1
|
Jo K, Lee S, Jeong SKC, Kim HB, Seong PN, Jung S, Lee DH. Cooking loss estimation of semispinalis capitis muscle of pork butt using a deep neural network on hyperspectral data. Meat Sci 2025; 222:109754. [PMID: 39799874 DOI: 10.1016/j.meatsci.2025.109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/22/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
This study evaluated the performance of a deep-learning-based model that predicted cooking loss in the semispinalis capitis (SC) muscle of pork butts using hyperspectral images captured 24 h postmortem. To overcome low-scale samples, 70 pork butts were used with pixel-based data augmentation. Principal component regression (PCR) and partial least squares regression (PLSR) models for predicting cooking loss in SC muscle showed higher R2 values with multiplicative signal correction, while the first derivative resulted in a lower root mean square error (RMSE). The deep learning-based model outperformed the PCR and PLSR models. The classification accuracy of the models for cooking loss grade classification decreased as the number of grades increased, with the models with three grades achieving the highest classification accuracy. The deep learning model exhibited the highest classification accuracy (0.82). Cooking loss in the SC muscle was visualized using a deep learning model. The pH and cooking loss of the SC muscle were significantly correlated with the cooking loss of pork butt slices (-0.54 and 0.69, respectively). Therefore, a deep learning model using hyperspectral images can predict the cooking loss grade of SC muscle. This suggests that nondestructive prediction of the quality properties of pork butts can be achieved using hyperspectral images obtained from the SC muscle.
Collapse
Affiliation(s)
- Kyung Jo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seonmin Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seul-Ki-Chan Jeong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 16890, Republic of Korea
| | - Pil Nam Seong
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Dae-Hyun Lee
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Reis IA, Baldassini WA, Ramírez-Zamudio GD, de Farias IMSC, Chiaratti MR, Pereira Junior S, Nociti RP, Carvalho PHV, Curi RA, Pereira GL, Chardulo LAL, Neto ORM. Muscle tissue transcriptome of F1 Angus-Nellore bulls and steers feedlot finished: impacts on intramuscular fat deposition. BMC Genomics 2024; 25:1178. [PMID: 39633259 PMCID: PMC11616301 DOI: 10.1186/s12864-024-11066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Castration is a common practice in beef cattle production systems to manage breeding and enhance meat quality by promoting intramuscular fat (IMF) deposition, known as marbling. However, the molecular mechanisms that are influenced by castration in beef cattle are poorly understood. The aim of this study was to identify differentially expressed genes (DEGs) and metabolic pathways that regulate IMF deposition in crossbred cattle by RNA sequencing (RNA-Seq) of skeletal muscle tissue. Six hundred and forty F1 Angus-Nellore bulls and steers (n = 320/group) were submitted to feedlot finishing for 180 days. Sixty Longissimus thoracis muscle samples were collected randomly from each group in the hot carcass (at slaughter) and 48 h post-mortem (at deboning), at between 12th and 13th thoracic vertebrae. Three muscle samples of each group were randomly selected for RNA-Seq analysis, while the post-deboning meat samples were submitted to determination of IMF content. RESULTS Steers had a 2.7-fold greater IMF content than bulls (5.59 vs. 2.07%; P < 0.01). A total of 921 DEGs (FDR < 0.05) were identified in contrast between Bulls versus Steers; of these, 371 were up-regulated, and 550 were down-regulated. Functional transcriptome enrichment analysis revealed differences in biological processes and metabolic pathways related to adipogenesis and lipogenesis, such as insulin resistance, AMPK, cAMP, regulation of lipolysis in adipocytes, and PI3K-Akt signaling pathways. Candidate genes such as FOXO1, PPARG, PCK2, CALM1, LEP, ADIPOQ, FASN, FABP4, PLIN1, PIK3R3, ROCK2, ADCY5, and ADORA1 were regulated in steers, which explains the expressive difference in IMF content when compared to bulls. CONCLUSIONS The current findings suggest the importance of these pathways and genes for lipid metabolism in steers with greater IMF. Notably, this study reveals for the first time the involvement of the PI3K-Akt pathway and associated genes in regulating IMF deposition in F1 Angus-Nellore cattle. Castration influenced DEGs linked to energy metabolism and lipid biosynthesis, highlighting key molecular players responsible for IMF accumulation post-castration in beef cattle.
Collapse
Affiliation(s)
- Irene Alexandre Reis
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Welder Angelo Baldassini
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil
| | | | - Iasmin Myrele Santos Calaça de Farias
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Sérgio Pereira Junior
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Ricardo Perecin Nociti
- College of Animal Science and Foods Engineering, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | | | - Rogério Abdallah Curi
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil
| | - Guilherme Luis Pereira
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil
| | - Luis Artur Loyola Chardulo
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil
| | - Otávio Rodrigues Machado Neto
- College of Agriculture and Veterinary Sciences (FCAV), Department of Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, 14884-900, Brazil.
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil.
| |
Collapse
|
3
|
Wang H, Gao S, Xu A, Huan C, Xu Z, Wu P, Meng X. Characteristics of volatile flavor development in aged longissimus lumborum post-ultrasound treatment: 4D proteomics combined with phosphoproteomics analysis. Food Res Int 2024; 197:115296. [PMID: 39577944 DOI: 10.1016/j.foodres.2024.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/06/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
The present study aimed to evaluate the impact of ultrasonic treatment on the development of volatile flavor compounds in beef during postmortem aging and its potential mechanism. Results showed that ultrasound treatment may cause an increase in the total content of unsaturated fatty acids, which could lead to lipid oxidation and potentially result in changes in the flavor development. Additionally, it was also found that ultrasound exacerbated protein oxidation. A total of 141 volatile compounds were obtained by SPME-GC-MS analysis, and 18 differential aroma substances (P < 0.05, VIP > 1) were obtained by orthogonal partial least squares discrimination analysis (OPLS-DA). Five key volatile flavor compounds (hexanal, nonanal, octanal, pentanal, and 1-pentanol) originating from lipid oxidation were identified according to odor activity values (OAVs). The concentration of these compounds was significantly higher in the ultrasonic treatment group compared to the non-ultrasonic group that underwent a 3-day aging process. Nine common differentially expressed proteins (DEPs) were identified through the utilization of proteomics and phosphoproteomics analysis. KEGG pathways showed that selenocompound metabolism, tryptophan metabolism and cysteine and methionine metabolism led to flavor formation during wet aging of beef after ultrasound treatment. This study provided proteomic insights into the flavor of beef aged through sonication and suggested potential links between flavor development and biological processes.
Collapse
Affiliation(s)
- Hengpeng Wang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China; Engineering Technology Research Center of Yangzhou Prepared Cuisine, Yangzhou 225127, China; Sichuan Tourism University, Chengdu 610100, Sichuan
| | - Sumin Gao
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Anqi Xu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Chuanming Huan
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Zhicheng Xu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China; Engineering Technology Research Center of Yangzhou Prepared Cuisine, Yangzhou 225127, China
| | - Peng Wu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China; Engineering Technology Research Center of Yangzhou Prepared Cuisine, Yangzhou 225127, China
| | - Xiangren Meng
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China; Engineering Technology Research Center of Yangzhou Prepared Cuisine, Yangzhou 225127, China; Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
4
|
Hou Q, Gao T, Liu R, Ma C, Zhang W. S-nitrosoproteomics profiling elucidates the regulatory mechanism of S-nitrosylation on beef quality. Meat Sci 2024; 216:109580. [PMID: 38941777 DOI: 10.1016/j.meatsci.2024.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This study aimed to quantitively profile the S-nitrosylation in beef semimembranosus (SM) with different treatments (nitric oxide donor or nitric oxide synthase inhibitor) by applying iodoTMT-based nitrosoproteomics. Results showed that 2096 S-nitrosylated cysteine sites in 368 proteins were detected in beef SM. Besides, differential SNO-modified proteins were screened, some of which were involved in crucial biochemical pathways, including calcium-releasing-related proteins, energy metabolic enzymes, myofibrils, and cytoskeletal proteins. GO analysis indicated that differential proteins were localized in a wide range of cellular compartments, such as cytoplasm, organelle, and mitochondrion, providing a prerequisite for S-nitrosylation exerting broad roles in post-mortem muscles. Furthermore, KEGG analysis validated that these proteins participated in the regulation of diverse post-mortem metabolic processes, especially glycolysis. To conclude, changes of S-nitrosylation levels in post-mortem muscles could impact the structure and function of crucial muscle proteins, which lead to different levels of muscle metabolism and ultimately affect beef quality.
Collapse
Affiliation(s)
- Qin Hou
- School of Tourism and Cuisine, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, Jiangsu 225127, China; Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Tianyi Gao
- School of Tourism and Cuisine, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, Jiangsu 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Chao Ma
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
5
|
Kent MA, Mullen AM, O'Neill E, Álvarez C. Assessing the impact of ultrasound on the rate and extent of early post-mortem glycolysis in bovine Longissimus thoracis et lumborum. Meat Sci 2024; 214:109531. [PMID: 38701701 DOI: 10.1016/j.meatsci.2024.109531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The rate of pH decline, early post-mortem, has been identified as a key factor that impacts the tenderness of meat, and manipulating this rate of pH decline is highly relevant to ensure consistent high quality meat. Ultrasound is a potential intervention in early post - mortem muscle that may have an impact on the rate of glycolysis through its ability to alter enzyme activity. Following a variety of different ultrasound treatments frequencies (25 and 45 kHz) and durations (15, 30 and 45 min), it was found, when analysed in muscle, that ultrasound treatment duration, specifically the 30 min treatment, and interaction between treatment duration and frequency, had a significant impact on the rate of pH decline, post - treatment. Frequency did not have a significant effect on the rate of pH decline, post - treatment, in muscle. Ultrasound did not have a significant permanent effect on the activity of glycolytic enzymes present in bovine Longissimus lumborum et thoracis muscle, where no significant differences were observed on the rate of pH decline and rate of change of reducing sugars, glycogen and lactic acid, when analysed in an in vitro glycolytic buffer. It seems that the impact observed in intact muscle is not as a consequence of a permanent change in enzymatic activity, instead indicating an impact on conditions in the muscle which enhanced enzyme activity.
Collapse
Affiliation(s)
- Mary Ann Kent
- Department of Food Quality and Sensory Analysis, Teagasc Food Research Centre Ashtown, D15 DY05 Dublin, Ireland; School of Food and Nutritional Sciences, University College Cork, Western Road, T12 YN60 Cork, Ireland
| | - Anne Maria Mullen
- Department of Food Quality and Sensory Analysis, Teagasc Food Research Centre Ashtown, D15 DY05 Dublin, Ireland
| | - Eileen O'Neill
- School of Food and Nutritional Sciences, University College Cork, Western Road, T12 YN60 Cork, Ireland
| | - Carlos Álvarez
- Department of Food Quality and Sensory Analysis, Teagasc Food Research Centre Ashtown, D15 DY05 Dublin, Ireland.
| |
Collapse
|
6
|
Ding Z, Liu C, Zhang Z, Zhang C, Huang F. Effect of mitochondrial calcium homeostasis-mediated endogenous enzyme activation on tenderness of beef muscle based on MCU modulators. Food Chem X 2024; 22:101366. [PMID: 38623508 PMCID: PMC11016958 DOI: 10.1016/j.fochx.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
The mitochondrial calcium uniporter (MCU) occupies a noteworthy position in the regulation of mitochondrial calcium uptake. This study investigated the effects of MCU modulator-mediated mitochondrial calcium on mitochondrial dysfunction, oxidative stress, endogenous enzyme activities, and tenderness during postmortem aging. Spermine, as an activator of MCU, resulted in an increase in mitochondrial calcium levels, not only disrupting mitochondrial morphology but also triggering mitochondrial oxidative stress and downregulation of antioxidant factors. Additionally, the spermine group underwent later activation of calpain and earlier activation of caspases, as well as the myofibril fragmentation index was initially lower and then higher compared with control group, indicating that endogenous enzymes played an indispensable role in different aging periods. Interestingly, the results of the Ru360 (an inhibitor of MCU) group were opposite to those aforementioned findings. Our data provide a novel perspective on the regulatory mechanism of mitochondrial calcium homeostasis mediated by MCU on tenderness.
Collapse
Affiliation(s)
- Zhenjiang Ding
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Chunmei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zihan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
7
|
Xiao L, Qi L, Fu R, Nie Q, Zhang X, Luo W. A large-scale comparison of the meat quality characteristics of different chicken breeds in South China. Poult Sci 2024; 103:103740. [PMID: 38701629 PMCID: PMC11087722 DOI: 10.1016/j.psj.2024.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Meat quality traits are essential for producing high-quality broilers, but the genetic improvement has been limited by the complexity of measurement methods and the numerous traits involved. To systematically understand the meat quality characteristics of different broiler breeds, this study collected data on slaughter performance, skin color, fat deposition, and meat quality traits of 434 broilers from 12 different breeds in South China. The results showed that there was no significant difference in the live weight and slaughter weight of various broiler breeds at their respective market ages. Commercial broiler breeds such as Xiaobai and Huangma chickens had higher breast muscle and leg muscle rates. The skin and abdominal fat of Huangma chickens cultivated in the consumer market in South China exhibited significantly higher levels of yellowness compared to other varieties. Concerning fat traits, we observed that Wenchang chickens exhibited a strong ability to fat deposition, while the younger breeds showed lower fat deposition. Additionally, there were significant positive correlations found among different traits, including traits related to weight, traits related to fat, and skin color of different parts. Hierarchical clustering analysis revealed that fast-growing and large broiler Xiaobai chickens formed a distinct cluster based on carcass characteristics, skin color, and meat quality traits. Principal component analysis (PCA) was used to extract multiple principal components as substitutes for complex meat quality indicators, establishing a chicken meat quality evaluation model to differentiate between different breeds of chickens. At the same time, we identified 46, 22, and 20 SNP loci and their adjacent genes that were significantly associated with muscle mass traits, fat deposition, and skin color through genome-wide association studies (GWAS). The above results are helpful for systematically understanding the differences and characteristics of meat quality traits among different breeds.
Collapse
Affiliation(s)
- Liangchao Xiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Lin Qi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Rong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Chai W, Wang L, Li T, Wang T, Wang X, Yan M, Zhu M, Gao J, Wang C, Ma Q, Qu H. Liquid Chromatography-Mass Spectrometry-Based Metabolomics Reveals Dynamic Metabolite Changes during Early Postmortem Aging of Donkey Meat. Foods 2024; 13:1466. [PMID: 38790766 PMCID: PMC11119072 DOI: 10.3390/foods13101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Metabolic changes in donkey meat during the early postmortem period have not been previously reported. METHODS The LC-MS-based metabolomics technique was conducted to understand the metabolic profiles and identify the key metabolites of donkey meat in the first 48 h postmortem. RESULTS The pH values showed a decreasing trend followed by an increasing trend. Shear force was the lowest at 4 h and the highest at 24 h (p < 0.05). For the metabolome, some candidate biomarker metabolites were identified, such as adenine, inosine, n-acetylhistidine, citric acid, isocitrate, and malic acid. Predominant metabolic pathways, such as citrate cycle (TCA cycle), alanine, aspartate and glutamate metabolism, and purine metabolism, were affected by aging time. Overabundant n-acetylhistidine was identified in LT, declined at 12 h postmortem aging, and then increased. This may explain the significantly lower pH at 12 h postmortem. Adenine was higher at 4 h postmortem, then declined. Decreased ADP may indicate a fast consumption of ATP and subsequent purine metabolism in donkey meat. CONCLUSIONS The results of this study provided new insights into early postmortem aging of donkey meat quality.
Collapse
Affiliation(s)
- Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Liyuan Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Tong Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Tianqi Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Miao Yan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Mingxia Zhu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Jingrong Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Honglei Qu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
9
|
Jiang S, Shen QW. Antemortem Stress Regulates Postmortem Glycolysis in Muscle by Deacetylation of Pyruvate Kinase M1 at K141. Protein J 2024; 43:351-361. [PMID: 38605203 DOI: 10.1007/s10930-023-10178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 04/13/2024]
Abstract
It is well known that preslaughter (antemortem) stress such as rough handling, transportation, a negative environment, physical discomfort, lack of consistent routine, and bad feed quality has a big impact on meat quality. The antemortem-induced poor meat quality is characterized by low pH, a pale and exudative appearance, and a soft texture. Previous studies indicate that antemortem stress plays a key role in regulating protein acetylation and glycolysis in postmortem (PM) muscle. However, the underlying molecular and biochemical mechanism is not clearly understood yet. In this study, we investigated the relationship between antemortem and protein acetylation and glycolysis using murine longissimus dorsi muscle isolated from ICR mice and murine muscle cell line C2C12 treated with epinephrine hydrochloride. Because adrenaline secretion increases in stressed animals, epinephrine hydrochloride was intraperitoneally injected epinephrine into mice to simulate pre-slaughter stress in this study to facilitate experimental operations and save experimental costs. Our findings demonstrated that protein acetylation in pyruvate kinase M1 (PKM1) form is significantly reduced by antemortem, and the reduced acetylation subsequently leads to an increase in PKM1 enzymatic activity which causes increased glycolysis in PM muscle. By using molecular approaches, we identified lysine 141 in PKM1 as a critical residue for acetylation. Our results in this study provide useful insight for controlling or improving meat quality in the future.
Collapse
Affiliation(s)
- Shengwang Jiang
- College of Animal Science, Xichang University, Xichang, 615013, Sichuan, China
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qingwu W Shen
- College of Animal Science, Xichang University, Xichang, 615013, Sichuan, China.
| |
Collapse
|
10
|
Huang C, Zhang D, Blecker C, Zhao Y, Xiang C, Wang Z, Li S, Chen L. Effects of phosphoglycerate kinase 1 and pyruvate kinase M2 on metabolism and physiochemical changes in postmortem muscle. Food Chem X 2024; 21:101125. [PMID: 38292674 PMCID: PMC10827398 DOI: 10.1016/j.fochx.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The objective of this work was to investigate the influence of phosphoglycerate kinase-1 (PGK1) and pyruvate kinase-M2 (PKM2) activity on glycolysis, myofibrillar proteins, calpain system, and apoptosis pathways of postmortem muscle. The activity of PGK1 and PKM2 was regulated by their inhibitors and activators to construct the postmortem glycolysis vitro model and then incubated at 4 °C for 24 h. The results showed that compared to PGK1 and PKM2 inhibitors groups, the addition of PGK1 and PKM2 activators could accelerate glycogen consumption, ATP and lactate production, while declining pH value. Moreover, the addition of PGK1 and PKM2 activators could increase desmin degradation, μ-calpain activity, and caspase-3 abundance. Interestingly, troponin-T degradation was significantly increased both in PKM2 inhibitor and activator groups. It was suggested that PGK1 and PKM2 might be used as robust indicators to regulate meat quality by affecting the glycolysis, myofibrillar proteins, μ-calpain and apoptosis pathways in postmortem muscle.
Collapse
Affiliation(s)
- Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d’Agronomie 2, Gembloux B-5030, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d’Agronomie 2, Gembloux B-5030, Belgium
| | - Yingxin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Can Xiang
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
11
|
Fan S, Kong C, Zhou R, Zheng X, Ren D, Yin Z. Protein Post-Translational Modifications Based on Proteomics: A Potential Regulatory Role in Animal Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6077-6088. [PMID: 38501450 DOI: 10.1021/acs.jafc.3c08332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, β-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230013, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
12
|
Ann Kent M, Maria Mullen A, O'Neill E, Álvarez C. The impact of ultrasound treatment on glycolytic enzymes when applied to crude extracts from early post-mortem bovine muscle. ULTRASONICS SONOCHEMISTRY 2024; 104:106842. [PMID: 38460472 PMCID: PMC10940754 DOI: 10.1016/j.ultsonch.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
The rate of pH decline post - mortem and its interaction with temperature influences the final tenderness of meat, and therefore, the manipulation of the rate of pH decline is a strategy of interest in order to obtain consistent high quality meat. Ultrasound is a potential early post - mortem carcass intervention, which may alter the rate of glycolysis based on its ability to alter enzyme activity. In this study, homogenates (prepared from early post-mortem Longissimus thoracis et lumborum muscle) were subjected to different ultrasound intensities (0 %/60 %/100 % amp) and treatment durations (15/ 30 min). The effect of these treatments on the inherent activity of the glycolytic enzymes was investigated using an in vitro glycolytic buffer model system. It was found that ultrasound treatment intensity and duration had a significant interactive effect on the rate of pH decline, and on reducing sugars and lactic acid concentrations, specifically following the 100 % amp ultrasound for 30 min treatment and between 30 and 240 min incubation. No significant differences in pH or metabolites content were observed between treatments after 1440 min of incubation. No effect of ultrasound intensity or treatment duration was observed on the degradation of glycogen. Under the reported conditions of this trial, it can be concluded that the application of ultrasound has limited potential to have an impact on the glycolytic pathways in bovine muscle.
Collapse
Affiliation(s)
- Mary Ann Kent
- Department of Food Quality and Sensory Analysis, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; School of Food and Nutritional Sciences, University College Cork, Western Road, T12 YN60 Cork, Ireland
| | - Anne Maria Mullen
- Department of Food Quality and Sensory Analysis, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| | - Eileen O'Neill
- School of Food and Nutritional Sciences, University College Cork, Western Road, T12 YN60 Cork, Ireland
| | - Carlos Álvarez
- Department of Food Quality and Sensory Analysis, Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland.
| |
Collapse
|
13
|
Sarri L, Balcells J, Seradj AR, de la Fuente G. Protein turnover in pigs: A review of interacting factors. J Anim Physiol Anim Nutr (Berl) 2024; 108:451-469. [PMID: 37975299 DOI: 10.1111/jpn.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Protein turnover defines the balance between two continuous and complex processes of protein metabolism, synthesis and degradation, which determine their deposition in tissues. Although the liver and intestine have been studied extensively for their important roles in protein digestion, absorption and metabolism, the study of protein metabolism has focused mainly on skeletal muscle tissue to understand the basis for its growth. Due to the high adaptability of skeletal muscle, its protein turnover is greatly affected by different internal and external factors, contributing to carcass lean-yield and animal growth. Amino acid (AA) labelling and tracking using isotope tracer methodology, together with the study of myofiber type profiling, signal transduction pathways and gene expression, has allowed the analysis of these mechanisms from different perspectives. Positive stimuli such as increased nutrient availability in the diet (e.g., AA), physical activity, the presence of certain hormones (e.g., testosterone) or a more oxidative myofiber profile in certain muscles or pig genotypes promote increased upregulation of translation and transcription-related genes, activation of mTORC1 signalling mechanisms and increased abundance of satellite cells, allowing for more efficient protein synthesis. However, fasting, animal aging, inactivity and stress, inflammation or sepsis produce the opposite effect. Deepening the understanding of modifying factors and their possible interaction may contribute to the design of optimal strategies to better control tissue growth and nutrient use (i.e., protein and AA), and thus advance the precision feeding strategy.
Collapse
Affiliation(s)
- Laura Sarri
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| | - Joaquim Balcells
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| | - Ahmad Reza Seradj
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| | - Gabriel de la Fuente
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| |
Collapse
|
14
|
Bohrer BM, Wang Y, Dorleku JB, Campbell CP, Mandell IB. Pork muscle profiling: pH and instrumental color of the longissimus thoracis is not representative of pH and instrumental color of shoulder and ham muscles. Meat Sci 2024; 208:109380. [PMID: 37925977 DOI: 10.1016/j.meatsci.2023.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
From a population of 351 pork carcasses, 3.0-cm thick chops from the 10th rib location of the longissimus thoracis, faced surfaces of the triceps brachii and serratus ventralis muscles from the boneless shoulder, and faced surfaces of the biceps femoris, semitendinosus, semimembranosus, adductor, rectus femoris, and vastus lateralis muscles from the boneless ham were evaluated for pH and instrumental color (Minolta CR-400). Evaluations were conducted for at least three different locations on each of the muscle samples and averaged before data analysis occurred. The longissimus thoracis had the lowest pH and the lightest and least red color compared with the other eight muscles evaluated in this study (mean differences ranged from 0.98 to 8.70 for L*, 3.98 to 12.56 for a*, and 0.026 to 0.409 for pH). Furthermore, regression analysis suggested that pH and color values for the longissimus thoracis were not adequate predictors for pH and color values obtained from other muscles and therefore consideration should be given to the individual muscles that are of interest.
Collapse
Affiliation(s)
- B M Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Y Wang
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - J B Dorleku
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - C P Campbell
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - I B Mandell
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
15
|
Johnson LG, Zhai C, Prusa KJ, Nair MN, Prenni JE, Chaparro JM, Huff-Lonergan E, Lonergan SM. Proteomic and metabolomic profiling of aged pork loin chops reveals molecular phenotypes linked to pork tenderness. J Anim Sci 2024; 102:skae355. [PMID: 39563021 PMCID: PMC11630860 DOI: 10.1093/jas/skae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
The ability to predict fresh pork tenderness and quality is hindered by an incomplete understanding of molecular factors that influence these complex traits. It is hypothesized that a comprehensive description of the metabolomic and proteomic phenotypes associated with variation in pork tenderness and quality will enhance the understanding and inform the development of rapid and nondestructive methods to measure pork quality. The objective of this investigation was to examine the proteomic and metabolomic profiles of ~2-wk aged pork chops categorized across instrumental tenderness groups. One hundred pork loin chops from a larger sample (N = 120) were assigned to one of the four categories (n = 25) based on instrumental star probe value (Category A, x¯ =4.23 kg, 3.43-4.55 kg; Category B, x¯ =4.79 kg, 4.66-5.00 kg; Category C, x¯ =5.43 kg, 5.20-5.64 kg; and Category D, x¯ =6.21 kg, 5.70-7.41 kg). Soluble protein from ~2 wk aged pork loin was prepared using a low-ionic-strength buffer. Proteins were digested with trypsin, labeled with 11-plex isobaric tandem mass tag reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Metabolites were extracted in 80% methanol from lyophilized and homogenized tissue samples. Derivatized metabolites were identified and quantified using gas chromatography-mass spectrometry. Between Categories A and D, 84 proteins and 22 metabolites were differentially abundant (adjusted P < 0.05). Fewer differences were detected in comparison between categories with less divergent tenderness measures. The molecular phenotype of the more tender (Category A) aged chops is consistent with a slower and less extended pH decline and markedly less abundance of glycolytic metabolites. The presence and greater abundance of proteins in the low-ionic-strength extract, including desmin, filamin C, calsequestrin, and fumarate hydratase, indicates a greater disruption of sarcoplasmic reticulum and mitochondrial membranes and the degradation and release of structural proteins from the continuous connections of myofibrils and the sarcolemma.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040, USA
| | - Kenneth J Prusa
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Zhao Y, Wang Z, Bruce HL, Roy BC, Yang W, Zhang D, Hou C. The effect of modified atmosphere packaging at an early postmortem stage on lamb meat quality during subsequent aging. J Food Sci 2024; 89:228-244. [PMID: 38126109 DOI: 10.1111/1750-3841.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/11/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
This study explores the influence of modified atmosphere packaging (MAP) on fresh lamb meat quality with respect to gas concentration, rigor state, and post-mortem aging time. A comparison was done for the quality characteristics of lamb Longissimus thoracis lumborum chops that had been packaged separately in air, 75%O2 + 25%CO2 MAP or 50%O2 + 50%CO2 MAP at 1, 6, and 24 h post-mortem and then stored for 6, 12, 24, 72, and 144 h post-mortem, and the quality of lamb chops had been evaluated at each post-mortem period separately. Chops packaged at 1 and 6 h post-mortem in MAP had reduced pH decline, less purge loss, and enhanced redness at early post-mortem storage times. Lamb color stability was evidently greater in 75%O2 + 25%CO2 MAP than in 50%O2 + 50%CO2 MAP during the early storage period when a* and R630/R580 were taken into account. Shear force values were lowest in lambs packaged at 1 h post-mortem with 75%O2 + 25%CO2 MAP at 12 h post-mortem and then increased until 72 h post-mortem, suggesting that rigor has been delayed by such a high O2 MAP. Thus, fresh lamb quality was maintained most effectively when packaged at 1 h post-mortem in 75%O2 + 25%CO2 MAP for consumption at 12 h post-mortem. The exact mechanisms and optimization of MAP based on Chinese retail conditions should be considered in future studies. PRACTICAL APPLICATION: In this study, three slaughter patterns in the meat industry involving boning immediately after dressing (hot-boning) and chilling for a short period (warm-boning) or overnight (cold-boning) are considered, as well as the behavior of non-immediate consumption after purchase. Modified atmosphere packaging provides an effective preservation of early post-mortem muscles with enhanced color stability, water holding capacity, and texture during refrigerated storage. This could provide new insights into how to process lamb muscles in the early post-mortem period to improve and stabilize lamb quality.
Collapse
Affiliation(s)
- Yingxin Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Wei Yang
- Sunrise Material Co., Ltd, Jiangsu, P. R. China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
17
|
Jové-Juncà T, Crespo-Piazuelo D, González-Rodríguez O, Pascual M, Hernández-Banqué C, Reixach J, Quintanilla R, Ballester M. Genomic architecture of carcass and pork traits and their association with immune capacity. Animal 2024; 18:101043. [PMID: 38113634 DOI: 10.1016/j.animal.2023.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Carcass and pork traits have traditionally been considered of prime importance in pig breeding programmes. However, the changing conditions in modern farming, coupled with antimicrobial resistance issues, are raising the importance of health and robustness-related traits. Here, we explore the genetic architecture of carcass and pork traits and their relationship with immunity phenotypes in a commercial Duroc pig population. A total of nine traits related to fatness, lean content and meat pH were measured at slaughter (∼190 d of age) in 378 pigs previously phenotyped (∼70 d of age) for 36 immunity-related traits, including plasma concentrations of immunoglobulins, acute-phase proteins, leukocytes subpopulations and phagocytosis. Our study showed medium to high heritabilities and strong genetic correlations between fatness, lean content and meat pH at 24 h postmortem. Genetic correlations were found between carcass and pork traits and white blood cells. pH showed strong positive genetic correlations with leukocytes and eosinophils, and strong negative genetic correlations with haemoglobin, haematocrit and cytotoxic T cell proportion. In addition, genome-wide association studies (GWASs) pointed out four significantly associated genomic regions for lean meat percentages in different muscles, ham fat, backfat thickness, and semimembranosus pH at 24 h. The functional annotation of genes located in these regions reported a total of 14 candidate genes, with BGN, DPP10, LEPR, LEPROT, PDE4B and SLC6A8 being the strongest candidates. After performing an expression GWAS for the expression of these genes in muscle, two signals were detected in cis for the BGN and SLC6A8 genes. Our results indicate a genetic relationship between carcass fatness, lean content and meat pH with a variety of immunity-related traits that should be considered to improve immunocompetence without impairing production traits.
Collapse
Affiliation(s)
- T Jové-Juncà
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - D Crespo-Piazuelo
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - O González-Rodríguez
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - M Pascual
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - C Hernández-Banqué
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - J Reixach
- Selección Batallé S.A., Av. dels Segadors s/n, 17421 Riudarenes, Girona, Spain
| | - R Quintanilla
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - M Ballester
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain.
| |
Collapse
|
18
|
Li J, Zhao Y, Liang R, Mao Y, Zuo H, Hopkins DL, Yang X, Luo X, Zhu L, Zhang Y. Effects of different protein phosphorylation levels on the tenderness of different ultimate pH beef. Food Res Int 2023; 174:113512. [PMID: 37986506 DOI: 10.1016/j.foodres.2023.113512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 09/24/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the relationship between tenderness and protein phosphorylation levels of normal ultimate pH (pHu, 5.4-5.8, NpHu), intermediate pHu (5.8-6.2, IpHu) and high pHu (≥6.2, HpHu) Longissimus lumborum from beef. During 21 d of ageing, the HpHu group had the lowest Warner-Bratzler shear force (WBSF) values, while the IpHu group showed the highest and even after 21 days of ageing still had high levels. In the late stage of the 24 h post-mortem period the faster degradation rate of troponin T and earlier activation of caspase 9 in the HpHu group were the key reasons for the lower WBSF compared with the NpHu and IpHu groups. The activity of caspase 3 cannot explain the tenderness differences between IpHu and HpHu groups, since their activities did not show any difference. At 24 h post-mortem, 17 common differential phosphorylated peptides were detected among pHu groups, of which nine were associated with pHu and WBSF. The higher phosphorylation level of glycogen synthase may have caused the delay of meat tenderization in the IpHu group.
Collapse
Affiliation(s)
- Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yan Zhao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Huixin Zuo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - David L Hopkins
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; Canberra ACT, 2903, Australia.
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
19
|
Yuan PQ, Lin S, Peng JY, Li YX, Liu YH, Wang P, Zhong HJ, Yang XM, Che LQ, Feng B, Batonon-Alavo DI, Mercier Y, Zhang XL, Lin Y, Xu SY, Li J, Zhuo Y, Wu D, Fang ZF. Effects of dietary methionine supplementation from different sources on growth performance and meat quality of barrows and gilts. Animal 2023; 17:100986. [PMID: 37820406 DOI: 10.1016/j.animal.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Methionine is indispensable for growth and meat formation in pigs. However, it is still unclear that increasing dietary sulphur-containing amino acid (SAA) levels using different methionine sources affects the growth performance and meat quality of barrows and gilts. To investigate this, 144 pigs (half barrows and half gilts) were fed the control (100% SAA, CON), DL-Methionine (125% SAA, DL-Met)-supplemented, or OH-Methionine (125% SAA, OH-Met)-supplemented diets during the 11-110 kg period. The results showed that plasma methionine levels varied among treatments during the experimental phase, with increased plasma methionine levels observed following increased SAA consumption during the 25-45 kg period. In contrast, pigs fed the DL-Met diet had lower plasma methionine levels than those fed the CON diet (95-110 kg). Additionally, gilts fed the DL-Met or OH-Met diets showed decreased drip loss in longissimus lumborum muscle (LM) compared to CON-fed gilts. OH-Met-fed gilts had higher pH45min values than those fed the CON or DL-Met diets, whereas OH-Met-fed barrows had higher L45min values than those fed the CON or DL-Met diets. Moreover, increased consumption of SAA, regardless of the methionine source, tended to decrease the shear force of the LM in pigs. In conclusion, this study indicates that increasing dietary levels of SAA (+25%) appeared to improve the meat quality of gilts by decreasing drip loss and increasing meat tenderness.
Collapse
Affiliation(s)
- P Q Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairsand, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - S Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Urban Agriculture in South China, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - J Y Peng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y X Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y H Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - P Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - H J Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - X M Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - L Q Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - B Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | | | - Y Mercier
- Adisseo France S.A.S, CERN, Commentry, France
| | - X L Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - S Y Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - J Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - D Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Z F Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairsand, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China.
| |
Collapse
|
20
|
Spires MD, Bodmer JS, Beline M, Wicks JC, Zumbaugh MD, Shi TH, Reichert BT, Schinckel AP, Grant AL, Gerrard DE. Postmortem Metabolism and Pork Quality Development Are Affected by Electrical Stimulation across Three Genetic Lines. Animals (Basel) 2023; 13:2599. [PMID: 37627389 PMCID: PMC10451819 DOI: 10.3390/ani13162599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Variations in postmortem metabolism in muscle impact pork quality development. Curiously, some genetic lines are more refractile to adverse pork quality development than others and may regulate energy metabolism differently. The aim of this study was to challenge pork carcasses from different genetic populations with electrical stimulation (ES) to determine how postmortem metabolism varies with genetic line and explore control points that reside in glycolysis in dying muscle. Three genetic populations (GP) were subjected to ES (100 V or 200 V, 13 pulses, 2 s on/2 s off) at 15- or 25-min post-exsanguination, or no stimulation (NS). Genetic population affected relative muscle relative abundance of different myosin heavy chains, glycogen, G6P, and lactate concentrations. Genetic lines responded similarly to ES, but a comparison of ES treatment groups revealed a trend for an interaction between voltage, time of ES, and time postmortem. Higher voltage accelerated pH decline at 20 min up to 60 min postmortem. Trends in color and firmness scores and L* values were consistent with pH and metabolite data. These data show that genetic populations respond differently to postmortem perturbation by altering glycolytic flux and suggest differences in postmortem glycolysis may be partially responsible for differences in meat quality between genetic populations, though not entirely.
Collapse
Affiliation(s)
- Matthew D. Spires
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.D.S.); (B.T.R.); (A.P.S.)
| | - Jocelyn S. Bodmer
- School of Animal and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.S.B.); (M.B.); (J.C.W.); (T.H.S.); (A.L.G.)
| | - Mariane Beline
- School of Animal and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.S.B.); (M.B.); (J.C.W.); (T.H.S.); (A.L.G.)
| | - Jordan C. Wicks
- School of Animal and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.S.B.); (M.B.); (J.C.W.); (T.H.S.); (A.L.G.)
| | - Morgan D. Zumbaugh
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Tim Hao Shi
- School of Animal and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.S.B.); (M.B.); (J.C.W.); (T.H.S.); (A.L.G.)
| | - Brian T. Reichert
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.D.S.); (B.T.R.); (A.P.S.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (M.D.S.); (B.T.R.); (A.P.S.)
| | - Alan L. Grant
- School of Animal and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.S.B.); (M.B.); (J.C.W.); (T.H.S.); (A.L.G.)
| | - David E. Gerrard
- School of Animal and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.S.B.); (M.B.); (J.C.W.); (T.H.S.); (A.L.G.)
| |
Collapse
|
21
|
Zou B, Jia F, Ji L, Li X, Dai R. Effects of mitochondria on postmortem meat quality: characteristic, isolation, energy metabolism, apoptosis and oxygen consumption. Crit Rev Food Sci Nutr 2023; 64:11239-11262. [PMID: 37452658 DOI: 10.1080/10408398.2023.2235435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Meat quality holds significant importance for both consumers and meat producers. Various factors influence meat quality, and among them, mitochondria play a crucial role. Recent studies have indicated that mitochondria can sustain their functions and viability for a certain duration in postmortem muscles. Consequently, mitochondria have an impact on oxygen consumption, energy metabolism, and apoptotic processes, which in turn affect myoglobin levels, oxidative stress, meat tenderness, fat oxidation, and protein oxidation. Ultimately, these factors influence the color, tenderness, and flavor of meat. However, there is a dearth of comprehensive summaries addressing the effects of mitochondria on postmortem muscle physiology and meat quality. Therefore, this review aims to describe the characteristics of muscle mitochondria and their potential influence on muscle. Additionally, a suitable method for isolating mitochondria is presented. Lastly, the review emphasizes the regulation of oxygen consumption, energy metabolism, and apoptosis by postmortem muscle mitochondria, and provides an overview of relevant research and recent advancements. The ultimate objective of this review is to elucidate the underlying mechanisms through which mitochondria impact meat quality.
Collapse
Affiliation(s)
- Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Lin Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
22
|
Zhao Y, He S, Huang J, Liu M. Genome-Wide Association Analysis of Muscle pH in Texel Sheep × Altay Sheep F 2 Resource Population. Animals (Basel) 2023; 13:2162. [PMID: 37443959 DOI: 10.3390/ani13132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
pH was one of the important meat quality traits, which was an important factor affecting the storage/shelf life and quality of meat in meat production. In order to find a way to extend the storage/shelf life, the pH values (pH45min, pH24h, pH48h and pH72h) of the longissimus dorsi muscles in F2 individuals of 462 Texel sheep × Altay sheep were determined, genotyping was performed using Illumina Ovine SNP 600 K BeadChip and whole genome resequencing technology, a genome-wide association analysis (GWAS) was used to screen the candidate genes and molecular markers for pH values related to the quality traits of mutton, and the effects of population stratification were detected by Q-Q plots. The results showed that the pH population stratification analysis did not find significant systemic bias, and there was no obvious population stratification effect. The results of the association analysis showed that 28 SNPs significantly associated with pH reached the level of genomic significance. The candidate gene associated with pH45min was identified as the CCDC92 gene by gene annotation and a search of the literature. Candidate genes related to pH24h were KDM4C, TGFB2 and GOT2 genes. The candidate genes related to pH48h were MMP12 and MMP13 genes. The candidate genes related to pH72h were HILPDA and FAT1 genes. Further bioinformatics analyses showed 24 gene ontology terms and five signaling pathways that were significantly enriched (p ≤ 0.05). Many terms and pathways were related to cellular components, processes of protein modification, the activity of protein dimerization and hydrolase activity. These identified SNPs and genes could provide useful information about meat and the storage/shelf life of meat, thereby extending the storage/shelf life and quality of meat.
Collapse
Affiliation(s)
- Yilong Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
- College of Animal Science and Technology, Xinjiang Agricultural Vocational and Technical College, Changji 831100, China
| | - Sangang He
- Biotechnology Institute, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | | | - Mingjun Liu
- Biotechnology Institute, Xinjiang Academy of Animal Science, Urumqi 830013, China
| |
Collapse
|
23
|
Yin S, Song G, Gao N, Gao H, Zeng Q, Lu P, Zhang Q, Xu K, He J. Identifying Genetic Architecture of Carcass and Meat Quality Traits in a Ningxiang Indigenous Pig Population. Genes (Basel) 2023; 14:1308. [PMID: 37510213 PMCID: PMC10378861 DOI: 10.3390/genes14071308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Ningxiang pig is a breed renowned for its exceptional meat quality, but it possesses suboptimal carcass traits. To elucidate the genetic architecture of meat quality and carcass traits in Ningxiang pigs, we assessed heritability and executed a genome-wide association study (GWAS) concerning carcass length, backfat thickness, meat color parameters (L.LD, a.LD, b.LD), and pH at two postmortem intervals (45 min and 24 h) within a Ningxiang pig population. Heritability estimates ranged from moderate to high (0.30~0.80) for carcass traits and from low to high (0.11~0.48) for meat quality traits. We identified 21 significant SNPs, the majority of which were situated within previously documented QTL regions. Furthermore, the GRM4 gene emerged as a pleiotropic gene that correlated with carcass length and backfat thickness. The ADGRF1, FKBP5, and PRIM2 genes were associated with carcass length, while the NIPBL gene was linked to backfat thickness. These genes hold the potential for use in selective breeding programs targeting carcass traits in Ningxiang pigs.
Collapse
Affiliation(s)
- Shishu Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410128, China
| | - Ning Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410128, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Peng Lu
- Center of Ningxiang Animal Husbandry and Fishery Affairs, Ningxiang 410625, China
| | - Qin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Kang Xu
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410128, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
24
|
Wicks JC, Zumbaugh MD, Daniels RP, Matarneh SK, Venhuizen MD, Elgin J, Bodmer J, Yen CN, Beline M, Shi H, Silva SL, Gerrard DE. Time of dehairing alters pork quality development. Meat Sci 2023:109233. [PMID: 37286430 DOI: 10.1016/j.meatsci.2023.109233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Studies investigating the effect of scald time on pork quality are confounded with time of dehairing. To understand better pork quality development and two-toning in hams, twenty-four carcasses were assigned to an 8- or 16-min dwell time prior to the dehairing, with or without scalding (n = 6 per trt). Semimembranosus (SM) muscles were collected following dehairing and at 24 h postmortem. Protracted time to dehair improved ultimate pH (pHu; P < 0.005) and reduced (P < 0.05) color variation. One hundred forty-two carcasses were then subjected to protracted (control, 10-min) dwell times (15-min, or 20-min) in an industrial setting. Lightness was improved with 15-min dwell times compared to control, however 20-min dwell decreased the pHu (P < 0.001), increased lightness (P < 0.05), and percent purge (P < 0.001) in the SM. Also, lightness of the longissimus muscle (LM) increased (P < 0.001) with dwell time. These data show time to dehairing impacts pork quality development and suggest dehairing may be critical to quality development in a muscle-dependent manner.
Collapse
Affiliation(s)
- J C Wicks
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - M D Zumbaugh
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - R P Daniels
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - S K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, USA
| | - M D Venhuizen
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - J Elgin
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - J Bodmer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - C-N Yen
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - M Beline
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - H Shi
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - S L Silva
- College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - D E Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
25
|
Biodegradable fish gelatin/chitosan-based active films alter chill-stored golden pomfret (Trachinotus blochii) metabolites mainly through modulating four metabolic pathways. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
26
|
Wang Y, Zhang H, Yan E, He L, Guo J, Zhang X, Yin J. Carcass and meat quality traits and their relationships in Duroc × Landrace × Yorkshire barrows slaughtered at various seasons. Meat Sci 2023; 198:109117. [PMID: 36689802 DOI: 10.1016/j.meatsci.2023.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
To understand characteristics of carcass traits and meat quality in pig population, 22 indicators of carcass characteristics and meat quality traits were measured on 278 Duroc × Landrace × Yorkshire barrows that were slaughtered in different seasons (spring, summer, autumn and winter). The effects of body weight and season on carcass characteristics and meat quality were analyzed by GLM procedure, followed the Bonferroni multiple test. The phenotypic correlations among those traits were calculated by employing the CORR procedure. In addition, the linear regression equations were constructed by stepwise regression model in REG procedure. The results showed that pigs slaughtered in spring had the heaviest body weight among the four seasons (P < 0.05), pigs slaughtered in summer had the lowest backfat depth and shear force (P < 0.05), and pigs slaughtered in winter had the lowest drip loss (P < 0.05). The results showed more variation in backfat depth, drip loss, intramuscular fat content, and shear force, compared with other indicators across pigs. Body weight had a significant association with loin eye area, average backfat depth and L⁎24 h (P < 0.05). Furthermore, regression equations for drip loss, cooking loss, shear force, and intramuscular fat content were constructed using more accessible indicators. Collectively, this study provided an overall view of carcass and meat quality traits in a commercial pig population in China, and illustrated that season significantly affected carcass characteristics and meat quality traits independently of body weight.
Collapse
Affiliation(s)
- Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hailiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Enfa Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
27
|
Overview of omics applications in elucidating the underlying mechanisms of biochemical and biological factors associated with meat safety and nutrition. J Proteomics 2023; 276:104840. [PMID: 36758853 DOI: 10.1016/j.jprot.2023.104840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Over the years, significant technological discoveries have facilitated the improvement of meat-related research. Recent studies of complex and interactive factors contributing to variations in meat safety are increasingly focused on data-driven omics approaches such as proteomics. This review highlighted omics advances in elucidating the biochemical and biological actions on meat safety. Also, the impacts of the nutritional characteristics of meat and meat products on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers. SIGNIFICANCE OF THE REVIEW: This review highlighted omics advances in elucidating underlying mechanisms of biochemical and biological factors associated with meat safety. Also, the impacts of meat proteins on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers.
Collapse
|
28
|
Xie X, Huang C, Huang Y, Zou X, Zhou R, Ai H, Huang L, Ma J. Genetic architecture for skeletal muscle glycolytic potential in Chinese Erhualian pigs revealed by a genome-wide association study using 1.4M SNP array. Front Genet 2023; 14:1141411. [PMID: 37007966 PMCID: PMC10064215 DOI: 10.3389/fgene.2023.1141411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: Muscle glycolytic potential (GP) is a key factor affecting multiple meat quality traits. It is calculated based on the contents of residual glycogen and glucose (RG), glucose-6-phosphate (G6P), and lactate (LAT) contents in muscle. However, the genetic mechanism of glycolytic metabolism in skeletal muscle of pigs remains poorly understood. With a history of more than 400 years and some unique characteristics, the Erhualian pig is called the “giant panda” (very precious) in the world’s pig species by Chinese animal husbandry.Methods: Here, we performed a genome-wide association study (GWAS) using 1.4M single nucleotide polymorphisms (SNPs) chips for longissimus RG, G6P, LAT, and GP levels in 301 purebred Erhualian pigs.Results: We found that the average GP value of Erhualian was unusually low (68.09 μmol/g), but the variation was large (10.4–112.7 μmol/g). The SNP-based heritability estimates for the four traits ranged from 0.16–0.32. In total, our GWAS revealed 31 quantitative trait loci (QTLs), including eight for RG, nine for G6P, nine for LAT, five for GP. Of these loci, eight were genome-wide significant (p < 3.8 × 10−7), and six loci were common to two or three traits. Multiple promising candidate genes such as FTO, MINPP1, RIPOR2, SCL8A3, LIFR and SRGAP1 were identified. The genotype combinations of the five GP-associated SNPs also showed significant effect on other meat quality traits.Discussion: These results not only provide insights into the genetic architecture of GP related traits in Erhualian, but also are useful for pig breeding programs involving this breed.
Collapse
Affiliation(s)
- Xinke Xie
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Cong Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Yizhong Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoxiao Zou
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Runxin Zhou
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
- Correspondence: Lusheng Huang, ; Junwu Ma,
| | - Junwu Ma
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
- Correspondence: Lusheng Huang, ; Junwu Ma,
| |
Collapse
|
29
|
Liao H, Zhang L, Li J, Xing T, Gao F. Intracellular Calcium Overload and Activation of CaMKK/AMPK Signaling Are Related to the Acceleration of Muscle Glycolysis of Broiler Chickens Subjected to Acute Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4091-4100. [PMID: 36820528 DOI: 10.1021/acs.jafc.2c07391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The current study investigated the effect of preslaughter transport on stress response and meat quality of broilers and explored the underlying mechanisms involved in the regulation of muscle glycolysis through calcium/calmodulin-dependent protein kinase kinase (CaMKK)/AMP-activated protein kinase (AMPK) signaling. Results suggested that transport induced stress responses of broilers and caused PSE-like syndrome of pectoralis major muscle. Preslaughter transport enhanced the mRNA expressions of glycogen phosphorylase and glucose transporters, as well as the activities of glycolytic enzymes, which accelerated the breakdown of glycolytic substrates and the accumulation of lactic acid. In addition, acute stress induced abnormal intracellular calcium homeostasis by disrupting calcium channels on the cell membrane and sarcoplasmic reticulum, which led to the activation of CaMKK and promoted AMPK phosphorylation. This study provides evidence that the intracellular calcium overload and the enhancement of CaMKK/AMPK signaling are related to the accelerated muscle glycolysis of broiler chickens subjected to acute stress.
Collapse
Affiliation(s)
- Hongju Liao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaolong Li
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
30
|
Bonagurio LP, Murakami AE, Pereira-Maróstica HV, Almeida FLA, Santos TC, Pozza PC. Effects of different levels of inosine-5'-monophosphate (5'-IMP) supplementation on the growth performance and meat quality of finishing pigs (75 to 100 kg). Meat Sci 2023; 196:109016. [PMID: 36375320 DOI: 10.1016/j.meatsci.2022.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
This study aimed to assess the effects of dietary supplementation of inosine-5'-monophosphate (5'-IMP) on energy efficiency, growth performance, carcass characteristics, meat quality, oxidative status, and biochemical profile of blood plasma in finishing pigs. Fifty-four crossbred castrated male pigs were distributed in a randomized block design consisting of nine blocks, with six treatments per block and one animal per treatment per block. Experimental diets were as follows: positive control diet (PC, 3300 kcal ME/kg), negative control diet (NC, 3200 kcal ME/kg), and four diets prepared by supplementing the NC diet with 0.050%, 0.100%, 0.150%, or 0.200% 5'-IMP. Based on regression analysis, supplementation with 0.129% 5'-IMP increased average daily weight gain (1.30 kg). Backfat thickness, pH45minutes and redness of m. Longissimus Lumborum (LL) increased linearly with 5'-IMP supplementation level. Drip loss and pH at 24 h post-slaughter had a quadratic response to 5'-IMP supplementation. It is concluded that 5'-IMP supplementation positively influenced growth performance, carcass characteristics and LL meat quality in finishing barrows.
Collapse
Affiliation(s)
- Lucas P Bonagurio
- Department of Animal Sciences, State University of Maringá, Maringá, Brazil.
| | - Alice E Murakami
- Department of Animal Sciences, State University of Maringá, Maringá, Brazil
| | | | - Fernanda L A Almeida
- Department of Morphological Sciences, State University of Maringá, Maringá, Brazil
| | - Tatiana C Santos
- Department of Animal Sciences, State University of Maringá, Maringá, Brazil
| | - Paulo C Pozza
- Department of Animal Sciences, State University of Maringá, Maringá, Brazil
| |
Collapse
|
31
|
Muroya S. - Invited Review - Postmortem skeletal muscle metabolism of farm animals approached with metabolomics. Anim Biosci 2023; 36:374-384. [PMID: 36397684 PMCID: PMC9899580 DOI: 10.5713/ab.22.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Skeletal muscle metabolism regulates homeostatic balance in animals. The metabolic impact persists even after farm animal skeletal muscle is converted to edible meat through postmortem rigor mortis and aging. Muscle metabolites resulting from animal growth and postmortem storage have a significant impact on meat quality, including flavor and color. Metabolomics studies of postmortem muscle aging have identified metabolisms that contain signatures inherent to muscle properties and the altered metabolites by physiological adaptation, with glycolysis as the pivotal metabolism in postmortem aging. Metabolomics has also played a role in mining relevant postmortem metabolisms and pathways, such as the citrate cycle and mitochondrial metabolism. This leads to a deeper understanding of the mechanisms underlying the generation of key compounds that are associated with meat quality. Genetic background, feeding strategy, and muscle type primarily determine skeletal muscle properties in live animals and affect post-mortem muscle metabolism. With comprehensive metabolite detection, metabolomics is also beneficial for exploring biomarker candidates that could be useful to monitor meat production and predict the quality traits. The present review focuses on advances in farm animal muscle metabolomics, especially postmortem muscle metabolism associated with genetic factors and muscle type.
Collapse
Affiliation(s)
- Susumu Muroya
- Animal Products Research Group, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba, Ibaraki 305-0901,
Japan,Corresponding Author: Susumu Muroya, E-mail: ;
| |
Collapse
|
32
|
Gelatin-based smart film incorporated with nano cerium oxide for rapid detection of shrimp freshness. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Chen C, Guo Z, Shi X, Guo Y, Ma G, Ma J, Yu Q. H 2O 2-induced oxidative stress improves meat tenderness by accelerating glycolysis via hypoxia-inducible factor-1α signaling pathway in postmortem bovine muscle. Food Chem X 2022; 16:100466. [PMID: 36225213 PMCID: PMC9550526 DOI: 10.1016/j.fochx.2022.100466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Reactive oxygen species (ROS) affect meat quality through multiple biochemical pathways. To investigate the effect of ROS on postmortem glycolysis and tenderness of bovine muscle, ROS content, glycolytic potential, glycolysis rate-limiting enzyme activities, expression of hypoxia-inducible factor-1α (HIF-1α), phosphatidylinositol 3-kinase (PI3K), serine-threonine kinase (AKT), phosphorylated AKT (p-AKT), and tenderness were determined in the H2O2 group and control group. Results showed that the H2O2 group exhibited significantly higher ROS content within 48 h, coupled with increased glycolytic potential, pH decline, hexokinase (HK), and phosphofructokinase activities (PFK) early postmortem. These were attributed to ROS-induced PI3K/AKT signaling pathway activation and resultant HIF-1α accumulation. Moreover, shear force in the H2O2 group reached the peak 12 h earlier and decreased obviously after 24 h, accompanied by a significantly higher myofibril fragmentation index (MFI). These findings suggested that ROS drive HIF-1α accumulation by activating PI3K/AKT signaling pathway, thereby accelerating glycolysis and tenderization of postmortem bovine muscle.
Collapse
Affiliation(s)
- Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xixiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuxuan Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoyuan Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jibing Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
34
|
Plasma Metabolomic Profiling Reveals Preliminary Biomarkers of Pork Quality Based on pH Value. Foods 2022; 11:foods11244005. [PMID: 36553747 PMCID: PMC9778167 DOI: 10.3390/foods11244005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/20/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to identify biomarkers for pork quality evaluation. Firstly, the correlation between indicators of pork quality evaluation was investigated. The pH of pork meat at 45 min post slaughter showed a significant negative correlation with meat color indicators (r: -0.4868--0.3040). Subsequently, porcine plasma samples were further divided into low pH (pH = 6.16 ± 0.22) or high pH (pH = 6.75 ± 0.08) groups. Plasma metabolites in both sample groups were investigated using untargeted metabolomics. In total, 90 metabolites were recognized as differential metabolites using partial least squares discriminant analysis. Pathway enrichment analysis indicated these differential metabolites were enriched in amino acid metabolism and energy metabolism. Correlation analysis revealed that creatinine, L-carnitine, D-sphingosine, citraconic acid, and other metabolites may constitute novel plasma biomarkers with the pH value of pork meat. The current study provides important insights into plasma biomarkers for predicting pork quality based on pH value.
Collapse
|
35
|
Xin K, Tian K, Yu Q, Han L, Zang Z. Effects of altitude on meat quality difference and its relationship with HIF-1α during postmortem maturation of beef. J Food Biochem 2022; 46:e14470. [PMID: 36288466 DOI: 10.1111/jfbc.14470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
This study investigated the differences in meat quality during postmortem aging of yak meat from different altitudes as well as the relationship between the release of hypoxic factor HIF-1α and meat quality. The results showed that the HIF-1α increased with altitude but during aging process, there was an initial increase before a subsequent decrease (p < .05). Moreover, significant increases were showed in glycolytic potential, a* value, pH, HIF-1α mRNA expression, HIF-1α protein expression and shear force with altitude (p < .05). Additionally, the b* value, L* value, water holding power and MFI decreased significantly (p < .05). HIF-1α was shown, by PLS-DA method analysis, to be the main protein marker for differences in the quality during aging time of meat from three altitude groups. HIF-1α protein expression was high correlated with glycolytic potential, pH value, meat color, tenderness and water holding capacity during postmortem aging. The results demonstrated that HIF-1α is a novel marker protein that influences meat quality in yak from different altitudes and that HIF-1α-mediated glycolytic pathway was key to the meat quality during postmortem aging. PRACTICAL APPLICATIONS: Yak meat has the advantages of high protein, low fat, good amino acid and fatty acid composition, so the nutritional value of yak meat is in line with the current best-selling beef with less fat in domestic and foreign markets. But consumers often think that the meat tenderness of yak meat is worse than that of beef and improving the quality of yak meat was worthy of attention specifically. This study investigated the differences in meat quality during postmortem aging of yak meat at different altitudes and the relationship between hypoxic factor HIF-1α release and meat quality.
Collapse
Affiliation(s)
- Keqi Xin
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Kai Tian
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhixuan Zang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
36
|
Righetti BPH, Lima D, Dias VHV, Mattos JJ, Piazza CE, Vilas-Boas LOB, Alves TC, Almeida EA, Lüchmann KH, Bainy ACD. Life after death? Exploring biochemical and molecular changes following organismal death in green turtles, Chelonia mydas (Linnaeus, 1758). CHEMOSPHERE 2022; 308:136569. [PMID: 36155023 DOI: 10.1016/j.chemosphere.2022.136569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Green turtles, Chelonia mydas, have been included in biomonitoring efforts given its status as an endangered species. Many studies, however, rely on samples from stranded animals, raising the question of how death affects important biochemical and molecular biomarkers. The goal of this study was to investigate post mortem fluctuations in the antioxidant response and metabolism of carbohydrates in the liver of C. mydas. Liver samples were obtained from six green turtles which were submitted to rehabilitation and euthanized due to the impossibility of recovery. Samples were collected immediately after death (t = 0) and at various time intervals (1, 2, 3, 4, 5, 6, 12, 18 and 24 h post mortem), frozen in liquid nitrogen and stored at -80 °C. The activities of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH) were analyzed, as were the levels of lipid peroxidation, glycogen concentration, RNA integrity (RNA IQ) and transcript levels of carbonic anhydrase and pyruvate carboxylase genes. Comparison between post mortem intervals showed a temporal stability for all the biomarkers evaluated, suggesting that changes in biochemical and molecular parameters following green turtle death are not immediate, and metabolism may remain somewhat unaltered up to 24 h after death. Such stability may be associated with the overall lower metabolism of turtles, especially under an oxygen deprivation scenario such as organismal death. Overall, this study supports the use of biomarkers in sea turtles sampled within a period of 24 h post mortem for biomonitoring purposes, though it is recommended that post mortem fluctuations of particular biomarkers be evaluated prior to their application, given that proteins may show varying degrees of susceptibility to proteolysis.
Collapse
Affiliation(s)
- B P H Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - D Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - V H V Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - J J Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - C E Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - L O B Vilas-Boas
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - T C Alves
- Department of Natural Sciences, University of Blumenau, Blumenau, SC, Brazil
| | - E A Almeida
- Department of Natural Sciences, University of Blumenau, Blumenau, SC, Brazil
| | - K H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis, 88035-001, Brazil
| | - A C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil.
| |
Collapse
|
37
|
Daniels RP, Wicks JC, Zumbaugh MD, Matarneh SK, Venhuizen MD, Elgin J, Bodmer J, Yen CN, El-Kadi SW, Shi H, Silva SL, Gerrard DE. Reduced scald time does not influence ultimate pork quality. Meat Sci 2022; 194:108958. [PMID: 36081183 DOI: 10.1016/j.meatsci.2022.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Fresh pork color is a function of pigment, and the pH and temperature conditions in the carcass postmortem. To explore the role of scald on color development, carcasses (n = 16) were subjected to either a 4- or 8-min scald. Semimembranosus (SM) muscle samples were collected before and after scalding, and at 24 h postmortem. A 50% reduction in scald time resulted in lighter color (L*) across the muscle early postmortem (P < 0.001), yet the 8-min scald treatment was lighter (P = 0.001) at 24 h. An interaction between scald time and sampling time showed in an increase in L* values at 4-min immediately following scald (P < 0.001). Two-hundred carcasses were then subjected to a modified scald time (6.5 min, or 7.5 min) in an industrial setting. Lowering scald time failed to recapitulate results. In fact, darker meat (L* value; P = 0.0166) was noted in the SM across longer scalds. These data suggest modest changes in scald time may not be responsible for changes in pork quality development.
Collapse
Affiliation(s)
- R P Daniels
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - J C Wicks
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - M D Zumbaugh
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - S K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, USA
| | - M D Venhuizen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - J Elgin
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - J Bodmer
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - C N Yen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - S W El-Kadi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - S L Silva
- College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP, 13635-900, Brazil
| | - D E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
38
|
Antonelo DS, Dos Santos-Donado PR, Ferreira CR, Colnago LA, Ocampos FMM, Ribeiro GH, Ventura RV, Gerrard DE, Delgado EF, Contreras-Castillo CJ, Balieiro JCC. Exploratory lipidome and metabolome profiling contributes to understanding differences in high and normal ultimate pH beef. Meat Sci 2022; 194:108978. [PMID: 36116280 DOI: 10.1016/j.meatsci.2022.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The aim of this work was to compare the lipidome and metabolome profiling in the Longissimus thoracis muscle early and late postmortem from high and normal ultimate pH (pHu) beef. Lipid profiling discriminated between high and normal pHu beef based on fatty acid metabolism and mitochondrial beta-oxidation of long chain saturated fatty acids at 30 min postmortem, and phospholipid biosynthesis at 44 h postmortem. Metabolite profiling also discriminated between high and normal pHu beef, mainly through glutathione, purine, arginine and proline, and glycine, serine and threonine metabolisms at 30 min postmortem, and glycolysis, TCA cycle, glutathione, tyrosine, and pyruvate metabolisms at 44 h postmortem. Lipid and metabolite profiles showed reduced glycolysis and increased use of alternative energy metabolic processes that were central to differentiating high and normal pHu beef. Phospholipid biosynthesis modification suggested high pHu beef experienced greater oxidative stress.
Collapse
Affiliation(s)
- Daniel S Antonelo
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil.
| | | | - Christina R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Luiz A Colnago
- EMBRAPA Instrumentation, Sao Carlos, SP 13560-970, Brazil
| | | | | | - Ricardo V Ventura
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eduardo F Delgado
- Department of Animal Science, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | | | - Julio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| |
Collapse
|
39
|
Cold-induced denaturation of muscle proteins in hairtail ( Trichiurus lepturus) during storage: Physicochemical and label-free based proteomics analyses. Food Chem X 2022; 16:100479. [PMID: 36277867 PMCID: PMC9583035 DOI: 10.1016/j.fochx.2022.100479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Physicochemical, proteomics, and bioinformatics analyses were conducted to investigate protein profiles in Trichiurus haumela under frozen (120 d) and chilled (6 d) storage. Springiness, chewiness, myofibrillar active sulfhydryl content, and Ca2+-ATPase activity significantly decreased, suggesting that cold stress altered muscle proteins. Compared with fresh hairtail (FH), 66 common differentially abundant proteins (DAPs) had lower abundances in chilled (3 d; CSH) and frozen (120 d; FSH) hairtail, including myosin binding proteins, filamins, actinin, troponin, and muscle-restricted coiled-coil protein. Gene Ontology (GO) annotation showed DAPs were mainly involved in cellular process, cellular anatomical entity, intracellular, and binding items. Eukaryotic orthologous group (KOG) analysis revealed that changes in cytoskeleton and energy production and conversion functions dominated during cold storage, degrading the myofibril and connective tissue structures and the physicochemical performance of muscle tissues. This study presents deep insights into the protein alternation mechanisms in hairtail muscle under cold stress.
Collapse
|
40
|
Liu Z, Liu Y, Xing T, Li J, Zhang L, Jiang Y, Gao F. Transcriptome analysis reveals the mechanism of chronic heat stress on meat quality of broilers. J Anim Sci Biotechnol 2022; 13:110. [PMID: 36117193 PMCID: PMC9484139 DOI: 10.1186/s40104-022-00759-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Chronic heat stress has a negative impact on poultry meat quality. Although this has been extensively investigated, previous studies have primarily focused on metabolic alterations and oxidative stress in the pectoralis major (PM) muscle under chronic heat stress, and not all of the underlying molecular mechanisms are completely understood.
Methods
A total of 144 male Arbor Acres broilers (28 d old) were randomly allocated into 3 treatment groups: (1) the normal control (NC) group, with broilers raised at 22 °C and fed a basal diet; (2) the heat stress (HS) group, with birds raised at 32 °C and fed a basal diet; and (3) the pair-fed (PF) group, with birds raised at 22 °C and fed the amount of feed equal to the feed consumed on the previous day by the HS group. The experiment lasted for 14 d.
Results
Chronic heat stress decreased the average daily feed intake and average daily gain, increased feed:gain ratio (P < 0.05); and increased drip loss, cooking loss, shear force, hardness, and decreased pH, redness (a*); and springiness of PM muscle (P < 0.05). Furthermore, chronic heat stress decreased muscle fiber density, increased connective tissue, and led to intracellular vacuolation. The transcriptome analyses indicated that the effect of chronic heat stress on meat quality was not only related to metabolism and oxidative stress, but also to signal transduction, immune system, transport and catabolism, cell growth and death, and muscle structure.
Conclusions
Chronic heat stress has a negative impact on the growth performance, meat quality, and the PM muscle structure of broilers. Transcriptome analysis revealed a comprehensive understanding of the mechanism of the chronic heat stress-induced deterioration of broiler meat quality at the transcriptional level.
Collapse
|
41
|
Muroya S. An insight into farm animal skeletal muscle metabolism based on a metabolomics approach. Meat Sci 2022; 195:108995. [DOI: 10.1016/j.meatsci.2022.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023]
|
42
|
Zhao Y, Chen L, Bruce HL, Wang Z, Roy BC, Li X, Zhang D, Yang W, Hou C. The Influence of Vacuum Packaging of Hot-Boned Lamb at Early
Postmortem Time on Meat Quality during Postmortem Chilled
Storage. Food Sci Anim Resour 2022; 42:816-832. [PMID: 36133632 PMCID: PMC9478973 DOI: 10.5851/kosfa.2022.e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
To evaluate the effects of early postmortem vacuum packaging (VP) on meat quality
during postmortem chilled storage, hot-boned lamb was vacuum-packaged at 1, 6,
12, 24, and 48 h postmortem and stored around 2°C until 168 h postmortem,
with lamb packaged in plastic wrap as the control (aerobic packaging).
Intramuscular pH decline was delayed when lamb was vacuum packaged at 1, 6, and
12 h postmortem (p<0.05). The lamb vacuum-packaged at 1 h postmortem
(VP-1h group) had significantly lower shear force values and purge losses
accompanied by lower free thiol group values than other treatments during
postmortem storage and was also higher in extractable calpain-1 activity by 6 h
postmortem (p<0.05). Free thiol group concentrations were significantly
higher after VP at 6 and 12 h postmortem (p<0.05). Packaging lamb under
vacuum very early postmortem produced the lowest shear force and purge loss,
likely by slowing heat loss and muscle temperature decline, implying that lamb
quality is improved by VP when applied very early postmortem. This was at the
expense of protein oxidation, which was unrelated to other meat quality
measurements, most likely because potential contracture during hot boning
confounded its impact. Further research is required to understand the
implications of the interaction between protein oxidation, VP, and hot boning on
the acceptability of lamb.
Collapse
Affiliation(s)
- Yingxin Zhao
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Heather L. Bruce
- Department of Agricultural, Food and
Nutritional Science, University of Alberta, Edmonton, AB T6G
2P5, Canada
| | - Zhenyu Wang
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Bimol C. Roy
- Department of Agricultural, Food and
Nutritional Science, University of Alberta, Edmonton, AB T6G
2P5, Canada
| | - Xin Li
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Wei Yang
- Sunrise Material Co., Ltd.,
Jiangyin 214411, China
| | - Chengli Hou
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products
Quality and Safety Control in Storage and Transport Process, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
- Corresponding author: Chengli
Hou, Institute of Food Science and Technology, Chinese Academy of Agricultural
Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage
and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing
100193, China, Tel: +86-10-62819392, Fax: +86-10-62819392, E-mail:
| |
Collapse
|
43
|
Liu C, Wei Q, Li X, Han D, Liu J, Huang F, Zhang C. Proteomic analyses of mitochondrial damage in postmortem beef muscles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4182-4191. [PMID: 35000191 DOI: 10.1002/jsfa.11767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The objective of the study was to examine the expression profiles of mitochondrial proteins in at-death and 24 h postmortem (PM) using tandem mass tag (TMT) approach to characterize the mitochondria possible mechanisms that are affiliated with tenderization. RESULTS Results showed that the tender meat at 24 h PM emerged with more serious mitochondrial damage. Altogether 456 mitochondrial proteins were identified, including 442 down-regulated and 14 up-regulated proteins. These differentially-expressed proteins were primarily involved in the progress of PM energy metabolism, apoptosis, and the morphological alterations of mitochondrial. Among them, 47 subunits (such as NDUFA2, COX4I1, and ATP5PB) were annotated into the oxidative phosphorylation pathway. VDAC1, VDAC2, and VDAC3 involving in the damage of MPTP, and IMMT, CHCHD3, APOL and APOO modulating the morphology of mitochondria, and DIABLO and AIFM1 released from mitochondria affect caspase's activation. HSPD1 and HSPE1 involved in apoptosis, mitochondrial physiological and morphological alterations. CONCLUSION The earlier-mentioned proteins were validated as potential indicators of tenderness regulated by mitochondrial damage. These results highlighted that mitochondrial damage possibly participate in PM tenderization of beef muscles by energy metabolism and cell apoptosis status. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunmei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Qichao Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Dong Han
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Jiqian Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
44
|
Zhang X, Han L, Hou S, Raza SHA, Gui L, Sun S, Wang Z, Yang B, Yuan Z, Simal-Gandara J, El-Shehawi AM, Alswat A, Alenezi MA, Shukry M, Sayed SM, Aloufi BH. Metabolomics approach reveals high energy diet improves the quality and enhances the flavor of black Tibetan sheep meat by altering the composition of rumen microbiota. Front Nutr 2022; 9:915558. [PMID: 36034898 PMCID: PMC9405419 DOI: 10.3389/fnut.2022.915558] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
This study aims to determine the impact of dietary energy levels on rumen microbial composition and its relationship to the quality of Black Tibetan sheep meat by applying metabolomics and Pearson's correlation analyses. For this purpose, UHPLC-QTOF-MS was used to identify the metabolome, whereas 16S rDNA sequencing was used to detect the rumen microbiota. Eventually, we observed that the high energy diet group (HS) improved the carcass quality of Black Tibetan sheep and fat deposition in the longissimus lumborum (LL) compared to the medium energy diet group (MS). However, HS considerably increased the texture, water holding capacity (WHC), and volatile flavor of the LL when compared to that of MS and the low energy diet group (LS). Metabolomics and correlation analyses revealed that dietary energy levels mainly affected the metabolism of carbohydrates and lipids of the LL, which consequently influenced the content of volatile flavor compounds (VOCs) and fats. Furthermore, HS increased the abundance of Quinella, Ruminococcus 2, (Eubacterium) coprostanoligenes, and Succinivibrionaceae UCG-001, all of which participate in the carbohydrate metabolism in rumen and thus influence the metabolite levels (stachyose, isomaltose, etc.) in the LL. Overall, a high-energy diet is desirable for the production of Black Tibetan sheep mutton because it improves the mouthfeel and flavor of meat by altering the composition of rumen microbiota, which influences the metabolism in the LL.
Collapse
Affiliation(s)
- Xue Zhang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, Xining, China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University Xining, Xining, China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University Xining, Xining, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University Xining, Xining, China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University Xining, Xining, China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, Xining, China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, Xining, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University Xining, Xining, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, Ourense, Spain
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Amal Alswat
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Muneefah A. Alenezi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Samy M. Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| |
Collapse
|
45
|
Overexpression of Heat Shock Protein 70 Ameliorates Meat Quality of Broilers Subjected to Pre-Slaughter Transport at High Ambient Temperatures by Improving Energy Status of Pectoralis Major Muscle and Antioxidant Capacity. Antioxidants (Basel) 2022; 11:antiox11081468. [PMID: 36009186 PMCID: PMC9405431 DOI: 10.3390/antiox11081468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The induction of heat shock protein 70 (HSP70) potentially mediates meat-quality development under stress conditions. To investigate the effects and mechanism of HSP70 on the meat quality of the pectoralis major (PM) muscles of broilers exposed to pre-slaughter transport, a total of 168 broilers were intraperitoneally injected with L-glutamine (Gln) or saline. Twenty-four hours later, broilers were subjected to transport or held under normal living conditions. The results indicated that acute Gln supplementation significantly increased HSP70 expression in the PM of transported broilers (p < 0.05). The overexpression of HSP70 significantly alleviated the decreases in muscle pH and water-holding capacity and improved the shrinking of muscle fibers induced by transport (p < 0.05). HSP70 induction increased ATP content, decreased the activities of glycolytic enzymes, and lowered the phosphorylation level of AMP-activated protein kinase in transported broilers (p < 0.05). In addition, the overexpression of HSP70 greatly increased total superoxide dismutase and the total antioxidant capability and decreased the levels of reactive oxygen species, malonaldehyde, and carbonyls in the PM of transported broilers (p < 0.05). Overall, this work indicated that HSP70 could effectively improve the meat quality of transported broilers by improving the energy status, inhibiting glycolytic influx, and restoring redox homeostasis.
Collapse
|
46
|
Quantification of the Effects of Electrical and CO2 Stunning on Selected Quality Attributes of Fresh Pork: A Meta-Analysis. Animals (Basel) 2022; 12:ani12141811. [PMID: 35883358 PMCID: PMC9312002 DOI: 10.3390/ani12141811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Stunning is a statutory pre-slaughter process that may affect the quality of pork. The objective of this study was quantification of the effects of stunning (ES vs. CO2 stunning) on selected quality attributes of pork, using a meta-analytical approach. Data from 18 publications with 46 individual experiments were combined using a random-effect model to estimate the effect size of stunning on the initial and ultimate pH (pH1, pHu); drip loss (DL); colour (lightness—L*, redness—a*, yellowness—b*); and tenderness (expressed as Warner–Bratzler shear force, WBSF) of pork. In overall, loins from ES showed significantly lower pH1 (by 0.08 units); greater DL (by 0.68 p.p.); higher L* (by 1.29 units); and a* (by 0.80 units) as they compared to those from CO2 stunning. In subgroups, a greater-than-overall negative change in pH1, pHu, DL, L* and a* was detected with the application of the head-to-back (HB) stunning method. Additionally, alterations in DL and L* may be magnified with the application of conventional chilling (Conv.) to ES pigs. There was no effect of stunning on WBSF but, due to a low number of research in the database, the reliability of these results may be misleading. These results provide evidence that the differences between these two stunning methods in DL and L* may be diminished by the application of the head-only (HO) or head-to-body (HBO) method, followed by the fast chilling of carcasses.
Collapse
|
47
|
Cui H, Karim N, Jiang F, Hu H, Chen W. Assessment of quality deviation of pork and salmon due to temperature fluctuations during superchilling. J Zhejiang Univ Sci B 2022; 23:578-586. [PMID: 35794687 DOI: 10.1631/jzus.b2200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Superchilling is an emerging technology for meat preservation; however, the temperature changes during the process have been commonly ignored. Thus, the effects of temperature fluctuations on meat quality during superchilling are yet to be evaluated. In our study, pork loins and salmon fillets were stored for several days (0, 8, 15, 23, and 30 d) under different temperature fluctuations based on -3.5 ℃ as the target temperature. The results showed that after 15 d of superchilling storage, the values of total volatile basic nitrogen, total viable count, and lipid oxidation were significantly (P<0.05) altered in the ±2.0 ℃ fluctuation group compared with the constant temperature group. On the contrary, there was no significant difference in these parameters between the ±1.0 ℃ fluctuation group and the constant temperature group after 30 d of storage. In addition, irregular temperature changes significantly accelerated the modulation of various indicators. In brief, temperature fluctuations and irregular temperature changes accelerated the destruction of muscle structural integrity, increased the water loss, gradually widened the water loss channels, and thereby reduced the edibility by accelerating the spoilage of meat.
Collapse
Affiliation(s)
- Haoxin Cui
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Feng Jiang
- Changhong Meiling Co. Ltd., Hefei 230000, China
| | - Haimei Hu
- Changhong Meiling Co. Ltd., Hefei 230000, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. .,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
48
|
Ruixia L, Wei L, Wang Y, Wu F. AMP-activated protein kinase mediates glycolysis in post-mortem breast muscle of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2093138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lan Ruixia
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Linlin Wei
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Yuchen Wang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Fan Wu
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| |
Collapse
|
49
|
Wang C, Matarneh SK, Gerrard D, Tan J. Contributions of energy pathways to ATP production and pH variations in postmortem muscles. Meat Sci 2022; 189:108828. [PMID: 35461106 DOI: 10.1016/j.meatsci.2022.108828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
The roles of energy pathways in postmortem muscles are still debated. In this study, the contributions of different pathways to ATP production and pH variations were analyzed by using a kinetic model based on data from beef longissimus lumborum. Phosphocreatine represents over 92% of the initial ATP production but, after 24 h, glycolysis, phosphocreatine, myokinase reaction, and aerobic respiration contribute, respectively, 89.44%, 5.26%, 4.44%, and 0.86% of the cumulative amount of ATP produced. ATP hydrolysis and glycolysis result in 0.52 and 0.6 units of pH decline, respectively, at 24 h with ATP hydrolysis accounting for most of the early decline. Phosphocreatine, myokinase reaction, and aerobic respiration lead to, respectively, 0.08, 0.07, and 0.004 units of pH increase after 24 h though phosphocreatine is depleted within the first 30 min. Furthermore, electrical stimulation affects pH primarily through ATP hydrolysis and glycolysis. The initial muscle oxygen saturation level and phosphocreatine content affect pH but the influences are small.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, United States of America
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, United States of America
| | - David Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | - Jinglu Tan
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
50
|
Shen S, Liu F, Chen Y, Xie H, Hu H, Ren S, Ding Z, Bu Q. Insight into the molecular mechanism of texture improvement of sturgeon fillets treated by low temperature vacuum heating technology using label-free quantitative proteomics. Food Res Int 2022; 157:111251. [DOI: 10.1016/j.foodres.2022.111251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
|