1
|
Huynh LT, Sohn EJ, Park Y, Kim J, Shimoda T, Hiono T, Isoda N, Hong SH, Lee HN, Sakoda Y. Development of a dual immunochromatographic test strip to detect E2 and E rns antibodies against classical swine fever. Front Microbiol 2024; 15:1383976. [PMID: 38666258 PMCID: PMC11043574 DOI: 10.3389/fmicb.2024.1383976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Background It is essential to consider a practical antibody test to successfully implement marker vaccines and validate vaccination efficacy against classical swine fever virus (CSFV). The test should include a serological antibody assay, combined with a tool for differentiating infected from vaccinated animals (DIVA). The immunochromatographic test strip (ICS) has been exclusively designed for detecting CSFV E2 antibodies while lacking in detecting Erns antibodies, which can be employed and satisfy DIVA strategy. This study developed a novel ICS for detecting CSFV E2/Erns dual-antibody. The effectiveness of ICS in evaluating the DIVA capability of two novel chimeric pestivirus vaccine candidates was assessed. Methods Recombinant E2 or Erns protein was transiently expressed in the plant benthamiana using Agrobacterium tumefaciens. ICS was subsequently assembled, and goat anti-rabbit IgG and recombinant CSFV E2 or Erns protein were plated onto the nitrocellulose membrane as control and test lines, respectively. The sensitivity and specificity of ICS were evaluated using sera with different neutralizing antibody titers or positive for antibodies against CSFV and other pestiviruses. The coincidence rates for detecting E2 and Erns antibodies between ICS and commercial enzyme-linked immunosorbent assay (ELISA) kits were also computed. ICS performance for DIVA capability was evaluated using sera from pigs vaccinated with conventional vaccine or chimeric vaccine candidates. Results E2 and Erns proteins were successfully expressed in N. benthamiana-produced recombinant proteins. ICS demonstrated high sensitivity in identifying CSFV E2 and Erns antibodies, even at the low neutralizing antibody titers. No cross-reactivity with antibodies from other pestiviruses was confirmed using ICS. There were high agreement rates of 93.0 and 96.5% between ICS and two commercial ELISA kits for E2 antibody testing. ICS also achieved strong coincidence rates of 92.9 and 89.3% with two ELISA kits for Erns antibody detection. ICS confirmed the absence of CSFV Erns-specific antibodies in sera from pigs vaccinated with chimeric vaccine candidates. Conclusion E2 and Erns proteins derived from the plant showed great potential and can be used to engineer a CSFV E2/Erns dual-antibody ICS. The ICS was also highly sensitive and specific for detecting CSFV E2 and Erns antibodies. Significantly, ICS can fulfill the DIVA concept by incorporating chimeric vaccine candidates.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Eun-Ju Sohn
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | - Youngmin Park
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | - Juhun Kim
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | | | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sung-Hee Hong
- Celltrix Co., Ltd., Seongnam, Gyeonggi, Republic of Korea
| | - Ha-Na Lee
- Celltrix Co., Ltd., Seongnam, Gyeonggi, Republic of Korea
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Hinojosa Y, Liniger M, García-Nicolás O, Gerber M, Rajaratnam A, Muñoz-González S, Coronado L, Frías MT, Perera CL, Ganges L, Ruggli N. Evolutionary-Related High- and Low-Virulent Classical Swine Fever Virus Isolates Reveal Viral Determinants of Virulence. Viruses 2024; 16:147. [PMID: 38275957 PMCID: PMC10820463 DOI: 10.3390/v16010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Classical swine fever (CSF) has been eradicated from Western and Central Europe but remains endemic in parts of Central and South America, Asia, and the Caribbean. CSF virus (CSFV) has been endemic in Cuba since 1993, most likely following an escape of the highly virulent Margarita/1958 strain. In recent years, chronic and persistent infections with low-virulent CSFV have been observed. Amino acid substitutions located in immunodominant epitopes of the envelope glycoprotein E2 of the attenuated isolates were attributed to positive selection due to suboptimal vaccination and control. To obtain a complete picture of the mutations involved in attenuation, we applied forward and reverse genetics using the evolutionary-related low-virulent CSFV/Pinar del Rio (CSF1058)/2010 (PdR) and highly virulent Margarita/1958 isolates. Sequence comparison of the two viruses recovered from experimental infections in pigs revealed 40 amino acid differences. Interestingly, the amino acid substitutions clustered in E2 and the NS5A and NS5B proteins. A long poly-uridine sequence was identified previously in the 3' untranslated region (UTR) of PdR. We constructed functional cDNA clones of the PdR and Margarita strains and generated eight recombinant viruses by introducing single or multiple gene fragments from Margarita into the PdR backbone. All chimeric viruses had comparable replication characteristics in porcine monocyte-derived macrophages. Recombinant PdR viruses carrying either E2 or NS5A/NS5B of Margarita, with 36 or 5 uridines in the 3'UTR, remained low virulent in 3-month-old pigs. The combination of these elements recovered the high-virulent Margarita phenotype. These results show that CSFV evolution towards attenuated variants in the field involved mutations in both structural and non-structural proteins and the UTRs, which act synergistically to determine virulence.
Collapse
Affiliation(s)
- Yoandry Hinojosa
- Division of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; (Y.H.); (M.L.); (O.G.-N.); (M.G.)
- Department of Infectious Diseases and Pathobiology (DIP), University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas 32700, Cuba; (M.T.F.); (C.L.P.)
| | - Matthias Liniger
- Division of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; (Y.H.); (M.L.); (O.G.-N.); (M.G.)
- Department of Infectious Diseases and Pathobiology (DIP), University of Bern, 3012 Bern, Switzerland
| | - Obdulio García-Nicolás
- Division of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; (Y.H.); (M.L.); (O.G.-N.); (M.G.)
- Department of Infectious Diseases and Pathobiology (DIP), University of Bern, 3012 Bern, Switzerland
| | - Markus Gerber
- Division of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; (Y.H.); (M.L.); (O.G.-N.); (M.G.)
- Department of Infectious Diseases and Pathobiology (DIP), University of Bern, 3012 Bern, Switzerland
| | - Anojen Rajaratnam
- Division of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; (Y.H.); (M.L.); (O.G.-N.); (M.G.)
- Department of Infectious Diseases and Pathobiology (DIP), University of Bern, 3012 Bern, Switzerland
| | - Sara Muñoz-González
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (S.M.-G.); (L.C.); (L.G.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Liani Coronado
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (S.M.-G.); (L.C.); (L.G.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - María Teresa Frías
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas 32700, Cuba; (M.T.F.); (C.L.P.)
| | - Carmen Laura Perera
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas 32700, Cuba; (M.T.F.); (C.L.P.)
| | - Llilianne Ganges
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (S.M.-G.); (L.C.); (L.G.)
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Nicolas Ruggli
- Division of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; (Y.H.); (M.L.); (O.G.-N.); (M.G.)
- Department of Infectious Diseases and Pathobiology (DIP), University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
3
|
Mi S, Wang L, Li H, Bao F, Madera R, Shi X, Zhang L, Mao Y, Yan R, Xia X, Gong W, Shi J, Tu C. Characterization of monoclonal antibodies that specifically differentiate field isolates from vaccine strains of classical swine fever virus. Front Immunol 2022; 13:930631. [PMID: 35958565 PMCID: PMC9361847 DOI: 10.3389/fimmu.2022.930631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Classical swine fever virus (CSFV) is a major animal pathogen threatening the global pork industry. To date, numerous anti-CSFV monoclonal antibodies (mAbs) and their recognizing epitopes have been reported. However, few mAbs were systematically characterized for the capacity to differentiate field CSFV isolates from CSF vaccine strains, and the molecular basis associated with antigenic differences between vaccines and field isolates is still largely unknown. In the present study, recombinant CSFV structural glycoproteins E2 of both virulent and vaccine strains and Erns of vaccine strain were expressed using eukaryotic cells and murine mAbs generated against E2 and Erns. After serial screening and cloning of the hybridomas, the viral spectra of mAbs were respectively determined by indirect fluorescent antibody assay (IFA) using 108 CSFVs, followed by Western blot analysis using expressed glycoproteins of all CSFV sub-genotypes including vaccine strains. The antigenic structures recognized by these mAbs were characterized by epitope mapping using truncated, chimeric, and site-directed mutated E2 and Erns proteins. We have identified two vaccine-specific, one field isolate-specific, and two universal CSFV-specific mAbs and five novel conformational epitopes with critical amino acid (aa) motifs that are associated with these five mAbs: 213EPD215, 271RXGP274, and 37LXLNDG42 on E2 and 38CKGVP42, W81, and D100/V107 on Erns. Particularly, E213 of E2 is field isolate-specific, while N40 of E2 and D100/V107 of Erns are vaccine strain-specific. Results from our study further indicate that N40D of E2 mutation in field strains was likely produced under positive selection associated with long-term mass vaccination, leading to CSFV evasion of host immune response. Taking together, this study provides new insights into the antigenic structure of CSFV E2 and Erns and the differentiating mAbs will contribute to the development of a diagnostic strategy to differentiate C-strain vaccination from natural infection (DIVA) of CSFV in terms of elimination of CSF in China.
Collapse
Affiliation(s)
- Shijiang Mi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonoses Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Fei Bao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Xiju Shi
- Institute of Animal Qurantine Reserach, Science and Technology Research Center of China Customs, Beijing, China
| | - Liying Zhang
- College of Animal Science and Technology, Jilin University, Changchun, China
| | - Yingying Mao
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Renhe Yan
- Department of Research & Development, Guangzhou Bioneeds Biotechnology Co., Ltd, Guangzhou, China
| | - Xianzhu Xia
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonoses Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenjie Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonoses Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Changchun Tu, ; Jishu Shi, ; Wenjie Gong,
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
- *Correspondence: Changchun Tu, ; Jishu Shi, ; Wenjie Gong,
| | - Changchun Tu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonoses Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Changchun Tu, ; Jishu Shi, ; Wenjie Gong,
| |
Collapse
|
4
|
Removal of the E rns RNase Activity and of the 3' Untranslated Region Polyuridine Insertion in a Low-Virulence Classical Swine Fever Virus Triggers a Cytokine Storm and Lethal Disease. J Virol 2022; 96:e0043822. [PMID: 35758667 PMCID: PMC9327722 DOI: 10.1128/jvi.00438-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we assessed the potential synergistic effect of the Erns RNase activity and the poly-U insertion in the 3′ untranslated region (UTR) of the low-virulence classical swine fever virus (CSFV) isolate Pinar de Rio (PdR) in innate and adaptive immunity regulation and its relationship with classical swine fever (CSF) pathogenesis in pigs. We knocked out the Erns RNase activity of PdR and replaced the long polyuridine sequence of the 3′ UTR with 5 uridines found typically at this position, resulting in a double mutant, vPdR-H30K-5U. This mutant induced severe CSF in 5-day-old piglets and 3-week-old pigs, with higher lethality in the newborn (89.5%) than in the older (33.3%) pigs. However, the viremia and viral excretion were surprisingly low, while the virus load was high in the tonsils. Only alpha interferon (IFN-α) and interleukin 12 (IL-12) were highly and consistently elevated in the two groups. Additionally, high IL-8 levels were found in the newborn but not in the older pigs. This points toward a role of these cytokines in the CSF outcome, with age-related differences. The disproportional activation of innate immunity might limit systemic viral spread from the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms. Infection with vPdR-H30K-5U resulted in poor neutralizing antibody responses compared with results obtained previously with the parent and RNase knockout PdR. This study shows for the first time the synergistic effect of the 3′ UTR and the Erns RNase function in regulating innate immunity against CSFV, favoring virus replication in target tissue and thus contributing to disease severity. IMPORTANCE CSF is one of the most relevant viral epizootic diseases of swine, with high economic and sanitary impact. Systematic stamping out of infected herds with and without vaccination has permitted regional virus eradication. However, the causative agent, CSFV, persists in certain areas of the world, leading to disease reemergence. Nowadays, low- and moderate-virulence strains that could induce unapparent CSF forms are prevalent, posing a challenge for disease eradication. Here, we show for the first time the synergistic role of lacking the Erns RNase activity and the 3′ UTR polyuridine insertion from a low-virulence CSFV isolate in innate immunity disproportional activation. This might limit systemic viral spread to the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms, thus contributing to disease severity. These results highlight the role played by the Erns RNase activity and the 3′ UTR in CSFV pathogenesis, providing new perspectives for novel diagnostic tools and vaccine strategies.
Collapse
|
5
|
Nguyen NH, Thi Phuong BN, Nguyen TQ, Do Tien D, Nguyen Thi MD, Nguyen MN. Genotypic diversity of CSFV field strains: A silent risk reduces vaccination efficacy of CSFV vaccines in Vietnam. Virology 2022; 571:39-45. [DOI: 10.1016/j.virol.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/07/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
6
|
Genetic diversity and molecular characterization of classical swine fever virus envelope protein genes E2 and E rns circulating in Vietnam from 2017 to 2019. INFECTION GENETICS AND EVOLUTION 2021; 96:105140. [PMID: 34781037 DOI: 10.1016/j.meegid.2021.105140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Classical swine fever virus (CSFV) is an RNA virus that incurs severe economic costs to swine industries worldwide. This study was conducted to investigate the genetic diversity among CSFV strains circulating in Vietnam, with a focus on their genetic variants relative to four vaccine strains. Samples from clinical cases were collected from different provinces of Central and Southern Vietnam from 2017 to 2019. 21 CSFV-positive samples were selected for amplification and sequencing of the full-length Erns and E2 genes. Phylogenetic analyses of these two genes showed that most CSFV strains circulating in Central and Southern Vietnam from 2017 to 2019 belong to subgroup 2.1c, whereas the remaining strains cluster into subgroup 2.2. All CSFV field strains in this study were genetically distant from group 1 strains. Analysis of the E2 and Erns genes indicated that all CSFV field strains have low sequence identity with the vaccine strains (80-83.5% and 82.3-86% sequence identity for E2 and Erns, respectively). Likewise, amino acid-level sequence analysis showed 87.3-91.1% and 87.6-91.6% sequence identity for E2 and Erns, respectively. Together, our findings indicate that CSFV strains circulating in Vietnam belong to subtypes 2.2 and 2.1c, and we also provide novel insights into the epidemiology, molecular characteristics, genetic diversity, and evolution of these circulating CSFV strains.
Collapse
|
7
|
Identification and Characterization of Swine Influenza Virus H1N1 Variants Generated in Vaccinated and Nonvaccinated, Challenged Pigs. Viruses 2021; 13:v13102087. [PMID: 34696517 PMCID: PMC8539973 DOI: 10.3390/v13102087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Influenza viruses represent a continuous threat to both animal and human health. The 2009 H1N1 A influenza pandemic highlighted the importance of a swine host in the adaptation of influenza viruses to humans. Nowadays, one of the most extended strategies used to control swine influenza viruses (SIVs) is the trivalent vaccine application, whose formulation contains the most frequently circulating SIV subtypes H1N1, H1N2, and H3N2. These vaccines do not provide full protection against the virus, allowing its replication, evolution, and adaptation. To better understand the main mechanisms that shape viral evolution, here, the SIV intra-host diversity was analyzed in samples collected from both vaccinated and nonvaccinated animals challenged with the H1N1 influenza A virus. Twenty-eight whole SIV genomes were obtained by next-generation sequencing, and differences in nucleotide variants between groups were established. Substitutions were allocated along all influenza genetic segments, while the most relevant nonsynonymous substitutions were allocated in the NS1 protein on samples collected from vaccinated animals, suggesting that SIV is continuously evolving despite vaccine application. Moreover, new viral variants were found in both vaccinated and nonvaccinated pigs, showing relevant substitutions in the HA, NA, and NP proteins, which may increase viral fitness under field conditions.
Collapse
|
8
|
Huang YL, Meyer D, Postel A, Tsai KJ, Liu HM, Yang CH, Huang YC, Berkley N, Deng MC, Wang FI, Becher P, Crooke H, Chang CY. Identification of a Common Conformational Epitope on the Glycoprotein E2 of Classical Swine Fever Virus and Border Disease Virus. Viruses 2021; 13:v13081655. [PMID: 34452520 PMCID: PMC8402670 DOI: 10.3390/v13081655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Classical swine fever virus (CSFV) shares high structural and antigenic homology with bovine viral diarrhea virus (BVDV) and border disease virus (BDV). Because all three viruses can infect swine and elicit cross-reactive antibodies, it is necessary to differentiate among them with regard to serological diagnosis of classical swine fever. To understand the mechanism of cross-reactivity, it is important to define common or specific epitopes of these viruses. For this purpose, epitope mapping of six monoclonal antibodies (mAbs) was performed using recombinant expressed antigenic domains of CSFV and BDV E2 proteins. One CSFV-specific conformational epitope and one CSFV and BDV common epitope within domain B/C of E2 were identified. Site-directed mutagenesis confirmed that residues G725 and V738/I738 of the CSFV-specific epitope and P709/L709 and E713 of the second epitope are important for mAbs binding. Infection of CSFV in porcine cells was significantly reduced after pre-incubation of the cells with the domain B/C of E2 or after pre-incubation of CSFV with the mAbs detecting domain B/C. 3D structural modeling suggested that both epitopes are exposed on the surface of E2. Based on this, the identified epitopes represent a potential target for virus neutralization and might be involved in the early steps of CSFV infection.
Collapse
Affiliation(s)
- Yu-Liang Huang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Denise Meyer
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (D.M.); (A.P.); (P.B.)
| | - Alexander Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (D.M.); (A.P.); (P.B.)
| | - Kuo-Jung Tsai
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Hsin-Meng Liu
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Chia-Huei Yang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Yu-Chun Huang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Nicholas Berkley
- OIE Reference Laboratory for Classical Swine Fever, Animal and Plant Health Agency, New Haw KT15 3NB, Surrey, UK;
| | - Ming-Chung Deng
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Paul Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (D.M.); (A.P.); (P.B.)
| | - Helen Crooke
- OIE Reference Laboratory for Classical Swine Fever, Animal and Plant Health Agency, New Haw KT15 3NB, Surrey, UK;
- Correspondence: (H.C.); (C.-Y.C.); Tel.: +44-0-1932-357331 (H.C.); +886-2-2621-2111 (ext. 343) (C.-Y.C.)
| | - Chia-Yi Chang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
- Correspondence: (H.C.); (C.-Y.C.); Tel.: +44-0-1932-357331 (H.C.); +886-2-2621-2111 (ext. 343) (C.-Y.C.)
| |
Collapse
|
9
|
Oliva-Cárdenas A, Fernández-Zamora F, Santana-Rodríguez E, Sordo-Puga Y, Vargas-Hernández MDLC, Rodríguez-Moltó MP, Pérez-Pérez D, Sardina-González T, Duarte CA, León-Goñi A, Blanco -Gámez D, Contreras-Pérez F, Valdés-Faure O, Hernández-Prado R, Acosta-Lago E, Sosa-Testé I, Suárez-Pedroso MF. Safety and immunogenicity in piglets of two immunization schedules initiated at two or three weeks of age with PorvacÒ, a classical swine fever subunit marker vaccine. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Classical swine fever is a highly contagious viral disease with a significant impact on food production worldwide. It currently represents one of the main limitations for the development of the pig industry in Cuba. PorvacÒ is a subunit marker vaccine that confers a very rapid onset of protection. Since there are different production systems in pig breeding, readjustments in the vaccination program are often required. This study compares the safety and efficacy in piglets of two vaccination schedules with PorvacÒ (0-2 weeks and 0-3 weeks), initiated at two or three weeks of age. Clinical monitoring was conducted, and a neutralization peroxidase-linked assay was used to measure the neutralization titers. All immunization regimens were safe and well-tolerated, without local or systemic adverse reactions in the vaccinated animals. Geometric mean neutralizing antibody titers higher than 1/1500 were detected in all groups during the six months of the trial. One month after the second immunization, piglets primed at two weeks of age, and boostered three weeks later, developed significantly higher neutralization titers (1/15644) compared to those vaccinated at a similar age but with a two-week interval between doses (1/5760). However, no significant differences in the titers were found three and six months after vaccination among the four regimens. In summary, all the variants studied are effective, but it is recommended to start vaccination at two weeks old, with the second dose at either two or three weeks later, depending on the production system and the purpose of the farm.
Collapse
Affiliation(s)
- Aymé Oliva-Cárdenas
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Fé Fernández-Zamora
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | | | - María P. Rodríguez-Moltó
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Talia Sardina-González
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Carlos A. Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Avelina León-Goñi
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Diurys Blanco -Gámez
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Francisco Contreras-Pérez
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Odalys Valdés-Faure
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Rosmery Hernández-Prado
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Eric Acosta-Lago
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Ileana Sosa-Testé
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Marisela F. Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| |
Collapse
|
10
|
Wang M, Bohórquez JA, Hinojosa Y, Muñoz-González S, Gerber M, Coronado L, Perera CL, Liniger M, Ruggli N, Ganges L. Abrogation of the RNase activity of E rns in a low virulence classical swine fever virus enhances the humoral immune response and reduces virulence, transmissibility, and persistence in pigs. Virulence 2021; 12:2037-2049. [PMID: 34339338 PMCID: PMC8331007 DOI: 10.1080/21505594.2021.1959715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The prevalence of low virulence classical swine fever virus (CSFV) strains makes viral eradication difficult in endemic countries. However, the determinants for natural CSFV attenuation and persistence in the field remain unidentified. The aim of the present study was to assess the role of the RNase activity of CSFV Erns in pathogenesis, immune response, persistent infection, and viral transmission in pigs. To this end, a functional cDNA clone pPdR-H30K-36U with an Erns lacking RNase activity was constructed based on the low virulence CSFV field isolate Pinar de Rio (PdR). Eighteen 5-day-old piglets were infected with vPdR-H30K-36U. Nine piglets were introduced as contacts. The vPdR-H30K-36U virus was attenuated in piglets compared to the parental vPdR-36U. Only RNA traces were detected in sera and body secretions and no virus was isolated from tonsils, showing that RNase inactivation may reduce CSFV persistence and transmissibility. The vPdR-H30K-36U mutant strongly activated the interferon-α (IFN-α) production in plasmacytoid dendritic cells, while in vivo, the IFN-α response was variable, from moderate to undetectable depending on the animal. This suggests a role of the CSFV Erns RNase activity in the regulation of innate immune responses. Infection with vPdR-H30K-36U resulted in higher antibody levels against the E2 and Erns glycoproteins and in enhanced neutralizing antibody responses when compared with vPdR-36U. These results pave the way toward a better understanding of viral attenuation mechanisms of CSFV in pigs. In addition, they provide novel insights relevant for the development of DIVA vaccines in combination with diagnostic assays for efficient CSF control.
Collapse
Affiliation(s)
- Miaomiao Wang
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | | | - Yoandry Hinojosa
- Division of Virology, Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland.,Centro Nacional De Sanidad Agropecuaria (CENSA), Mayabeque, Cuba
| | - Sara Muñoz-González
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Markus Gerber
- Division of Virology, Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Liani Coronado
- Centro Nacional De Sanidad Agropecuaria (CENSA), Mayabeque, Cuba
| | | | - Matthias Liniger
- Division of Virology, Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Division of Virology, Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| |
Collapse
|
11
|
Patil SS, Indrabalan UB, Suresh KP, Shome BR. Analysis of codon usage bias of classical swine fever virus. Vet World 2021; 14:1450-1458. [PMID: 34316191 PMCID: PMC8304411 DOI: 10.14202/vetworld.2021.1450-1458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Aim: Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious disease in pigs causing 100% mortality in susceptible adult pigs and piglets. High mortality rate in pigs causes huge economic loss to pig farmers. CSFV has a positive-sense RNA genome of 12.3 kb in length flanked by untranslated regions at 5’ and 3’ end. The genome codes for a large polyprotein of 3900 amino acids coding for 11 viral proteins. The 1300 codons in the polyprotein are coded by different combinations of three nucleotides which help the infectious agent to evolve itself and adapt to the host environment. This study performed and employed various methods/techniques to estimate the changes occurring in the process of CSFV evolution by analyzing the codon usage pattern. Materials and Methods: The evolution of viruses is widely studied by analyzing their nucleotides and coding regions/codons using various methods. A total of 115 complete coding regions of CSFVs including one complete genome from our laboratory (MH734359) were included in this study and analysis was carried out using various methods in estimating codon usage bias and evolution. This study elaborates on the factors that influence the codon usage pattern. Results: The effective number of codons (ENC) and relative synonymous codon usage showed the presence of codon usage bias. The mononucleotide (A) has a higher frequency compared to the other mononucleotides (G, C, and T). The dinucleotides CG and CC are underrepresented and overrepresented. The codons CGT was underrepresented and AGG was overrepresented. The codon adaptation index value of 0.71 was obtained indicating that there is a similarity in the codon usage bias. The principal component analysis, ENC-plot, Neutrality plot, and Parity Rule 2 plot produced in this article indicate that the CSFV is influenced by the codon usage bias. The mutational pressure and natural selection are the important factors that influence the codon usage bias. Conclusion: The study provides useful information on the codon usage analysis of CSFV and may be utilized to understand the host adaptation to virus environment and its evolution. Further, such findings help in new gene discovery, design of primers/probes, design of transgenes, determination of the origin of species, prediction of gene expression level, and gene function of CSFV. To the best of our knowledge, this is the first study on codon usage bias involving such a large number of complete CSFVs including one sequence of CSFV from India.
Collapse
Affiliation(s)
- Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Uma Bharathi Indrabalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | | | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| |
Collapse
|
12
|
Genotyping and Molecular Characterization of Classical Swine Fever Virus Isolated in China during 2016-2018. Viruses 2021; 13:v13040664. [PMID: 33921513 PMCID: PMC8069065 DOI: 10.3390/v13040664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Classical swine fever (CSF) is a highly contagious disease of swine caused by classical swine fever virus (CSFV). For decades the disease has been controlled in China by a modified live vaccine (C-strain) of genotype 1. The emergent genotype 2 strains have become predominant in China in the past years that are genetically distant from the vaccine strain. Here, we aimed to evaluate the current infectious status of CSF, and for this purpose 24 isolates of CSFV were identified from different areas of China during 2016–2018. Phylogenetic analysis of NS5B, E2 and full genome revealed that the new isolates were clustered into subgenotype 2.1d and 2.1b, while subgenotype 2.1d was predominant. Moreover, E2 and Erns displayed multiple variations in neutralizing epitope regions. Furthermore, the new isolates exhibited capacity to escape C-strain-derived antibody neutralization compared with the Shimen strain (genotype 1). Potential positive selection sites were identified in antigenic regions of E2 and Erns, which are related with antibody binding affinity. Recombination events were predicted in the new isolates with vaccine strains in the E2 gene region. In conclusion, the new isolates showed molecular variations and antigenic alterations, which provide evidence for the emergence of vaccine-escaping mutants and emphasize the need of updated strategies for CSF control.
Collapse
|
13
|
Suárez-Pedroso M, Sordo-Puga Y, Sosa-Teste I, Rodriguez-Molto MP, Naranjo-Valdés P, Sardina-González T, Santana-Rodríguez E, Montero-Espinosa C, Frías-Laporeaux MT, Fuentes-Rodríguez Y, Pérez-Pérez D, Oliva-Cárdenas A, Pereda CL, González-Fernández N, Bover-Fuentes E, Vargas-Hernández M, Duarte CA, Estrada-García MP. Novel chimeric E2CD154 subunit vaccine is safe and confers long lasting protection against classical swine fever virus. Vet Immunol Immunopathol 2021; 234:110222. [PMID: 33690056 DOI: 10.1016/j.vetimm.2021.110222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
E2CD154 is a vaccine candidate against classical swine fever (CSF) based on a chimeric protein composed of the E2 glycoprotein fused to porcine CD154 antigen, and formulated in the oil adjuvant Montanide™ ISA 50 V2. This vaccine confers early protection in pigs and prevents vertical transmission in pregnant sows. The objectives of this study were to assess the safety of this immunogen in piglets, to compare several doses of antigen in the formulation, and to study the duration of the immunity provided by this vaccine for up to 9 months. Three trials were conducted by immunizing pigs with a two-dose regime of the vaccine. Challenge experiments were carried out with the highly pathogenic Margarita strain. No local or systemic adverse effects were documented, and neither macroscopic nor microscopic pathological findings were observed in the vaccinated animals. The three antigen doses explored were safe and induced CSF protective neutralizing antibodies. The dose of 50 μg was selected for further development because it provided the best clinical and virological protection. Finally, this protective immunity was sustained for at least 9 months. This study demonstrates that E2CD154 vaccine is safe; defines a vaccine dose of 50 μg antigen, and evidences the capacity of this vaccine to confer long term protection from CSFV infection for up to 9 months post- vaccination. These findings complement previous data on the evaluation of this vaccine candidate, and suggest that E2CD154 is a promising alternative to modified live vaccines in CSF endemic areas.
Collapse
Affiliation(s)
- Marisela Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba.
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Iliana Sosa-Teste
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Cuba
| | | | | | - Talía Sardina-González
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carlos Montero-Espinosa
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | | | - Yohandy Fuentes-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Ayme Oliva-Cárdenas
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carmen Laura Pereda
- Centro Nacional de Sanidad Agropecuaria (CENSA), Apdo 10, San José de Las Lajas, Havana, Cuba
| | - Nemecio González-Fernández
- Departamento de Desarrollo de Procesos, Centro de Ingeniería Genética y Biotecnología (CIGB), Camagüey, Cuba
| | - Eddy Bover-Fuentes
- Departamento de Desarrollo de Procesos, Centro de Ingeniería Genética y Biotecnología (CIGB), Camagüey, Cuba
| | - Milagros Vargas-Hernández
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carlos A Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Mario Pablo Estrada-García
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| |
Collapse
|
14
|
The Novel Genetic Background of Infectious Bursal Disease Virus Strains Emerging from the Action of Positive Selection. Viruses 2021; 13:v13030396. [PMID: 33801413 PMCID: PMC7998436 DOI: 10.3390/v13030396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
The circulation in Europe of novel reassortant strains of infectious bursal disease virus (IBDV), containing a unique genetic background composition, represents a serious problem for animal health. Since the emergence of this novel IBDV mosaic was first described in Poland, this scenario has become particularly attractive to uncover the evolutionary forces driving the genetic diversity of IBDV populations. This study additionally addressed the phenotypic characterization of these emergent strains, as well as the main features affecting the viral fitness during the competition process of IBDV lineages in the field. Our results showed how different evolutionary mechanisms modulate the genetic diversity of co-existent IBDV lineages, leading to the error catastrophe effect, Muller ratchet effect, or prevalence, depending on their genetic compositions. We also determined that the action of the positive selection pressure, depending on the genomic segment on which it is acting, can drive two main phenotypes for IBDV: immune-escaping strains from the selection on segment A or strains with functional advantages from the selection on segment B. This last group seems to possess an increased fitness landscape in the viral quasispecies composition, presenting better adaptability to dissimilar environmental conditions and likely becoming the dominant population. The reassortant strains also exhibited a lower mortality rate compared with the well-known vvIBDV strains, which can facilitate their spreading.
Collapse
|
15
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
16
|
Chen JY, Wu CM, Chen ZW, Liao CM, Deng MC, Chia MY, Huang C, Chien MS. Evaluation of classical swine fever E2 (CSF-E2) subunit vaccine efficacy in the prevention of virus transmission and impact of maternal derived antibody interference in field farm applications. Porcine Health Manag 2021; 7:9. [PMID: 33431028 PMCID: PMC7798205 DOI: 10.1186/s40813-020-00188-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/26/2020] [Indexed: 01/29/2023] Open
Abstract
Background Classical swine fever (CSF) is one of the most devastating pig diseases that affect the swine industry worldwide. Besides stamping out policy for eradication, immunization with vaccines of live attenuated CSF or the CSF-E2 subunit is an efficacious measure of disease control. However, after decades of efforts, it is still hard to eliminate CSF from endemically affected regions and reemerging areas. Most of previous studies demonstrated the efficacy of different CSF vaccines in laboratories under high containment conditions, which may not represent the practical performance in field farms. The inadequate vaccine efficacy induced by unrestrained factors may lead to chronic or persistent CSF infection in animals that develop a major source for virus shedding among pig populations. In this study, a vaccination-challenge-cohabitation trial on specific-pathogen-free (SPF) pigs and long-term monitoring of conventional sows and their offspring were used to evaluate the efficacy and the impact of maternally derived antibody (MDA) interference on CSF vaccines in farm applications. Results The trials demonstrated higher neutralizing antibody (NA) titers with no clinical symptoms and significant pathological changes in the CSF-E2 subunit vaccine immunized group after CSFV challenge. Additionally, none of the sentinel pigs were infected during cohabitation indicating that the CSF-E2 subunit vaccine could provoke adequately acquired immunity to prevent horizontal transmission. In field farm applications, sows immunized with CSF-E2 subunit vaccine revealed an average of higher and consistent antibody level with significant reduction of CSF viral RNA detection via saliva monitoring in contrast to those of live attenuated CSF vaccine immunized sows possessing diverse antibody titer distributions and higher viral loads. Furthermore, early application of the CSF-E2 subunit vaccine in 3-week-old piglets illustrated no MDA interference on primary immunization and could elicit consistent and long-lasting adequate antibody response suggesting the flexibility of CSF-E2 subunit vaccine on vaccination program determination. Conclusions The CSF-E2 subunit vaccine demonstrated significant efficacy and no MDA interference for immunization in both pregnant sows and piglets. These advantages provide a novel approach to avoid possible virus shedding in sow population and MDA interference in piglets for control of CSF in field farm applications. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-020-00188-6.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China
| | - Chi-Ming Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China
| | - Zeng-Weng Chen
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 52, Kedong 2nd Rd., Zhunan Township, Miaoli County, 350401, Taiwan, Republic of China
| | - Chih-Ming Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China
| | - Ming-Chung Deng
- Animal Health Research Institute, Council of Agriculture, 376 Chung-Cheng Road, Tansui, Taipei, 25158, Taiwan, Republic of China
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China
| | - Chienjin Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China.
| | - Maw-Sheng Chien
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China.
| |
Collapse
|
17
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Decrypting the Origin and Pathogenesis in Pregnant Ewes of a New Ovine Pestivirus Closely Related to Classical Swine Fever Virus. Viruses 2020; 12:v12070775. [PMID: 32709168 PMCID: PMC7411581 DOI: 10.3390/v12070775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
This study shows the origin and the pathogenic role of a novel ovine pestivirus (OVPV) isolated in 2017 in Italy, as a pathogenic agent causing severe abortions after infection in pregnant ewes and high capacity for virus trans-placental transmission as well as the birth of lambs suffering OVPV-persistent infection. The OVPV infection induced early antibody response detected by the specific ELISA against classical swine fever virus (CSFV), another important virus affecting swine. The neutralizing antibody response were similar against CSFV strains from genotype 2 and the OVPV. These viruses showed high identity in the B/C domain of the E2-glycoprotein. Close molecular diagnostics cross-reactivity between CSFV and OVPV was found and a new OVPV molecular assay was developed. The phylodynamic analysis showed that CSFV seems to have emerged as the result of an inter-species jump of Tunisian sheep virus (TSV) from sheep to pigs. The OVPV and the CSFV share the TSV as a common ancestor, emerging around 300 years ago. This suggests that the differentiation of TSV into two dangerous new viruses for animal health (CSFV and OVPV) was likely favored by human intervention for the close housing of multiple species for intensive livestock production.
Collapse
|
19
|
Bohórquez JA, Muñoz-González S, Pérez-Simó M, Muñoz I, Rosell R, Coronado L, Domingo M, Ganges L. Foetal Immune Response Activation and High Replication Rate during Generation of Classical Swine Fever Congenital Infection. Pathogens 2020; 9:pathogens9040285. [PMID: 32295279 PMCID: PMC7238013 DOI: 10.3390/pathogens9040285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Classical swine fever virus (CSFV) induces trans-placental transmission and congenital viral persistence; however, the available information is not updated. Three groups of sows were infected at mid-gestation with either a high, moderate or low virulence CSFV strains. Foetuses from sows infected with high or low virulence strain were obtained before delivery and piglets from sows infected with the moderate virulence strain were studied for 32 days after birth. The low virulence strain generated lower CSFV RNA load and the lowest proportion of trans-placental transmission. Severe lesions and mummifications were observed in foetuses infected with the high virulence strain. Sows infected with the moderately virulence strain showed stillbirths and mummifications, one of them delivered live piglets, all CSFV persistently infected. Efficient trans-placental transmission was detected in sows infected with the high and moderate virulence strain. The trans-placental transmission occurred before the onset of antibody response, which started at 14 days after infection in these sows and was influenced by replication efficacy of the infecting strain. Fast and solid immunity after sow vaccination is required for prevention of congenital viral persistence. An increase in the CD8+ T-cell subset and IFN-alpha response was found in viremic foetuses, or in those that showed higher viral replication in tissue, showing the CSFV recognition capacity by the foetal immune system after trans-placental infection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (S.M.-G.); (M.P.-S.); (I.M.); (R.R.); (L.C.); (M.D.)
| | - Sara Muñoz-González
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (S.M.-G.); (M.P.-S.); (I.M.); (R.R.); (L.C.); (M.D.)
| | - Marta Pérez-Simó
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (S.M.-G.); (M.P.-S.); (I.M.); (R.R.); (L.C.); (M.D.)
| | - Iván Muñoz
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (S.M.-G.); (M.P.-S.); (I.M.); (R.R.); (L.C.); (M.D.)
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (S.M.-G.); (M.P.-S.); (I.M.); (R.R.); (L.C.); (M.D.)
- Departament d’Agricultura, Ramadería, Pesca, Alimentació I Medi Natural i Rural (DAAM), 08007 Generalitat de Catalunya, Spain
| | - Liani Coronado
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (S.M.-G.); (M.P.-S.); (I.M.); (R.R.); (L.C.); (M.D.)
- Centro Nacional de Sanidad Agropecuaria (CENSA), Mayabeque 32700, Cuba
| | - Mariano Domingo
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (S.M.-G.); (M.P.-S.); (I.M.); (R.R.); (L.C.); (M.D.)
- Servei de Diagnòstic de Patologia Veterinària (SDPV), Departament de Sanitat I d’Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (S.M.-G.); (M.P.-S.); (I.M.); (R.R.); (L.C.); (M.D.)
- Correspondence:
| |
Collapse
|
20
|
SERTA Domain Containing Protein 1 (SERTAD1) Interacts with Classical Swine Fever Virus Structural Glycoprotein E2, Which Is Involved in Virus Virulence in Swine. Viruses 2020; 12:v12040421. [PMID: 32283651 PMCID: PMC7232485 DOI: 10.3390/v12040421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
E2 is the major structural glycoprotein of the classical swine fever virus (CSFV). E2 has been shown to be involved in important virus functions such as replication and virulence in swine. Using the yeast two-hybrid system, we previously identified several host proteins specifically interacting with CSFV E2. Here, we analyze the protein interaction of E2 with SERTA domain containing protein 1 (SERTAD1), a factor involved in the stimulation of the transcriptional activities of different host genes. We have confirmed that the interaction between these two proteins occurs in CSFV-infected swine cells by using a proximity ligation assay and confocal microscopy. Amino acid residues in the CSFV E2 protein that are responsible for mediating the interaction with SERTAD1 were mapped by a yeast two-hybrid approach using a randomly mutated E2 library. Using that information, a recombinant CSFV mutant (E2ΔSERTAD1v) that harbors substitutions in those residues mediating the protein-interaction with SERTAD1 was developed and used to study the role of the E2-SERTAD1 interaction in viral replication and virulence in swine. CSFV E2ΔSERTAD1v, when compared to the parental BICv, showed a clearly decreased ability to replicate in the SK6 swine cell line and a more severe replication defect in primary swine macrophage cultures. Importantly, 80% of animals infected with E2ΔSERTAD1v survived infection, remaining clinically normal during the 21-day observational period. This result would indicate that the ability of CSFV E2 to bind host SERTAD1 protein during infection plays a critical role in virus virulence.
Collapse
|
21
|
Swine Host Protein Coiled-Coil Domain-Containing 115 (CCDC115) Interacts with Classical Swine Fever Virus Structural Glycoprotein E2 during Virus Replication. Viruses 2020; 12:v12040388. [PMID: 32244508 PMCID: PMC7232474 DOI: 10.3390/v12040388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 01/15/2023] Open
Abstract
Interactions between the major structural glycoprotein E2 of classical swine fever virus (CSFV) with host proteins have been identified as important factors affecting virus replication and virulence. Previously, using the yeast two-hybrid system, we identified swine host proteins specifically interacting with CSFV E2. In this report, we use a proximity ligation assay to demonstrate that swine host protein CCDC115 interacts with E2 in CSFV-infected swine cells. Using a randomly mutated E2 library in the context of a yeast two-hybrid methodology, specific amino acid mutations in the CSFV E2 protein responsible for disrupting the interaction with CCDC115 were identified. A recombinant CSFV mutant (E2ΔCCDC115v) harboring amino acid changes disrupting the E2 protein interaction with CCDC115 was produced and used as a tool to assess the role of the E2–CCDC115 interaction in viral replication and virulence in swine. CSFV E2ΔCCDC115v showed a slightly decreased ability to replicate in the SK6 swine cell line and a greater replication defect in primary swine macrophage cultures. A decreased E2–CCDC115 interaction detected by PLA is observed in cells infected with E2ΔCCDC115v. Importantly, animals intranasally infected with 105 TCID50 of E2ΔCCDC115v experienced a significantly longer survival period when compared with those infected with the parental Brescia strain. This result would indicate that the ability of CSFV E2 to bind host CCDC115 protein during infection plays an important role in virus replication in swine macrophages and in virus virulence during the infection in domestic swine.
Collapse
|
22
|
Giangaspero M, Zhang SQ. Genomic characteristics of classical swine fever virus strains of bovine origin according to primary and secondary sequence-structure analysis. Open Vet J 2020; 10:94-115. [PMID: 32426263 PMCID: PMC7193884 DOI: 10.4314/ovj.v10i1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/04/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Classical swine fever virus (CSFV), species member of the family Flaviviridae, is generally considered restricted to domestic and wild suids. The circulation of CFSV has been detected in cattle herds in China and India. Natural infection appeared associated with clinical signs in some cases. Aim: The secondary structures of the internal ribosome entry site in the 5′ untranslated region (UTR) were used for the genomic characterization of bovine strains. Methods: Sequences have been compared to the representative CSFV strains isolated from pigs, vaccines, and contaminants from porcine cell lines and an ovine strain isolated in Spain. Results: The observed sequences from cattle showed a genetic relatedness with live-attenuated vaccine strains used in pigs. Sequence characteristics of the Chinese strain S171 are genetically distant from the previously reported CSFV genotypes, suggesting a new outgroup in the species, described for the first time, and named CSFV-d. Other Chinese strains were genetically closely related to CSFV genotype a2 (Alfort type) pig strains. Indian strains, reported from the states of Tamil Nadu and Meghalaya, were genetically closely related to CSFV genotype a1 (Brescia type) and a5 pig strains, respectively. Conclusion: These preliminary observations are new and relevant in countries, where CSFV control and eradication strategies are applied.
Collapse
Affiliation(s)
| | - Shu-Qin Zhang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, No 4899 Juye Street, Changchun, Jilin, People's Republic of China
| |
Collapse
|
23
|
Fonseca-Rodríguez O, Centelles García Y, Alfonso Zamora P, Ferrer-Miranda E, Montano DDLN, Blanco M, Gutiérrez Y, Calistri P, Santoro KR, Percedo MI. Classical Swine Fever in a Cuban Zone Intended for Eradication: Spatiotemporal Clustering and Risk Factors. Front Vet Sci 2020; 7:38. [PMID: 32118061 PMCID: PMC7012804 DOI: 10.3389/fvets.2020.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/15/2020] [Indexed: 11/25/2022] Open
Abstract
Classical Swine Fever (CSF) is an endemic disease in Cuba, and an eradication strategy by zones is planned by the Official Veterinary Service. The aim of this study was to identify high-risk areas of CSF and the risk factors associated with the disease occurrence in the Pinar del Río province, one of the prioritized areas in the eradication strategy. The outbreak occurrence at district level was analyzed through a 7-year period (2009 to 2015). A high-risk cluster (RR = 5.13, 95% CI 3.49–7.56) was detected during the last 2 years of the study period in the eastern half of the province, with 38 out of 97 districts included. The rate of CSF-affected holdings had a significant increase during 2014–2015 and seems to have occurred mainly in the high-risk cluster area. Swine population density by district (heads/km2) and road length (km) by district were associated with the disease outbreak occurrence. These results provide new insights into the knowledge of the epidemiology of the disease in Cuban endemic conditions and can contribute to improving the control and the eradication strategy in this situation.
Collapse
Affiliation(s)
- Osvaldo Fonseca-Rodríguez
- National Center for Animal and Plant Health (CENSA), OIE Collaborating Center for Reduction of the Risk of Disasters in Animal Health, Carretera de Jamaica y Autopista Nacional, San José de las Lajas, Cuba.,Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Yosdany Centelles García
- National Center for Animal and Plant Health (CENSA), OIE Collaborating Center for Reduction of the Risk of Disasters in Animal Health, Carretera de Jamaica y Autopista Nacional, San José de las Lajas, Cuba
| | - Pastor Alfonso Zamora
- National Center for Animal and Plant Health (CENSA), OIE Collaborating Center for Reduction of the Risk of Disasters in Animal Health, Carretera de Jamaica y Autopista Nacional, San José de las Lajas, Cuba
| | - Edyniesky Ferrer-Miranda
- National Center for Animal and Plant Health (CENSA), OIE Collaborating Center for Reduction of the Risk of Disasters in Animal Health, Carretera de Jamaica y Autopista Nacional, San José de las Lajas, Cuba.,Federal Rural University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, Recife, Brazil
| | - Damarys de Las Nieves Montano
- National Center for Animal and Plant Health (CENSA), OIE Collaborating Center for Reduction of the Risk of Disasters in Animal Health, Carretera de Jamaica y Autopista Nacional, San José de las Lajas, Cuba
| | - Miriam Blanco
- Animal Health Division, Ministry of Agriculture, Pinar del Río, Cuba
| | - Yobani Gutiérrez
- Animal Health Division, Ministry of Agriculture, Pinar del Río, Cuba
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," National Reference Centre for Epidemiology and Risk Analysis, Teramo, Italy
| | - Kleber Régis Santoro
- Federal Rural University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, Recife, Brazil
| | - María Irian Percedo
- National Center for Animal and Plant Health (CENSA), OIE Collaborating Center for Reduction of the Risk of Disasters in Animal Health, Carretera de Jamaica y Autopista Nacional, San José de las Lajas, Cuba
| |
Collapse
|
24
|
Xu H, Wang Y, Han G, Fang W, He F. Identification of E2 with improved secretion and immunogenicity against CSFV in piglets. BMC Microbiol 2020; 20:26. [PMID: 32019519 PMCID: PMC7001342 DOI: 10.1186/s12866-020-1713-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Outbreaks of Classical swine fever virus (CSFV) cause significant economic losses in the swine industry. Vaccination is the major method to prevent and control the disease. As live attenuated vaccines fail to elicit differentiable immunity between infected and vaccinated animals, subunit vaccine was considered as an alternative candidate to prevent and eradicate CSFV. Subunit vaccines present advantages in DIVA immunogenicity and safety. The technology was limited due to the low yield and the high cost with multiple and large doses. The native E2 signal peptide has not been well defined before. Here, the aim of this study is to develop a cost-effective and efficacious E2 vaccine candidate against CSFV with signal peptide and E2 sequence selection. RESULTS A novel CSFV E2 sequence (E2ZJ) was identified from an epidemic strain of Zhejiang for outstanding secretion in baculovirus and enhanced immunogenicity. E2 secretion induced with the selected signal peptide, SPZJ (SP23), increase at least 50% as compared to any other signal peptides tested. Besides, unique antigenic features were identified in E2ZJ. As indicated with immunized sera in IFA against CSFV infection, E2ZJ elicited CSFV antibodies at the earlier stage than other E2 types tested in mice. Moreover, higher level of neutralizing and CSFV antibodies against CSFV with E2ZJ was detected than other E2s with the same dosage at 28 dpi. Further, E2ZJ successfully elicited neutralizing immunity in piglets. A single dose of 5 μg of E2ZJ was sufficient to induce protective antibodies against CSFV in piglets and provided 100% protection against lethal virus challenge. CONCLUSIONS Our studies provide evidence that E2ZJ guided by a novel E2 signal peptide (SPZJ) was efficiently secreted and presented significantly improved immunogenicity than conventional E2 vaccines. Moreover, a single dose of 5 μg E2ZJ is efficacious against CSFV in piglets.
Collapse
Affiliation(s)
- Huiling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Yanli Wang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Guangwei Han
- Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
25
|
A Polyuridine Insertion in the 3' Untranslated Region of Classical Swine Fever Virus Activates Immunity and Reduces Viral Virulence in Piglets. J Virol 2020; 94:JVI.01214-19. [PMID: 31645448 PMCID: PMC6955259 DOI: 10.1128/jvi.01214-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 01/15/2023] Open
Abstract
Classical swine fever (CSF), a highly contagious viral disease of pigs, is still endemic in some countries of Asia and Central and South America. Considering that the 3′ untranslated region (3′ UTR) plays an important role in flavivirus replication, the present study showed for the first time that a long polyuridine sequence acquired in the 3′ UTR by an endemic CSFV isolate can activate immunity, control viral replication, and modulate disease in piglets. Our findings provide new avenues for the development of novel vaccines against infections with CSF virus and other flaviviruses. Knowledge of molecular virulence determinants is also relevant for future development of rapid and efficient diagnostic tools for the prediction of the virulence of field isolates and for efficient CSF control. Low-virulence classical swine fever virus (CSFV) strains make CSF eradication particularly difficult. Few data are available on the molecular determinants of CSFV virulence. The aim of the present study was to assess a possible role for CSFV virulence of a unique, uninterrupted 36-uridine (poly-U) sequence found in the 3′ untranslated region (3′ UTR) of the low-virulence CSFV isolate Pinar de Rio (PdR). To this end, a pair of cDNA-derived viruses based on the PdR backbone were generated, one carrying the long poly-U insertion in the 3′ UTR (vPdR-36U) and the other harboring the standard 5 uridines at this position (vPdR-5U). Two groups of 20 5-day-old piglets were infected with vPdR-36U and vPdR-5U. Ten contact piglets were added to each group. Disease progression, virus replication, and immune responses were monitored for 5 weeks. The vPdR-5U virus was significantly more virulent than the vPdR-36U virus, with more severe disease, higher mortality, and significantly higher viral loads in serum and body secretions, despite similar replication characteristics in cell culture. The two viruses were transmitted to all contact piglets. Ninety percent of the piglets infected with vPdR-36U seroconverted, while only one vPdR-5U-infected piglet developed antibodies. The vPdR-5U-infected piglets showed only transient alpha interferon (IFN-α) responses in serum after 1 week of infection, while the vPdR-36U-infected piglets showed sustained IFN-α levels during the first 2 weeks. Taken together, these data show that the 3′ UTR poly-U insertion acquired by the PdR isolate reduces viral virulence and activates the innate and humoral immune responses without affecting viral transmission. IMPORTANCE Classical swine fever (CSF), a highly contagious viral disease of pigs, is still endemic in some countries of Asia and Central and South America. Considering that the 3′ untranslated region (3′ UTR) plays an important role in flavivirus replication, the present study showed for the first time that a long polyuridine sequence acquired in the 3′ UTR by an endemic CSFV isolate can activate immunity, control viral replication, and modulate disease in piglets. Our findings provide new avenues for the development of novel vaccines against infections with CSF virus and other flaviviruses. Knowledge of molecular virulence determinants is also relevant for future development of rapid and efficient diagnostic tools for the prediction of the virulence of field isolates and for efficient CSF control.
Collapse
|
26
|
Coronado L, Rios L, Frías MT, Amarán L, Naranjo P, Percedo MI, Perera CL, Prieto F, Fonseca-Rodriguez O, Perez LJ. Positive selection pressure on E2 protein of classical swine fever virus drives variations in virulence, pathogenesis and antigenicity: Implication for epidemiological surveillance in endemic areas. Transbound Emerg Dis 2019; 66:2362-2382. [PMID: 31306567 DOI: 10.1111/tbed.13293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/08/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022]
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is considered one of the most important infectious diseases with devasting consequences for the pig industry. Recent reports describe the emergence of new CSFV strains resulting from the action of positive selection pressure, due mainly to the bottleneck effect generated by ineffective vaccination. Even though a decrease in the genetic diversity of the positively selected CSFV strains has been observed by several research groups, there is little information about the effect of this selective force on the virulence degree, antigenicity and pathogenicity of this type of strains. Hence, the aim of the current study was to determine the effect of the positive selection pressure on these three parameters of CSFV strains, emerged as result of the bottleneck effects induced by improper vaccination in a CSF-endemic area. Moreover, the effect of the positively selected strains on the epidemiological surveillance system was assessed. By the combination of in vitro, in vivo and immunoinformatic approaches, we revealed that the action of the positive selection pressure induces a decrease in virulence and alteration in pathogenicity and antigenicity. However, we also noted that the evolutionary process of CSFV, especially in segregated microenvironments, could contribute to the gain-fitness event, restoring the highly virulent pattern of the circulating strains. Besides, we denoted that the presence of low virulent strains selected by bottleneck effect after inefficient vaccination can lead to a relevant challenge for the epidemiological surveillance of CSF, contributing to under-reports of the disease, favouring the perpetuation of the virus in the field. In this study, B-cell and CTL epitopes on the E2 3D-structure model were also identified. Thus, the current study provides novel and significant insights into variation in virulence, pathogenesis and antigenicity experienced by CSFV strains after the positive selection pressure effect.
Collapse
Affiliation(s)
- Liani Coronado
- Centro Nacional de Sanidad Agropecuaria (CENSA), OIE Collaborating Centre for Diagnosis and Risk Analysis of the Caribbean Region, La Habana, Cuba
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, New Brunswick, Canada
| | - María Teresa Frías
- Centro Nacional de Sanidad Agropecuaria (CENSA), OIE Collaborating Centre for Diagnosis and Risk Analysis of the Caribbean Region, La Habana, Cuba
| | - Laymara Amarán
- National Laboratory for Veterinary Diagnostic (NLVD), La Habana, Cuba
| | | | - María Irian Percedo
- Centro Nacional de Sanidad Agropecuaria (CENSA), OIE Collaborating Centre for Diagnosis and Risk Analysis of the Caribbean Region, La Habana, Cuba
| | - Carmen Laura Perera
- Centro Nacional de Sanidad Agropecuaria (CENSA), OIE Collaborating Centre for Diagnosis and Risk Analysis of the Caribbean Region, La Habana, Cuba
| | - Felix Prieto
- National Laboratory for Veterinary Diagnostic (NLVD), La Habana, Cuba
| | | | - Lester J Perez
- Department of Clinical Veterinary Medicine, College of Veterinary Science, University of Illinois, Urbana, IL, USA.,College of Veterinary Science, Veterinary Diagnostic Laboratory (VDL), University of Illinois, Urbana, IL, USA
| |
Collapse
|
27
|
Coronado L, Bohórquez JA, Muñoz-González S, Perez LJ, Rosell R, Fonseca O, Delgado L, Perera CL, Frías MT, Ganges L. Investigation of chronic and persistent classical swine fever infections under field conditions and their impact on vaccine efficacy. BMC Vet Res 2019; 15:247. [PMID: 31307464 PMCID: PMC6632193 DOI: 10.1186/s12917-019-1982-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies have hypothesized that circulation of classical swine fever virus (CSFV) variants when the immunity induced by the vaccine is not sterilizing might favour viral persistence. Likewise, in addition to congenital viral persistence, CSFV has also been proven to generate postnatal viral persistence. Under experimental conditions, postnatal persistently infected pigs were unable to elicit a specific immune response to a CSFV live attenuated vaccine via the mechanism known as superinfection exclusion (SIE). Here, we study whether subclinical forms of classical swine fever (CSF) may be present in a conventional farm in an endemic country and evaluate vaccine efficacy under these types of infections in field conditions. Results Six litters born from CSF-vaccinated gilts were randomly chosen from a commercial Cuban farm at 33 days of age (weaning). At this time, the piglets were vaccinated with a lapinized live attenuated CSFV C-strain vaccine. Virological and immunological analyses were performed before and after vaccination. The piglets were clinically healthy at weaning; however, 82% were viraemic, and the rectal swabs in most of the remaining 18% were positive. Only five piglets from one litter showed a specific antibody response. The tonsils and rectal swabs of five sows were CSFV positive, and only one of the sows showed an antibody response. After vaccination, 98% of the piglets were unable to clear the virus and to seroconvert, and some of the piglets showed polyarthritis and wasting after 36 days post vaccination. The CSFV E2 glycoprotein sequences recovered from one pig per litter were the same. The amino acid positions 72(R), 20(L) and 195(N) of E2 were identified in silico as positions associated with adaptive advantage. Conclusions Circulation of chronic and persistent CSF infections was demonstrated in field conditions under a vaccination programme. Persistent infection was predominant. Here, we provide evidence that, in field conditions, subclinical infections are not detected by clinical diagnosis and, despite being infected with CSFV, the animals are vaccinated, rather than diagnosed and eliminated. These animals are refractory to vaccination, likely due to the SIE phenomenon. Improvement of vaccination strategies and diagnosis of subclinical forms of CSF is imperative for CSF eradication. Electronic supplementary material The online version of this article (10.1186/s12917-019-1982-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sara Muñoz-González
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lester Josue Perez
- University of Illinois, College of Veterinary Science, Department of Clinical Veterinary Medicine, Urbana, Illinois, 61802, United States
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament d'Agricultura Ramaderia i Pesca (DARP), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Osvaldo Fonseca
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Laiyen Delgado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Carmen Laura Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Maria Teresa Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas, Mayabeque, Cuba
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
28
|
Bohórquez JA, Wang M, Pérez-Simó M, Vidal E, Rosell R, Ganges L. Low CD4/CD8 ratio in classical swine fever postnatal persistent infection generated at 3 weeks after birth. Transbound Emerg Dis 2018; 66:752-762. [PMID: 30457708 PMCID: PMC7379727 DOI: 10.1111/tbed.13080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/09/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
Abstract
Classical swine fever virus (CSFV) is one of the most important pathogens affecting swine. After infection with a moderate virulence strain at 8 hours after birth, CSFV is able to induce viral persistence. These animals may appear clinically healthy or showed unspecific clinical signs despite the permanent viremia and high viral shedding, in absence of immune response to the virus. Given the role played by this infection in disease control, we aimed to evaluate the capacity of CSFV to induce postnatal persistent infection at 3 weeks after birth. Nine pigs were CSFV infected and sampled weekly during 6 weeks and viral, clinical, pathological and immunological tests were carried out. Also, the CD4/CD8 ratio was calculated with the purpose to relate this marker with the CSFV persistent infection. The IFN‐α response was detected mainly 1 week after infection, being similar in all the infected animals. However, 44.4% of animals were CSFV persistently infected, 33.3% died and 22.2% developed specific antibody response. Interestingly, in persistently infected pigs, the T‐CD8 population was increased, the T‐CD4 subset was decreased and lower CD4/CD8 ratios were detected. This is the first report of CSFV capacity to confer postnatal persistent infection in pigs infected at 3 weeks after birth, an age in which the weaning could be carried out in some swine production systems. This type of infected animals shed high amounts of virus and are difficult to evaluate from the clinical and anatomopathological point of view. Therefore, the detection of this type of infection and its elimination in endemic areas will be relevant for global CSF eradication. Finally, the low CD4/CD8 ratios found in persistently infected animals may be implicated in maintaining high CSFV replication during persistence and further studies will be performed to decipher the role of these cells in CSFV immunopathogenesis.
Collapse
Affiliation(s)
| | - Miaomiao Wang
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Marta Pérez-Simó
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Enric Vidal
- IRTA-CReSA, Centre de Recerca en Sanitat Animal, Barcelona, Spain
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain.,Departament d'Agricultura, Ramaderia i Pesca (DARP), Generalitat de Catalunya, Barcelona, Spain
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| |
Collapse
|
29
|
Rios L, Núñez JI, Díaz de Arce H, Ganges L, Pérez LJ. Revisiting the genetic diversity of classical swine fever virus: A proposal for new genotyping and subgenotyping schemes of classification. Transbound Emerg Dis 2018; 65:963-971. [PMID: 29799671 DOI: 10.1111/tbed.12909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/09/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022]
Abstract
Classical swine fever (CSF) is a highly contagious febrile viral disease caused by CSF virus (CSFV), and it is considered one of the most important infectious diseases that affect domestic pigs and wild boar. Previous molecular epidemiology studies have revealed that the diversity of CSFV comprises three main genotypes and different subgenotypes defined using a reliable cut-off to accurately classify CSFV at genotype and subgenotype levels. However, a growing number of CSFV both complete genome and full E2 gene sequences have been submitted to GenBank (more than 500 sequences are currently available, revised on December 1, 2017). Therefore, the aim of this study was to revisit the taxonomy of CSFV at genotype and subgenotype levels, to unify nomenclature and to provide an update to the classification of CSFV. We propose here a new genotyping scheme with five well-defined CSFV genotypes (CSFV Genotypes 1-5) and 14 subgenotypes (seven for each of the CSFV Genotype 1 and CSFV Genotype 2). The findings showed in this study are relevant for molecular epidemiology approaches and will help to better understand the genetic diversity and spreading of CSFV at a global scale. The update in the classification of CSFV will allow the scientific community to establish more accurately the links among different outbreaks of the disease.
Collapse
Affiliation(s)
- Liliam Rios
- University of New Brunswick, Saint John, NB, Canada
| | - José I Núñez
- IRTA-CReSA, Centre de Recerca en Sanitat Animal, Barcelona, Spain
| | - Heidy Díaz de Arce
- Hospital Italiano de Buenos Aires, Juan D. Perón 4190, Buenos Aires, Argentina
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Lester J Pérez
- Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| |
Collapse
|
30
|
Rios L, Pérez LJ. Commentary: Genetic evolution of classical swine fever virus under immune environments conditioned by genotype 1-based modified live virus vaccine. Front Vet Sci 2018; 5:55. [PMID: 29620073 PMCID: PMC5871677 DOI: 10.3389/fvets.2018.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/05/2018] [Indexed: 11/24/2022] Open
Affiliation(s)
- Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB, Canada
| | - Lester J Pérez
- Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, NB, Canada
| |
Collapse
|
31
|
Humoral and cellular immune response in mice induced by the classical swine fever virus E2 protein fused to the porcine CD154 antigen. Biologicals 2018; 52:67-71. [DOI: 10.1016/j.biologicals.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 08/23/2017] [Accepted: 12/22/2017] [Indexed: 01/15/2023] Open
|
32
|
Yoo SJ, Kwon T, Kang K, Kim H, Kang SC, Richt JA, Lyoo YS. Genetic evolution of classical swine fever virus under immune environments conditioned by genotype 1-based modified live virus vaccine. Transbound Emerg Dis 2018; 65:735-745. [PMID: 29319233 DOI: 10.1111/tbed.12798] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 12/26/2022]
Abstract
Modified live vaccines (MLVs) based on genotype 1 strains, particularly C-strain, have been used to prevent and control classical swine fever virus (CSFV) worldwide. Nevertheless, a shift in the predominant CSFV strains circulating in the field from genotype 1 or 3 to genotype 2 is seen. Genotype 2 is genetically distant from the vaccine strains and was recently reported during outbreaks after vaccine failure; this has raised concerns that vaccination has influenced viral evolution. In Korea in 2016, there was an unexpected CSF outbreak in a MLV-vaccinated commercial pig herd. The causative CSFV strain was genetically distinct from previously isolated Korean strains but similar to recent Chinese strains exhibiting enhanced capacity to escape neutralization; this suggests the need for global cooperative research on the evolution of CSFV. We analysed global E2 sequences, using bioinformatics tools, revealing the evolutionary pathways of CSFV. Classical swine fever virus genotypes 1 and 2 experienced different degrees and patterns of evolutionary growth. Whereas genotype 1 stayed relatively conserved over time, the genetic diversity of genotype 2 has progressively expanded, with few fluctuations. It was determined that genotype 2 evolved under lower immune pressures and at a higher evolutionary rate than genotype 1. Further, several selected codons, under diversifying selection in genotype 1 but under purifying selection in genotype 2, correspond to antigenic determinants, which could lead to evasion of vaccine-induced immunity. Our findings provide evidence that evolutionary changes in CSFV are the result of the disproportionate usage of the CSF MLVs in endemic areas; this underscores the need to develop mitigation strategies to minimize the substantial risk associated with the emergence of vaccine-escaping mutants.
Collapse
Affiliation(s)
- S J Yoo
- College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - T Kwon
- College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - K Kang
- Sooje Animal Hospital, Dongducheon-si, Gyeonggi-do, Korea
| | - H Kim
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Korea
| | - S C Kang
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Korea
| | - J A Richt
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases, Kansas State University, Manhattan, KS, USA
| | - Y S Lyoo
- College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, South Korea
| |
Collapse
|
33
|
Lim SI, Kim YK, Lim JA, Han SH, Hyun HS, Kim KS, Hyun BH, Kim JJ, Cho IS, Song JY, Choi SH, Kim SH, An DJ. Antigenic characterization of classical swine fever virus YC11WB isolates from wild boar. J Vet Sci 2018; 18:201-207. [PMID: 27515269 PMCID: PMC5489467 DOI: 10.4142/jvs.2017.18.2.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/21/2016] [Accepted: 07/21/2016] [Indexed: 02/02/2023] Open
Abstract
Classical swine fever (CSF), a highly contagious disease that affects domestic pigs and wild boar, has serious economic implications. The present study examined the virulence and transmission of CSF virus strain YC11WB (isolated from a wild boar in 2011) in breeding wild boar. Virulence of strain YC11WB in domestic pigs was also examined. Based on the severe clinical signs and high mortality observed among breeding wild boar, the pathogenicity of strain YC11WB resembled that of typical acute CSF. Surprisingly, in contrast to strain SW03 (isolated from breeding pigs in 2003), strain YC11WB showed both acute and strong virulence in breeding pigs. None of three specific monoclonal antibodies (7F2, 7F83, and 6F65) raised against the B/C domain of the SW03 E2 protein bound to the B/C domain of strain YC11WB due to amino acid mutations (720K→R and 723N→S) in the YC11WB E2 protein. Although strains YC11WB and SW03 belong to subgroup 2.1b, they had different mortality rates in breeding pigs. Thus, if breeding pigs have not developed protective immunity against CSF virus, they may be susceptible to strain YC11WB transmitted by wild boar, resulting in severe economic losses for the pig industry.
Collapse
Affiliation(s)
- Seong-In Lim
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yong Kwan Kim
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Ji-Ae Lim
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Song-Hee Han
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hee-Suk Hyun
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Ki-Sun Kim
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Bang-Hun Hyun
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Jae-Jo Kim
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - In-Soo Cho
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Jae-Young Song
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | | | - Seung-Hoe Kim
- Korea Pork Producers Association, Seoul 06643, Korea
| | - Dong-Jun An
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| |
Collapse
|
34
|
Rios L, Coronado L, Naranjo-Feliciano D, Martínez-Pérez O, Perera CL, Hernandez-Alvarez L, Díaz de Arce H, Núñez JI, Ganges L, Pérez LJ. Deciphering the emergence, genetic diversity and evolution of classical swine fever virus. Sci Rep 2017; 7:17887. [PMID: 29263428 PMCID: PMC5738429 DOI: 10.1038/s41598-017-18196-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Classical swine fever (CSF) is one of the most important infectious diseases causing significant economic losses. Its causal agent, CSF virus (CSFV), is a member of the Pestivirus genus included into the Flaviviridae family. Previous molecular epidemiology studies have revealed the CSFV diversity is divided into three main genotypes and different subgenotypes. However, the classification system for CSFV has not yet been harmonized internationally. Similarly, the phylogeny and evolutionary dynamics of CSFV remain unclear. The current study provides novel and significant insights into the origin, diversification and evolutionary process of CSFV. In addition, the best phylogenetic marker for CSFV capable of reproducing the same phylogenetic and evolutionary information as the complete viral genome is characterized. Also, a reliable cut-off to accurately classify CSFV at genotype and subgenotype levels is established. Based on the time for the most recent common ancestor (tMRCA) reconstruction and cophylogenetic analysis, it was determined that CSFV emerged around 225 years ago when the Tunisian Sheep Virus jumped from its natural host to swine. CSFV emergence was followed by a genetic expansion in three main lineages, driven by the action of positive selection pressure and functional divergence, as main natural forces.
Collapse
Affiliation(s)
- Liliam Rios
- University of New Brunswick, Saint John, New Brunswick, E2L4L5, Canada
| | - Liani Coronado
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, 32700, Cuba
| | | | | | - Carmen L Perera
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, 32700, Cuba
| | | | - Heidy Díaz de Arce
- Hospital Italiano de Buenos Aires, Juan D. Perón 4190, C1181ACH, Buenos Aires, Argentina
| | - José I Núñez
- IRTA-CReSA. Centre de Recerca en Sanitat Animal, Barcelona, 08193, Spain
| | - Llilianne Ganges
- IRTA-CReSA. Centre de Recerca en Sanitat Animal, Barcelona, 08193, Spain.,OIE Reference Laboratory for Classical Swine Fever and OIE Collaborative Centre for Research and Control of Emerging and Re-emerging Swine Diseases in Europe, IRTA-CReSA, Barcelona, Spain
| | - Lester J Pérez
- Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, E2L4L5, Canada.
| |
Collapse
|
35
|
Muñoz-González S, Sordo Y, Pérez-Simó M, Suarez M, Canturri A, Rodriguez MP, Frías-Lepoureau MT, Domingo M, Estrada MP, Ganges L. Corrigendum to "Efficacy of E2 glycoprotein fused to porcine CD154 as a novel chimeric subunit vaccine to prevent classical swine fever virus vertical transmission in pregnant sows". Vet Microbiol 2017; 213:143-149. [PMID: 29126749 DOI: 10.1016/j.vetmic.2017.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Here we evaluated the effect of double vaccination with a novel subunit marker vaccine candidate based in the CSFV E2 glycoprotein fused to the porcine CD154 to prevent CSFV vertical transmission. A lentivirus-based gene delivery system was used to obtain a stable recombinant HEK 293 cell line for the expression of E2 fused to porcine CD154 molecule. Six pregnant sows were distributed in two groups and at 64days of gestation animals numbered 1-4 (group 1) were vaccinated via intramuscular inoculation with 50μg of E2-CD154 subunit vaccine. Animals from group 2 (numbered 5 and 6, control animals) were injected with PBS. Seventeen days later sows from group 1 were boosted with the same vaccine dose. Twenty-seven days after the first immunization, the sows were challenged with a virulent CSFV Margarita strain and clinical signs were registered. Samples were collected during the experiment and at necropsy to evaluate immune response and virological protection. Between 14 and 18days after challenge, the sows were euthanized, the foetuses were obtained and samples of sera and tissues were collected. E2-CD154 vaccinated animals remained clinically healthy until the end of the study; also, no adverse reaction was shown after vaccination. An effective boost effect in the neutralizing antibody response after the second immunization and viral challenge was observed and supports the virological protection detected in these animals after vaccination. Protection against CSFV vertical transmission was found in the 100% of serums samples from foetus of vaccinated sows. Only two out of 208 samples (0.96%) were positive with Ct value about 36 corresponding to one tonsil and one thymus, which may be non-infective viral particles. Besides, its DIVA potential and protection from vertical transmission, the novel CSFV E2 bound to CD154 subunit vaccine, is a promising alternative to the live-attenuated vaccine for developing countries.
Collapse
Affiliation(s)
- Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Yusmel Sordo
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Marisela Suarez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba
| | - Albert Canturri
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Pilar Rodriguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba
| | | | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba.
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
36
|
Postel A, Austermann-Busch S, Petrov A, Moennig V, Becher P. Epidemiology, diagnosis and control of classical swine fever: Recent developments and future challenges. Transbound Emerg Dis 2017; 65 Suppl 1:248-261. [PMID: 28795533 DOI: 10.1111/tbed.12676] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/31/2022]
Abstract
Classical swine fever (CSF) represents a major health and trade problem for the pig industry. In endemic countries or those with a wild boar reservoir, CSF remains a priority for Veterinary Services. Surveillance as well as stamping out and/or vaccination are the principle tools of prevention and control, depending on the context. In the past decades, marker vaccines and accompanying diagnostic tests allowing the discrimination of infected from vaccinated animals have been developed. In the European Union, an E2 subunit and a chimeric live vaccine have been licensed and are available for the use in future disease outbreak scenarios. The implementation of commonly accepted and globally harmonized concepts could pave the way to replace the ethically questionable stamping out policy by a vaccination-to-live strategy and thereby avoid culling of a large number of healthy animals and save food resources. Although a number of vaccines and diagnostic tests are available worldwide, technological advancement in both domains is desirable. This work provides a summary of an analysis undertaken by the DISCONTOOLS group of experts on CSF. Details of the analysis can be downloaded from the web site at http://www.discontools.eu/.
Collapse
Affiliation(s)
- Alexander Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sophia Austermann-Busch
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anja Petrov
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Volker Moennig
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
37
|
Cabezón O, Muñoz-González S, Colom-Cadena A, Pérez-Simó M, Rosell R, Lavín S, Marco I, Fraile L, de la Riva PM, Rodríguez F, Domínguez J, Ganges L. African swine fever virus infection in Classical swine fever subclinically infected wild boars. BMC Vet Res 2017; 13:227. [PMID: 28764692 PMCID: PMC5540480 DOI: 10.1186/s12917-017-1150-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently moderate-virulence classical swine fever virus (CSFV) strains have been proven capable of generating postnatal persistent infection (PI), defined by the maintenance of viremia and the inability to generate CSFV-specific immune responses in animals. These animals also showed a type I interferon blockade in the absence of clinical signs. In this study, we assessed the infection generated in 7-week-old CSFV PI wild boars after infection with the African swine fever virus (ASFV). The wild boars were divided in two groups and were infected with ASFV. Group A comprised boars who were CSFV PI in a subclinical form and Group B comprised pestivirus-free wild boars. Some relevant parameters related to CSFV replication and the immune response of CSFV PI animals were studied. Additionally, serum soluble factors such as IFN-α, TNF-α, IL-6, IL-10, IFN-γ and sCD163 were analysed before and after ASFV infection to assess their role in disease progression. RESULTS After ASFV infection, only the CSFV PI wild boars showed progressive acute haemorrhagic disease; however, the survival rates following ASFV infection was similar in both experimental groups. Notwithstanding, the CSFV RNA load of CSFV PI animals remained unaltered over the study; likewise, the ASFV DNA load detected after infection was similar between groups. Interestingly, systemic type I FN-α and IL-10 levels in sera were almost undetectable in CSFV PI animals, yet detectable in Group B, while detectable levels of IFN-γ were found in both groups. Finally, the flow cytometry analysis showed an increase in myelomonocytic cells (CD172a+) and a decrease in CD4+ T cells in the PBMCs from CSFV PI animals after ASFV infection. CONCLUSIONS Our results showed that the immune response plays a role in the progression of disease in CSFV subclinically infected wild boars after ASFV infection, and the immune response comprised the systemic type I interferon blockade. ASFV does not produce any interference with CSFV replication, or vice versa. ASFV infection could be a trigger factor for the disease progression in CSFV PI animals, as their survival after ASFV was similar to that of the pestivirus-free ASFV-infected group. This fact suggests a high resistance in CSFV PI animals even against a virus like ASFV; this may mean that there are relevant implications for CSF control in endemic countries. The diagnosis of ASFV and CSFV co-infection in endemic countries cannot be ruled out and need to be studied in greater depth.
Collapse
Affiliation(s)
- Oscar Cabezón
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Andreu Colom-Cadena
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Rosa Rosell
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.,Departament d'Agricultura, Ramaderia, Pesca i Alimentació (DARP), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Santiago Lavín
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ignasi Marco
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lorenzo Fraile
- Departament de Producció Animal, ETSEA, Universidad de Lleida, 25198, Lleida, Spain
| | - Paloma Martínez de la Riva
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Javier Domínguez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Campus de la Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
38
|
Muñoz-González S, Sordo Y, Pérez-Simó M, Suárez M, Canturri A, Rodriguez MP, Frías-Lepoureau MT, Domingo M, Estrada MP, Ganges L. Efficacy of E2 glycoprotein fused to porcine CD154 as a novel chimeric subunit vaccine to prevent classical swine fever virus vertical transmission in pregnant sows. Vet Microbiol 2017. [PMID: 28622852 DOI: 10.1016/j.vetmic.2017.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we evaluated the effect of double vaccination with a novel subunit marker vaccine candidate based in the CSFV E2 glycoprotein fused to the porcine CD154 to prevent CSFV vertical transmission. A lentivirus-based gene delivery system was used to obtain a stable recombinant HEK 293 cell line for the expression of E2 fused to porcine CD154 molecule. Six pregnant sows were distributed in two groups and at 64days of gestation animals numbered 1-4 (group 1) were vaccinated via intramuscular inoculation with 50μg of E2-CD154 subunit vaccine. Animals from group 2 (numbered 5 and 6, control animals) were injected with PBS. Seventeen days later sows from group 1 were boosted with the same vaccine dose. Twenty-seven days after the first immunization, the sows were challenged with a virulent CSFV Margarita strain and clinical signs were registered. Samples were collected during the experiment and at necropsy to evaluate immune response and virological protection. Between 14 and 18days after challenge, the sows were euthanized, the foetuses were obtained and samples of sera and tissues were collected. E2-CD154 vaccinated animals remained clinically healthy until the end of the study; also, no adverse reaction was shown after vaccination. An effective boost effect in the neutralizing antibody response after the second immunization and viral challenge was observed and support the virological protection detected in these animals after vaccination. Protection against CSFV vertical transmission was found in the 100% of serums samples from foetus of vaccinated sows. Only two out of 208 samples (0.96%) were positive with Ct value about 36 corresponding to one tonsil and one thymus, which may be non-infective viral particles. Besides, its DIVA potential and protection from vertical transmission, the novel CSFV E2 bound to CD154 subunit vaccine, is a promising alternative to the live-attenuated vaccine for developing countries.
Collapse
Affiliation(s)
- Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Yusmel Sordo
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Marisela Suárez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Albert Canturri
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Pilar Rodriguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba.
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
39
|
Leng C, Zhang H, Kan Y, Yao L, Li M, Zhai H, Li Z, Liu C, Shi H, Ji J, Qiu R, Tian Z. Characterisation of Newly Emerged Isolates of Classical Swine Fever Virus in China, 2014-2015. J Vet Res 2017; 61:1-9. [PMID: 29978049 PMCID: PMC5894411 DOI: 10.1515/jvetres-2017-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/09/2017] [Indexed: 11/22/2022] Open
Abstract
Introduction In 2014–2015, the epidemic of classical swine fever (CSF) occurred in many large-scale pig farms in different provinces of China, and a subgenotype 2.1d of CSF virus (CSFV) was newly identified. Material and Methods The phylogenetic relationship, genetic diversity, and epidemic status of the 2014–2015 CSFV isolates, 18 new CSFV isolates collected in 2015, and 43 other strains isolated in 2014–2015 were fully analysed, together with 163 CSFV reference isolates. Results Fifty-two 2014–2015 isolates belonged to subgenotype 2.1d and nine other isolates belonged to subgenotype 2.1b. The two subgenotype isolates showed unique molecular characteristics. Furthermore, the 2.1d isolates were found to possibly diverge from 2.1b isolates. Conclusion This study suggests that the Chinese CSFVs will remain pandemic.
Collapse
Affiliation(s)
- Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Lunguang Yao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Mingliang Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Hongyue Zhai
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Zhen Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chunxiao Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongfei Shi
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Jun Ji
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Reng Qiu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
40
|
Luo Y, Ji S, Lei JL, Xiang GT, Liu Y, Gao Y, Meng XY, Zheng G, Zhang EY, Wang Y, Du ML, Li Y, Li S, He XJ, Sun Y, Qiu HJ. Efficacy evaluation of the C-strain-based vaccines against the subgenotype 2.1d classical swine fever virus emerging in China. Vet Microbiol 2017; 201:154-161. [PMID: 28284603 DOI: 10.1016/j.vetmic.2017.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Classical swine fever (CSF) is a devastating infectious disease of pigs caused by classical swine fever virus (CSFV). The disease has been controlled following extensive vaccination with the lapinized attenuated vaccine C-strain for decades in China. However, frequent CSF outbreaks occurred recently in a large number of C-strain-vaccinated pig farms in China and a new subgenotype 2.1d of CSFV has been reported to be responsible for the outbreaks. Here we analyzed the molecular variations and antigenic differences among the C-strain-based commercial vaccines of different origins from different manufacturers in China, and reevaluated the vaccines against the emerging subgenotype 2.1d strain of CSFV. The results showed that the C-strain adapted to the continuous ST cell line (CST) contain a unique M290K variation on the E2 protein, compared to those of primary BT cells (CBT) or rabbit origin (CRT) and the traditional C-strain sequences available in the GenBank database. Serum neutralization test revealed the antigenic differences between CST and CBT or CRT. Notably, the neutralizing titers of porcine anti-C-strain sera against the CSFV isolate of subgenotype 2.1d were significantly lower than those against C-strain or Shimen strain. The C-strain-vaccinated, subgenotype 2.1d HLJZZ2014 strain-challenged pigs did not show any clinical signs and all survived. However, these pigs displayed mild pathological and histological lesions, and the CSFV viral RNA was detected in the various tissue and blood samples. Taken together, the C-strain-based vaccines of different origins showed molecular variations and antigenic differences, and could provide clinical but not pathological and virological protection against the subgenotype 2.1d CSFV emerging in China. Further investigation is needed to comprehensively assess the efficacy of C-strain of different doses against the subgenotype 2.1d CSFV.
Collapse
Affiliation(s)
- Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Shengwei Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Jian-Lin Lei
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Guang-Tao Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Yan Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Yao Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Xing-Yu Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Guanglai Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - En-Yu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Yimin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Ming-Liang Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China
| | - Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China.
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China.
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, PR China.
| |
Collapse
|
41
|
Coronado L, Liniger M, Muñoz-González S, Postel A, Pérez LJ, Pérez-Simó M, Perera CL, Frías-Lepoureau MT, Rosell R, Grundhoff A, Indenbirken D, Alawi M, Fischer N, Becher P, Ruggli N, Ganges L. Novel poly-uridine insertion in the 3'UTR and E2 amino acid substitutions in a low virulent classical swine fever virus. Vet Microbiol 2017; 201:103-112. [PMID: 28284595 DOI: 10.1016/j.vetmic.2017.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022]
Abstract
In this study, we compared the virulence in weaner pigs of the Pinar del Rio isolate and the virulent Margarita strain. The latter caused the Cuban classical swine fever (CSF) outbreak of 1993. Our results showed that the Pinar del Rio virus isolated during an endemic phase is clearly of low virulence. We analysed the complete nucleotide sequence of the Pinar del Rio virus isolated after persistence in newborn piglets, as well as the genome sequence of the inoculum. The consensus genome sequence of the Pinar del Rio virus remained completely unchanged after 28days of persistent infection in swine. More importantly, a unique poly-uridine tract was discovered in the 3'UTR of the Pinar del Rio virus, which was not found in the Margarita virus or any other known CSFV sequences. Based on RNA secondary structure prediction, the poly-uridine tract results in a long single-stranded intervening sequence (SS) between the stem-loops I and II of the 3'UTR, without major changes in the stem- loop structures when compared to the Margarita virus. The possible implications of this novel insertion on persistence and attenuation remain to be investigated. In addition, comparison of the amino acid sequence of the viral proteins Erns, E1, E2 and p7 of the Margarita and Pinar del Rio viruses showed that all non-conservative amino acid substitutions acquired by the Pinar del Rio isolate clustered in E2, with two of them being located within the B/C domain. Immunisation and cross-neutralisation experiments in pigs and rabbits suggest differences between these two viruses, which may be attributable to the amino acid differences observed in E2. Altogether, these data provide fresh insights into viral molecular features which might be associated with the attenuation and adaptation of CSFV for persistence in the field.
Collapse
Affiliation(s)
- Liani Coronado
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Matthias Liniger
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alexander Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| | | | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | | | - Rosa Rosell
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Departamentd'Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, (DAAM), Generalitat de Catalunya, Spain
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Malik Alawi
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany; Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
42
|
Scheel TKH, Luna JM, Liniger M, Nishiuchi E, Rozen-Gagnon K, Shlomai A, Auray G, Gerber M, Fak J, Keller I, Bruggmann R, Darnell RB, Ruggli N, Rice CM. A Broad RNA Virus Survey Reveals Both miRNA Dependence and Functional Sequestration. Cell Host Microbe 2016; 19:409-23. [PMID: 26962949 DOI: 10.1016/j.chom.2016.02.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/25/2016] [Accepted: 02/18/2016] [Indexed: 12/19/2022]
Abstract
Small non-coding RNAs have emerged as key modulators of viral infection. However, with the exception of hepatitis C virus, which requires the liver-specific microRNA (miRNA)-122, the interactions of RNA viruses with host miRNAs remain poorly characterized. Here, we used crosslinking immunoprecipitation (CLIP) of the Argonaute (AGO) proteins to characterize strengths and specificities of miRNA interactions in the context of 15 different RNA virus infections, including several clinically relevant pathogens. Notably, replication of pestiviruses, a major threat to milk and meat industries, critically depended on the interaction of cellular miR-17 and let-7 with the viral 3' UTR. Unlike canonical miRNA interactions, miR-17 and let-7 binding enhanced pestivirus translation and RNA stability. miR-17 sequestration by pestiviruses conferred reduced AGO binding and functional de-repression of cellular miR-17 targets, thereby altering the host transcriptome. These findings generalize the concept of RNA virus dependence on cellular miRNAs and connect virus-induced miRNA sequestration to host transcriptome regulation.
Collapse
Affiliation(s)
- Troels K H Scheel
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Copenhagen Hepatitis C Program, Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, 2650 Hvidovre, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Laboratory of Molecular Neuro-Oncology, and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Matthias Liniger
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - Eiko Nishiuchi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Kathryn Rozen-Gagnon
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Gaël Auray
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - Markus Gerber
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - John Fak
- Laboratory of Molecular Neuro-Oncology, and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; New York Genome Center, New York, NY 10013, USA
| | - Nicolas Ruggli
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
43
|
Identification and genetic characterization of classical swine fever virus isolates in Brazil: a new subgenotype. Arch Virol 2016; 162:817-822. [DOI: 10.1007/s00705-016-3145-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022]
|
44
|
Luo Y, Ji S, Liu Y, Lei JL, Xia SL, Wang Y, Du ML, Shao L, Meng XY, Zhou M, Sun Y, Qiu HJ. Isolation and Characterization of a Moderately Virulent Classical Swine Fever Virus Emerging in China. Transbound Emerg Dis 2016; 64:1848-1857. [PMID: 27658930 DOI: 10.1111/tbed.12581] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 11/29/2022]
Abstract
Classical swine fever (CSF) is a devastating infectious disease of pigs caused by classical swine fever virus (CSFV). In China, CSF has been under control owing to extensive vaccination with the lapinized attenuated vaccine (C-strain) since 1950s, despite sporadic or endemic in many regions. However, recently, CSF outbreaks occurred in a large number of swine herds in China. Here, we isolated 15 CSFV strains from diverse C-strain-vaccinated pig farms in China and characterized the genetic variations and antigenicity of the new isolates. The new strains showed unique variations in the E2 protein and were clustered to the subgenotype 2.1d of CSFV recently emerging in China in the phylogenetic tree. Cross-neutralization test showed that the neutralizing titres of porcine anti-C-strain sera against the new isolates were substantially lower than those against both the highly virulent Shimen strain and the subgenotype 2.1b strains that were isolated in China in 2006 and 2009, respectively. In addition, experimental animal infection showed that the HLJZZ2014 strain-infected pigs displayed lower mortality and less severe clinical signs and pathological changes compared with the Shimen strain-infected pigs. The HLJZZ2014 strain was defined to be moderately virulent based on a previously established assessment system for CSFV virulence evaluation, and the virus shedding and the viral load in various tissues of the CSFV HLJZZ2014 strain-infected pigs were significantly lower than those of the Shimen strain-infected pigs. Taken together, the subgenotype 2.1d isolate of CSFV is a moderately virulent strain with molecular variations and antigenic alterations.
Collapse
Affiliation(s)
- Y Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - S Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Animal Medicine, Agricultural College of Yanbian University, Yanji, Jilin, China
| | - Y Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - J-L Lei
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - S-L Xia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Y Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - M-L Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - L Shao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - X-Y Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - M Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Y Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - H-J Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
45
|
Liao X, Wang Z, Cao T, Tong C, Geng S, Gu Y, Zhou Y, Li X, Fang W. Hypervariable antigenic region 1 of classical swine fever virus E2 protein impacts antibody neutralization. Vaccine 2016; 34:3723-30. [PMID: 27317266 DOI: 10.1016/j.vaccine.2016.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/14/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Envelope glycoprotein E2 of classical swine fever virus (CSFV) is the major antigen that induces neutralizing antibodies and confers protection against CSFV infection. There are three hypervariable antigenic regions (HAR1, HAR2 and HAR3) of E2 that are different between the group 1 vaccine C-strain and group 2 clinical isolates. This study was aimed to characterize the antigenic epitope region recognized by monoclonal antibody 4F4 (mAb-4F4) that is present in the group 2 field isolate HZ1-08, but not in the C-strain, and examine its impact on neutralization titers when antisera from different recombinant viruses were cross-examined. Indirect ELISA with C-strain E2-based chimeric proteins carrying the three HAR regions showed that the mAb-4F4 bound to HAR1 from HZ1-08 E2, but not to HAR2 or HAR3, indicating that the specific epitope is located in the HAR1 region. Of the 6 major residues differences between C-strain and field isolates, Glu713 in the HAR1 region of strain HZ1-08 is critical for mAb-4F4 binding either at the recombinant protein level or using intact recombinant viruses carrying single mutations. C-strain-based recombinant viruses carrying the most antigenic part of E2 or HAR1 from strain HZ1-08 remained non-pathogenic to pigs and induced good antibody responses. By cross-neutralization assay, we observed that the anti-C-strain serum lost most of its neutralization capacity to RecC-HZ-E2 and QZ-14 (subgroup 2.1d field isolate in 2014), and vice versa. More importantly, the RecC-HAR1 virus remained competent in neutralizing ReC-HZ-E2 and QZ-14 strains without compromising the neutralization capability to the recombinant C-strain. Thus, we propose that chimeric C-strain carrying the HAR1 region of field isolates is a good vaccine candidate for classical swine fever.
Collapse
Affiliation(s)
- Xun Liao
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Zuohuan Wang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Tong Cao
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Chao Tong
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Shichao Geng
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Yuanxing Gu
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Yingshan Zhou
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Xiaoliang Li
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
46
|
Muñoz-González S, Pérez-Simó M, Colom-Cadena A, Cabezón O, Bohórquez JA, Rosell R, Pérez LJ, Marco I, Lavín S, Domingo M, Ganges L. Classical Swine Fever Virus vs. Classical Swine Fever Virus: The Superinfection Exclusion Phenomenon in Experimentally Infected Wild Boar. PLoS One 2016; 11:e0149469. [PMID: 26919741 PMCID: PMC4768946 DOI: 10.1371/journal.pone.0149469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/31/2016] [Indexed: 12/02/2022] Open
Abstract
Two groups with three wild boars each were used: Group A (animals 1 to 3) served as the control, and Group B (animals 4 to 6) was postnatally persistently infected with the Cat01 strain of CSFV (primary virus). The animals, six weeks old and clinically healthy, were inoculated with the virulent strain Margarita (secondary virus). For exclusive detection of the Margarita strain, a specific qRT-PCR assay was designed, which proved not to have cross-reactivity with the Cat01 strain. The wild boars persistently infected with CSFV were protected from superinfection by the virulent CSFV Margarita strain, as evidenced by the absence of clinical signs and the absence of Margarita RNA detection in serum, swabs and tissue samples. Additionally, in PBMCs, a well-known target for CSFV viral replication, only the primary infecting virus RNA (Cat01 strain) could be detected, even after the isolation in ST cells, demonstrating SIE at the tissue level in vivo. Furthermore, the data analysis of the Margarita qRT-PCR, by means of calculated ΔCt values, supported that PBMCs from persistently infected animals were substantially protected from superinfection after in vitro inoculation with the Margarita virus strain, while this virus was able to infect naive PBMCs efficiently. In parallel, IFN-α values were undetectable in the sera from animals in Group B after inoculation with the CSFV Margarita strain. Furthermore, these animals were unable to elicit adaptive humoral (no E2-specific or neutralising antibodies) or cellular immune responses (in terms of IFN-γ-producing cells) after inoculation with the second virus. Finally, a sequence analysis could not detect CSFV Margarita RNA in the samples tested from Group B. Our results suggested that the SIE phenomenon might be involved in the evolution and phylogeny of the virus, as well as in CSFV control by vaccination. To the best of our knowledge, this study was one of the first showing efficient suppression of superinfection in animals, especially in the absence of IFN-α, which might be associated with the lack of innate immune mechanisms.
Collapse
Affiliation(s)
- Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Andreu Colom-Cadena
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Oscar Cabezón
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - José Alejandro Bohórquez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Rosa Rosell
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi natural, Generalitat de Catalunya, 08007 Barcelona, Spain
| | | | - Ignasi Marco
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Santiago Lavín
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals (DAAM), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
47
|
Cabezón O, Colom-Cadena A, Muñoz-González S, Pérez-Simó M, Bohórquez JA, Rosell R, Marco I, Domingo M, Lavín S, Ganges L. Post-Natal Persistent Infection With Classical Swine Fever Virus in Wild Boar: A Strategy for Viral Maintenance? Transbound Emerg Dis 2015; 64:651-655. [PMID: 26234886 DOI: 10.1111/tbed.12395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 11/29/2022]
Abstract
In this study, fifteen wild boar piglets were intranasally inoculated <10 h after birth with the moderately virulent classical swine fever virus (CSFV) strain Catalonia 01. At 5 days post-inoculation, seven other animals within 48 h of birth were put in contact with them. Viral replication and innate and specific immune responses were evaluated. Of the inoculated animals, 46.67% remained post-natally persistently infected and were apparently healthy with neither humoral nor cellular immunological responses specific to CSFV and with high viral loads in their blood, organs and body secretions. Moreover, the present data extend the time period to 48 h after birth when a moderately virulent CSFV strain could lead to post-natal persistent infection given the generation of persistently infected wild boars in the contact group (33.33%). The innate immune response to the virus, as measured by type I IFN-α in serum, was mostly not impaired in the persistently infected wild boars. Interestingly, a decrease and lack of IFN-γ-producing cells against CSFV and PHA was observed. In endemic countries where wild swine species are increasing and low and moderate virulence CSFV strains are prevalent, the possible generation of this form of disease cannot be ruled out.
Collapse
Affiliation(s)
- O Cabezón
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentáries, (IRTA), Bellaterra, Barcelona, Spain.,Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Colom-Cadena
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentáries, (IRTA), Bellaterra, Barcelona, Spain.,Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - S Muñoz-González
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentáries, (IRTA), Bellaterra, Barcelona, Spain
| | - M Pérez-Simó
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentáries, (IRTA), Bellaterra, Barcelona, Spain
| | - J A Bohórquez
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentáries, (IRTA), Bellaterra, Barcelona, Spain
| | - R Rosell
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentáries, (IRTA), Bellaterra, Barcelona, Spain.,Departament d'Agricultura, Ramaderia, Pesca, Alimentació i Medi natural (DAAM), Generalitat de Catalunya, Barcelona, Spain
| | - I Marco
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M Domingo
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentáries, (IRTA), Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - S Lavín
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - L Ganges
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentáries, (IRTA), Bellaterra, Barcelona, Spain
| |
Collapse
|
48
|
Muñoz-González S, Perez-Simó M, Muñoz M, Bohorquez JA, Rosell R, Summerfield A, Domingo M, Ruggli N, Ganges L. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs. Vet Res 2015; 46:78. [PMID: 26159607 PMCID: PMC4496848 DOI: 10.1186/s13567-015-0209-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/21/2015] [Indexed: 02/02/2023] Open
Abstract
Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.
Collapse
Affiliation(s)
- Sara Muñoz-González
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Marta Perez-Simó
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Marta Muñoz
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - José Alejandro Bohorquez
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Rosa Rosell
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. .,Departament d'Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, (DAAM), Generalitat de Catalunya, Catalunya, Spain.
| | - Artur Summerfield
- Institute of Virology and immunology (IVI), Mittelhäusern, Switzerland.
| | - Mariano Domingo
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. .,Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Nicolas Ruggli
- Institute of Virology and immunology (IVI), Mittelhäusern, Switzerland.
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
49
|
Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters. Viruses 2015; 7:3506-29. [PMID: 26131960 PMCID: PMC4517112 DOI: 10.3390/v7072783] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.
Collapse
|
50
|
Alfonso-Morales A, Rios L, Martínez-Pérez O, Dolz R, Valle R, Perera CL, Bertran K, Frías MT, Ganges L, Díaz de Arce H, Majó N, Núñez JI, Pérez LJ. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent. PLoS One 2015; 10:e0125853. [PMID: 25946336 PMCID: PMC4422720 DOI: 10.1371/journal.pone.0125853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/26/2015] [Indexed: 11/19/2022] Open
Abstract
Background Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Methodology/Principal Findings Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. Conclusions/Significance This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular epidemiology studies.
Collapse
Affiliation(s)
| | - Liliam Rios
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | | | - Roser Dolz
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Rosa Valle
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Carmen L. Perera
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | - Kateri Bertran
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Maria T. Frías
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Heidy Díaz de Arce
- Hospital Italiano de Buenos Aires, Juan D. Perón 4190, C1181ACH Buenos Aires, Argentina
| | - Natàlia Majó
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - José I. Núñez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Lester J. Pérez
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
- * E-mail:
| |
Collapse
|