1
|
Santi T, Jo J, Harahap AR, Werdhani RA, Hadinegoro SRS, SahBandar IN, Prayitno A, Munasir Z, Vandenplas Y, Hegar B. The Improvement of Adaptive Immune Responses towards COVID-19 Following Diphtheria-Tetanus-Pertussis and SARS-CoV-2 Vaccinations in Indonesian Children: Exploring the Roles of Heterologous Immunity. Vaccines (Basel) 2024; 12:1032. [PMID: 39340062 PMCID: PMC11435621 DOI: 10.3390/vaccines12091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Routine childhood vaccination, e.g., for diphtheria, tetanus, and pertussis (DTP), might provide additional protection against SARS-CoV-2 infection. This concept of heterologous immunity was explored in healthy children receiving both DTP and inactivated SARS-CoV-2 vaccines. METHODS A cross-sectional study was performed on 154 healthy children aged 6-8 years old in Jakarta, Indonesia. Their vaccination status for the DTP (including a diphtheria-tetanus booster vaccine at 5 years old) and CoronaVac (from 6 years old) vaccines were recorded. Peripheral blood samples were collected from all participants, in which anti-diphtheria toxoid IgG and anti-SARS-CoV-2 S-RBD antibodies and T cell-derived IFN-γ were measured. RESULTS The study participants with complete DTP vaccination had significantly higher titers of anti-diphtheria toxoid IgG than the ones without (median = 0.9349 versus 0.2113 IU/mL; p < 0.0001). Upon stratification based on DTP and CoronaVac vaccination statuses, the participants with complete DTP and CoronaVac vaccinations had the highest titer of anti-SARS-CoV-2 S-RBD antibodies (median = 1196 U/mL) and the highest concentration of SARS-CoV-2-specific T cell-derived IFN-γ (median = 560.9 mIU/mL) among all the groups. CONCLUSIONS Healthy children aged 6-8 years old with complete DTP and CoronaVac vaccinations exhibited stronger SARS-CoV-2-specific T cell immune responses. This might suggest an additional benefit of routine childhood vaccination in generating protection against novel pathogens, presumably via heterologous immunity.
Collapse
Affiliation(s)
- Theresia Santi
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Juandy Jo
- Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang 15811, Indonesia
- Mochtar Riady Institute for Nanotechnology, Tangerang 15811, Indonesia
| | - Alida Roswita Harahap
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Retno Asti Werdhani
- Department of Community Medicine, Cipto Mangunkkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Sri Rezeki S Hadinegoro
- Department of Child Health, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Ivo Novita SahBandar
- Department of Microbiology, School of Medicine, Iwate Medical University, Morioka 028-3694, Japan
| | - Ari Prayitno
- Department of Child Health, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Zakiudin Munasir
- Department of Child Health, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yvan Vandenplas
- Department of Pediatric, Universitair Ziekenhuis Brussel, 1090 Jette, Belgium
| | - Badriul Hegar
- Department of Child Health, Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
2
|
Fernandez SA, Pelaez-Prestel HF, Fiyouzi T, Gomez-Perosanz M, Reiné J, Reche PA. Tetanus-diphtheria vaccine can prime SARS-CoV-2 cross-reactive T cells. Front Immunol 2024; 15:1425374. [PMID: 39091504 PMCID: PMC11291333 DOI: 10.3389/fimmu.2024.1425374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Vaccines containing tetanus-diphtheria antigens have been postulated to induce cross-reactive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which could protect against coronavirus disease (COVID-19). In this work, we investigated the capacity of Tetanus-diphtheria (Td) vaccine to prime existing T cell immunity to SARS-CoV-2. To that end, we first collected known SARS-CoV-2 specific CD8+ T cell epitopes targeted during the course of SARS-CoV-2 infection in humans and identified as potentially cross-reactive with Td vaccine those sharing similarity with tetanus-diphtheria vaccine antigens, as judged by Levenshtein edit distances (≤ 20% edits per epitope sequence). As a result, we selected 25 potentially cross-reactive SARS-CoV-2 specific CD8+ T cell epitopes with high population coverage that were assembled into a synthetic peptide pool (TDX pool). Using peripheral blood mononuclear cells, we first determined by intracellular IFNγ staining assays existing CD8+ T cell recall responses to the TDX pool and to other peptide pools, including overlapping peptide pools covering SARS-CoV-2 Spike protein and Nucleocapsid phosphoprotein (NP). In the studied subjects, CD8+ T cell recall responses to Spike and TDX peptide pools were dominant and comparable, while recall responses to NP peptide pool were less frequent and weaker. Subsequently, we studied responses to the same peptides using antigen-inexperienced naive T cells primed/stimulated in vitro with Td vaccine. Priming stimulations were carried out by co-culturing naive T cells with autologous irradiated peripheral mononuclear cells in the presence of Td vaccine, IL-2, IL-7 and IL-15. Interestingly, naive CD8+ T cells stimulated/primed with Td vaccine responded strongly and specifically to the TDX pool, not to other SARS-CoV-2 peptide pools. Finally, we show that Td-immunization of C57BL/6J mice elicited T cells cross-reactive with the TDX pool. Collectively, our findings support that tetanus-diphtheria vaccines can prime SARS-CoV-2 cross-reactive T cells and likely contribute to shape the T cell responses to the virus.
Collapse
Affiliation(s)
- Sara Alonso Fernandez
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Hector F. Pelaez-Prestel
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Tara Fiyouzi
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Marta Gomez-Perosanz
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Pedro A. Reche
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
3
|
Weary TE, Pappas T, Tusiime P, Tuhaise S, Otali E, Emery Thompson M, Ross E, Gern JE, Goldberg TL. Common cold viruses circulating in children threaten wild chimpanzees through asymptomatic adult carriers. Sci Rep 2024; 14:10431. [PMID: 38714841 PMCID: PMC11076286 DOI: 10.1038/s41598-024-61236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Reverse zoonotic respiratory diseases threaten great apes across Sub-Saharan Africa. Studies of wild chimpanzees have identified the causative agents of most respiratory disease outbreaks as "common cold" paediatric human pathogens, but reverse zoonotic transmission pathways have remained unclear. Between May 2019 and August 2021, we conducted a prospective cohort study of 234 children aged 3-11 years in communities bordering Kibale National Park, Uganda, and 30 adults who were forest workers and regularly entered the park. We collected 2047 respiratory symptoms surveys to quantify clinical severity and simultaneously collected 1989 nasopharyngeal swabs approximately monthly for multiplex viral diagnostics. Throughout the course of the study, we also collected 445 faecal samples from 55 wild chimpanzees living nearby in Kibale in social groups that have experienced repeated, and sometimes lethal, epidemics of human-origin respiratory viral disease. We characterized respiratory pathogens in each cohort and examined statistical associations between PCR positivity for detected pathogens and potential risk factors. Children exhibited high incidence rates of respiratory infections, whereas incidence rates in adults were far lower. COVID-19 lockdown in 2020-2021 significantly decreased respiratory disease incidence in both people and chimpanzees. Human respiratory infections peaked in June and September, corresponding to when children returned to school. Rhinovirus, which caused a 2013 outbreak that killed 10% of chimpanzees in a Kibale community, was the most prevalent human pathogen throughout the study and the only pathogen present at each monthly sampling, even during COVID-19 lockdown. Rhinovirus was also most likely to be carried asymptomatically by adults. Although we did not detect human respiratory pathogens in the chimpanzees during the cohort study, we detected human metapneumovirus in two chimpanzees from a February 2023 outbreak that were genetically similar to viruses detected in study participants in 2019. Our data suggest that respiratory pathogens circulate in children and that adults become asymptomatically infected during high-transmission times of year. These asymptomatic adults may then unknowingly carry the pathogens into forest and infect chimpanzees. This conclusion, in turn, implies that intervention strategies based on respiratory symptoms in adults are unlikely to be effective for reducing reverse zoonotic transmission of respiratory viruses to chimpanzees.
Collapse
Affiliation(s)
- Taylor E Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA
| | - Tressa Pappas
- Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | - Emily Otali
- The Kasiisi Project, Fort Portal, Uganda
- Kibale Chimpanzee Project, Fort Portal, Uganda
| | - Melissa Emery Thompson
- Kibale Chimpanzee Project, Fort Portal, Uganda
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | | | - James E Gern
- Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA.
| |
Collapse
|
4
|
Röring RJ, Debisarun PA, Botey-Bataller J, Suen TK, Bulut Ö, Kilic G, Koeken VA, Sarlea A, Bahrar H, Dijkstra H, Lemmers H, Gössling KL, Rüchel N, Ostermann PN, Müller L, Schaal H, Adams O, Borkhardt A, Ariyurek Y, de Meijer EJ, Kloet SL, ten Oever J, Placek K, Li Y, Netea MG. MMR vaccination induces trained immunity via functional and metabolic reprogramming of γδ T cells. J Clin Invest 2024; 134:e170848. [PMID: 38290093 PMCID: PMC10977989 DOI: 10.1172/jci170848] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
The measles, mumps, and rubella (MMR) vaccine protects against all-cause mortality in children, but the immunological mechanisms mediating these effects are poorly known. We systematically investigated whether MMR can induce long-term functional changes in innate immune cells, a process termed trained immunity, that could at least partially mediate this heterologous protection. In a randomized, placebo-controlled trial, 39 healthy adults received either the MMR vaccine or a placebo. Using single-cell RNA-Seq, we found that MMR caused transcriptomic changes in CD14+ monocytes and NK cells, but most profoundly in γδ T cells. Monocyte function was not altered by MMR vaccination. In contrast, the function of γδ T cells was markedly enhanced by MMR vaccination, with higher production of TNF and IFN-γ, as well as upregulation of cellular metabolic pathways. In conclusion, we describe a trained immunity program characterized by modulation of γδ T cell function induced by MMR vaccination.
Collapse
Affiliation(s)
- Rutger J. Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Priya A. Debisarun
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Javier Botey-Bataller
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) and
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Tsz Kin Suen
- Department of Immunology and Metabolism, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Özlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Valerie A.C.M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) and
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Andrei Sarlea
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
| | - Harsh Bahrar
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Nadine Rüchel
- Department for Pediatric Oncology, Hematology and Clinical Immunology and
| | - Philipp N. Ostermann
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Lisa Müller
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Arndt Borkhardt
- Department for Pediatric Oncology, Hematology and Clinical Immunology and
| | - Yavuz Ariyurek
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Emile J. de Meijer
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Susan L. Kloet
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jaap ten Oever
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Katarzyna Placek
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) and
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases and
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Di Chiara C, Boracchini R, Sturniolo G, Barbieri A, Costenaro P, Cozzani S, De Pieri M, Liberati C, Zin A, Padoan A, Bonfante F, Kakkar F, Cantarutti A, Donà D, Giaquinto C. Clinical features of COVID-19 in Italian outpatient children and adolescents during Parental, Delta, and Omicron waves: a prospective, observational, cohort study. Front Pediatr 2023; 11:1193857. [PMID: 37635788 PMCID: PMC10450148 DOI: 10.3389/fped.2023.1193857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction COVID-19 features changed with the Omicron variant of SARS-CoV-2 in adults. This study aims to describe COVID-19 symptoms in children and adolescents during the Parental, Delta, and Omicron eras. Methods A single-centre, prospective observational study was conducted on individuals aged 0-20 years attending the University Hospital of Padua (Italy) from April 2020 to December 2022. COVID-19 cases were defined by positive SARS-CoV-2 molecular detection and/or serology; patient/family symptoms and virological positivity were considered to determine the infection onset. Variables were summarized and compared using appropriate tests of descriptive statistics. Results A total of 509 cases [46% female, median age eight years (IQR: 4-12)] were studied. Three-hundred-eighty-seven (76%), 52 (10%), and 70 (14%) subjects experienced COVID-19 during the Parental, Delta, and Omicron waves, respectively. All subjects developed an asymptomatic/mild COVID-19. Overall, the most frequent symptoms were fever (47%) and rhinitis (21%), which showed a significant increasing incidence from the Parental to Omicron waves (p < 0.001). Conversely, diarrhea was most common during the pre-Omicron eras (p = 0.03). Stratifying symptoms according to the age group, fever, rhinitis, and skin rashes were observed more frequently among infants/toddlers; conversely, fatigue was more common in children older than five years. The duration of symptoms was similar across different SARS-CoV-2 variants of concern (VOCs); conversely, the number of symptoms varied according to the age group (p < 0.0001). Discussion This study showed differences in COVID-19 clinical presentation among infants, children, and adolescents and confirmed Omicron infection is more likely to be associated with upper respiratory symptoms. However, further population-based studies are needed to support these findings. In addition, active surveillance will play a crucial role in assessing the disease severity of future VOCs.
Collapse
Affiliation(s)
- Costanza Di Chiara
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
- Penta – Child Health Research, Padua, Italy
| | - Riccardo Boracchini
- Division of Biostatistics, Epidemiology and Public Health, Laboratory of Healthcare Research and Pharmacoepidemiology, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Giulia Sturniolo
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Alessia Barbieri
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Paola Costenaro
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Sandra Cozzani
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Marica De Pieri
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Cecilia Liberati
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Annachiara Zin
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Andrea Padoan
- Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Francesco Bonfante
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | - Fatima Kakkar
- Division of Infectious Diseases, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| | - Anna Cantarutti
- Division of Biostatistics, Epidemiology and Public Health, Laboratory of Healthcare Research and Pharmacoepidemiology, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Daniele Donà
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
- Penta – Child Health Research, Padua, Italy
| | - Carlo Giaquinto
- Division of Pediatric Infectious Diseases, Department for Women’s and Children’s Health, University of Padua, Padua, Italy
- Penta – Child Health Research, Padua, Italy
| |
Collapse
|
6
|
Salamony A, Shamikh Y, Amer K, Elnagdy T, Elnakib M, Yehia AA, Hassan W, Abdelsalam M. Are Measles-Mumps-Rubella (MMR) Antibodies Friends or Foes for Covid-19 Disease? Arch Immunol Ther Exp (Warsz) 2023; 71:15. [PMID: 37341786 DOI: 10.1007/s00005-023-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/18/2022] [Indexed: 06/22/2023]
Abstract
Many factors have been implicated in the pathogenesis and severity of COVID-19 pandemic. A wide variation in the susceptibility for SARS-CoV-2 infection among different population, gender and age has been observed. Multiple studies investigated the relationship between the antibody's titre of previously vaccinated individuals and the susceptibility of coronavirus infection, to find a rapid effective therapy for this pandemic. This study focused on the association between measles-mumps-rubella (MMR) antibodies titre and the severity of COVID-19 infection. We aimed to investigate the correlation between the antibody's titre of MMR and the SARS-CoV-2 infection susceptibility and disease severity, in a cohort of COVID-19 Egyptian patients, compared to a control group. MMR antibody titre was measured using enzyme Linked Immune Sorbent Assay; (ELISA) for 136 COVID-19 patients and 44 healthy individuals, as control group. There were high levels of measles and mumps antibodies titer in the deteriorating cases, which could not protect from SARS-CoV-2 infection. However, the rubella antibodies might protect from SARS-CoV-2 infection, but once the infection occurs, it may aggravate the risk of case deterioration. MMR antibodies could be used as a guideline for COVID-19 symptom-severity and, in turn, may be considered as an economic prognostic marker used for early protection from multiple autoimmune organ failure.
Collapse
Affiliation(s)
- Azza Salamony
- Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
- Microbiology and Immunology, Central Public Health Laboratories, CPHL, Ministry of Health, Cairo, 11613, Egypt
| | - Yara Shamikh
- Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
- Microbiology and Immunology, Central Public Health Laboratories, CPHL, Ministry of Health, Cairo, 11613, Egypt
| | - Khaled Amer
- Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| | - Tarek Elnagdy
- Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| | - Mostafa Elnakib
- Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| | - Abd Allah Yehia
- Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| | - Wael Hassan
- Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| | - Maha Abdelsalam
- Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt.
- Clinical Pathology Department, Faculty of Medicine, Immunology Unit, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
7
|
Chen TYT, Wang SI, Hung YM, Hartman JJ, Chang R, Wei JCC. Recent Human Papillomavirus Vaccination is Associated with a Lower Risk of COVID-19: A US Database Cohort Study. Drugs 2023; 83:621-632. [PMID: 37162705 PMCID: PMC10170435 DOI: 10.1007/s40265-023-01867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE To explore the association between human papillomavirus (HPV) vaccination and risk of coronavirus disease 2019 (COVID-19). Specifically, our study aimed to test the hypothesis that HPV vaccination may also induce trained immunity, which would potentially reduce the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and improve clinical outcomes. BACKGROUND Several vaccines have been reported to trigger non-specific immune reactions that could offer protection from heterologous infections. A recent case report showed that verruca vulgaris regressed after COVID-19, suggesting a possible negative association between COVID-19 and HPV infection. METHODS We enrolled 57,584 women with HPV vaccination and compared them with propensity score-matched controls who never received HPV vaccination in relation to the risk of COVID-19 incidence. Cox proportional hazard regression analysis was conducted to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Subgroup analyses stratified by age, race, comorbid asthma, and obesity were performed. RESULTS The risk of COVID-19 incidence was significantly lower in those who had recently received the HPV vaccine (within 1 year after HPV vaccination, aHR: 0.818, 95% CI 0.764-0.876; within 1-2 years after HPV vaccination, aHR: 0.890, 95% CI 0.824-0.961). Several limitations were recognized in this study, including residual confounding, problems of misclassification due to the use of electronic health record data, and that we were unable to keep track of the patients' HPV infection status and the HPV antibody levels in those who had received the vaccine. CONCLUSIONS Recent HPV vaccination was associated with a lower risk of incident COVID-19 and hospitalization. Based on the promising protective effect of HPV vaccine shown in this study, these findings should be replicated in an independent dataset. Further studies are needed to provide a better understanding of the underlying mechanisms and the differences in risks among 2-, 4-, or 9-valent HPV vaccine recipients.
Collapse
Affiliation(s)
- Thomas Yen-Ting Chen
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Shiow-Ing Wang
- Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Yao-Min Hung
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital Taitung Branch, Taitung City, Taiwan
- Master Program in Biomedicine, College of Science and Engineering, National Taitung University, Taitung, Taiwan
- College of Health and Nursing, Meiho University, Pingtung, Taiwan
| | | | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, No. 386, Dazhong First Rd., Zuoying District, Kaohsiung City, Taiwan
- Department of Recreation and Sports Management, Tajen University, Pintung, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., South District, Taichung City, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Murray SM, Ansari AM, Frater J, Klenerman P, Dunachie S, Barnes E, Ogbe A. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat Rev Immunol 2023; 23:304-316. [PMID: 36539527 PMCID: PMC9765363 DOI: 10.1038/s41577-022-00809-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Pre-existing cross-reactive immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins in infection-naive subjects have been described by several studies. In particular, regions of high homology between SARS-CoV-2 and common cold coronaviruses have been highlighted as a likely source of this cross-reactivity. However, the role of such cross-reactive responses in the outcome of SARS-CoV-2 infection and vaccination is currently unclear. Here, we review evidence regarding the impact of pre-existing humoral and T cell immune responses to outcomes of SARS-CoV-2 infection and vaccination. Furthermore, we discuss the importance of conserved coronavirus epitopes for the rational design of pan-coronavirus vaccines and consider cross-reactivity of immune responses to ancestral SARS-CoV-2 and SARS-CoV-2 variants, as well as their impact on COVID-19 vaccination.
Collapse
Affiliation(s)
- Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Azim M Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 219.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
10
|
Mortezaee K, Majidpoor J. Cellular immune states in SARS-CoV-2-induced disease. Front Immunol 2022; 13:1016304. [PMID: 36505442 PMCID: PMC9726761 DOI: 10.3389/fimmu.2022.1016304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The general immune state plays important roles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cells of the immune system are encountering rapid changes during the acute phase of SARS-CoV-2-induced disease. Reduced fraction of functional CD8+ T cells, disrupted cross-talking between CD8+ T cells with dendritic cells (DCs), and impaired immunological T-cell memory, along with the higher presence of hyperactive neutrophils, high expansion of myeloid-derived suppressor cells (MDSCs) and non-classical monocytes, and attenuated cytotoxic capacity of natural killer (NK) cells, are all indicative of low efficient immunity against viral surge within the body. Immune state and responses from pro- or anti-inflammatory cells of the immune system to SARS-CoV-2 are discussed in this review. We also suggest some strategies to enhance the power of immune system against SARS-CoV-2-induced disease.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,*Correspondence: Keywan Mortezaee, ;
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
11
|
Li N, Li X, Wu J, Zhang S, Zhu L, Chen Q, Fan Y, Wu Z, Xie S, Chen Q, Wang N, Wu N, Luo C, Shu Y, Luo H. Pre-existing humoral immunity to low pathogenic human coronaviruses exhibits limited cross-reactive antibodies response against SARS-CoV-2 in children. Front Immunol 2022; 13:1042406. [PMCID: PMC9626651 DOI: 10.3389/fimmu.2022.1042406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes asymptomatic or mild symptoms, even rare hospitalization in children. A major concern is whether the pre-existing antibodies induced by low pathogenic human coronaviruses (LPH-CoVs) in children can cross-react with SARS-CoV-2. To address this unresolved question, we analyzed the pre-existing spike (S)-specific immunoglobin (Ig) G antibodies against LPH-CoVs and the cross-reactive antibodies against SARS-CoV-2 in 658 serum samples collected from children prior to SARS-CoV-2 outbreak. We found that the seroprevalence of these four LPH-CoVs reached 75.84%, and about 24.64% of the seropositive samples had cross-reactive IgG antibodies against the nucleocapsid, S, and receptor binding domain antigens of SARS-CoV-2. Additionally, the re-infections with different LPH-CoVs occurred frequently in children and tended to increase the cross-reactive antibodies against SARS-CoV-2. From the forty-nine serum samples with cross-reactive anti-S IgG antibodies against SARS-CoV-2, we found that seven samples with a median age of 1.4 years old had detected neutralizing activity for the wild-type or mutant SARS-CoV-2 S pseudotypes. Interestingly, all of the seven samples contained anti-S IgG antibodies against HCoV-OC43. Together, these data suggest that children’s pre-existing antibodies to LPH-CoVs have limited cross-reactive neutralizing antibodies against SRAS-CoV-2.
Collapse
Affiliation(s)
- Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - XueYun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Fan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhengyu Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Sidian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ning Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Wu
- Department of Epidemiology, Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- *Correspondence: Huanle Luo, ; Yuelong Shu,
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- *Correspondence: Huanle Luo, ; Yuelong Shu,
| |
Collapse
|
12
|
Li J, Reinke S, Shen Y, Schollmeyer L, Liu YC, Wang Z, Hardt S, Hipfl C, Hoffmann U, Frischbutter S, Chang HD, Alexander T, Perka C, Radbruch H, Qin Z, Radbruch A, Dong J. A ubiquitous bone marrow reservoir of preexisting SARS-CoV-2-reactive memory CD4+ T lymphocytes in unexposed individuals. Front Immunol 2022; 13:1004656. [PMID: 36268016 PMCID: PMC9576920 DOI: 10.3389/fimmu.2022.1004656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating, blood-borne SARS-CoV-2-reactive memory T cells in persons so far unexposed to SARS-CoV-2 or the vaccines have been described in 20-100% of the adult population. They are credited with determining the efficacy of the immune response in COVID-19. Here, we demonstrate the presence of preexisting memory CD4+ T cells reacting to peptides of the spike, membrane, or nucleocapsid proteins of SARS-CoV-2 in the bone marrow of all 17 persons investigated that had previously not been exposed to SARS-CoV-2 or one of the vaccines targeting it, with only 15 of these persons also having such cells detectable circulating in the blood. The preexisting SARS-CoV-2-reactive memory CD4+ T cells of the bone marrow are abundant and polyfunctional, with the phenotype of central memory T cells. They are tissue-resident, at least in those persons who do not have such cells in the blood, and about 30% of them express CD69. Bone marrow resident SARS-CoV-2-reactive memory CD4+ memory T cells are also abundant in vaccinated persons analyzed 10-168 days after 1°-4° vaccination. Apart from securing the bone marrow, preexisting cross-reactive memory CD4+ T cells may play an important role in shaping the systemic immune response to SARS-CoV-2 and the vaccines, and contribute essentially to the rapid establishment of long-lasting immunity provided by memory plasma cells, already upon primary infection.
Collapse
Affiliation(s)
- Jinchan Li
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Simon Reinke
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yu Shen
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Lena Schollmeyer
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Yuk-Chien Liu
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Zixu Wang
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Hipfl
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ute Hoffmann
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
- Schwiete-Laboratory for Microbiota and Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Stefan Frischbutter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Berlin, Germany
| | - Hyun-Dong Chang
- Schwiete-Laboratory for Microbiota and Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
- *Correspondence: Jun Dong,
| |
Collapse
|
13
|
Gan L, Chen Y, Tan J, Wang X, Zhang D. Does potential antibody-dependent enhancement occur during SARS-CoV-2 infection after natural infection or vaccination? A meta-analysis. BMC Infect Dis 2022; 22:742. [PMID: 36123623 PMCID: PMC9483537 DOI: 10.1186/s12879-022-07735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to constitute an international public health emergency. Vaccination is a prospective approach to control this pandemic. However, apprehension about the safety of vaccines is a major obstacle to vaccination. Amongst health professionals, one evident concern is the risk of antibody-dependent enhancement (ADE), which may increase the severity of COVID-19. To explore whether ADE occurs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and increase confidence in the safety of vaccination, we conducted a meta-analysis to investigate the relationship between post-immune infection and disease severity from a population perspective. Databases, including PubMed, EMBASE, Chinese National Knowledge Infrastructure, SinoMed, Scopus, Science Direct, and Cochrane Library, were searched for articles on SARS-CoV-2 reinfection published until 25 October 2021. The papers were reviewed for methodological quality, and a random effects model was used to analyse the results. Heterogeneity was assessed using the I2 statistic. Publication bias was evaluated using a funnel plot and Egger's test. Eleven studies were included in the final meta-analysis. The pooled results indicated that initial infection and vaccination were protective factors against severe COVID-19 during post-immune infection (OR = 0.55, 95%CI = 0.31-0.98). A subgroup (post-immune infection after natural infection or vaccination) analysis showed similar results. Primary SARS-CoV-2 infection and vaccination provide adequate protection against severe clinical symptoms after post-immune infection. This finding demonstrates that SARS-CoV-2 may not trigger ADE at the population level.
Collapse
Affiliation(s)
- Lin Gan
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yan Chen
- Medical College of Shaoguan University, Shaoguan, 512000, Guangdong, China
| | - Jinlin Tan
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Xuezhi Wang
- Foshan No.4 People's Hospital, Foshan, 528000, Guangdong, China
| | - Dingmei Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
14
|
Taks EJM, Moorlag SJCFM, Netea MG, van der Meer JWM. Shifting the Immune Memory Paradigm: Trained Immunity in Viral Infections. Annu Rev Virol 2022; 9:469-489. [PMID: 35676081 DOI: 10.1146/annurev-virology-091919-072546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Trained immunity is defined as the de facto memory characteristics induced in innate immune cells after exposure to microbial stimuli after infections or certain types of vaccines. Through epigenetic and metabolic reprogramming of innate immune cells after exposure to these stimuli, trained immunity induces an enhanced nonspecific protection by improving the inflammatory response upon restimulation with the same or different pathogens. Recent studies have increasingly shown that trained immunity can, on the one hand, be induced by exposure to viruses; on the other hand, when induced, it can also provide protection against heterologous viral infections. In this review we explore current knowledge on trained immunity and its relevance for viral infections, as well as its possible future uses. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Esther J M Taks
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands; .,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| |
Collapse
|
15
|
Ballesteros-Sanabria L, Pelaez-Prestel HF, Ras-Carmona A, Reche PA. Resilience of Spike-Specific Immunity Induced by COVID-19 Vaccines against SARS-CoV-2 Variants. Biomedicines 2022; 10:biomedicines10050996. [PMID: 35625733 PMCID: PMC9138591 DOI: 10.3390/biomedicines10050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
The outbreak of SARS-CoV-2 leading to the declaration of the COVID-19 global pandemic has led to the urgent development and deployment of several COVID-19 vaccines. Many of these new vaccines, including those based on mRNA and adenoviruses, are aimed to generate neutralizing antibodies against the spike glycoprotein, which is known to bind to the receptor angiotensin converting enzyme 2 (ACE2) in host cells via the receptor-binding domain (RBD). Antibodies binding to this domain can block the interaction with the receptor and prevent viral entry into the cells. Additionally, these vaccines can also induce spike-specific T cells which could contribute to providing protection against the virus. However, the emergence of new SARS-CoV-2 variants can impair the immunity generated by COVID-19 vaccines if mutations occur in cognate epitopes, precluding immune recognition. Here, we evaluated the chance of five SARS-CoV-2 variants of concern (VOCs), Alpha, Beta, Gamma, Delta and Omicron, to escape spike-specific immunity induced by vaccines. To that end, we examined the impact of the SARS-CoV-2 variant mutations on residues located on experimentally verified spike-specific epitopes, deposited at the Immune Epitope Database, that are targeted by neutralizing antibodies or recognized by T cells. We found about 300 of such B cell epitopes, which were largely overlapping, and could be grouped into 54 B cell epitope clusters sharing ≥ 7 residues. Most of the B cell epitope clusters map in the RBD domain (39 out of 54) and 20%, 50%, 37%, 44% and 57% of the total are mutated in SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants, respectively. We also found 234 experimentally verified CD8 and CD4 T cell epitopes that were distributed evenly throughout the spike protein. Interestingly, in each SARS-CoV-2 VOC, over 87% and 79% of CD8 and CD4 T cell epitopes, respectively, are not mutated. These observations suggest that SARS-CoV-2 VOCs—particularly the Omicron variant—may be prone to escape spike-specific antibody immunity, but not cellular immunity, elicited by COVID-19 vaccines.
Collapse
|
16
|
Cattaruzza E, Radillo L, Ronchese F, Negro C, Rui F, De Michieli P, Larese Filon F. COVID-19 susceptibility and vaccination coverage for measles, rubella and mumps in students and healthcare workers in Trieste hospitals (NE Italy). Vaccine X 2022; 10:100147. [PMID: 35252837 PMCID: PMC8883792 DOI: 10.1016/j.jvacx.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Measles, mumps, and rubella (MMR) vaccines have been suggested as preventive measures to protect subjects from the worst sequelae of COVID-19 infection because neutralizing antibodies can cross-react with other viruses. AIM To verify COVID-19 infection in MMR vaccinated and non-vaccinated healthcare workers and medical students in Trieste Hospitals. RESULTS Nurse aids resulted in significantly more infections than structured physicians (OR 1.80; 95% CI 1.14-2.80) while students resulted in less infections (OR, 0.66; 95% CI 0.43-1.01). The presence of an MMR vaccination was inversely associated with COVID-19 (OR, 0.77; 95% CI 0.61-0.96) but only in univariate analysis. In the multivariable logistic regression analysis, MMR vaccination lost statistical significance (OR, 0.86; 95%CI 0.62-1.20).On 13 HCWs hospitalized for COVID-19, 11 resulted not vaccinated for MMR. DISCUSSION Our study found a mild, non-significant reduction in SARS-CoV-2 infections in workers vaccinated with MMR.
Collapse
Affiliation(s)
- Eleonora Cattaruzza
- Scuola di Specializzazione in Medicina del Lavoro, Università di Trieste
- Unità Clinica di Medicina del Lavoro, Università di Trieste, Azienda Sanitaria Universitaria Integrata di Trieste, Italy
| | - Lucia Radillo
- Scuola di Specializzazione in Medicina del Lavoro, Università di Trieste
- Unità Clinica di Medicina del Lavoro, Università di Trieste, Azienda Sanitaria Universitaria Integrata di Trieste, Italy
| | - Federico Ronchese
- Scuola di Specializzazione in Medicina del Lavoro, Università di Trieste
- Unità Clinica di Medicina del Lavoro, Università di Trieste, Azienda Sanitaria Universitaria Integrata di Trieste, Italy
| | - Corrado Negro
- Scuola di Specializzazione in Medicina del Lavoro, Università di Trieste
- Unità Clinica di Medicina del Lavoro, Università di Trieste, Azienda Sanitaria Universitaria Integrata di Trieste, Italy
| | - Francesca Rui
- Scuola di Specializzazione in Medicina del Lavoro, Università di Trieste
- Unità Clinica di Medicina del Lavoro, Università di Trieste, Azienda Sanitaria Universitaria Integrata di Trieste, Italy
| | - Paola De Michieli
- Scuola di Specializzazione in Medicina del Lavoro, Università di Trieste
- Unità Clinica di Medicina del Lavoro, Università di Trieste, Azienda Sanitaria Universitaria Integrata di Trieste, Italy
| | | |
Collapse
|
17
|
Touati R, Elngar AA. Intelligent system based comparative analysis study of SARS-CoV-2 spike protein and antigenic proteins in different types of vaccines. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:34. [PMID: 35284579 PMCID: PMC8899449 DOI: 10.1186/s43088-022-00216-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Coronaviruses, members of the Coronavirinae subfamily in the Coronaviridae family, are enveloped and positive-stranded RNA viruses that infect animals and humans, causing intestinal and respiratory infections. Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This disease appeared, for the first time (December 2019), in China and has spread quickly worldwide causing a large number of deaths. Considering the global threat, the World Health Organization (WHO) has declared, in March 2020, COVID-19 as a pandemic. Many studies suggest the great effect of the existing vaccines to protect against symptomatic cases of death by the COVID-19 virus. This paper, proposes to compare the main antigenic proteins sequences of the existing vaccines with Spike (S) protein of the SARS-CoV-2 genome. Our choice of S protein is justified by the major role that plays it in the receptor recognition and membrane fusion process based on an intelligent system. Herein, we focus on finding a correlation between S protein and compulsory vaccines in the countries that have a less death number by COVID-19 virus. In this work, we have used a combination of coding methods, signal processing, and bioinformatic techniques with the goal to localize the similar patterns between the S gene of the SARS-Cov-2 genome and 14 investigated vaccines.
Results
A total of 8 similar sequences which have a size more than 6 amino acids were identified. Further, these comparisons propose that these segments can be implicated in the immune response against COVID-19, which may explain the wide variation by country in the severity of this viral threat.
Conclusions
Our in silico study suggests a possible protective effect of Poliovirus, HIB, Hepatitis B, PCV10, Measles, Mumps, and Rubella (MMR) vaccines against COVID-19.
Collapse
|
18
|
Swamy S, Koch CA, Hannah-Shmouni F, Schiffrin EL, Klubo-Gwiezdzinska J, Gubbi S. Hypertension and COVID-19: Updates from the era of vaccines and variants. J Clin Transl Endocrinol 2022; 27:100285. [PMID: 34900602 PMCID: PMC8645507 DOI: 10.1016/j.jcte.2021.100285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible for coronavirus disease 2019 (COVID-19) has been a major cause of morbidity and mortality globally. Older age, and the presence of certain components of metabolic syndrome, including hypertension have been associated with increased risk for severe disease and death in COVID-19 patients. The role of antihypertensive agents in the pathogenesis of COVID-19 has been extensively studied since the onset of the pandemic. This review discusses the potential pathophysiologic interactions between hypertension and COVID-19 and provides an up-to-date information on the implications of newly emerging SARS-CoV-2 variants, and vaccines on patients with hypertension.
Collapse
Affiliation(s)
- Sowmya Swamy
- Department of Internal Medicine, George Washington University Medical Center, Washington, DC, USA
| | | | | | - Ernesto L. Schiffrin
- Department of Medicine, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Joanna Klubo-Gwiezdzinska
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sriram Gubbi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Kebria MM, Milan PB, Peyravian N, Kiani J, Khatibi S, Mozafari M. Stem cell therapy for COVID-19 pneumonia. MOLECULAR BIOMEDICINE 2022; 3:6. [PMID: 35174448 PMCID: PMC8850486 DOI: 10.1186/s43556-021-00067-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus is a highly contagious microorganism, and despite substantial investigation, no progress has been achieved in treating post-COVID complications. However, the virus has made various mutations and has spread around the world. Researchers have tried different treatments to reduce the side effects of the COVID-19 symptoms. One of the most common and effective treatments now used is steroid therapy to reduce the complications of this disease. Long-term steroid therapy for chronic inflammation following COVID-19 is harmful and increases the risk of secondary infection, and effective treatment remains challenging owing to fibrosis and severe inflammation and infection. Sometimes our immune system can severely damage ourselves in disease. In the past, many researchers have conducted various studies on the immunomodulatory properties of stem cells. This property of stem cells led them to modulate the immune system of autoimmune diseases like diabetes, multiple sclerosis, and Parkinson's. Because of their immunomodulatory properties, stem cell-based therapy employing mesenchymal or hematopoietic stem cells may be a viable alternative treatment option in some patients. By priming the immune system and providing cytokines, chemokines, and growth factors, stem cells can be employed to build a long-term regenerative and protective response. This review addresses the latest trends and rapid progress in stem cell treatment for Acute Respiratory Distress Syndrome (ARDS) following COVID-19.
Collapse
Affiliation(s)
- Maziar Malekzadeh Kebria
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Present Address: Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Khatibi
- Babol University of Medical Sciences, Infection Diseases Centre, Mazandaran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Campagnani G, Bardanzellu F, Pintus MC, Fanos V, Marcialis MA. COVID-19 Vaccination in Children: An Open Question. Curr Pediatr Rev 2022; 18:226-236. [PMID: 34931965 DOI: 10.2174/1573396318666211220093111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND A safe and effective vaccine represents the best way to control the COVID-19 pandemic, which has caused more than 4 million deaths to date. Several vaccines have now been approved worldwide, depending on the country. Being administered to healthy people, anti-SARS-CoV-2 vaccines must meet high safety standards, and this is even more important among the pediatric population in which the risk of developing severe disease is significantly lower than adults. However, vaccination of the pediatric population could help in reducing viral spread in the whole population. OBJECTIVE Our narrative review analyzes and discusses the currently available literature on the advantages and disadvantages of COVID-19 vaccination in the pediatric population. METHODS A bibliographic research was conducted through Pubmed, Read, and Scopus using COVID-19, SARS-CoV-2, immunization, antibody, COVID-19 vaccine efficacy, COVID-19 vaccine safety, children, adolescents, MIS-C, adverse effects as keywords. RESULTS Although children are less susceptible to COVID-19 infection, they can develop serious consequences, including multi-inflammatory syndrome. However, any vaccine-related side effects should be evaluated before administering vaccination to children while ensuring complete safety. To date, adverse effects are reported in adolescents and young adults following vaccination; however, these are mostly isolated reports. CONCLUSION Further investigation is needed to establish whether there is indeed a cause-and-effect relationship in the development of vaccine-related adverse effects. However, to date, COVID-19 vaccination is recommended for children and adolescents older than 12 years of age. However, this question is still under debate and involves ethical, political, and social issues.
Collapse
Affiliation(s)
- Giuseppe Campagnani
- Department of Surgical Sciences, Neonatal Intensive Care Unit, AOU University of Cagliari, Cagliari, Italy, SS 554 km 4,500, 09042 Monserrato, CA , Italy
| | - Flaminia Bardanzellu
- Department of Surgical Sciences, Neonatal Intensive Care Unit, AOU University of Cagliari, Cagliari, Italy, SS 554 km 4,500, 09042 Monserrato, CA , Italy
| | - Maria Cristina Pintus
- Department of Surgical Sciences, Neonatal Intensive Care Unit, AOU University of Cagliari, Cagliari, Italy, SS 554 km 4,500, 09042 Monserrato, CA , Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, Neonatal Intensive Care Unit, AOU University of Cagliari, Cagliari, Italy, SS 554 km 4,500, 09042 Monserrato, CA , Italy
| | - Maria Antonietta Marcialis
- Department of Surgical Sciences, Neonatal Intensive Care Unit, AOU University of Cagliari, Cagliari, Italy, SS 554 km 4,500, 09042 Monserrato, CA , Italy
| |
Collapse
|
21
|
Ahmadi E, Zabihi MR, Hosseinzadeh R, Mohamed Khosroshahi L, Noorbakhsh F. SARS-CoV-2 spike protein displays sequence similarities with paramyxovirus surface proteins; a bioinformatics study. PLoS One 2021; 16:e0260360. [PMID: 34855795 PMCID: PMC8639087 DOI: 10.1371/journal.pone.0260360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
Recent emergence of SARS-CoV-2 and associated COVID-19 pandemic have posed a great challenge for the scientific community. In this study, we performed bioinformatic analyses on SARS-CoV-2 protein sequences, trying to unravel potential molecular similarities between this newly emerged pathogen with non-coronavirus ssRNA viruses. Comparing the proteins of SARS-CoV-2 with non-coronavirus positive and negative strand ssRNA viruses revealed multiple sequence similarities between SARS-CoV-2 and non-coronaviruses, including similarities between RNA-dependent RNA-polymerases and helicases (two highly-conserved proteins). We also observed similarities between SARS-CoV-2 surface (i.e. spike) protein with paramyxovirus fusion proteins. This similarity was restricted to a segment of spike protein S2 subunit which is involved in cell fusion. We next analyzed spike proteins from SARS-CoV-2 “variants of concern” (VOCs) and “variants of interests” (VOIs) and found that some of these variants show considerably higher spike-fusion similarity with paramyxoviruses. The ‘spike-fusion’ similarity was also observed for some pathogenic coronaviruses other than SARS-CoV-2. Epitope analysis using experimentally verified data deposited in Immune Epitope Database (IEDB) revealed that several B cell epitopes as well as T cell and MHC binding epitopes map within the spike-fusion similarity region. These data indicate that there might be a degree of convergent evolution between SARS-CoV-2 and paramyxovirus surface proteins which could be of pathogenic and immunological importance.
Collapse
Affiliation(s)
- Ehsan Ahmadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- * E-mail:
| |
Collapse
|
22
|
Monereo-Sánchez J, Luykx JJ, Pinzón-Espinosa J, Richard G, Motazedi E, Westlye LT, Andreassen OA, van der Meer D. Diphtheria And Tetanus Vaccination History Is Associated With Lower Odds of COVID-19 Hospitalization. Front Immunol 2021; 12:749264. [PMID: 34691063 PMCID: PMC8529993 DOI: 10.3389/fimmu.2021.749264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/08/2021] [Indexed: 01/20/2023] Open
Abstract
Background COVID-19 is characterized by strikingly large, mostly unexplained, interindividual variation in symptom severity: while some individuals remain nearly asymptomatic, others suffer from severe respiratory failure. Previous vaccinations for other pathogens, in particular tetanus, may partly explain this variation, possibly by readying the immune system. Methods We made use of data on COVID-19 testing from 103,049 participants of the UK Biobank (mean age 71.5 years, 54.2% female), coupled to immunization records of the last ten years. Using logistic regression, covarying for age, sex, respiratory disease diagnosis, and socioeconomic status, we tested whether individuals vaccinated for tetanus, diphtheria or pertussis, differed from individuals that had only received other vaccinations on 1) undergoing a COVID-19 test, 2) being diagnosed with COVID-19, and 3) whether they developed severe COVID-19 symptoms. Results We found that individuals with registered diphtheria or tetanus vaccinations are less likely to develop severe COVID-19 than people who had only received other vaccinations (diphtheria odds ratio (OR)=0.47, p-value=5.3*10-5; tetanus OR=0.52, p-value=1.2*10-4). Discussion These results indicate that a history of diphtheria or tetanus vaccinations is associated with less severe manifestations of COVID-19. These vaccinations may protect against severe COVID-19 symptoms by stimulating the immune system. We note the correlational nature of these results, yet the possibility that these vaccinations may influence the severity of COVID-19 warrants follow-up investigations.
Collapse
Affiliation(s)
- Jennifer Monereo-Sánchez
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, Netherlands
| | - Justo Pinzón-Espinosa
- Department of Mental Health, Parc Tauli University Hospital, Sabadell, Barcelona, Spain.,Department of Clinical Psychiatry, School of Medicine, University of Panama, Panama, Panama.,Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ehsan Motazedi
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Abstract
Innate and adaptive heterologous immunity confers resistance to pathogens. However, its impact on resistance and the course of human infection have remained largely elusive, hampering the use of this phenomenon to enhance vaccine efficacy. In this issue of Med, Mysore et al. show that T cell responses elicited by SARS-CoV-2 infection or vaccination correlate with those induced by MMR and Tdap immunization, revealing the transcriptomic basis of these correlations and find that heterologous adaptive immunity contributes to a better prognosis of COVID-19 disease.1
Collapse
Affiliation(s)
- David A Bejarano
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| |
Collapse
|
24
|
Focosi D, Franchini M, Pirofski LA, Burnouf T, Fairweather D, Joyner MJ, Casadevall A. COVID-19 Convalescent Plasma Is More than Neutralizing Antibodies: A Narrative Review of Potential Beneficial and Detrimental Co-Factors. Viruses 2021; 13:1594. [PMID: 34452459 PMCID: PMC8402718 DOI: 10.3390/v13081594] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 convalescent plasma (CCP) is currently under investigation for both treatment and post-exposure prophylaxis. The active component of CCP mediating improved outcome is commonly reported as specific antibodies, particularly neutralizing antibodies, with clinical efficacy characterized according to the level or antibody affinity. In this review, we highlight the potential role of additional factors in CCP that can be either beneficial (e.g., AT-III, alpha-1 AT, ACE2+ extracellular vesicles) or detrimental (e.g., anti-ADAMTS13, anti-MDA5 or anti-interferon autoantibodies, pro-coagulant extracellular vesicles). Variations in these factors in CCP may contribute to varied outcomes in patients with COVID-19 and undergoing CCP therapy. We advise careful, retrospective investigation of such co-factors in randomized clinical trials that use fresh frozen plasma in control arms. Nevertheless, it might be difficult to establish a causal link between these components and outcome, given that CCP is generally safe and neutralizing antibody effects may predominate.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY 10467, USA
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering & International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|