis.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yi Xu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Shanghai Oriental Hospital, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Salehi MS, Borhani-Haghighi A, Pandamooz S, Safari A, Dargahi L, Dianatpour M, Tanideh N. Dimethyl fumarate up-regulates expression of major neurotrophic factors in the epidermal neural crest stem cells. Tissue Cell 2019; 56:114-120. [PMID: 30736899 DOI: 10.1016/j.tice.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
There is an agreement that combining treatments can lead to substantial improvement, therefore the present study assessed the effects of different concentrations of dimethyl fumarate (DMF) on viability of epidermal neural crest stem cells (EPI-NCSCs). In addition, this investigation was designed to evaluate the effects of DMF on relative expression of major trophic factors mainly the ones with neurotrophic effects, expressed in EPI-NCSCs in order to enhance their therapeutic potential. To determine the appropriate concentration of DMF for EPI-NCSCs treatment, the MTT assay was employed and based on the obtained data, EPI-NCSCs treated with 10μM DMF for 6, 24, 72 or 168 h. In each time point, quantitative RT-PCR technique was used to evaluate NGF, NT-3, BDNF, GDNF and VEGF transcripts. The acquired data showed that 10μM DMF significantly increased the mRNA expression of NGF, NT-3 and BDNF, 72 h following treatment; however, DMF inhibitory effect on GDNF mRNA expression was observed in various time points. No significant changes were detected for VEGF transcript. Our findings reveled that expression of major neurotrophic factors were up-regulated by dimethyl fumarate treatment. Therefore, combining EPI-NCSCs with DMF treatment might be a valuable strategy to improve their therapeutic functions in vivo.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Hair Follicle-Associated Pluripotent (HAP) Stem Cells in Gelfoam ® Histoculture for Use in Spinal Cord Repair. Methods Mol Biol 2018. [PMID: 29572802 DOI: 10.1007/978-1-4939-7745-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The stem cell marker, nestin, is expressed in the hair follicle, both in cells in the bulge area (BA) and the dermal papilla (DP). Nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells of both the BA and DP have been previously shown to be able to form neurons, heart muscle cells, and other non-follicle cell types. The ability of the nestin-expressing HAP stem cells from the BA and DP to repair spinal cord injury was compared. Nestin-expressing HAP stem cells from both the BA and DP grew very well on Gelfoam®. The HAP stem cells attached to the Gelfoam® within 1 h. They grew along the grids of the Gelfoam® during the first 2 or 3 days. Later they spread into the Gelfoam®. After transplantation of Gelfoam® cultures of nestin-expressing BA or DP HAP stem cells into the injured spinal cord (including the Gelfoam®) nestin-expressing BA and DP cells were observed to be viable over 100 days post-surgery. Hematoxylin and eosin (H&E) staining showed connections between the transplanted cells and the host spine tissue. Immunohistochemistry showed many Tuj1-, Isl 1/2, and EN1-positive cells and nerve fibers in the transplanted area of the spinal cord after BA Gelfoam® or DP Gelfoam® cultures were transplanted to the spine. The spinal cord of mice was injured to effect hind-limb paralysis. Twenty-eight days after transplantation with BA or DP HAP stem cells on Gelfoam® to the injured area of the spine, the mice recovered normal locomotion.
Collapse
|
22
|
Schizas N, König N, Andersson B, Vasylovska S, Hoeber J, Kozlova EN, Hailer NP. Neural crest stem cells protect spinal cord neurons from excitotoxic damage and inhibit glial activation by secretion of brain-derived neurotrophic factor. Cell Tissue Res 2018. [PMID: 29516218 PMCID: PMC5949140 DOI: 10.1007/s00441-018-2808-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The acute phase of spinal cord injury is characterized by excitotoxic and inflammatory events that mediate extensive neuronal loss in the gray matter. Neural crest stem cells (NCSCs) can exert neuroprotective and anti-inflammatory effects that may be mediated by soluble factors. We therefore hypothesize that transplantation of NCSCs to acutely injured spinal cord slice cultures (SCSCs) can prevent neuronal loss after excitotoxic injury. NCSCs were applied onto SCSCs previously subjected to N-methyl-d-aspartate (NMDA)-induced injury. Immunohistochemistry and TUNEL staining were used to quantitatively study cell populations and apoptosis. Concentrations of neurotrophic factors were measured by ELISA. Migration and differentiation properties of NCSCs on SCSCs, laminin, or hyaluronic acid hydrogel were separately studied. NCSCs counteracted the loss of NeuN-positive neurons that was otherwise observed after NMDA-induced excitotoxicity, partly by inhibiting neuronal apoptosis. They also reduced activation of both microglial cells and astrocytes. The concentration of brain-derived neurotrophic factor (BDNF) was increased in supernatants from SCSCs cultured with NCSCs compared to SCSCs alone and BDNF alone mimicked the effects of NCSC application on SCSCs. NCSCs migrated superficially across the surface of SCSCs and showed no signs of neuronal or glial differentiation but preserved their expression of SOX2 and Krox20. In conclusion, NCSCs exert neuroprotective, anti-apoptotic and glia-inhibitory effects on excitotoxically injured spinal cord tissue, some of these effects mediated by secretion of BDNF. However, the investigated NCSCs seem not to undergo neuronal or glial differentiation in the short term since markers indicative of an undifferentiated state were expressed during the entire observation period.
Collapse
Affiliation(s)
- Nikos Schizas
- The OrthoLab, Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - N König
- Department of Neuroscience, Biomedicine Centre (BMC) Uppsala, BOX 593, SE-751 24, Uppsala, Sweden
| | - B Andersson
- The OrthoLab, Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, SE-751 85, Uppsala, Sweden
| | - S Vasylovska
- Department of Neuroscience, Biomedicine Centre (BMC) Uppsala, BOX 593, SE-751 24, Uppsala, Sweden
| | - J Hoeber
- Department of Neuroscience, Biomedicine Centre (BMC) Uppsala, BOX 593, SE-751 24, Uppsala, Sweden
| | - E N Kozlova
- Department of Neuroscience, Biomedicine Centre (BMC) Uppsala, BOX 593, SE-751 24, Uppsala, Sweden
| | - N P Hailer
- The OrthoLab, Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
23
|
Pandamooz S, Salehi MS, Zibaii MI, Ahmadiani A, Nabiuni M, Dargahi L. Epidermal neural crest stem cell-derived glia enhance neurotrophic elements in an ex vivo model of spinal cord injury. J Cell Biochem 2018; 119:3486-3496. [PMID: 29143997 DOI: 10.1002/jcb.26520] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023]
Abstract
Growing evidence that cell-based therapies can improve recovery outcome in spinal cord injury (SCI) models substantiates their application for treatment of human with SCI. To address the effectiveness of these stem cells, potential candidates should be evaluated in proper SCI platform that allows direct real-time monitoring. In this study, the role of epidermal neural crest stem cells (EPI-NCSCs) was elucidated in an ex vivo model of SCI, and valproic acid (VPA) was administered to ameliorate the inhospitable context of injury for grafted EPI-NCSCs. Here the contusion was induced in organotypic spinal cord slice culture at day seven in vitro using a weight drop device and one hour post injury the GFP- expressing EPI-NCSCs were grafted followed by VPA administration. The evaluation of treated slices seven days after injury revealed that grafted stem cells survived on the injured slices and expressed GFAP, whereas they did not express any detectable levels of the neural progenitor marker doublecortin (DCX), which was expressed prior to transplantation. Immunoblotting data demonstrated that the expression of GFAP, BDNF, neurotrophin-3 (NT3), and Bcl2 increased significantly in stem cell treated slices. This study illustrated that the fate of transplanted stem cells has been directed to the glial lineage in the ex vivo context of injury and EPI-NCSCs may ameliorate the SCI condition through releasing neurotrophic factors directly and/or via inducing resident spinal cord cells.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad S Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad I Zibaii
- Laser and Plasma Research institute, Shahid Beheshti University, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Kanekiyo K, Nakano N, Noda T, Yamada Y, Suzuki Y, Ohta M, Yokota A, Fukushima M, Ide C. Transplantation of choroid plexus epithelial cells into contusion-injured spinal cord of rats. Restor Neurol Neurosci 2018; 34:347-66. [PMID: 26923614 PMCID: PMC4927912 DOI: 10.3233/rnn-150546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose: The effect of the transplantation of choroid plexus epithelial cells (CPECs) on locomotor improvement and tissue repair including axonal extension in spinal cord lesions was examined in rats with spinal cord injury (SCI). Methods: CPECs were cultured from the choroid plexus of green fluorescent protein (GFP)-transgenic rats, and transplanted directly into the contusion-injured spinal cord lesions of rats of the same strain. Locomotor behaviors were evaluated based on BBB scores every week after transplantation until 4 weeks after transplantation. Histological and immunohistochemical examinations were performed at 2 days, and every week until 5 weeks after transplantation. Results: Locomotor behaviors evaluated by the BBB score were significantly improved in cell-transplanted rats. Numerous axons grew, with occasional interactions with CPECs, through the astrocyte-devoid areas. These axons exhibited structural characteristics of peripheral nerves. GAP-43-positive axons were found at the border of the lesion 2 days after transplantation. Cavity formation was more reduced in cell-transplanted than control spinal cords. CPECs were found within the spinal cord lesion, and sometimes in association with astrocytes at the border of the lesion until 2 weeks after transplantation. Conclusion: The transplantation of CPECs enhanced locomotor improvement and tissue recovery, including axonal regeneration, in rats with SCI.
Collapse
Affiliation(s)
- Kenji Kanekiyo
- Institute of Regeneration and Rehabilitation, Aino University School of Health Science, Osaka, Japan
| | - Norihiko Nakano
- Institute of Regeneration and Rehabilitation, Aino University School of Health Science, Osaka, Japan
| | - Toru Noda
- Department of Physical Therapy, Aino University School of Health Science, Osaka, Japan
| | - Yoshihiro Yamada
- Department of Physical Therapy, Aino University School of Health Science, Osaka, Japan
| | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Tazuke Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Masayoshi Ohta
- Department of Plastic and Reconstructive Surgery, Tazuke Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Atsushi Yokota
- Department of Orthopedic Surgery, Aino Hospital, Osaka, Japan
| | - Masanori Fukushima
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Chizuka Ide
- Institute of Regeneration and Rehabilitation, Aino University School of Health Science, Osaka, Japan
| |
Collapse
|
25
|
Kanekiyo K, Nakano N, Homma T, Yamada Y, Tamachi M, Suzuki Y, Fukushima M, Saito F, Ide C. Effects of Multiple Injection of Bone Marrow Mononuclear Cells on Spinal Cord Injury of Rats. J Neurotrauma 2017; 34:3003-3011. [DOI: 10.1089/neu.2016.4841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kenji Kanekiyo
- The Central Biomedical Laboratory, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| | - Norihiko Nakano
- The Central Biomedical Laboratory, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| | - Tamami Homma
- The Central Biomedical Laboratory, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| | - Yoshihiro Yamada
- Department of Physical Therapy, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| | - Masahiro Tamachi
- Department of Physical Therapy, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Tazuke Medical Research Institute, Kitano Hospital, Osaka City, Osaka, Japan
| | - Masanori Fukushima
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe City, Hyogo Prefecture, Japan
| | - Fukuki Saito
- Emergency and Clinical Care Center, Kansai Medical University, Hirakata City, Osaka, Japan
| | - Chizuka Ide
- The Central Biomedical Laboratory, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| |
Collapse
|
26
|
Li Y, Yao D, Zhang J, Liu B, Zhang L, Feng H, Li B. The Effects of Epidermal Neural Crest Stem Cells on Local Inflammation Microenvironment in the Defected Sciatic Nerve of Rats. Front Mol Neurosci 2017; 10:133. [PMID: 28588447 PMCID: PMC5438963 DOI: 10.3389/fnmol.2017.00133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Cell-based therapy is a promising strategy for the repair of peripheral nerve injuries (PNIs). epidermal neural crest stems cells (EPI-NCSCs) are thought to be important donor cells for repairing PNI in different animal models. Following PNI, inflammatory response is important to regulate the repair process. However, the effects of EPI-NCSCs on regulation of local inflammation microenviroment have not been investigated extensively. In the present study, these effects were studied by using 10 mm defected sciatic nerve, which was bridged with 15 mm artificial nerve composed of EPI-NCSCs, extracellular matrix (ECM) and poly (lactide-co-glycolide) (PLGA). Then the expression of pro- and anti-inflammatory cytokines, polarization of macrophages, regulation of fibroblasts and shwann cells (SCs) were assessed by western blot, immunohistochemistry, immunofluorescence staining at 1, 3, 7 and 21 days after bridging. The structure and the function of the bridged nerve were determined by observation under light microscope and by examination of right lateral foot retraction time (LFRT), sciatic function index (SFI), gastrocnemius wet weight and electrophysiology at 9 weeks. After bridging with EPI-NCSCs, the expression of anti-inflammatory cytokines (IL-4 and IL-13) was increased, but decreased for pro-inflammatory cytokines (IL-6 and TNF-α) compared to the control bridging, which was consistent with increase of M2 macrophages and decrease of M1 macrophages at 7 days after transplantation. Likewise, myelin-formed SCs were significantly increased, but decreased for the activated fibroblasts in their number at 21 days. The recovery of structure and function of nerve bridged with EPI-NCSCs was significantly superior to that of DMEM. These results indicated that EPI-NCSCs could be able to regulate and provide more suitable inflammation microenvironment for the repair of defected sciatic nerve.
Collapse
Affiliation(s)
- Yue Li
- Department of Neurosurgery, Southwest Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| | - Dongdong Yao
- Research Institute of Surgery, Daping Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China.,School of Life Sciences/Key Laboratory of Freshwater Fish Reproduction and Development of Education Ministry, Southwest UniversityChongqing, China
| | - Jieyuan Zhang
- Research Institute of Surgery, Daping Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| | - Bin Liu
- School of Life Sciences/Key Laboratory of Freshwater Fish Reproduction and Development of Education Ministry, Southwest UniversityChongqing, China
| | - Lu Zhang
- Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical UniversityChongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| | - Bingcang Li
- Research Institute of Surgery, Daping Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| |
Collapse
|
27
|
Dvořánková B, Szabo P, Kodet O, Strnad H, Kolář M, Lacina L, Krejčí E, Naňka O, Šedo A, Smetana K. Intercellular crosstalk in human malignant melanoma. PROTOPLASMA 2017; 254:1143-1150. [PMID: 27807664 DOI: 10.1007/s00709-016-1038-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.
Collapse
Affiliation(s)
- Barbora Dvořánková
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U Nemocnice 3, 128 00, Prague, Czech Republic
- BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Pavol Szabo
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U Nemocnice 3, 128 00, Prague, Czech Republic
- BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Ondřej Kodet
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U Nemocnice 3, 128 00, Prague, Czech Republic
- BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
- Department of Dermatology and Venerology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Lukáš Lacina
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U Nemocnice 3, 128 00, Prague, Czech Republic
- Department of Dermatology and Venerology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Eliška Krejčí
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Ondřej Naňka
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U Nemocnice 3, 128 00, Prague, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, Charles University, 1st Faculty of Medicine, U Nemocnice 5, 128 53, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U Nemocnice 3, 128 00, Prague, Czech Republic.
- BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic.
| |
Collapse
|
28
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
29
|
Boddupally K, Wang G, Chen Y, Kobielak A. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells. Stem Cells 2016; 34:720-31. [PMID: 26865184 DOI: 10.1002/stem.2314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/09/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
It has been suggested that multipotent stem cells with neural crest (NC) origin persist into adulthood in oral mucosa. However their exact localization and role in normal homeostasis is unknown. In this study, we discovered that Lgr5 is expressed in NC cells during embryonic development, which give rise to the dormant stem cells in the adult tongue and oral mucosa. Those Lgr5 positive oral stromal stem cells display properties of NC stem cells including clonal growth and multipotent differentiation. RNA sequencing revealed that adult Lgr5+ oral stromal stem cells express high number of neural crest related markers like Sox9, Twist1, Snai1, Myc, Ets1, Crabp1, Epha2, and Itgb1. Using lineage-tracing experiments, we show that these cells persist more than a year in the ventral tongue and some areas of the oral mucosa and give rise to stromal progeny. In vivo transplantation demonstrated that these cells reconstitute the stroma. Our studies show for the first time that Lgr5 is expressed in the NC cells at embryonic day 9.5 (E9.5) and is maintained during embryonic development and postnataly in the stroma of the ventral tongue, and some areas of the oral mucosa and that Lgr5+ cells participate in the maintenance of the stroma.
Collapse
Affiliation(s)
- Keerthi Boddupally
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Guangfang Wang
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, California, USA
| | - Agnieszka Kobielak
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Abstract
Nestin-expressing stem cells of the hair follicle, discovered by our laboratory, have been shown to be able to form outer-root sheaths of the follicle as well as neurons and many other non-follicle cell types. We have termed the nestin-expressing stem cells of the hair follicle as hair-follicle-associated pluripotent (HAP) stem cells. We have shown that the HAP stem cells from the hair follicle can effect the repair of peripheral nerve and spinal cord injury. The hair follicle stem cells differentiate into neuronal and glial cells after transplantation to the injured peripheral nerve and spinal cord, and enhance injury repair and locomotor recovery. When the excised hair follicle with its nerve stump was placed in Gelfoam(®) 3D histoculture, HAP stem cells grew and extended the hair follicle nerve which consisted of βIII-tubulin-positive fibers with F-actin expression at the tip. These findings indicate that βIII-tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in HAP stem cells, which appeared to play a major role in its elongation and interaction with other nerves in 3D Gelfoam(®) histoculture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. These results suggest that a major function of the HAP stem cells in the hair follicle is for growth of the follicle sensory nerve. Recently, we have shown that HAP stem cells can differentiate into beating cardiac muscle cells. HAP stem cells have critical advantages for regenerative medicine over embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in that they are highly accessible from each patient, thereby eliminating immunological issues since they are autologous, require no genetic manipulation, are non-tumorigenic, and do not present ethical issues.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA.
- Department of Surgery, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
31
|
Ide C, Nakano N, Kanekiyo K. Cell transplantation for the treatment of spinal cord injury - bone marrow stromal cells and choroid plexus epithelial cells. Neural Regen Res 2016; 11:1385-1388. [PMID: 27857727 PMCID: PMC5090826 DOI: 10.4103/1673-5374.191198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappearing from the spinal cord within 2–3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs) also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes “intrinsic” ability of the spinal cord to regenerate. The treatment to stimulate the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety.
Collapse
Affiliation(s)
- Chizuka Ide
- Central Research Laboratory, Aino University School of Health Science, Ibaraki, Osaka, Japan
| | - Norihiko Nakano
- Central Research Laboratory, Aino University School of Health Science, Ibaraki, Osaka, Japan
| | - Kenji Kanekiyo
- Central Research Laboratory, Aino University School of Health Science, Ibaraki, Osaka, Japan
| |
Collapse
|
32
|
McMahill BG, Spriet M, Sisó S, Manzer MD, Mitchell G, McGee J, Garcia TC, Borjesson DL, Sieber-Blum M, Nolta JA, Sturges BK. Feasibility Study of Canine Epidermal Neural Crest Stem Cell Transplantation in the Spinal Cords of Dogs. Stem Cells Transl Med 2015; 4:1173-86. [PMID: 26273065 DOI: 10.5966/sctm.2015-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/17/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED This pilot feasibility study aimed to determine the outcome of canine epidermal neural crest stem cell (cEPI-NCSC) grafts in the normal spinal cords of healthy bred-for-research dogs. This included developing novel protocols for (a) the ex vivo expansion of cEPI-NCSCs, (b) the delivery of cEPI-NCSCs into the spinal cord, and (c) the labeling of the cells and subsequent tracing of the graft in the live animal by magnetic resonance imaging. A total of four million cEPI-NCSCs were injected into the spinal cord divided in two locations. Differences in locomotion at baseline and post-treatment were evaluated by gait analysis and compared with neurological outcome and behavioral exams. Histopathological analyses of the spinal cords and cEPI-NCSC grafts were performed at 3 weeks post-transplantation. Neurological and gait parameters were minimally affected by the stem cell injection. cEPI-NCSCs survived in the canine spinal cord for the entire period of investigation and did not migrate or proliferate. Subsets of cEPI-NCSCs expressed the neural crest stem cell marker Sox10. There was no detectable expression of markers for glial cells or neurons. The tissue reaction to the cell graft was predominantly vascular in addition to a degree of reactive astrogliosis and microglial activation. In the present study, we demonstrated that cEPI-NCSC grafts survive in the spinal cords of healthy dogs without major adverse effects. They persist locally in the normal spinal cord, may promote angiogenesis and tissue remodeling, and elicit a tissue response that may be beneficial in patients with spinal cord injury. SIGNIFICANCE It has been established that mouse and human epidermal neural crest stem cells are somatic multipotent stem cells with proved innovative potential in a mouse model of spinal cord injury (SCI) offering promise of a valid treatment for SCI. Traumatic SCI is a common neurological problem in dogs with marked similarities, clinically and pathologically, to the syndrome in people. For this reason, dogs provide a readily accessible, clinically realistic, spontaneous model for evaluation of epidermal neural crest stem cells therapeutic intervention. The results of this study are expected to give the baseline data for a future clinical trial in dogs with traumatic SCI.
Collapse
Affiliation(s)
- Barbara G McMahill
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Mathieu Spriet
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sílvia Sisó
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Michael D Manzer
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Gaela Mitchell
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jeannine McGee
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Tanya C Garcia
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Dori L Borjesson
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Maya Sieber-Blum
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jan A Nolta
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Beverly K Sturges
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA; Department of Surgical and Radiological Sciences, Department of Pathology, Microbiology and Immunology, and J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA; Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
33
|
Vapniarsky N, Arzi B, Hu JC, Nolta JA, Athanasiou KA. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine. Stem Cells Transl Med 2015; 4:1187-98. [PMID: 26253713 DOI: 10.5966/sctm.2015-0084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. SIGNIFICANCE Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides analysis of the current state-of-the-art regenerative approaches using human-derived dermal stem cells, with consideration of current guidelines, to assist translation toward therapeutic use.
Collapse
Affiliation(s)
- Natalia Vapniarsky
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Boaz Arzi
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Jan A Nolta
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| |
Collapse
|
34
|
Sakaue M, Sieber-Blum M. Human epidermal neural crest stem cells as a source of Schwann cells. Development 2015; 142:3188-97. [PMID: 26251357 PMCID: PMC4582175 DOI: 10.1242/dev.123034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/22/2015] [Indexed: 12/16/2022]
Abstract
We show that highly pure populations of human Schwann cells can be derived rapidly and in a straightforward way, without the need for genetic manipulation, from human epidermal neural crest stem cells [hEPI-NCSC(s)] present in the bulge of hair follicles. These human Schwann cells promise to be a useful tool for cell-based therapies, disease modelling and drug discovery. Schwann cells are glia that support axons of peripheral nerves and are direct descendants of the embryonic neural crest. Peripheral nerves are damaged in various conditions, including through trauma or tumour-related surgery, and Schwann cells are required for their repair and regeneration. Schwann cells also promise to be useful for treating spinal cord injuries. Ex vivo expansion of hEPI-NCSC isolated from hair bulge explants, manipulating the WNT, sonic hedgehog and TGFβ signalling pathways, and exposure of the cells to pertinent growth factors led to the expression of the Schwann cell markers SOX10, KROX20 (EGR2), p75NTR (NGFR), MBP and S100B by day 4 in virtually all cells, and maturation was completed by 2 weeks of differentiation. Gene expression profiling demonstrated expression of transcripts for neurotrophic and angiogenic factors, as well as JUN, all of which are essential for nerve regeneration. Co-culture of hEPI-NCSC-derived human Schwann cells with rodent dorsal root ganglia showed interaction of the Schwann cells with axons, providing evidence of Schwann cell functionality. We conclude that hEPI-NCSCs are a biologically relevant source for generating large and highly pure populations of human Schwann cells. Summary: Human epidermal neural crest stem cells isolated from the bulge of hair follicles are used to derive Schwann cells that could be useful for regenerative therapies, disease modelling and drug discovery.
Collapse
Affiliation(s)
- Motoharu Sakaue
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Maya Sieber-Blum
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
35
|
Rat Nasal Respiratory Mucosa-Derived Ectomesenchymal Stem Cells Differentiate into Schwann-Like Cells Promoting the Differentiation of PC12 Cells and Forming Myelin In Vitro. Stem Cells Int 2015; 2015:328957. [PMID: 26339250 PMCID: PMC4539076 DOI: 10.1155/2015/328957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/03/2015] [Accepted: 01/04/2015] [Indexed: 01/23/2023] Open
Abstract
Schwann cell (SC) transplantation as a cell-based therapy can enhance peripheral and central nerve repair experimentally, but it is limited by the donor site morbidity for clinical application. We investigated weather respiratory mucosa stem cells (REMSCs), a kind of ectomesenchymal stem cells (EMSCs), isolated from rat nasal septum can differentiate into functional Schwann-like cells (SC-like cells). REMSCs proliferated quickly in vitro and expressed the neural crest markers (nestin, vimentin, SOX10, and CD44). Treated with a mixture of glial growth factors for 7 days, REMSCs differentiated into SC-like cells. The differentiated REMSCs (dREMSCs) exhibited a spindle-like morphology similar to SC cells. Immunocytochemical staining and Western blotting indicated that SC-like cells expressed the glial markers (GFAP, S100β, Galc, and P75) and CNPase. When cocultured with dREMSCs for 5 days, PC12 cells differentiated into mature neuron-like cells with long neurites. More importantly, dREMSCs could form myelin structures with the neurites of PC12 cells at 21 days in vitro. Our data indicated that REMSCs, a kind of EMSCs, could differentiate into SC-like cells and have the ability to promote the differentiation of PC12 cells and form myelin in vitro.
Collapse
|
36
|
Najafzadeh N, Esmaeilzade B, Dastan Imcheh M. Hair follicle stem cells: In vitro and in vivo neural differentiation. World J Stem Cells 2015; 7:866-872. [PMID: 26131317 PMCID: PMC4478633 DOI: 10.4252/wjsc.v7.i5.866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/22/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Hair follicle stem cells (HFSCs) normally give rise to keratinocytes, sebocytes, and transient amplifying progenitor cells. Along with the capacity to proliferate rapidly, HFSCs provide the basis for establishing a putative source of stem cells for cell therapy. HFSCs are multipotent stem cells originating from the bulge area. The importance of these cells arises from two important characteristics, distinguishing them from all other adult stem cells. First, they are accessible and proliferate for long periods. Second, they are multipotent, possessing the ability to differentiate into mesodermal and ectodermal cell types. In addition to a developmental capacity in vitro, HFSCs display an ability to form differentiated cells in vivo. During the last two decades, numerous studies have led to the development of an appropriate culture condition for producing various cell lineages from HFSCs. Therefore, these stem cells are considered as a novel source for cell therapy of a broad spectrum of neurodegenerative disorders. This review presents the current status of human, rat, and mouse HFSCs from both the cellular and molecular biology and cell therapy perspectives. The first section of this review highlights the importance of HFSCs and in vitro differentiation, while the final section emphasizes the significance of cell differentiation in vivo.
Collapse
|
37
|
Hoffman RM. Nestin-Expressing Hair Follicle-Accessible Pluripotent Stem Cells for Nerve and Spinal Cord Repair. Cells Tissues Organs 2015; 200:42-47. [DOI: 10.1159/000366098] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 11/19/2022] Open
|
38
|
Motohashi T, Kunisada T. Extended multipotency of neural crest cells and neural crest-derived cells. Curr Top Dev Biol 2015; 111:69-95. [PMID: 25662258 DOI: 10.1016/bs.ctdb.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural crest cells (NCC) are migratory multipotent cells that give rise to diverse derivatives. They generate various cell types during embryonic development, including neurons and glial cells of the peripheral sensory and autonomic ganglia, Schwann cells, melanocytes, endocrine cells, smooth muscle, and skeletal and connective tissue cells of the craniofacial complex. The multipotency of NCC is thought to be transient at the early stage of NCC generation; once NCC emerge from the neural tube, they change into lineage-restricted precursors. Although many studies have described the clear segregation of NCC lineages right after their delamination from the neural tube, recent reports suggest that multipotent neural crest stem cells (NCSC) are present not only in migrating NCC in the embryo, but also in their target tissues in the fetus and adult. Furthermore, fully differentiated NCC-derived cells such as glial cells and melanocytes have been shown to dedifferentiate or transdifferentiate into other NCC derivatives. The multipotency of migratory and postmigratory NCC-derived cells was found to be similar to that of NCSC. Collectively, these findings support the multipotency or plasticity of NCC and NCC-derived cells.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan.
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| |
Collapse
|
39
|
Gilanchi S, Esmaeilzade B, Eidi A, Barati M, Mehrabi S, Moghani Ghoroghi F, Nobakht M. Neuronal differentiation of rat hair follicle stem cells: the involvement of the neuroprotective factor Seladin-1 (DHCR24). IRANIAN BIOMEDICAL JOURNAL 2015; 18:136-42. [PMID: 24842139 PMCID: PMC4048477 DOI: 10.6091/ibj.1284.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: The seladin-1 (selective Alzheimer disease indicator-1), also known as DHCR24, is a gene found to be down-regulated in brain region affected by Alzheimer disease (AD). Whereas, hair follicle stem cells (HFSC), which are affected in with neurogenic potential, it might to hypothesize that this multipotent cell compartment is the predominant source of seladin-1. Our aim was to evaluate seladin-1 gene expression in hair follicle stem cells. Methods: In this study, bulge area of male Wistar rat HFSC were cultured and then characterized with Seladin-1 immunocytochemistry and flow cytometry on days 8 to 14. Next, 9-11-day cells were evaluated for seladin-1 gene expression by real-time PCR. Results: Our results indicated that expression of the seladin-1 gene (DHCR24) on days 9, 10, and 11 may contribute to the development of HFSC. However, the expression of this gene on day 11 was more than day 10 and on 10th day was more than day 9. Also, we assessed HFSC on day 14 and demonstrated these cells were positive for β-ш tubulin, and seladin-1 was not expressed in this day. Conclusion: HFSC express seladin-1 and this result demonstrates that these cells might be used to cell therapy for AD in future.
Collapse
Affiliation(s)
- Samira Gilanchi
- Iran National Science Foundation, Tehran, Iran.,Dept. of Biology, Science and Research Institute, Islamic Azad University, Tehran, Iran
| | - Banafshe Esmaeilzade
- Iran National Science Foundation, Tehran, Iran.,Dept. of Anatomy, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Akram Eidi
- Dept. of Biology, Science and Research Institute, Islamic Azad University, Tehran, Iran
| | - Mahmood Barati
- 4Dept. of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- 5Dept. of Neurosciences, School of New Technology, Tehran University of Sciences, Tehran, Iran
| | - Fatima Moghani Ghoroghi
- Dept. of Histology and Neuroscience, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Nobakht
- Iran National Science Foundation, Tehran, Iran.,Dept. of Histology and Neuroscience, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Anti-microbial Resistance Research Center, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
40
|
The Potential for iPS-Derived Stem Cells as a Therapeutic Strategy for Spinal Cord Injury: Opportunities and Challenges. J Clin Med 2014; 4:37-65. [PMID: 26237017 PMCID: PMC4470238 DOI: 10.3390/jcm4010037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating trauma causing long-lasting disability. Although advances have occurred in the last decade in the medical, surgical and rehabilitative treatments of SCI, the therapeutic approaches are still not ideal. The use of cell transplantation as a therapeutic strategy for the treatment of SCI is promising, particularly since it can target cell replacement, neuroprotection and regeneration. Cell therapies for treating SCI are limited due to several translational roadblocks, including ethical and practical concerns regarding cell sources. The use of iPSCs has been particularly attractive, since they avoid the ethical and moral concerns that surround other stem cells. Furthermore, various cell types with potential for application in the treatment of SCI can be created from autologous sources using iPSCs. For applications in SCI, the iPSCs can be differentiated into neural precursor cells, neurons, oligodendrocytes, astrocytes, neural crest cells and mesenchymal stromal cells that can act by replacing lost cells or providing environmental support. Some methods, such as direct reprogramming, are being investigated to reduce tumorigenicity and improve reprogramming efficiencies, which have been some of the issues surrounding the use of iPSCs clinically to date. Recently, iPSCs have entered clinical trials for use in age-related macular degeneration, further supporting their promise for translation in other conditions, including SCI.
Collapse
|
41
|
Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons. Stem Cell Rev Rep 2014; 10:316-26. [PMID: 24399192 PMCID: PMC3969515 DOI: 10.1007/s12015-013-9493-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we provide a protocol for the directed differentiation of hEPI-NCSC into midbrain dopaminergic neurons, which degenerate in Parkinson's disease. hEPI-NCSC are neural crest-derived multipotent stem cells that persist into adulthood in the bulge of hair follicles. The experimental design is distinctly different from conventional protocols for embryonic stem cells and induced pluripotent stem (iPS) cells. It includes pre-differentiation of the multipotent hEPI-NCSC into neural stem cell-like cells, followed by ventralizing, patterning, continued exposure to the TGFβ receptor inhibitor, SB431542, and at later stages of differentiation the presence of the WNT inhibitor, IWP-4. All cells expressed A9 midbrain dopaminergic neuron progenitor markers with gene expression levels comparable to those in normal human substantia nigra. The current study shows for the first time that virtually homogeneous populations of dopaminergic neurons can be derived ex vivo from somatic stem cells without the need for purification, with useful timeliness and high efficacy. This novel development is an important first step towards the establishment of fully functional dopaminergic neurons from an ontologically relevant stem cell type, hEPI-NCSC.
Collapse
|
42
|
Müller J, Ossig C, Greiner JFW, Hauser S, Fauser M, Widera D, Kaltschmidt C, Storch A, Kaltschmidt B. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats. Stem Cells Transl Med 2014; 4:31-43. [PMID: 25479965 DOI: 10.5966/sctm.2014-0078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model.
Collapse
Affiliation(s)
- Janine Müller
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christiana Ossig
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Johannes F W Greiner
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Stefan Hauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Mareike Fauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Darius Widera
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Alexander Storch
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
43
|
Najafzadeh N, Sagha M, Heydari Tajaddod S, Golmohammadi MG, Massahi Oskoui N, Deldadeh Moghaddam M. In vitro neural differentiation of CD34 (+) stem cell populations in hair follicles by three different neural induction protocols. In Vitro Cell Dev Biol Anim 2014; 51:192-203. [PMID: 25294494 DOI: 10.1007/s11626-014-9818-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/28/2014] [Indexed: 12/17/2022]
Abstract
Differentiation of hair follicle stem cells (HFSCs) into neurons and glial cells represents a promising cell-based therapy for neurodegenerative diseases. The hair follicle bulge area is reported as a putative source of new stem cell population for many years. In vitro studies have implicated neural differentiation of HFSCs. Here, we report the identification and purification of CD34 (+) cells from hair follicle by magnetic activated cell sorting (MACS). We next determined the cytotoxic effects of all-trans retinoic acid (RA) by using cell viability assays. Moreover, the neural differentiation potential of CD34 (+) cells was evaluated in the presence of RA, serum-free condition, and neural differentiation medium (NDM) treatments by using immunocytochemistry and reverse transcription polymerase chain reaction (RT-PCR). Our results showed that the isolated CD34 (+) stem cells were 12% of the total cells in the bulge area, and the neural cells derived from the stem cells expressed nestin, microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP). Interestingly, all the neural induction media supported neuronal differentiation most effectively, but treatment with serum-free medium significantly increased the number of GFAP-positive glial cells. Moreover, increasing RA concentration (≥10 μM) leads to increased cell death in the cells, but a lower concentration of RA (1 μM) treatment results in a decrease in CD34-expressing stem cells. These findings show an instructive neuronal effect of three neural induction media in HFSCs, indicating the important role of this induction media in the specification of the stem cells toward a neural phenotype.
Collapse
Affiliation(s)
- Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran,
| | | | | | | | | | | |
Collapse
|
44
|
Zhang J, Liu Z, Chen H, Duan Z, Zhang L, Chen L, Li B. Synergic effects of EPI-NCSCs and OECs on the donor cells migration, the expression of neurotrophic factors, and locomotor recovery of contused spinal cord of rats. J Mol Neurosci 2014; 55:760-9. [PMID: 25239519 DOI: 10.1007/s12031-014-0416-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/27/2014] [Indexed: 01/19/2023]
Abstract
Cell-based therapy is a promising strategy for the repair of spinal cord injury (SCI), and the synergic effects of donor cells are emphasized in recent years. In this study, epidermal neural crest stem cells (EPI-NCSCs) and olfactory ensheathing cells (OECs) were transplanted into the contused spinal cord of rats separately or jointly at 1 week after injury. At 3 and 9 weeks posttransplantation, migration of the donor cells, expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) and functional recovery of the contused cord were determined by techniques of histopathology, quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry and Basso-Beattie-Bresnahan (BBB) score. The results showed that the migration and distribution of EPI-NCSCs in vivo were promoted by OECs at 3 weeks after transplantation, but they vanished at 9 weeks. The expression of BDNF and GDNF was significantly increased by co-transplantation at molecular and protein level. Although the expression of both factors in EPI-NCSCs- and OECs-injected group was lower than in co-injected group, it was higher than in control groups. Similarly, the best locomotor recovery of the contused cord was acquired from co-injected animals. As we know, this is the first time to study the synergic effects of EPI-NCSCs and OECs, and the data indicates that donor cells migration, expression of neurotrophic factors (NTFs), and recovery of motor function can be improved by EPI-NCSCs and OECs synergistically.
Collapse
Affiliation(s)
- Jieyuan Zhang
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, 400042, Chongqing, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
45
|
Sieber-Blum M. Human epidermal neural crest stem cells as candidates for cell-based therapies, disease modeling, and drug discovery. ACTA ACUST UNITED AC 2014; 102:221-6. [PMID: 25228472 DOI: 10.1002/bdrc.21073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/16/2022]
Abstract
In this review article I explore the suitability of human epidermal neural crest stem cells (hEPI-NCSC) for translational medicine. hEPI-NCSC are multipotent somatic stem cells that are derived from the embryonic neural crest. hEPI-NCSC are located in the bulge of hair follicles where they persist postnatally and into adulthood. Because of their location in the hairy skin and their migratory behavior, hEPI-NCSC can be easily isolated as a highly pure population of stem cells without the need for purification. Furthermore they can be expanded ex vivo into millions of stem cells, they do not form tumors in vivo, and they can undergo directed differentiation into crest and noncrest-derived cell types of clinical relevance. Taken together, these characteristics make hEPI-NCSC attractive candidates for cell-based therapies, drug discovery, and disease modeling.
Collapse
Affiliation(s)
- Maya Sieber-Blum
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| |
Collapse
|
46
|
Dupin E, Le Douarin NM. The neural crest, a multifaceted structure of the vertebrates. ACTA ACUST UNITED AC 2014; 102:187-209. [PMID: 25219958 DOI: 10.1002/bdrc.21080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Abstract
In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals.
Collapse
Affiliation(s)
- Elisabeth Dupin
- INSERM, U968, Paris, F-75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France; CNRS, UMR_7210, Paris, F-75012, France
| | | |
Collapse
|
47
|
Peng LH, Niu J, Zhang CZ, Yu W, Wu JH, Shan YH, Wang XR, Shen YQ, Mao ZW, Liang WQ, Gao JQ. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials 2014; 35:5605-18. [PMID: 24736021 DOI: 10.1016/j.biomaterials.2014.03.062] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/21/2014] [Indexed: 01/30/2023]
Abstract
Most nonviral gene delivery systems are not efficient enough to manipulate the difficult-to-transfect cell types, including non-dividing, primary, neuronal or stem cells, due to a lack of an intrinsic capacity to enter the membrane and nucleus, release its DNA payload, and activate transcription. Noble metal nanoclusters have emerged as a fascinating area of widespread interest in nanomaterials. Herein, we report the synthesis of the TAT peptide conjugated cationic noble metal nanoparticles (metal NPs@PEI-TAT) as highly efficient carriers for gene delivery to stem cells. The metal NPs@PEI-TAT integrate the advantages of metal NPs and peptides: the presence of metal NPs can effectively decrease the cytotoxicity of cationic molecules, making it possible to apply them in biological systems, while the cell penetrating peptides are essential for enhanced cellular and nucleus entry to achieve high transfection efficiency. Our studies provide strong evidence that the metal NPs@PEI-TAT can be engineered as gene delivery agents for stem cells and subsequently enhance their directed differentiation for biomedical application.
Collapse
Affiliation(s)
- Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chen-Zhen Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Yu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Jia-He Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ying-Hui Shan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xia-Rong Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - You-Qing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, PR China
| | - Zheng-Wei Mao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China.
| | - Wen-Quan Liang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
48
|
Gericota B, Anderson JS, Mitchell G, Borjesson DL, Sturges BK, Nolta JA, Sieber-Blum M. Canine epidermal neural crest stem cells: characterization and potential as therapy candidate for a large animal model of spinal cord injury. Stem Cells Transl Med 2014; 3:334-45. [PMID: 24443004 PMCID: PMC3952930 DOI: 10.5966/sctm.2013-0129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023] Open
Abstract
The discovery of multipotent neural crest-derived stem cells, named epidermal neural crest stem cells (EPI-NCSC), that persist postnatally in an easy-to-access location-the bulge of hair follicles-opens a spectrum of novel opportunities for patient-specific therapies. We present a detailed characterization of canine EPI-NCSC (cEPI-NCSC) from multiple dog breeds and protocols for their isolation and ex vivo expansion. Furthermore, we provide novel tools for research in canines, which currently are still scarce. In analogy to human and mouse EPI-NCSC, the neural crest origin of cEPI-NCSC is shown by their expression of the neural crest stem cell molecular signature and other neural crest-characteristic genes. Similar to human EPI-NCSC, cEPI-NCSC also expressed pluripotency genes. We demonstrated that cEPI-NCSC can generate all major neural crest derivatives. In vitro clonal analyses established multipotency and self-renewal ability of cEPI-NCSC, establishing cEPI-NCSC as multipotent somatic stem cells. A critical analysis of the literature on canine spinal cord injury (SCI) showed the need for novel treatments and suggested that cEPI-NCSC represent viable candidates for cell-based therapies in dog SCI, particularly for chondrodystrophic dogs. This notion is supported by the close ontological relationship between neural crest stem cells and spinal cord stem cells. Thus, cEPI-NCSC promise to offer not only a potential treatment for canines but also an attractive and realistic large animal model for human SCI. Taken together, we provide the groundwork for the development of a novel cell-based therapy for a condition with extremely poor prognosis and no available effective treatment.
Collapse
|
49
|
East E, Johns N, Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. A 3D in vitro model reveals differences in the astrocyte response elicited by potential stem cell therapies for CNS injury. Regen Med 2013; 8:739-46. [PMID: 24147529 PMCID: PMC3831573 DOI: 10.2217/rme.13.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIM This study aimed to develop a 3D culture model to test the extent to which transplanted stem cells modulate astrocyte reactivity, where exacerbated glial cell activation could be detrimental to CNS repair success. MATERIALS & METHODS The reactivity of rat astrocytes to bone marrow mesenchymal stem cells, neural crest stem cells (NCSCs) and differentiated adipose-derived stem cells was assessed after 5 days. Schwann cells were used as a positive control. RESULTS NCSCs and differentiated Schwann cell-like adipose-derived stem cells did not increase astrocyte reactivity. Highly reactive responses to bone marrow mesenchymal stem cells and Schwann cells were equivalent. CONCLUSION This approach can screen therapeutic cells prior to in vivo testing, allowing cells likely to trigger a substantial astrocyte response to be identified at an early stage. NCSCs and differentiated Schwann cell-like adipose-derived stem cells may be useful in treating CNS damage without increasing astrogliosis.
Collapse
Affiliation(s)
- Emma East
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Noémie Johns
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Melanie Georgiou
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jon P Golding
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - A Jane Loughlin
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| | - James B Phillips
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
- Department of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK
| |
Collapse
|
50
|
The influence of cerebrospinal fluid on epidermal neural crest stem cells may pave the path for cell-based therapy. Stem Cell Res Ther 2013; 4:84. [PMID: 23867009 PMCID: PMC3854676 DOI: 10.1186/scrt235] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
Introduction Epidermal neural crest stem cells (EPI-NCSCs) in the bulge of hair follicles are a promising source for cell-replacement therapies in neurodegenerative diseases. A prominent factor in cell-based therapy is the practicalities of different routes of administration. Cerebrospinal fluid (CSF), owing to its adaptive library of secreted growth factors, can provide a trophic environment for transplanted cells. Thus, the effect of CSF on the behavior of EPI-NCSC was studied here. Methods In this study, the highly pure population of EPI-NCSCs was obtained from the bulge of mouse hair follicle. Migrated cells were characterized with real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. Subsequently isolated stem cells were cultured in CSF, which was collected from the cisterna magna of the adult rat. The expression of pertinent markers was assessed at the gene and protein levels with RT-PCR and immunocytochemistry, respectively. Colorimetric immunoassay was used to quantify the rate of proliferation of EPI-NCSCs after cultivation in CSF. Results Isolated EPI-NCSCs could survive in the CSF, and they maintained the expression of nestin, β–tubulin ІІІ (early neuronal marker), and glial fibrillary acidic protein (GFAP, glia marker) in this environment. In addition, CSF decreased the proliferation rate of EPI-NCSCs significantly in comparison to primary and expansion culture medium. Conclusions Our findings demonstrate that CSF as a cocktail of growth factors helps EPI-NCSCs to acquire some desirable traits, and because of its circulatory system that is in close contact with different parts of the central nervous system (CNS), can be a practical route of administration for delivery of injected stem cells.
Collapse
|