1
|
Eze FN. Transthyretin Amyloidosis: Role of oxidative stress and the beneficial implications of antioxidants and nutraceutical supplementation. Neurochem Int 2024; 179:105837. [PMID: 39154837 DOI: 10.1016/j.neuint.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Transthyretin (ATTR) amyloidosis constitutes a spectrum of debilitating neurodegenerative diseases instigated by systemic extracellular deposition of partially unfolded/aggregated aberrant transthyretin. The homotetrameric protein, TTR, is abundant in the plasma, and to a lesser extent the cerebrospinal fluid. Rate-limiting tetramer dissociation of the native protein is regarded as the critical step in the formation of morphologically heterogenous toxic aggregates and the onset of clinical manifestations such as polyneuropathy, cardiomyopathy, disturbances in motor and autonomic functions. Over the past few decades there has been increasing evidence suggesting that in addition to destabilization in TTR tetramer structure, oxidative stress may also play an important role in the pathogenesis of ATTR amyloidosis. In this review, an update on the impact of oxidative stress in TTR amyloidogenesis as well as TTR aggregate-mediated pathologies is discussed. The counteracting effects of antioxidants and nutraceutical agents explored in the treatment of ATTR amyloidosis based on recent evidence is also critically examined. The insights unveiled could further strengthen current understanding of the mechanisms underlying ATTR amyloidosis as well as extend the range of strategies for effective management of ATTR amyloidoses.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
2
|
Bej E, Cesare P, Volpe AR, d’Angelo M, Castelli V. Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson's Disease. Neurol Int 2024; 16:502-517. [PMID: 38804477 PMCID: PMC11130796 DOI: 10.3390/neurolint16030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition marked by the gradual deterioration of dopaminergic neurons in the substantia nigra. Oxidative stress has been identified as a key player in the development of PD in recent studies. In the first part, we discuss the sources of oxidative stress in PD, including mitochondrial dysfunction, dopamine metabolism, and neuroinflammation. This paper delves into the possibility of mitigating oxidative stress as a potential treatment approach for PD. In addition, we examine the hurdles and potential of antioxidant therapy, including the challenge of delivering antioxidants to the brain and the requirement for biomarkers to track oxidative stress in PD patients. However, even if antioxidant therapy holds promise, further investigation is needed to determine its efficacy and safety in PD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (A.R.V.); (M.d.)
| |
Collapse
|
3
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
4
|
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, Li YL, Patel KP. Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress and Ameliorating Neuroinflammation. Antioxidants (Basel) 2023; 12:1877. [PMID: 37891956 PMCID: PMC10604131 DOI: 10.3390/antiox12101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress is a deteriorating condition that arises due to an imbalance between the reactive oxygen species and the antioxidant system or defense of the body. The key reasons for the development of such conditions are malfunctioning of various cell organelles, such as mitochondria, endoplasmic reticulum, and Golgi complex, as well as physical and mental disturbances. The nervous system has a relatively high utilization of oxygen, thus making it particularly vulnerable to oxidative stress, which eventually leads to neuronal atrophy and death. This advances the development of neuroinflammation and neurodegeneration-associated disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, dementia, and other memory disorders. It is imperative to treat such conditions as early as possible before they worsen and progress to irreversible damage. Oxidative damage can be negated by two mechanisms: improving the cellular defense system or providing exogenous antioxidants. Natural antioxidants can normally handle such oxidative stress, but they have limited efficacy. The valuable features of nanoparticles and/or nanomaterials, in combination with antioxidant features, offer innovative nanotheranostic tools as potential therapeutic modalities. Hence, this review aims to represent novel therapeutic approaches like utilizing nanoparticles with antioxidant properties and nanotheranostics as delivery systems for potential therapeutic applications in various neuroinflammation- and neurodegeneration-associated disease conditions.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
5
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
6
|
Di Maio R, Keeney MT, Cechova V, Mortimer A, Sekandari A, Rowart P, Greenamyre JT, Freeman BA, Fazzari M. Neuroprotective actions of a fatty acid nitroalkene in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:55. [PMID: 37029127 PMCID: PMC10082007 DOI: 10.1038/s41531-023-00502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
To date there are no therapeutic strategies that limit the progression of Parkinson's disease (PD). The mechanisms underlying PD-related nigrostriatal neurodegeneration remain incompletely understood, with multiple factors modulating the course of PD pathogenesis. This includes Nrf2-dependent gene expression, oxidative stress, α-synuclein pathology, mitochondrial dysfunction, and neuroinflammation. In vitro and sub-acute in vivo rotenone rat models of PD were used to evaluate the neuroprotective potential of a clinically-safe, multi-target metabolic and inflammatory modulator, the electrophilic fatty acid nitroalkene 10-nitro-oleic acid (10-NO2-OA). In N27-A dopaminergic cells and in the substantia nigra pars compacta of rats, 10-NO2-OA activated Nrf2-regulated gene expression and inhibited NOX2 and LRRK2 hyperactivation, oxidative stress, microglial activation, α-synuclein modification, and downstream mitochondrial import impairment. These data reveal broad neuroprotective actions of 10-NO2-OA in a sub-acute model of PD and motivate more chronic studies in rodents and primates.
Collapse
Affiliation(s)
- Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Amanda Mortimer
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ahssan Sekandari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Pascal Rowart
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
7
|
Moradi Vastegani S, Nasrolahi A, Ghaderi S, Belali R, Rashno M, Farzaneh M, Khoshnam SE. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res 2023:10.1007/s11064-023-03904-0. [PMID: 36943668 DOI: 10.1007/s11064-023-03904-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rafie Belali
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Meshkini F, Moradi A, Hosseinkhani S. Upregulation of RIPK1 implicates in HEK 293T cell death upon transient transfection of A53T-α-synuclein. Int J Biol Macromol 2023; 230:123216. [PMID: 36634793 DOI: 10.1016/j.ijbiomac.2023.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alpha-synuclein (α-SN) is the central protein in synucleinopathies including Parkinson's disease. Nevertheless, the molecular mechanisms through which α-SN leads to neuronal death remain unclear. METHODS To elucidate the relationship between α-SN and apoptosis, some indicators of the intrinsic and extrinsic apoptotic cell death were assessed in normal and a stable HEK293T cell line expressing firefly luciferase after transfection with the wild-type (WT) and A53T mutant α-SN. RESULTS Opposite to WT-α-SN, overexpression of A53T-α-SN resulted in enhanced expression of almost two fold for RIPK1 (93.0 %), FADD (45 %), Caspase-8, and Casp-9 activity (52.0 %) in measured time. Transfection of both WT-α-SN and A53T-α-SN showed an increase in the Casp-3/Procasp-3 ratio (WT: 60.5 %; A53T: 41.0 %), Casp-3 activity (WT: 65.0 %; A53T: 20.5 %), and a decrease in luciferase activity (WT: 50 %; A53T: 34.8 %). Overexpression of A53T-α-SN brought about with more cell death percentage compared to WT-α-SN within 36 h. No significant alteration in cytochrome c and reactive oxygen species release into cytosol were observed for both WT-α-SN and A53T-α-SN. CONCLUSION Altogether, these findings highlight the link between disease related mutants of α-SN (like A53T-α-SN) in triggering of RIPK1-dependent extrinsic apoptotic pathway in cell death during neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Meshkini
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Moradi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Uceda AB, Frau J, Vilanova B, Adrover M. On the effect of methionine oxidation on the interplay between α-synuclein and synaptic-like vesicles. Int J Biol Macromol 2023; 229:92-104. [PMID: 36584779 DOI: 10.1016/j.ijbiomac.2022.12.262] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Human alpha-synuclein (αS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, which are considered a hallmark of Parkinson's disease (PD). αS has four different Met, which are particularly sensitive to oxidation, as most of them are found as Met sulfoxide (MetO) in the αS deposits. Consequently, researchers have invested mounting efforts trying to elucidate the molecular mechanisms underlying the links between oxidative stress, αS aggregation and PD. However, it has not been described yet the effect of Met oxidation on the physiological function of αS. Trying to shed light on this aspect, we have here studied a synthetic αS that displayed all its Met replaced by MetO moieties (αS-MetO). Our study has allowed to prove that MetO diminishes the affinity of αS towards anionic micelles (SDS), although the micelle-bound fraction of αS-MetO still adopts an α-helical folding resembling that of the lipid-bound αS. MetO also diminishes the affinity of αS towards synaptic-like vesicles, and its hindering effect is much more pronounced than that displayed on the αS-micelle affinity. Additionally, we have also demonstrated that MetO impairs the physiological function of αS as a catalyst of the clustering and the fusion of synaptic vesicles (SVs). Our findings provide a new understanding on how Met oxidation affects one of the most relevant biological functions attributed to αS that is to bind and cluster SVs along the neurotransmission.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
10
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
11
|
Pancoe SX, Wang YJ, Shimogawa M, Perez RM, Giannakoulias S, Petersson EJ. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. J Mol Biol 2022; 434:167859. [PMID: 36270580 PMCID: PMC9922159 DOI: 10.1016/j.jmb.2022.167859] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson's Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.
Collapse
Affiliation(s)
- Samantha X Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Pieger K, Schmitt V, Gauer C, Gießl N, Prots I, Winner B, Winkler J, Brandstätter JH, Xiang W. Translocation of Distinct Alpha Synuclein Species from the Nucleus to Neuronal Processes during Neuronal Differentiation. Biomolecules 2022; 12:biom12081108. [PMID: 36009004 PMCID: PMC9406079 DOI: 10.3390/biom12081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha synuclein (aSyn) and its aggregation are crucial for the neurodegeneration of Parkinson’s disease (PD). aSyn was initially described in the nucleus and presynaptic nerve terminals. However, the biology of nuclear aSyn and the link of aSyn between subcellular compartments are less understood. Current knowledge suggests the existence of various aSyn species with distinct structural and biochemical properties. Here, we identified a C-terminal-targeting aSyn antibody (Nu-aSyn-C), which has a high immunoaffinity towards aSyn in the nucleus. Comparing the Nu-aSyn-C antibody to aSyn antibodies developed against phosphorylated or aggregated forms, we observed that nuclear aSyn differs from cytosolic aSyn by an increased phosphorylation and assembly level in proliferating cells. Employing Nu-aSyn-C, we characterized aSyn distribution during neuronal differentiation in midbrain dopaminergic neurons (mDANs) derived from human-induced pluripotent stem cells (hiPSCs) and Lund human mesencephalic cells, and in primary rat hippocampal neurons. We detected a specific translocation pattern of aSyn during neuronal differentiation from the nucleus to the soma and finally to neuronal processes. Interestingly, a remarkable shift of Nu-aSyn-C-positive species towards neurites was detected in hiPSC mDANs from a PD patient carrying aSyn gene duplication. Together, our results reveal distinct nuclear and cytosolic aSyn species that redistribute during neuronal differentiation—a process that is altered in PD-derived neurons.
Collapse
Affiliation(s)
- Katharina Pieger
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Verena Schmitt
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Carina Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nadja Gießl
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Johann Helmut Brandstätter
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-44676
| |
Collapse
|
13
|
Keeney MT, Hoffman EK, Farmer K, Bodle CR, Fazzari M, Zharikov A, Castro SL, Hu X, Mortimer A, Kofler JK, Cifuentes-Pagano E, Pagano PJ, Burton EA, Hastings TG, Greenamyre JT, Di Maio R. NADPH oxidase 2 activity in Parkinson's disease. Neurobiol Dis 2022; 170:105754. [PMID: 35577065 PMCID: PMC9284948 DOI: 10.1016/j.nbd.2022.105754] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are strongly implicated in Parkinson's disease (PD) pathogenesis and there is evidence that mitochondrially-generated superoxide can activate NADPH oxidase 2 (NOX2). Although NOX2 has been examined in the context of PD, most attention has focused on glial NOX2, and the role of neuronal NOX2 in PD remains to be defined. Additionally, pharmacological NOX2 inhibitors have typically lacked specificity. Here we devised and validated a proximity ligation assay for NOX2 activity and demonstrated that in human PD and two animal models thereof, both neuronal and microglial NOX2 are highly active in substantia nigra under chronic conditions. However, in acute and sub-acute PD models, we observed neuronal, but not microglial NOX2 activation, suggesting that neuronal NOX2 may play a primary role in the early stages of the disease. Aberrant NOX2 activity is responsible for the formation of oxidative stress-related post-translational modifications of α-synuclein, and impaired mitochondrial protein import in vitro in primary ventral midbrain neuronal cultures and in vivo in nigrostriatal neurons in rats. In a rat model, administration of a brain-penetrant, highly specific NOX2 inhibitor prevented NOX2 activation in nigrostriatal neurons and its downstream effects in vivo, such as activation of leucine-rich repeat kinase 2 (LRRK2). We conclude that NOX2 is an important enzyme that contributes to progressive oxidative damage which in turn can lead to α-synuclein accumulation, mitochondrial protein import impairment, and LRRK2 activation. In this context, NOX2 inhibitors hold potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eric K Hoffman
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kyle Farmer
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christopher R Bodle
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alevtina Zharikov
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoping Hu
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amanda Mortimer
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Bluhm A, Schrempel S, Schilling S, von Hörsten S, Schulze A, Roßner S, Hartlage-Rübsamen M. Immunohistochemical Demonstration of the pGlu79 α-Synuclein Fragment in Alzheimer’s Disease and Its Tg2576 Mouse Model. Biomolecules 2022; 12:biom12071006. [PMID: 35883562 PMCID: PMC9312983 DOI: 10.3390/biom12071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
The deposition of β-amyloid peptides and of α-synuclein proteins is a neuropathological hallmark in the brains of Alzheimer’s disease (AD) and Parkinson’s disease (PD) subjects, respectively. However, there is accumulative evidence that both proteins are not exclusive for their clinical entity but instead co-exist and interact with each other. Here, we investigated the presence of a newly identified, pyroglutamate79-modified α-synuclein variant (pGlu79-aSyn)—along with the enzyme matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC) implicated in its formation—in AD and in the transgenic Tg2576 AD mouse model. In the human brain, pGlu79-aSyn was detected in cortical pyramidal neurons, with more distinct labeling in AD compared to control brain tissue. Using immunohistochemical double and triple labelings and confocal laser scanning microscopy, we demonstrate an association of pGlu79-aSyn, MMP-3 and QC with β-amyloid plaques. In addition, pGlu79-aSyn and QC were present in amyloid plaque-associated reactive astrocytes that were also immunoreactive for the chaperone heat shock protein 27 (HSP27). Our data are consistent for the transgenic mouse model and the human clinical condition. We conclude that pGlu79-aSyn can be generated extracellularly or within reactive astrocytes, accumulates in proximity to β-amyloid plaques and induces an astrocytic protein unfolding mechanism involving HSP27.
Collapse
Affiliation(s)
- Alexandra Bluhm
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| | - Sarah Schrempel
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle (Saale), Germany; (S.S.); (A.S.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Clinics Erlangen and Preclinical Experimental Center, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Anja Schulze
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle (Saale), Germany; (S.S.); (A.S.)
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
- Correspondence: ; Tel.: +49-341-9725758
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| |
Collapse
|
15
|
Leupold L, Sigutova V, Gerasimova E, Regensburger M, Zundler S, Zunke F, Xiang W, Winner B, Prots I. The Quest for Anti-α-Synuclein Antibody Specificity-Lessons Learnt From Flow Cytometry Analysis. Front Neurol 2022; 13:869103. [PMID: 35911883 PMCID: PMC9334871 DOI: 10.3389/fneur.2022.869103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of alpha-synuclein (aSyn) is the hallmark of a group of neurodegenerative conditions termed synucleopathies. Physiological functions of aSyn, including those outside of the CNS, remain elusive. However, a reliable and reproducible evaluation of aSyn protein expression in different cell types and especially in low-expressing cells is impeded by the existence of a huge variety of poorly characterized anti-aSyn antibodies and a lack of a routinely used sensitive detection methods. Here, we developed a robust flow cytometry-based workflow for aSyn detection and antibody validation. We test our workflow using three commercially available antibodies (MJFR1, LB509, and 2A7) in a variety of human cell types, including induced pluripotent stem cells, T lymphocytes, and fibroblasts, and provide a cell- and antibody-specific map for aSyn expression. Strikingly, we demonstrate a previously unobserved unspecificity of the LB509 antibody, while the MJFR1 clone revealed specific aSyn binding however with low sensitivity. On the other hand, we identified an aSyn-specific antibody clone 2A7 with an optimal sensitivity for detecting aSyn in a range of cell types, including those with low aSyn expression. We further utilize our workflow to demonstrate the ability of the 2A7 antibody to distinguish between physiological differences in aSyn expression in neuronal and non-neuronal cells from the cortical organoids, and in neural progenitors and midbrain dopaminergic neurons from healthy controls and in patients with Parkinson's disease who have aSyn gene locus duplication. Our results provide a proof of principle for the use of high-throughput flow cytometry-based analysis of aSyn and highlight the necessity of rigorous aSyn antibody validation to facilitate the research of aSyn physiology and pathology.
Collapse
Affiliation(s)
- Lukas Leupold
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Veronika Sigutova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elizaveta Gerasimova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Translational Research Center (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
17
|
Prieto Huarcaya S, Drobny A, Marques ARA, Di Spiezio A, Dobert JP, Balta D, Werner C, Rizo T, Gallwitz L, Bub S, Stojkovska I, Belur NR, Fogh J, Mazzulli JR, Xiang W, Fulzele A, Dejung M, Sauer M, Winner B, Rose-John S, Arnold P, Saftig P, Zunke F. Recombinant pro-CTSD (cathepsin D) enhances SNCA/α-Synuclein degradation in α-Synucleinopathy models. Autophagy 2022; 18:1127-1151. [PMID: 35287553 PMCID: PMC9196656 DOI: 10.1080/15548627.2022.2045534] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by the abnormal intracellular accumulation of SNCA/α-synuclein. While the exact mechanisms underlying SNCA pathology are not fully understood, increasing evidence suggests the involvement of autophagy as well as lysosomal deficiencies. Because CTSD (cathepsin D) has been proposed to be the major lysosomal protease involved in SNCA degradation, its deficiency has been linked to the presence of insoluble SNCA conformers in the brain of mice and humans as well as to the transcellular transmission of SNCA aggregates. We here postulate that SNCA degradation can be enhanced by the application of the recombinant human proform of CTSD (rHsCTSD). Our results reveal that rHsCTSD is efficiently endocytosed by neuronal cells, correctly targeted to lysosomes and matured to an enzymatically active protease. In dopaminergic neurons derived from induced pluripotent stem cells (iPSC) of PD patients harboring the A53T mutation within the SNCA gene, we confirm the reduction of insoluble SNCA after treatment with rHsCTSD. Moreover, we demonstrate a decrease of pathological SNCA conformers in the brain and within primary neurons of a ctsd-deficient mouse model after dosing with rHsCTSD. Boosting lysosomal CTSD activity not only enhanced SNCA clearance in human and murine neurons as well as tissue, but also restored endo-lysosome and autophagy function. Our findings indicate that CTSD is critical for SNCA clearance and function. Thus, enzyme replacement strategies utilizing CTSD may also be of therapeutic interest for the treatment of PD and other synucleinopathies aiming to decrease the SNCA burden.Abbreviations: aa: amino acid; SNCA/α-synuclein: synuclein alpha; APP: amyloid beta precursor protein; BBB: blood brain barrier; BF: basal forebrain; CBB: Coomassie Brilliant Blue; CLN: neuronal ceroid lipofuscinosis; CNL10: neuronal ceroid lipofuscinosis type 10; Corr.: corrected; CTSD: cathepsin D; CTSB: cathepsin B; DA: dopaminergic; DA-iPSn: induced pluripotent stem cell-derived dopaminergic neurons; dox: doxycycline; ERT: enzyme replacement therapy; Fx: fornix, GBA/β-glucocerebrosidase: glucosylceramidase beta; h: hour; HC: hippocampus; HT: hypothalamus; i.c.: intracranially; IF: immunofluorescence; iPSC: induced pluripotent stem cell; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LSDs: lysosomal storage disorders; MAPT: microtubule associated protein tau; M6P: mannose-6-phosphate; M6PR: mannose-6-phosphate receptor; MB: midbrain; mCTSD: mature form of CTSD; neurofil.: neurofilament; PD: Parkinson disease; proCTSD: proform of CTSD; PRNP: prion protein; RFU: relative fluorescence units; rHsCTSD: recombinant human proCTSD; SAPC: Saposin C; SIM: structured illumination microscopy; T-insol: Triton-insoluble; T-sol: Triton-soluble; TEM: transmission electron microscopy, TH: tyrosine hydroxylase; Thal: thalamus.
Collapse
Affiliation(s)
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - André R A Marques
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), Nova Medical School, Nms, Nova University Lisbon, Lisboa, Portugal
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Simon Bub
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | | - Joseph R Mazzulli
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| |
Collapse
|
18
|
Gadhe L, Sakunthala A, Mukherjee S, Gahlot N, Bera R, Sawner AS, Kadu P, Maji SK. Intermediates of α-synuclein aggregation: Implications in Parkinson's disease pathogenesis. Biophys Chem 2021; 281:106736. [PMID: 34923391 DOI: 10.1016/j.bpc.2021.106736] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Cytoplasmic deposition of aberrantly misfolded α-synuclein (α-Syn) is a common feature of synucleinopathies, including Parkinson's disease (PD). However, the precise pathogenic mechanism of α-Syn in synucleinopathies remains elusive. Emerging evidence has suggested that α-Syn may contribute to PD pathogenesis in several ways; wherein the contribution of fibrillar species, for exerting toxicity and disease transmission, cannot be neglected. Further, the oligomeric species could be the most plausible neurotoxic species causing neuronal cell death. However, understanding the structural and molecular insights of these oligomers are very challenging due to the heterogeneity and transient nature of the species. In this review, we discuss the recent advancements in understanding the formation and role of α-Syn oligomers in PD pathogenesis. We also summarize the different types of α-Syn oligomeric species and potential mechanisms to exert neurotoxicity. Finally, we address the possible ways to target α-Syn as a promising approach against PD and the possible future directions.
Collapse
Affiliation(s)
- Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Riya Bera
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
19
|
Andersen C, Grønnemose AL, Pedersen JN, Nowak JS, Christiansen G, Nielsen J, Mulder FAA, Otzen DE, Jørgensen TJD. Lipid Peroxidation Products HNE and ONE Promote and Stabilize Alpha-Synuclein Oligomers by Chemical Modifications. Biochemistry 2021; 60:3644-3658. [PMID: 34730940 DOI: 10.1021/acs.biochem.1c00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aggregation of α-synuclein (αSN) and increased oxidative stress leading to lipid peroxidation are pathological characteristics of Parkinson's disease (PD). Here, we report that aggregation of αSN in the presence of lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) increases the stability and the yield of αSN oligomers (αSO). Further, we show that ONE is more efficient than HNE at inducing αSO. In addition, we demonstrate that the two αSO differ in both size and shape. ONE-αSO are smaller in size than HNE-αSO, except when they are formed at a high molar excess of aldehyde. In both monomeric and oligomeric αSN, His50 is the main target of HNE modification, and HNE-induced oligomerization is severely retarded in the mutant His50Ala αSN. In contrast, ONE-induced aggregation of His50Ala αSN occurs readily, demonstrating the different pathways for inducing αSN aggregation by HNE and ONE. Our results show different morphologies of the HNE-treated and ONE-treated αSO and different roles of His50 in their modification of αSN, but we also observe structural similarities between these αSO and the non-treated αSO, e.g., flexible C-terminus, a folded core composed of the N-terminal and NAC region. Furthermore, HNE-αSO show a similar deuterium uptake as a previously characterized oligomer formed by non-treated αSO, suggesting that the backbone conformational dynamics of their folded cores resemble one another.
Collapse
Affiliation(s)
- Camilla Andersen
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark
| | - Anne Louise Grønnemose
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark.,Department of Biochemistry and Molecular Biology, Campusvej 55, University of Southern Denmark, Odense M 5230, Denmark
| | - Jannik N Pedersen
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark
| | - Jan S Nowak
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark
| | | | - Janni Nielsen
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark
| | - Frans A A Mulder
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark.,Department of Chemistry, Langelandsgade 140, Aarhus University, Aarhus C 8000, Denmark
| | - Daniel Erik Otzen
- iNANO, Gustav Wieds Vej 14, Aarhus University, Aarhus C 8000, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, Campusvej 55, University of Southern Denmark, Odense M 5230, Denmark
| |
Collapse
|
20
|
Serratos IN, Hernández-Pérez E, Campos C, Aschner M, Santamaría A. An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Mol Neurobiol 2021; 59:620-642. [PMID: 34750787 DOI: 10.1007/s12035-021-02596-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson's disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn - such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates - contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Elizabeth Hernández-Pérez
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Carolina Campos
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, SSA, 14269, Mexico City, Mexico.
| |
Collapse
|
21
|
Gadhavi J, Patel M, Bhatia D, Gupta S. Neurotoxic or neuroprotective: Post-translational modifications of α-synuclein at the cross-roads of functions. Biochimie 2021; 192:38-50. [PMID: 34582997 DOI: 10.1016/j.biochi.2021.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease. The loss of dopaminergic neurons in the substantia nigra is one of the pathological hallmarks of PD. PD also belongs to the class of neurodegenerative disease known as 'Synucleinopathies' as α-synuclein is responsible for disease development. The presence of aggregated α-synuclein associated with other proteins found in the Lewy bodies and Lewy neurites in the substantia nigra and other regions of the brain including locus ceruleus, dorsal vagal nucleus, nucleus basalis of Meynert and cerebral cortex is one of the central events for PD development. The complete biological function of α-synuclein is still debated. Besides its ability to propagate, it undergoes various post-translational modifications which play a paramount role in PD development and progression. Also, the aggregation of α-synuclein is modulated by various post-translational modifications. Here, we present a summary of multiple PTMs involved in the modulation of α-synuclein directly or indirectly and to identify their neuroprotective or neurotoxic roles, which might act as potential therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Joshna Gadhavi
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India
| | - Mohini Patel
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India; Center for Biomedical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India; Center for Biomedical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India.
| |
Collapse
|
22
|
Hartlage-Rübsamen M, Bluhm A, Moceri S, Machner L, Köppen J, Schenk M, Hilbrich I, Holzer M, Weidenfeller M, Richter F, Coras R, Serrano GE, Beach TG, Schilling S, von Hörsten S, Xiang W, Schulze A, Roßner S. A glutaminyl cyclase-catalyzed α-synuclein modification identified in human synucleinopathies. Acta Neuropathol 2021; 142:399-421. [PMID: 34309760 PMCID: PMC8357657 DOI: 10.1007/s00401-021-02349-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degeneration of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus. We argue that glutaminyl cyclase (QC) may catalyze the pyroglutamate (pGlu)79-α-synuclein formation and, thereby, contribute to enhanced aggregation and compromised degradation of α-synuclein in human synucleinopathies. Here, the kinetic characteristics of Gln79-α-synuclein conversion into the pGlu-form by QC are shown using enzymatic assays and mass spectrometry. Thioflavin T assays and electron microscopy demonstrated a decreased potential of pGlu79-α-synuclein to form fibrils. However, size exclusion chromatography and cell viability assays revealed an increased propensity of pGlu79-α-synuclein to form oligomeric aggregates with high neurotoxicity. In brains of wild-type mice, QC and α-synuclein were co-expressed by dopaminergic SN neurons. Using a specific antibody against the pGlu-modified neo-epitope of α-synuclein, pGlu79-α-synuclein aggregates were detected in association with QC in brains of two transgenic mouse lines with human α-synuclein overexpression. In human brain samples of PD and dementia with Lewy body subjects, pGlu79-α-synuclein was shown to be present in SN neurons, in a number of Lewy bodies and in dystrophic neurites. Importantly, there was a spatial co-occurrence of pGlu79-α-synuclein with the enzyme QC in the human SN complex and a defined association of QC with neuropathological structures. We conclude that QC catalyzes the formation of oligomer-prone pGlu79-α-synuclein in human synucleinopathies, which may—in analogy to pGlu-Aβ peptides in Alzheimer’s disease—act as a seed for pathogenic protein aggregation.
Collapse
|
23
|
Burtscher J, Syed MMK, Keller MA, Lashuel HA, Millet GP. Fatal attraction - The role of hypoxia when alpha-synuclein gets intimate with mitochondria. Neurobiol Aging 2021; 107:128-141. [PMID: 34428721 DOI: 10.1016/j.neurobiolaging.2021.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation and mitochondrial dysfunction are main pathological hallmarks of Parkinson's disease (PD) and several other neurodegenerative diseases, collectively known as synucleinopathies. However, increasing evidence suggests that they may not be sufficient to cause PD. Here we propose the role of hypoxia as a missing link that connects the complex interplay between alpha-synuclein biochemistry and pathology, mitochondrial dysfunctions and neurodegeneration in PD. We review the partly conflicting literature on alpha-synuclein binding to membranes and mitochondria and its impact on mitochondrial functions. From there, we focus on adverse changes in cellular environments, revolving around hypoxic stress, that may trigger or facilitate PD progression. Inter-dependent structural re-arrangements of mitochondrial membranes, including increased cytoplasmic exposure of mitochondrial cardiolipins and changes in alpha-synuclein localization and conformation are discussed consequences of such conditions. Enhancing cellular resilience could be an integral part of future combination-based therapies of PD. This may be achieved by boosting the capacity of cellular and specifically mitochondrial processes to regulate and adapt to altered proteostasis, redox, and inflammatory conditions and by inducing protective molecular and tissue re-modelling.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Brazdis RM, Alecu JE, Marsch D, Dahms A, Simmnacher K, Lörentz S, Brendler A, Schneider Y, Marxreiter F, Roybon L, Winner B, Xiang W, Prots I. Demonstration of brain region-specific neuronal vulnerability in human iPSC-based model of familial Parkinson's disease. Hum Mol Genet 2021; 29:1180-1191. [PMID: 32160287 PMCID: PMC7206857 DOI: 10.1093/hmg/ddaa039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by protein inclusions mostly composed of aggregated forms of α-synuclein (α-Syn) and by the progressive degeneration of midbrain dopaminergic neurons (mDANs), resulting in motor symptoms. While other brain regions also undergo pathologic changes in PD, the relevance of α-Syn aggregation for the preferential loss of mDANs in PD pathology is not completely understood yet. To elucidate the mechanisms of the brain region-specific neuronal vulnerability in PD, we modeled human PD using human-induced pluripotent stem cells (iPSCs) from familial PD cases with a duplication (Dupl) of the α-Syn gene (SNCA) locus. Human iPSCs from PD Dupl patients and a control individual were differentiated into mDANs and cortical projection neurons (CPNs). SNCA dosage increase did not influence the differentiation efficiency of mDANs and CPNs. However, elevated α-Syn pathology, as revealed by enhanced α-Syn insolubility and phosphorylation, was determined in PD-derived mDANs compared with PD CPNs. PD-derived mDANs exhibited higher levels of reactive oxygen species and protein nitration levels compared with CPNs, which might underlie elevated α-Syn pathology observed in mDANs. Finally, increased neuronal death was observed in PD-derived mDANs compared to PD CPNs and to control mDANs and CPNs. Our results reveal, for the first time, a higher α-Syn pathology, oxidative stress level, and neuronal death rate in human PD mDANs compared with PD CPNs from the same patient. The finding implies the contribution of pathogenic α-Syn, probably induced by oxidative stress, to selective vulnerability of substantia nigra dopaminergic neurons in human PD.
Collapse
Affiliation(s)
- Razvan-Marius Brazdis
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Julian E Alecu
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Daniel Marsch
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Annika Dahms
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Sandra Lörentz
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Anna Brendler
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Yanni Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund 22184, Sweden
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
25
|
Drobny A, Ngo PA, Neurath MF, Zunke F, López-Posadas R. Molecular Communication Between Neuronal Networks and Intestinal Epithelial Cells in Gut Inflammation and Parkinson's Disease. Front Med (Lausanne) 2021; 8:655123. [PMID: 34368179 PMCID: PMC8339315 DOI: 10.3389/fmed.2021.655123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal symptoms, such as nausea, vomiting, and constipation, are common in Parkinson's disease patients. These clinical signs normally appear years before the diagnosis of the neurodegenerative disease, preceding the occurrence of motor manifestations. Moreover, it is postulated that Parkinson's disease might originate in the gut, due to a response against the intestinal microbiota leading to alterations in alpha-synuclein in the intestinal autonomic nervous system. Transmission of this protein to the central nervous system is mediated potentially via the vagus nerve. Thus, deposition of aggregated alpha-synuclein in the gastrointestinal tract has been suggested as a potential prodromal diagnostic marker for Parkinson's disease. Interestingly, hallmarks of chronic intestinal inflammation in inflammatory bowel disease, such as dysbiosis and increased intestinal permeability, are also observed in Parkinson's disease patients. Additionally, alpha-synuclein accumulations were detected in the gut of Crohn's disease patients. Despite a solid association between neurodegenerative diseases and gut inflammation, it is not clear whether intestinal alterations represent cause or consequence of neuroinflammation in the central nervous system. In this review, we summarize the bidirectional communication between the brain and the gut in the context of Parkinson's disease and intestinal dysfunction/inflammation as present in inflammatory bowel disease. Further, we focus on the contribution of intestinal epithelium, the communication between intestinal epithelial cells, microbiota, immune and neuronal cells, as well as mechanisms causing alterations of epithelial integrity.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Phuong A Ngo
- Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Medicine 1, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
26
|
Moon SP, Balana AT, Pratt MR. Consequences of post-translational modifications on amyloid proteins as revealed by protein semisynthesis. Curr Opin Chem Biol 2021; 64:76-89. [PMID: 34175787 DOI: 10.1016/j.cbpa.2021.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/21/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Alterations to the global levels of certain types of post-translational modifications (PTMs) are commonly observed in neurodegenerative diseases. The net influence of these PTM changes to the progression of these diseases can be deduced from cellular and animal studies. However, at the molecular level, how one PTM influences a given protein is not uniform and cannot be easily generalized from systemic observations, thus requiring protein-specific interrogations. Given that protein aggregation is a shared pathological hallmark in neurodegeneration, it is important to understand how these PTMs affect the behavior of amyloid-forming proteins. For this purpose, protein semisynthesis techniques, largely via native chemical and expressed protein ligation, have been widely used. These approaches have thus far led to our increased understanding of the site-specific consequences of certain PTMs to amyloidogenic proteins' endogenous function, their propensity for aggregation, and the structural variations these PTMs induce toward the aggregates formed.
Collapse
Affiliation(s)
- Stuart P Moon
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron T Balana
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew R Pratt
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA; Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
27
|
Alpha-synuclein increases in rodent and human spinal cord injury and promotes inflammation and tissue loss. Sci Rep 2021; 11:11720. [PMID: 34083630 PMCID: PMC8175699 DOI: 10.1038/s41598-021-91116-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
Synucleinopathies are neurodegenerative diseases in which α-synuclein protein accumulates in neurons and glia. In these diseases, α-synuclein forms dense intracellular aggregates that are disease hallmarks and actively contribute to tissue pathology. Interestingly, many pathological mechanisms, including iron accumulation and lipid peroxidation, are shared between classical synucleinopathies such as Alzheimer’s disease, Parkinson’s disease and traumatic spinal cord injury (SCI). However, to date, no studies have determined if α-synuclein accumulation occurs after human SCI. To examine this, cross-sections from injured and non-injured human spinal cords were immunolabeled for α-synuclein. This showed robust α-synuclein accumulation in profiles resembling axons and astrocytes in tissue surrounding the injury, revealing that α-synuclein markedly aggregates in traumatically injured human spinal cords. We also detected significant iron deposition in the injury site, a known catalyst for α-synuclein aggregation. Next a rodent SCI model mimicking the histological features of human SCI revealed aggregates and structurally altered monomers of α-synuclein are present after SCI. To determine if α-synuclein exacerbates SCI pathology, α-synuclein knockout mice were tested. Compared to wild type mice, α-synuclein knockout mice had significantly more spared axons and neurons and lower pro-inflammatory mediators, macrophage accumulation, and iron deposition in the injured spinal cord. Interestingly, locomotor analysis revealed that α-synuclein may be essential for dopamine-mediated hindlimb function after SCI. Collectively, the marked upregulation and long-lasting accumulation of α-synuclein and iron suggests that SCI may fit within the family of synucleinopathies and offer new therapeutic targets for promoting neuron preservation and improving function after spinal trauma.
Collapse
|
28
|
Leung E, Hazrati LN. Breast cancer type 1 and neurodegeneration: consequences of deficient DNA repair. Brain Commun 2021; 3:fcab117. [PMID: 34222870 PMCID: PMC8242133 DOI: 10.1093/braincomms/fcab117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous cellular processes, including toxic protein aggregation and oxidative stress, have been studied extensively as potential mechanisms underlying neurodegeneration. However, limited therapeutic efficacy targeting these processes has prompted other mechanisms to be explored. Previous research has emphasized a link between cellular senescence and neurodegeneration, where senescence induced by excess DNA damage and deficient DNA repair results in structural and functional changes that ultimately contribute to brain dysfunction and increased vulnerability for neurodegeneration. Specific DNA repair proteins, such as breast cancer type 1, have been associated with both stress-induced senescence and neurodegenerative diseases, however, specific mechanisms remain unclear. Therefore, this review explores DNA damage-induced senescence in the brain as a driver of neurodegeneration, with particular focus on breast cancer type 1, and its potential contribution to sex-specific differences associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Emily Leung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
29
|
Intersection between Redox Homeostasis and Autophagy: Valuable Insights into Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10050694. [PMID: 33924878 PMCID: PMC8146521 DOI: 10.3390/antiox10050694] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a main degradation pathway for maintaining cellular homeostasis, and redox homeostasis have recently been considered to play protective roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Increased levels of reactive oxygen species (ROS) in neurons can induce mitochondrial damage and protein aggregation, thereby resulting in neurodegeneration. Oxidative stress is one of the major activation signals for the induction of autophagy. Upon activation, autophagy can remove ROS, damaged mitochondria, and aggregated proteins from the cells. Thus, autophagy can be an effective strategy to maintain redox homeostasis in the brain. However, the interaction between redox homeostasis and autophagy is not clearly elucidated. In this review, we discuss recent studies on the relationship between redox homeostasis and autophagy associated with neurodegenerative diseases and propose that autophagy induction through pharmacological intervention or genetic activation might be a promising strategy to treat these disorders.
Collapse
|
30
|
Modelling Parkinson's Disease: iPSCs towards Better Understanding of Human Pathology. Brain Sci 2021; 11:brainsci11030373. [PMID: 33799491 PMCID: PMC8000082 DOI: 10.3390/brainsci11030373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s Disease (PD) is a chronic neurodegenerative disorder characterized by motor and non-motor symptoms, among which are bradykinesia, rigidity, tremor as well as mental symptoms such as dementia. The underlying cause of Parkinson disease is degeneration of dopaminergic neurons. It has been challenging to develop an efficient animal model to accurately represent the complex phenotypes found with PD. However, it has become possible to recapitulate the myriad of phenotypes underlying the PD pathology by using human induced pluripotent stem cell (iPSC) technology. Patient-specific iPSC-derived dopaminergic neurons are available and present an opportunity to study many aspects of the PD phenotypes in a dish. In this review, we report the available data on iPSC-derived neurons derived from PD patients with identified gene mutations. Specifically, we will report on the key phenotypes of the generated iPSC-derived neurons from PD patients with different genetic background. Furthermore, we discuss the relationship these cellular phenotypes have to PD pathology and future challenges and prospects for iPSC modelling and understanding of the pathogenesis of PD.
Collapse
|
31
|
Baxter PS, Márkus NM, Dando O, He X, Al-Mubarak BR, Qiu J, Hardingham GE. Targeted de-repression of neuronal Nrf2 inhibits α-synuclein accumulation. Cell Death Dis 2021; 12:218. [PMID: 33637689 PMCID: PMC7910424 DOI: 10.1038/s41419-021-03507-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Many neurodegenerative diseases are associated with neuronal misfolded protein accumulation, indicating a need for proteostasis-promoting strategies. Here we show that de-repressing the transcription factor Nrf2, epigenetically shut-off in early neuronal development, can prevent protein aggregate accumulation. Using a paradigm of α-synuclein accumulation and clearance, we find that the classical electrophilic Nrf2 activator tBHQ promotes endogenous Nrf2-dependent α-synuclein clearance in astrocytes, but not cortical neurons, which mount no Nrf2-dependent transcriptional response. Moreover, due to neuronal Nrf2 shut-off and consequent weak antioxidant defences, electrophilic tBHQ actually induces oxidative neurotoxicity, via Nrf2-independent Jun induction. However, we find that epigenetic de-repression of neuronal Nrf2 enables them to respond to Nrf2 activators to drive α-synuclein clearance. Moreover, activation of neuronal Nrf2 expression using gRNA-targeted dCas9-based transcriptional activation complexes is sufficient to trigger Nrf2-dependent α-synuclein clearance. Thus, targeting reversal of the developmental shut-off of Nrf2 in forebrain neurons may alter neurodegenerative disease trajectory by boosting proteostasis.
Collapse
Affiliation(s)
- Paul S Baxter
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| | - Nóra M Márkus
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Xin He
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Bashayer R Al-Mubarak
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Jing Qiu
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
Acioglu C, Li L, Elkabes S. Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res 2021; 1758:147291. [PMID: 33516810 DOI: 10.1016/j.brainres.2021.147291] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Classically, the loss of vulnerable neuronal populations in neurodegenerative diseases was considered to be the consequence of cell autonomous degeneration of neurons. However, progress in the understanding of glial function, the availability of improved animal models recapitulating the features of the human diseases, and the development of new approaches to derive glia and neurons from induced pluripotent stem cells obtained from patients, provided novel information that altered this view. Current evidence strongly supports the notion that non-cell autonomous mechanisms contribute to the demise of neurons in neurodegenerative disorders, and glia causally participate in the pathogenesis and progression of these diseases. In addition to microglia, astrocytes have emerged as key players in neurodegenerative diseases and will be the focus of the present review. Under the influence of pathological stimuli present in the microenvironment of the diseased CNS, astrocytes undergo morphological, transcriptional, and functional changes and become reactive. Reactive astrocytes are heterogeneous and exhibit neurotoxic (A1) or neuroprotective (A2) phenotypes. In recent years, single-cell or single-nucleus transcriptome analyses unraveled new, disease-specific phenotypes beyond A1/A2. These investigations highlighted the complexity of the astrocytic responses to CNS pathology. The present review will discuss the contribution of astrocytes to neurodegenerative diseases with particular emphasis on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. Some of the commonalties and differences in astrocyte-mediated mechanisms that possibly drive the pathogenesis or progression of the diseases will be summarized. The emerging view is that astrocytes are potential new targets for therapeutic interventions. A comprehensive understanding of astrocyte heterogeneity and disease-specific phenotypic complexity could facilitate the design of novel strategies to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
33
|
Henrich MT, Geibl FF, Lakshminarasimhan H, Stegmann A, Giasson BI, Mao X, Dawson VL, Dawson TM, Oertel WH, Surmeier DJ. Determinants of seeding and spreading of α-synuclein pathology in the brain. SCIENCE ADVANCES 2020; 6:eabc2487. [PMID: 33177086 PMCID: PMC7673735 DOI: 10.1126/sciadv.abc2487] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/22/2020] [Indexed: 05/22/2023]
Abstract
In Parkinson's disease (PD), fibrillar forms of α-synuclein are hypothesized to propagate through synaptically coupled networks, causing Lewy pathology (LP) and neurodegeneration. To more rigorously characterize the determinants of spreading, preformed α-synuclein fibrils were injected into the mouse pedunculopontine nucleus (PPN), a brain region that manifests LP in PD patients and the distribution of developing α-synuclein pathology compared to that ascertained by anterograde and retrograde connectomic mapping. Within the PPN, α-synuclein pathology was cell-specific, being robust in PD-vulnerable cholinergic neurons but not in neighboring noncholinergic neurons. While nearly all neurons projecting to PPN cholinergics manifested α-synuclein pathology, the kinetics, magnitude, and persistence of the propagated pathology were unrelated to the strength of those connections. Thus, neuronal phenotype governs the somatodendritic uptake of pathological α-synuclein, and while the afferent connectome restricts the subsequent spreading of pathology, its magnitude and persistence is not a strict function of the strength of coupling.
Collapse
Affiliation(s)
- Martin T Henrich
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - Harini Lakshminarasimhan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anna Stegmann
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - Benoit I Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - D James Surmeier
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
34
|
Proteostasis Disturbances and Inflammation in Neurodegenerative Diseases. Cells 2020; 9:cells9102183. [PMID: 32998318 PMCID: PMC7601929 DOI: 10.3390/cells9102183] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) disturbances and inflammation are evident in normal aging and some age-related neurodegenerative diseases. While the proteostasis network maintains the integrity of intracellular and extracellular functional proteins, inflammation is a biological response to harmful stimuli. Cellular stress conditions can cause protein damage, thus exacerbating protein misfolding and leading to an eventual overload of the degradation system. The regulation of proteostasis network is particularly important in postmitotic neurons due to their limited regenerative capacity. Therefore, maintaining balanced protein synthesis, handling unfolding, refolding, and degrading misfolded proteins are essential to preserve all cellular functions in the central nervous sysytem. Failing proteostasis may trigger inflammatory responses in glial cells, and the consequent release of inflammatory mediators may lead to disturbances in proteostasis. Here, we review the mechanisms of proteostasis and inflammatory response, emphasizing their role in the pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Furthermore, we discuss the interplay between proteostatic stress and excessive immune response that activates inflammation and leads to dysfunctional proteostasis.
Collapse
|
35
|
Kumar ST, Jagannath S, Francois C, Vanderstichele H, Stoops E, Lashuel HA. How specific are the conformation-specific α-synuclein antibodies? Characterization and validation of 16 α-synuclein conformation-specific antibodies using well-characterized preparations of α-synuclein monomers, fibrils and oligomers with distinct structures and morphology. Neurobiol Dis 2020; 146:105086. [PMID: 32971232 DOI: 10.1016/j.nbd.2020.105086] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/30/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that alpha-synuclein (α-syn) oligomers are obligate intermediates in the pathway involved in α-syn fibrillization and Lewy body (LB) formation, and may also accumulate within LBs in Parkinson's disease (PD) and other synucleinopathies. Therefore, the development of tools and methods to detect and quantify α-syn oligomers has become increasingly crucial for mechanistic studies to understand their role in PD, and to develop new diagnostic methods and therapies for PD and other synucleinopathies. The majority of these tools and methods rely primarily on the use of aggregation state-specific or conformation-specific antibodies. Given the impact of the data and knowledge generated using these antibodies on shaping the foundation and directions of α-syn and PD research, it is crucial that these antibodies are thoroughly characterized, and their specificity or ability to capture diverse α-syn species is tested and validated. Herein, we describe an antibody characterization and validation pipeline that allows a systematic investigation of the specificity of α-syn antibodies using well-defined and well-characterized preparations of various α-syn species, including monomers, fibrils, and different oligomer preparations that are characterized by distinct morphological, chemical and secondary structure properties. This pipeline was used to characterize 18 α-syn antibodies, 16 of which have been reported as conformation- or oligomer-specific antibodies, using an array of techniques, including immunoblot analysis (slot blot and Western blot), a digital ELISA assay using single molecule array technology and surface plasmon resonance. Our results show that i) none of the antibodies tested are specific for one particular type of α-syn species, including monomers, oligomers or fibrils; ii) all antibodies that were reported to be oligomer-specific also recognized fibrillar α-syn; and iii) a few antibodies showed high specificity for oligomers and fibrils but did not bind to monomers. These findings suggest that the great majority of α-syn aggregate-specific antibodies do not differentiate between oligomers and fibrils, thus highlighting the importance of exercising caution when interpreting results obtained using these antibodies. Our results also underscore the critical importance of the characterization and validation of antibodies before their use in mechanistic studies and as diagnostic tools or therapeutic agents. This will not only improve the quality and reproducibility of research and reduce costs but will also reduce the number of therapeutic antibody failures in the clinic.
Collapse
Affiliation(s)
- Senthil T Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Switzerland
| | - Somanath Jagannath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Switzerland
| | | | - Hugo Vanderstichele
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium; Biomarkable, Gent, Belgium
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Switzerland.
| |
Collapse
|
36
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
37
|
Park HA, Ellis AC. Dietary Antioxidants and Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070570. [PMID: 32630250 PMCID: PMC7402163 DOI: 10.3390/antiox9070570] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the depletion of dopaminergic neurons in the basal ganglia, the movement center of the brain. Approximately 60,000 people are diagnosed with PD in the United States each year. Although the direct cause of PD can vary, accumulation of oxidative stress-induced neuronal damage due to increased production of reactive oxygen species (ROS) or impaired intracellular antioxidant defenses invariably occurs at the cellular levels. Pharmaceuticals such as dopaminergic prodrugs and agonists can alleviate some of the symptoms of PD. Currently, however, there is no treatment to halt the progression of PD pathology. Due to the nature of PD, a long and progressive neurodegenerative process, strategies to prevent or delay PD pathology may be well suited to lifestyle changes like dietary modification with antioxidant-rich foods to improve intracellular redox homeostasis. In this review, we discuss cellular and genetic factors that increase oxidative stress in PD. We also discuss neuroprotective roles of dietary antioxidants including vitamin C, vitamin E, carotenoids, selenium, and polyphenols along with their potential mechanisms to alleviate PD pathology.
Collapse
|
38
|
Maharem TM, Emam MA, Said YA. Purification and characterization of l-glutaminase enzyme from camel liver: Enzymatic anticancer property. Int J Biol Macromol 2020; 150:1213-1222. [PMID: 31743703 DOI: 10.1016/j.ijbiomac.2019.10.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
l-Glutaminase has gained an important attention as glutamine-depleting enzyme in treatment of various cancers. Therefore, this study aimed to purify, characterize and investigate antitumor activity of l-glutaminase from camel liver mitochondria (CL-Glu), since no available information about CL-Glu from camel. CL-Glu was purified using cell fractionation, ultrafiltration, DEAE-and CM-cellulose chromatography columns. The purified CL-Glu was a monomer with a molecular weight of 70 ± 3 kDa, isoelectric point of 7.2, optimum temperature of 70 °C and it was active over a broad pH range with a pH optimum at pH 8.0. Its activity had a clear dependence on phosphate ions. The studied enzyme showed sigmoidal kinetics, indicated its allosteric behavior with Km of 36 ± 4 mM and Hill coefficient of 1.5 which suggested a positive cooperatively of active sites. The purified l-glutaminase exerted antitumor activity against different cell lines with the highest cytotoxic activity against Hepatocellular carcinoma cell line (HepG-2) with an IC50 value of 152 µg/ml. In conclusion, l-glutaminase was purified from camel liver using simple methods and its unique properties such as stability at both wide pH range and at high temperature along with its relatively low molecular weight, facilitated its usage in medical applications as antitumor drug.
Collapse
Affiliation(s)
- Tahany M Maharem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Manal A Emam
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Youssef A Said
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
39
|
Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review. Brain Sci 2020; 10:brainsci10040232. [PMID: 32290481 PMCID: PMC7226274 DOI: 10.3390/brainsci10040232] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The accumulation of abnormal protein aggregates represents a universal hallmark of neurodegenerative diseases (NDDs). Post-translational modifications (PTMs) regulate protein structure and function. Dysregulated PTMs may influence the propensity for protein aggregation in NDD-proteinopathies. To investigate this, we systematically reviewed the literature to evaluate effects of PTMs on aggregation propensity for major proteins linked to the pathogenesis and/or progression of NDDs. A search of PubMed, MEDLINE, EMBASE, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between PTMs and protein aggregation in seven NDDs: Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxias, transmissible spongiform encephalopathy, and multiple sclerosis. Together, 1222 studies were identified, of which 69 met eligibility criteria. We identified that the following PTMs, in isolation or combination, potentially act as modulators of proteinopathy in NDDs: isoaspartate formation in Aβ, phosphorylation of Aβ or tau in AD; acetylation, 4-hydroxy-2-neonal modification, O-GlcNAcylation or phosphorylation of α-synuclein in PD; acetylation or phosphorylation of TAR DNA-binding protein-43 in ALS, and SUMOylation of superoxide dismutase-1 in ALS; and phosphorylation of huntingtin in HD. The potential pharmacological manipulation of these aggregation-modulating PTMs represents an as-yet untapped source of therapy to treat NDDs.
Collapse
|
40
|
Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 2020; 134:104619. [DOI: 10.1016/j.nbd.2019.104619] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
|
41
|
Kumari N, Yadav S. Modulation of protein oligomerization: An overview. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:99-113. [DOI: 10.1016/j.pbiomolbio.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
|
42
|
Sackmann V, Sinha MS, Sackmann C, Civitelli L, Bergström J, Ansell-Schultz A, Hallbeck M. Inhibition of nSMase2 Reduces the Transfer of Oligomeric α-Synuclein Irrespective of Hypoxia. Front Mol Neurosci 2019; 12:200. [PMID: 31555088 PMCID: PMC6724746 DOI: 10.3389/fnmol.2019.00200] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, extracellular vesicles (EVs), such as exosomes, have been proposed to play an influential role in the cell-to-cell spread of neurodegenerative diseases, including the intercellular transmission of α-synuclein (α-syn). However, the regulation of EV biogenesis and its relation to Parkinson’s disease (PD) is only partially understood. The generation of EVs through the ESCRT-independent pathway depends on the hydrolysis of sphingomyelin by neutral sphingomyelinase 2 (nSMase2) to produce ceramide, which causes the membrane of endosomal multivesicular bodies to bud inward. nSMase2 is sensitive to oxidative stress, a common process in PD brains; however, little is known about the role of sphingomyelin metabolism in the pathogenesis of PD. This is the first study to show that inhibiting nSMase2 decreases the transfer of oligomeric aggregates of α-syn between neuron-like cells. Furthermore, it reduced the accumulation and aggregation of high-molecular-weight α-syn. Hypoxia, as a model of oxidative stress, reduced the levels of nSMase2, but not its enzymatic activity, and significantly altered the lipid composition of cells without affecting EV abundance or the transfer of α-syn. These data show that altering sphingolipids can mitigate the spread of α-syn, even under hypoxic conditions, potentially suppressing PD progression.
Collapse
Affiliation(s)
- Valerie Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maitrayee Sardar Sinha
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Christopher Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Livia Civitelli
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Ansell-Schultz
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
43
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Mangiferin: A multipotent natural product preventing neurodegeneration in Alzheimer's and Parkinson's disease models. Pharmacol Res 2019; 146:104336. [PMID: 31271846 DOI: 10.1016/j.phrs.2019.104336] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are recognized as the universal neurodegenerative diseases, with the involvement of misfolded proteins pathology, leading to oxidative stress, glial cells activation, neuroinflammation, mitochondrial dysfunction, and cellular apoptosis. Several discoveries indicate that accumulation of pathogenic proteins, i.e. amyloid β (Aβ), the microtubule-binding protein tau, and α-synuclein, are parallel with oxidative stress, neuroinflammation, and mitochondrial dysfunction. Whether the causative factors are misfolded proteins or these pathophysiological changes, leading to neurodegeneration still remain ambiguous. Importantly, directing pharmacological researches towards the prevention of AD and PD seem a promising approach to detect these complicating mechanisms, and provide new insight into therapy for AD and PD patients. Mangiferin (MGF, 2-C-β-D-glucopyranosyl-1, 3, 6, 7-tetrahydroxyxanthone), well-known as a natural product, is detached from multiple plants, including Mangifera indica L. With the structure of C-glycosyl and phenolic moiety, MGF possesses multipotent properties starting from anti-oxidant effects, to the alleviation of mitochondrial dysfunction, neuroinflammation, and cellular apoptosis. In particular, MGF can cross the blood-brain barrier to exert neuronal protection. Different researches implicate that MGF is able to protect the central nervous system from oxidative stress, mitochondrial dysfunction, neuroinflammation, and apoptosis under in vitro and in vivo models. Additional facts support that MGF plays a role in improving the declined memory and cognition of rat models. Taken together, the neuroprotective capacity of MGF may stand out as an agent candidate for AD and PD therapy.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
44
|
Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, Cimini A, d'Angelo M. Neuronal Cells Rearrangement During Aging and Neurodegenerative Disease: Metabolism, Oxidative Stress and Organelles Dynamic. Front Mol Neurosci 2019; 12:132. [PMID: 31191244 PMCID: PMC6546816 DOI: 10.3389/fnmol.2019.00132] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Brain cells normally respond adaptively to oxidative stress or bioenergetic challenges, resulting from ongoing activity in neuronal circuits. During aging and in neurodegenerative disorders, these mechanisms are compromised. In fact, neurons show unique age-related changes in functions and metabolism, resulting in greater susceptibility to insults and disease. Aging affects the nervous system as well as other organs. More precisely, as the nervous system ages, neuron metabolism may change, inducing glucose hypometabolism, impaired transport of critical substrates underlying metabolism, alterations in calcium signaling, and mitochondrial dysfunction. Moreover, in neuronal aging, an accumulation of impaired and aggregated proteins in the cytoplasm and in mitochondria is observed, as the result of oxidative stress: reduced antioxidant defenses and/or increase of reactive oxygen species (ROS). These changes lead to greater vulnerability of neurons in various regions of the brain and increased susceptibility to several diseases. Specifically, the first part of the review article will focus on the major neuronal cells’ rearrangements during aging in response to changes in metabolism and oxidative stress, while the second part will cover the neurodegenerative disease areas in detail.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, United States
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| |
Collapse
|
45
|
McGlinchey RP, Lacy SM, Huffer KE, Tayebi N, Sidransky E, Lee JC. C-terminal α-synuclein truncations are linked to cysteine cathepsin activity in Parkinson's disease. J Biol Chem 2019; 294:9973-9984. [PMID: 31092553 PMCID: PMC6597809 DOI: 10.1074/jbc.ra119.008930] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/09/2019] [Indexed: 01/11/2023] Open
Abstract
A pathological feature of Parkinson's disease (PD) is Lewy bodies (LBs) composed of α-synuclein (α-syn) amyloid fibrils. α-Syn is a 140 amino acids-long protein, but truncated α-syn is enriched in LBs. The proteolytic processes that generate these truncations are not well-understood. On the basis of our previous work, we propose that these truncations could originate from lysosomal activity attributable to cysteine cathepsins (Cts). Here, using a transgenic SNCA A53T mouse model, overexpressing the PD-associated α-syn variant A53T, we compared levels of α-syn species in purified brain lysosomes from nonsymptomatic mice with those in age-matched symptomatic mice. In the symptomatic mice, antibody epitope mapping revealed enrichment of C-terminal truncations, resulting from CtsB, CtsL, and asparagine endopeptidase. We did not observe changes in individual cathepsin activities, suggesting that the increased levels of C-terminal α-syn truncations are because of the burden of aggregated α-syn. Using LC-MS and purified α-syn, we identified C-terminal truncations corresponding to amino acids 1-122 and 1-90 from the SNCA A53T lysosomes. Feeding rat dopaminergic N27 cells with exogenous α-syn fibrils confirmed that these fragments originate from incomplete fibril degradation in lysosomes. We mimicked these events in situ by asparagine endopeptidase degradation of α-syn fibrils. Importantly, the resulting C-terminally truncated fibrils acted as superior seeds in stimulating α-syn aggregation compared with that of the full-length fibrils. These results unequivocally show that C-terminal α-syn truncations in LBs are linked to Cts activities, promote amyloid formation, and contribute to PD pathogenesis.
Collapse
Affiliation(s)
- Ryan P McGlinchey
- From the Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute and
| | - Shannon M Lacy
- From the Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute and
| | - Katherine E Huffer
- From the Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute and
| | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jennifer C Lee
- From the Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute and
| |
Collapse
|
46
|
Marvian AT, Koss DJ, Aliakbari F, Morshedi D, Outeiro TF. In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J Neurochem 2019; 150:535-565. [PMID: 31004503 DOI: 10.1111/jnc.14707] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Amir Tayaranian Marvian
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
47
|
van Diggelen F, Hrle D, Apetri M, Christiansen G, Rammes G, Tepper A, Otzen DE. Two conformationally distinct α-synuclein oligomers share common epitopes and the ability to impair long-term potentiation. PLoS One 2019; 14:e0213663. [PMID: 30901378 PMCID: PMC6430514 DOI: 10.1371/journal.pone.0213663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disease for which there currently is no cure. Aggregation of the pre-synaptic protein α-synuclein (aSN) into oligomers (αSOs) is believed to play a key role in PD pathology, but little is known about αSO formation in vivo and how they induce neurodegeneration. Both the naturally occurring polyunsaturated fatty acid docosahexaenoic acid (DHA) and the lipid peroxidation product 4-hydroxynonenal (HNE), strongly upregulated during ROS conditions, stimulate the formation of αSOs, highlighting a potential role in PD. Yet, insight into αSOs structure and biological effects is still limited as most oligomer preparations studied to date are heterogeneous in composition. Here we have aggregated aSN in the presence of HNE and DHA and purified the αSOs using size exclusion chromatography. Both compounds stimulate formation of spherical αSOs containing anti-parallel β-sheet structure which have the same shape as unmodified αSOs though ca. 2-fold larger. Furthermore, the yield and stabilities of these oligomers are significantly higher than for unmodified aSN. Both modified and unmodified αSOs permeabilize synthetic vesicles, show high co-localisation with glutamatergic synapses and decrease Long Term Potentiation (LTP), in line with the reported synaptotoxic effects of αSOs. We conclude that DHA- and HNE-αSOs are convenient models for pathogenic disease-associated αSOs in PD.
Collapse
Affiliation(s)
- Femke van Diggelen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Crossbeta Biosciences BV, Utrecht, The Netherlands
| | - Dean Hrle
- Klinik für Anaesthesiologie der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | | | | | - Gerhard Rammes
- Klinik für Anaesthesiologie der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | | | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- * E-mail:
| |
Collapse
|
48
|
Lund Human Mesencephalic (LUHMES) Neuronal Cell Line Supports Herpes Simplex Virus 1 Latency In Vitro. J Virol 2019; 93:JVI.02210-18. [PMID: 30602607 DOI: 10.1128/jvi.02210-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Lund human mesencephalic (LUHMES) cells are human embryonic neuronal precursor cells that can be maintained as proliferating cells due to the expression of a tetracycline-regulatable (Tet-off) v-myc transgene. They can be differentiated to postmitotic neurons by the addition of tetracycline, glial cell-derived neurotrophic factor (GDNF), and dibutyryl cAMP. We demonstrate that these cells can be infected with herpes simplex virus 1 (HSV-1) at a multiplicity of infection (MOI) of 3 with the majority of cells surviving. By 6 days postinfection, there is a loss of lytic gene transcription and an increase in the numbers of neurons that express the latency-associated transcripts (LATs). Importantly, the virus can then be reactivated by the addition of a phosphoinositide 3-kinase inhibitor, which has previously been shown to reactivate HSV-1 in rat neuron cultures. While rodent primary culture neuron systems have been described, these are limited by their lack of scalability, as it is difficult to obtain more than 500,000 neurons to employ for a given experiment. Several recent papers have described a human dorsal root ganglion (DRG) neuron culture model and human induced pleuripotent stem cell (iPSC) neuron culture models that are scalable, but they require that the presence of an antiviral suppression be maintained following HSV-1 infection. The human LUHMES cell model of HSV-1 infection described here may be especially useful for studying HSV-1 latency and reactivation on account of its scalability, its amenability to maintenance of latency without the continual use of antiviral inhibitors, and its latent gene expression profile which mirrors many properties observed in vivo, importantly, the heterogeneity of cells expressing the LATs.IMPORTANCE Herpes simplex virus (HSV) is responsible for significant morbidity in humans due to its ability to cause oral and genital lesions, ocular disease, and encephalitis. While antivirals can attenuate the severity and frequency of disease, there is no vaccine or cure. Understanding the molecular details of HSV latency and reactivation is key to the development of new therapies. One of the difficulties in studying HSV latency has been the need to rely on establishment of latent infections in animal models. While rodent primary neuron culture models have shown promise, they yield relatively small numbers of latently infected neurons for biochemical and molecular analyses. Here we present the use of a human central nervous system (CNS)-derived conditionally proliferating cell line that can be differentiated into mature neurons and latently infected with HSV-1. This model shows promise as a scalable tool to study molecular and biochemical aspects of HSV-1 latency and reactivation in human neurons.
Collapse
|
49
|
Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose. Sci Rep 2019; 9:544. [PMID: 30679445 PMCID: PMC6345801 DOI: 10.1038/s41598-018-35811-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 10/29/2018] [Indexed: 01/30/2023] Open
Abstract
Cell-to-cell propagation of aggregated alpha synuclein (aSyn) has been suggested to play an important role in the progression of alpha synucleinopathies. A critical step for the propagation process is the accumulation of extracellular aSyn within recipient cells. Here, we investigated the trafficking of distinct exogenous aSyn forms and addressed the mechanisms influencing their accumulation in recipient cells. The aggregated aSyn species (oligomers and fibrils) exhibited more pronounced accumulation within recipient cells than aSyn monomers. In particular, internalized extracellular aSyn in the aggregated forms was able to seed the aggregation of endogenous aSyn. Following uptake, aSyn was detected along endosome-to-lysosome and autophagosome-to-lysosome routes. Intriguingly, aggregated aSyn resulted in lysosomal activity impairment, accompanied by the accumulation of dilated lysosomes. Moreover, analysis of autophagy-related protein markers suggested decreased autophagosome clearance. In contrast, the endocytic pathway, proteasome activity, and mitochondrial homeostasis were not substantially affected in recipient cells. Our data suggests that extracellularly added aggregated aSyn primarily impairs lysosomal activity, consequently leading to aSyn accumulation within recipient cells. Importantly, the autophagy inducer trehalose prevented lysosomal alterations and attenuated aSyn accumulation within aSyn-exposed cells. Our study underscores the importance of lysosomes for the propagation of aSyn pathology, thereby proposing these organelles as interventional targets.
Collapse
|
50
|
Are Proteinopathy and Oxidative Stress Two Sides of the Same Coin? Cells 2019; 8:cells8010059. [PMID: 30654525 PMCID: PMC6356376 DOI: 10.3390/cells8010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease, like other neurodegenerative diseases, exhibits two common features: Proteinopathy and oxidative stress, leading to protein aggregation and mitochondrial damage respectively. Because both protein aggregates and dysfunctional mitochondria are eliminated by autophagy, we suggest that inadequate clearance may couple the two phenomena. If a neuron's autophagy machinery is overwhelmed, whether by excessive oxidative stress or by excessive protein aggregation, protein aggregates and dysfunctional mitochondria will both accumulate. Parkinson's disease may provide a unique window into this because there is evidence that both sides contribute. Mutations amplifying the aggregation of α-synuclein are associated with Parkinson's disease. Likewise, mutations in Parkin and PINK1, proteins involved in mitophagy, suggest that impaired mitochondrial clearance is also a contributing factor. Many have suggested that dopamine oxidation products lead to oxidative stress accounting for the dopaminergic selectivity of the disease. We have presented evidence for the specific involvement of hypochlorite-oxidized cysteinyl-dopamine (HOCD), a redox-cycling benzothiazine derivative. While toxins like 6-hydroxydopamine and 1-methyl-4-phenyl pyridinium (MPP+) have been used to study mitochondrial involvement in Parkinson's disease, HOCD may provide a more physiologically relevant approach. Understanding the role of mitochondrial dysfunction and oxidative stress in Parkinson's disease and their relation to α-synuclein proteinopathy is important to gain a full picture of the cause, especially for the great majority of cases which are idiopathic.
Collapse
|