1
|
Wang J, Gu R, Kong X, Luan S, Luo YLL. Genome-wide association studies (GWAS) and post-GWAS analyses of impulsivity: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110986. [PMID: 38430953 DOI: 10.1016/j.pnpbp.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Impulsivity is related to a host of mental and behavioral problems. It is a complex construct with many different manifestations, most of which are heritable. The genetic compositions of these impulsivity manifestations, however, remain unclear. A number of genome-wide association studies (GWAS) and post-GWAS analyses have tried to address this issue. We conducted a systematic review of all GWAS and post-GWAS analyses of impulsivity published up to December 2023. Available data suggest that single nucleotide polymorphisms (SNPs) in more than a dozen of genes (e.g., CADM2, CTNNA2, GPM6B) are associated with different measures of impulsivity at genome-wide significant levels. Post-GWAS analyses further show that different measures of impulsivity are subject to different degrees of genetic influence, share few genetic variants, and have divergent genetic overlap with basic personality traits such as extroversion and neuroticism, cognitive ability, psychiatric disorders, substance use, and obesity. These findings shed light on controversies in the conceptualization and measurement of impulsivity, while providing new insights on the underlying mechanisms that yoke impulsivity to psychopathology.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Ruolei Gu
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchundong Road, Hangzhou 310016, China
| | - Shenghua Luan
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Yu L L Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China.
| |
Collapse
|
2
|
Salluzzo M, Vianello C, Abdullatef S, Rimondini R, Piccoli G, Carboni L. The Role of IgLON Cell Adhesion Molecules in Neurodegenerative Diseases. Genes (Basel) 2023; 14:1886. [PMID: 37895235 PMCID: PMC10606101 DOI: 10.3390/genes14101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.
Collapse
Affiliation(s)
- Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Sandra Abdullatef
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
3
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
4
|
Elkjaer Greenwood Ormerod MB, Ueland T, Frogner Werner MC, Hjell G, Rødevand L, Sæther LS, Lunding SH, Johansen IT, Ueland T, Lagerberg TV, Melle I, Djurovic S, Andreassen OA, Steen NE. Composite immune marker scores associated with severe mental disorders and illness course. Brain Behav Immun Health 2022; 24:100483. [PMID: 35856063 PMCID: PMC9287150 DOI: 10.1016/j.bbih.2022.100483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022] Open
Abstract
Background Low-grade inflammation has been implicated in the pathophysiology of severe mental disorders (SMDs) and a link between immune activation and clinical characteristics is suggested. However, few studies have investigated how patterns across immune markers are related to diagnosis and illness course. Methods A total of 948 participants with a diagnosis of schizophrenia (SCZ, N = 602) or bipolar (BD, N = 346) spectrum disorder, and 814 healthy controls (HC) were included. Twenty-five immune markers comprising cell adhesion molecules (CAMs), interleukin (IL)-18-system factors, defensins, chemokines and other markers, related to neuroinflammation, blood-brain barrier (BBB) function, inflammasome activation and immune cell orchestration were analyzed. Eight immune principal component (PC) scores were constructed by PC Analysis (PCA) and applied in general linear models with diagnosis and illness course characteristics. Results Three PC scores were significantly associated with a SCZ and/or BD diagnosis (HC reference), with largest, however small, effect sizes of scores based on CAMs, BBB markers and defensins (p < 0.001, partial η2 = 0.02-0.03). Number of psychotic episodes per year in SCZ was associated with a PC score based on IL-18 system markers and the potential neuroprotective cytokine A proliferation-inducing ligand (p = 0.006, partial η2 = 0.071). Conclusion Analyses of composite immune markers scores identified specific patterns suggesting CAMs-mediated BBB dysregulation pathways associated with SMDs and interrelated pro-inflammatory and neuronal integrity processes associated with severity of illness course. This suggests a complex pattern of immune pathways involved in SMDs and SCZ illness course.
Collapse
Affiliation(s)
| | - Thor Ueland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- KG Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Maren Caroline Frogner Werner
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Graalum, Norway
| | - Linn Rødevand
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Torp Johansen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole Andreas Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
6
|
CDH2 mutation affecting N-cadherin function causes attention-deficit hyperactivity disorder in humans and mice. Nat Commun 2021; 12:6187. [PMID: 34702855 PMCID: PMC8548587 DOI: 10.1038/s41467-021-26426-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common childhood-onset psychiatric disorder characterized by inattention, impulsivity and hyperactivity. ADHD exhibits substantial heritability, with rare monogenic variants contributing to its pathogenesis. Here we demonstrate familial ADHD caused by a missense mutation in CDH2, which encodes the adhesion protein N-cadherin, known to play a significant role in synaptogenesis; the mutation affects maturation of the protein. In line with the human phenotype, CRISPR/Cas9-mutated knock-in mice harboring the human mutation in the mouse ortholog recapitulated core behavioral features of hyperactivity. Symptoms were modified by methylphenidate, the most commonly prescribed therapeutic for ADHD. The mutated mice exhibited impaired presynaptic vesicle clustering, attenuated evoked transmitter release and decreased spontaneous release. Specific downstream molecular pathways were affected in both the ventral midbrain and prefrontal cortex, with reduced tyrosine hydroxylase expression and dopamine levels. We thus delineate roles for CDH2-related pathways in the pathophysiology of ADHD. Molecular mechanisms of attention-deficit hyperactivity disorder (ADHD) are not fully understood. Here the authors demonstrate a mutation in CDH2, encoding N-cadherin, that is associated with ADHD, and in a mouse model, delineate molecular electrophysiological characteristics associated with this mutation.
Collapse
|
7
|
Parcerisas A, Ortega-Gascó A, Pujadas L, Soriano E. The Hidden Side of NCAM Family: NCAM2, a Key Cytoskeleton Organization Molecule Regulating Multiple Neural Functions. Int J Mol Sci 2021; 22:10021. [PMID: 34576185 PMCID: PMC8471948 DOI: 10.3390/ijms221810021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Although it has been over 20 years since Neural Cell Adhesion Molecule 2 (NCAM2) was identified as the second member of the NCAM family with a high expression in the nervous system, the knowledge of NCAM2 is still eclipsed by NCAM1. The first studies with NCAM2 focused on the olfactory bulb, where this protein has a key role in axonal projection and axonal/dendritic compartmentalization. In contrast to NCAM1, NCAM2's functions and partners in the brain during development and adulthood have remained largely unknown until not long ago. Recent studies have revealed the importance of NCAM2 in nervous system development. NCAM2 governs neuronal morphogenesis and axodendritic architecture, and controls important neuron-specific processes such as neuronal differentiation, synaptogenesis and memory formation. In the adult brain, NCAM2 is highly expressed in dendritic spines, and it regulates synaptic plasticity and learning processes. NCAM2's functions are related to its ability to adapt to the external inputs of the cell and to modify the cytoskeleton accordingly. Different studies show that NCAM2 interacts with proteins involved in cytoskeleton stability and proteins that regulate calcium influx, which could also modify the cytoskeleton. In this review, we examine the evidence that points to NCAM2 as a crucial cytoskeleton regulation protein during brain development and adulthood. This key function of NCAM2 may offer promising new therapeutic approaches for the treatment of neurodevelopmental diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Alba Ortega-Gascó
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
8
|
de Agustín-Durán D, Mateos-White I, Fabra-Beser J, Gil-Sanz C. Stick around: Cell-Cell Adhesion Molecules during Neocortical Development. Cells 2021; 10:118. [PMID: 33435191 PMCID: PMC7826847 DOI: 10.3390/cells10010118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.
Collapse
Affiliation(s)
| | | | | | - Cristina Gil-Sanz
- Neural Development Laboratory, Instituto Universitario de Biomedicina y Biotecnología (BIOTECMED) and Departamento de Biología Celular, Facultat de Biología, Universidad de Valencia, 46100 Burjassot, Spain; (D.d.A.-D.); (I.M.-W.); (J.F.-B.)
| |
Collapse
|
9
|
Shen FF, Zhang F, Yang HJ, Li JK, Su JF, Yu PT, Zhou FY, Che GW. ADAMTS9-AS2 and CADM2 expression and association with the prognosis in esophageal squamous cell carcinoma. Biomark Med 2020; 14:1415-1426. [PMID: 32892630 DOI: 10.2217/bmm-2020-0432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: We investigated whether ADAMTS9-AS2 and CADM2 were related to esophageal squamous cell carcinoma (ESCC). Methodology: ESCC microarray datasets and reverse transcriptase qualitative PCR were used to analyze ADAMTS9-AS2 and CADM2 expression. Results: The GSE120356 and GSE33810 datasets identified ADAMTS9-AS2 and CADM2 as the candidates and ADAMTS9-AS2 and CADM2 expression was downregulated in ESCC. ADAMTS9-AS2 and CADM2 were positively correlated with ESCC. ADAMTS9-AS2 and CADM2 expression could discriminate ESCC from normal tissue. Five-year overall survival was shorter in underexpressed ADAMTS9-AS2 patients, and CADM2 expression level was related to 5-year overall survival. ADAMTS9-AS2 and CADM2 expression were independent prognosis indicators in ESCC patients. Conclusion: Our findings shed new light on the clinical significance of ADAMTS9-AS2 and CADM2 in ESCC carcinogenesis.
Collapse
Affiliation(s)
- Fang-Fang Shen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Fan Zhang
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Hai-Jun Yang
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Jun-Kuo Li
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Jing-Fen Su
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Pan-Ting Yu
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Fu-You Zhou
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Guo-Wei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Reduced levels of circulating adhesion molecules in adolescents with early-onset psychosis. NPJ SCHIZOPHRENIA 2020; 6:20. [PMID: 32811840 PMCID: PMC7434772 DOI: 10.1038/s41537-020-00112-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
It is suggested that neurodevelopmental abnormalities are involved in the disease mechanisms of psychotic disorders. Although cellular adhesion molecules (CAMs) participate in neurodevelopment, modulate blood–brain barrier permeability, and facilitate leukocyte migration, findings concerning their systemic levels in adults with psychosis are inconsistent. We examined plasma levels and mRNA expression in peripheral blood mononuclear cells (PBMCs) of selected CAMs in adolescents with early-onset psychosis (EOP) aged 12–18 years (n = 37) and age-matched healthy controls (HC) (n = 68). EOP patients exhibited significantly lower circulating levels of soluble platelet selectin (~−22%) and soluble vascular cell adhesion molecule-1 (~−14%) than HC. We found no significant associations with symptom severity. PSEL mRNA expression was increased in PBMCs of patients and significantly negatively correlated to duration of illness. These findings suggest a role for CAMs in the pathophysiology of psychotic disorders.
Collapse
|
11
|
Wehbi A, Kremer EJ, Dopeso-Reyes IG. Location of the Cell Adhesion Molecule "Coxsackievirus and Adenovirus Receptor" in the Adult Mouse Brain. Front Neuroanat 2020; 14:28. [PMID: 32581729 PMCID: PMC7287018 DOI: 10.3389/fnana.2020.00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) is a single-pass transmembrane cell adhesion molecule (CAM). CAR is expressed in numerous mammalian tissues including the brain, heart, lung, and testes. In epithelial cells, CAR functions are typical of the quintessential roles of numerous CAMs. However, in the brain the multiple roles of CAR are poorly understood. To better understand the physiological role of CAR in the adult brain, characterizing its location is a primordial step to advance our knowledge of its functions. In addition, CAR is responsible for the attachment, internalization, and retrograde transport of canine adenovirus type 2 (CAV-2) vectors, which have found a niche in the mapping of neuronal circuits and gene transfer to treat and model neurodegenerative diseases. In this study, we used immunohistochemistry and immunofluorescence to document the global location of CAR in the healthy, young adult mouse brain. Globally, we found that CAR is expressed by maturing and mature neurons in the brain parenchyma and located on the soma and on projections. While CAR occasionally colocalizes with glial fibrillary acidic protein, this overlap was restricted to areas that are associated with adult neurogenesis.
Collapse
Affiliation(s)
- Amani Wehbi
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | - Iria G Dopeso-Reyes
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Sanchez-Roige S, Palmer AA, Clarke TK. Recent Efforts to Dissect the Genetic Basis of Alcohol Use and Abuse. Biol Psychiatry 2020; 87:609-618. [PMID: 31733789 PMCID: PMC7071963 DOI: 10.1016/j.biopsych.2019.09.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023]
Abstract
Alcohol use disorder (AUD) is defined by several symptom criteria, which can be dissected further at the genetic level. Over the past several years, our understanding of the genetic factors influencing alcohol use and abuse has progressed tremendously; numerous loci have been implicated in different aspects of alcohol use. Previously known associations with alcohol-metabolizing enzymes (ADH1B, ALDH2) have been replicated definitively. In addition, novel associations with loci containing the genes KLB, GCKR, CRHR1, and CADM2 have been reported. Downstream analyses have leveraged these genetic findings to reveal important relationships between alcohol use behaviors and both physical and mental health. AUD and aspects of alcohol misuse have been shown to overlap strongly with psychiatric disorders, whereas aspects of alcohol consumption have shown stronger links to metabolism. These results demonstrate that the genetic architecture of alcohol consumption only partially overlaps with the genetics of clinically defined AUD. We discuss the limitations of using quantitative measures of alcohol use as proxy measures for AUD, and we outline how future studies will require careful phenotype harmonization to properly capture the genetic liability to AUD.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, California.
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California; Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
ELFN2 is a postsynaptic cell adhesion molecule with essential roles in controlling group III mGluRs in the brain and neuropsychiatric behavior. Mol Psychiatry 2019; 24:1902-1919. [PMID: 31485013 PMCID: PMC6874751 DOI: 10.1038/s41380-019-0512-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
The functional characterization of the GPCR interactome has predominantly focused on intracellular binding partners; however, the recent emergence of transsynaptic GPCR complexes represents an additional dimension to GPCR function that has previously been unaccounted for in drug discovery. Here, we characterize ELFN2 as a novel postsynaptic adhesion molecule with a distinct expression pattern throughout the brain and a selective binding with group III metabotropic glutamate receptors (mGluRs) in trans. Using a transcellular GPCR signaling platform, we report that ELFN2 critically alters group III mGluR secondary messenger signaling by directly altering G protein coupling kinetics and efficacy. Loss of ELFN2 in mice results in the selective downregulation of group III mGluRs and dysregulated glutamatergic synaptic transmission. Elfn2 knockout (Elfn2 KO) mice also feature a range of neuropsychiatric manifestations including seizure susceptibility, hyperactivity, and anxiety/compulsivity, which can be rescued by pharmacological augmentation of group III mGluRs. Thus, we conclude that extracellular transsynaptic scaffolding by ELFN2 in the brain is a cardinal organizational feature of group III mGluRs essential for their signaling properties and brain function.
Collapse
|
14
|
Cognitive functions associated with developing prefrontal cortex during adolescence and developmental neuropsychiatric disorders. Neurobiol Dis 2019; 131:104322. [DOI: 10.1016/j.nbd.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
|
15
|
In Vitro Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of PCDH15 and RELN. eNeuro 2019; 6:ENEURO.0403-18.2019. [PMID: 31540999 PMCID: PMC6800292 DOI: 10.1523/eneuro.0403-18.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BP) and schizophrenia (SCZ) are major psychiatric disorders, but the molecular mechanisms underlying the complicated pathologies of these disorders remain unclear. It is difficult to establish adequate in vitro models for pathological analysis because of the heterogeneity of these disorders. In the present study, to recapitulate the pathologies of these disorders in vitro, we established in vitro models by differentiating mature neurons from human induced pluripotent stem cells (hiPSCs) derived from BP and SCZ patient with contributive copy number variations, as follows: two BP patients with PCDH15 deletion and one SCZ patient with RELN deletion. Glutamatergic neurons and GABAergic neurons were induced from hiPSCs under optimized conditions. Both types of induced neurons from both hiPSCs exhibited similar phenotypes of MAP2 (microtubule-associated protein 2)-positive dendrite shortening and decreasing synapse numbers. Additionally, we analyzed isogenic PCDH15- or RELN-deleted cells. The dendrite and synapse phenotypes of isogenic neurons were partially similar to those of patient-derived neurons. These results suggest that the observed phenotypes are general phenotypes of psychiatric disorders, and our in vitro models using hiPSC-based technology may be suitable for analysis of the pathologies of psychiatric disorders.
Collapse
|
16
|
Hu G, Wang R, Wei B, Wang L, Yang Q, Kong D, Du C. Prognostic Markers Identification in Glioma by Gene Expression Profile Analysis. J Comput Biol 2019; 27:81-90. [PMID: 31433208 DOI: 10.1089/cmb.2019.0217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore more gene markers associated with glioma or its prognosis. The glioma-related RNAseq data from the Gene Expression Omnibus database and The Cancer Genome Atlas dataset in UCSC Xena database were downloaded. There was a total of 971 tumor samples and 102 normal samples in the 2 datasets. The differentially expressed genes (DEGs) data between tumor and normal samples were analyzed, on which were then performed function and pathway enrichment analyses. Pearson correlation coefficient between DEGs was calculated to construct the coexpression network. Finally, prognostic genes were screened. A total of 634 upregulated and 769 downregulated DEGs were identified between tumor and control groups. These DEGs were significantly involved in 15 upregulated pathways, such as p53 signaling pathway, and 16 downregulated pathways, such as neuroactive ligand-receptor interaction, and cell adhesion molecules. In the coexpression network, pseudouridine synthase 7 (PUS7), EFR3 homolog B (EFR3B), and neuronal cell adhesion molecule (NRCAM) had the top three highest degrees. Additionally, 17 prognostic genes were selected, such as thrombospondin-1 (THBS1), caspase-8 (CASP8), glutamate ionotropic receptor AMPA type subunit 2 (GRIA2), GRIA4, and ADCYAP receptor type I (ADCYAP1R1). Pathways of p53 signaling pathway and neuroactive ligand-receptor interaction may play important roles in glioma progression. PUS7, EFR3B, and NRCAM may be potential biomarkers of glioma. THBS1, CASP8, GRIA2, GRIA4, and ADCYAP1R1 may serve as prognostic markers in glioma.
Collapse
Affiliation(s)
- Guozhang Hu
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Wang
- Department of Radiology, and China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Qi Yang
- Department of Obstetrics and Gynecology, and China-Japan Union Hospital of Jilin University, Changchun, China
| | - Daliang Kong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Genome-Wide Association Studies of Impulsive Personality Traits (BIS-11 and UPPS-P) and Drug Experimentation in up to 22,861 Adult Research Participants Identify Loci in the CACNA1I and CADM2 genes. J Neurosci 2019; 39:2562-2572. [PMID: 30718321 DOI: 10.1523/jneurosci.2662-18.2019] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
Impulsive personality traits are complex heritable traits that are governed by frontal-subcortical circuits and are associated with numerous neuropsychiatric disorders, particularly drug abuse and attention-deficit/hyperactivity disorder (ADHD). In collaboration with the genetics company 23andMe, we performed 10 genome-wide association studies on measures of impulsive personality traits [the short version of the UPPS-P Impulsive Behavior Scale, and the Barratt Impulsiveness Scale (BIS-11)] and drug experimentation (the number of drug classes an individual had tried in their lifetime) in up to 22,861 male and female adult human research participants of European ancestry. Impulsive personality traits and drug experimentation showed single nucleotide polymorphism heritabilities that ranged from 5 to 11%. Genetic variants in the CADM2 locus were significantly associated with UPPS-P Sensation Seeking (p = 8.3 × 10-9, rs139528938) and showed a suggestive association with Drug Experimentation (p = 3.0 × 10-7, rs2163971; r 2 = 0.68 with rs139528938). Furthermore, genetic variants in the CACNA1I locus were significantly associated with UPPS-P Negative Urgency (p = 3.8 × 10-8; rs199694726). The role of these genes was supported by single variant, gene- and transcriptome-based analyses. Multiple subscales from both UPPS-P and BIS showed strong genetic correlations (>0.5) with Drug Experimentation and other substance use traits measured in independent cohorts, including smoking initiation, and lifetime cannabis use. Several UPPS-P and BIS subscales were genetically correlated with ADHD (r g = 0.30-0.51), supporting their validity as endophenotypes. Our findings demonstrate a role for common genetic contributions to individual differences in impulsivity. Furthermore, our study is the first to provide a genetic dissection of the relationship between different types of impulsive personality traits and various psychiatric disorders.SIGNIFICANCE STATEMENT Impulsive personality traits (IPTs) are heritable traits that are governed by frontal-subcortical circuits and are associated with neuropsychiatric disorders, particularly substance use disorders. We have performed genome-wide association studies of IPTs to identify regions and genes that account for this heritable variation. IPTs and drug experimentation were modestly heritable (5-11%). We identified an association between single nucleotide polymorphisms in CADM2 and both sensation seeking and drug experimentation; and between variants in CACNA1I and negative urgency. The role of these genes was supported by single variant, gene- and transcriptome-based analyses. This study provides evidence that impulsivity can be genetically separated into distinct components. We showed that IPT are genetically associated with substance use and ADHD, suggesting impulsivity is an endophenotype contributing to these psychiatric conditions.
Collapse
|
18
|
Muzyka VV, Brooks M, Badea TC. Postnatal developmental dynamics of cell type specification genes in Brn3a/Pou4f1 Retinal Ganglion Cells. Neural Dev 2018; 13:15. [PMID: 29958540 PMCID: PMC6025728 DOI: 10.1186/s13064-018-0110-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND About 20-30 distinct Retinal Ganglion Cell (RGC) types transmit visual information from the retina to the brain. The developmental mechanisms by which RGCs are specified are still largely unknown. Brn3a is a member of the Brn3/Pou4f transcription factor family, which contains key regulators of RGC postmitotic specification. In particular, Brn3a ablation results in the loss of RGCs with small, thick and dense dendritic arbors ('midget-like' RGCs), and morphological changes in other RGC subpopulations. To identify downstream molecular mechanisms underlying Brn3a effects on RGC numbers and morphology, our group recently performed a RNA deep sequencing screen for Brn3a transcriptional targets in mouse RGCs and identified 180 candidate transcripts. METHODS We now focus on a subset of 28 candidate genes encoding potential cell type determinant proteins. We validate and further define their retinal expression profile at five postnatal developmental time points between birth and adult stage, using in situ hybridization (ISH), RT-PCR and fluorescent immunodetection (IIF). RESULTS We find that a majority of candidate genes are enriched in the ganglion cell layer during early stages of postnatal development, but dynamically change their expression profile. We also document transcript-specific expression differences for two example candidates, using RT-PCR and ISH. Brn3a dependency could be confirmed by ISH and IIF only for a fraction of our candidates. CONCLUSIONS Amongst our candidate Brn3a target genes, a majority demonstrated ganglion cell layer specificity, however only around two thirds showed Brn3a dependency. Some were previously implicated in RGC type specification, while others have known physiological functions in RGCs. Only three genes were found to be consistently regulated by Brn3a throughout postnatal retina development - Mapk10, Tusc5 and Cdh4.
Collapse
Affiliation(s)
| | - Matthew Brooks
- Genomics Core, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Building 6, Room 331B Center Drive, Bethesda, MD, 20892-0610, USA
| | - Tudor Constantin Badea
- Retinal Circuit Development & Genetics Unit, Building 6, Room 331B Center Drive, Bethesda, MD, 20892-0610, USA.
| |
Collapse
|
19
|
Singh K, Loreth D, Pöttker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, Kretz O, Philips MA, Haas CA, Frauenknecht K, Lilleväli K, Heimrich B, Vasar E, Schäfer MKE. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Front Mol Neurosci 2018; 11:30. [PMID: 29479305 PMCID: PMC5811522 DOI: 10.3389/fnmol.2018.00030] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Desirée Loreth
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyra Hefti
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathrin Schwald
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heidi Hengstler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Mouse Behavioral Unit, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Oliver Kretz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
20
|
Rodríguez-Ramos Á, Gámez-Del-Estal MM, Porta-de-la-Riva M, Cerón J, Ruiz-Rubio M. Impaired Dopamine-Dependent Locomotory Behavior of C. elegans Neuroligin Mutants Depends on the Catechol-O-Methyltransferase COMT-4. Behav Genet 2017; 47:596-608. [PMID: 28879499 DOI: 10.1007/s10519-017-9868-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022]
Abstract
Neurexins and neuroligins are neuronal membrane adhesion molecules that have been involved in neuropsychiatric and neurodevelopmental disorders. The nrx-1 and nlg-1 genes of Caenorhabditis elegans encode NRX-1 and NLG-1, orthologue proteins of human neurexins and neuroligins, respectively. Dopaminergic and serotoninergic signalling control the locomotory rate of the nematode. When well-fed animals are transferred to a plate with food (bacterial lawn), they reduce the locomotory rate. This behavior, which depends on dopamine, is known as basal slowing response (BSR). Alternatively, when food-deprived animals are moved to a plate with a bacterial lawn, further decrease their locomotory rate. This behavior, known as enhanced slowing response (ESR), is serotonin dependent. C. elegans nlg-1-deficient mutants are impaired in BSR and ESR. Here we report that nrx-1-deficient mutants were defective in ESR, but not in BSR. The nrx-1;nlg-1 double mutant was impaired in both behaviors. Interestingly, the nlg-1 mutants upregulate the expression of comt-4 which encodes an enzyme with putative catechol-O-methyltransferase activity involved in dopamine degradation. Our study also shows that comt-4(RNAi) in nlg-1-deficient mutants rescues the wild type phenotypes of BSR and ESR. On the other hand, comt-4(RNAi) in nlg-1-deficient mutants also recovers, at least partially, the gentle touch response and the pharyngeal pumping rate that were impaired in these mutants. These latter behaviors are dopamine and serotonin dependent, respectively. Based on these results we propose a model for the neuroligin function in modulating the dopamine-dependent locomotory behavior in the nematode.
Collapse
Affiliation(s)
- Ángel Rodríguez-Ramos
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- University Hospital Reina Sofía from Córdoba, Córdoba, Spain
| | - M Mar Gámez-Del-Estal
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- University Hospital Reina Sofía from Córdoba, Córdoba, Spain
| | | | - Julián Cerón
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Manuel Ruiz-Rubio
- Department of Genetics, University of Córdoba, Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
- University Hospital Reina Sofía from Córdoba, Córdoba, Spain.
| |
Collapse
|
21
|
Lee BJ, Marchionni L, Andrews CE, Norris AL, Nucifora LG, Wu YC, Wright RA, Pevsner J, Ross CA, Margolis RL, Sawa A, Nucifora FC. Analysis of differential gene expression mediated by clozapine in human postmortem brains. Schizophr Res 2017; 185:58-66. [PMID: 28038920 PMCID: PMC6541388 DOI: 10.1016/j.schres.2016.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
Abstract
Clozapine is the only medication indicated for treating refractory schizophrenia, due to its superior efficacy among all antipsychotic agents, but its mechanism of action is poorly understood. To date, no studies of human postmortem brain have characterized the gene expression response to clozapine. Therefore, we addressed this question by analyzing expression data extracted from published microarray studies involving brains of patients on antipsychotic therapy. We first performed a systematic review and identified four microarray studies of postmortem brains from antipsychotic-treated patients, then extracted the expression data. We then performed generalized linear model analysis on each study separately, and identified the genes differentially expressed in response to clozapine compared to other atypical antipsychotic medications, as well as their associated canonical pathways. We also found a number of genes common to all four studies that we analyzed: GCLM, ZNF652, and GYPC. In addition, pathway analysis highlighted the following processes in all four studies: clathrin-mediated endocytosis, SAPK/JNK signaling, 3-phosphoinositide synthesis, and paxillin signaling. Our analysis yielded the first comprehensive compendium of genes and pathways differentially expressed upon clozapine treatment in the human brain, which may provide insight into the mechanism and unique efficacy of clozapine, as well as the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Brian J Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA
| | - Luigi Marchionni
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, MD 21287, USA
| | - Carrie E Andrews
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Alexis L Norris
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA; Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, 707 N. Broadway, Baltimore, MD 21205, USA
| | - Leslie G Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Yeewen Candace Wu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Robert A Wright
- William H. Welch Medical Library, Johns Hopkins University, 1900 E. Monument St., Baltimore, MD 21205, USA
| | - Jonathan Pevsner
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA; Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, 707 N. Broadway, Baltimore, MD 21205, USA
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Russell L Margolis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, 1830 E. Monument St., Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| |
Collapse
|
22
|
Buhusi M, Obray D, Guercio B, Bartlett MJ, Buhusi CV. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia. Behav Brain Res 2017. [PMID: 28647594 DOI: 10.1016/j.bbr.2017.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States.
| | - Daniel Obray
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Bret Guercio
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Mitchell J Bartlett
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| |
Collapse
|