1
|
Parada J, Magnoli A, Poloni V, Corti Isgro M, Rosales Cavaglieri L, Luna MJ, Carranza A, Cavaglieri L. Pediococcus pentosaceus RC007 and Saccharomyces boulardii RC009 as antibiotic alternatives for gut health in post-weaning pigs. J Appl Microbiol 2024; 135:lxae282. [PMID: 39501497 DOI: 10.1093/jambio/lxae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/03/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
AIMS The aim of the present study was to evaluate a novel probiotic Pediococcus pentosaceus RC007 used alone and convined with Saccharomyces cerevisiae var. boulardii RC009, as in-feed additives to substitute the nontherapeutic use of antibiotics, and evaluate the different structural characteristics of intestinal bacterial populations between groups, correlated with pig production performance. METHODS AND RESULTS The in vivo study was conducted on post-weaning pigs, from 21 to 56 days old. Three dietary treatments were included: T1-basal diet (BD-control group); T2-BD with P. pentosaceus RC007; and T3-BD with a mix of P. pentosaceus RC007 and S. boulardii RC009. The weight gain increase of pigs consuming non-therapeutic antibiotics was similar to those that did not consume antibiotics during the study (P = 0.0234), but had better health indicators. The use of a probiotic combination increased carcass weight and significantly reduced the lumbar fat thickness. In terms of taxonomic composition, there was a tendency to modify the abundance of Proteobacteria, Cyanobacteria, Enterobacteriaceae, and Lactobacillaceae in pigs that consumed the additives. The genus Butyricicoccus, Collinsella, and Ruminococcus tended to be more abundant in the microbiota of pigs at T3. CONCLUSIONS For the first time, the results of the present study indicate that P. pentosaceus RC007 and S. boulardii RC009, a probiotic combination, could be a good substitute for antibiotics in improving pig production performance, while also contributing to a healthier gut microbiota, especially with the reduced abundance of Proteobacteria and Cyanobacteria.
Collapse
Affiliation(s)
- Julián Parada
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
| | - Alejandra Magnoli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Valeria Poloni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físicas, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Maite Corti Isgro
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
| | - Lorenzo Rosales Cavaglieri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físicas, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - María Julieta Luna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Alicia Carranza
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Lilia Cavaglieri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físicas, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| |
Collapse
|
2
|
Toomer OT, Redhead AK, Vu TC, Santos F, Malheiros R, Proszkowiec-Weglarz M. The effect of peanut skins as a natural antimicrobial feed additive on ileal and cecal microbiota in broiler chickens inoculated with Salmonella enterica Enteritidis. Poult Sci 2024; 103:104159. [PMID: 39153270 PMCID: PMC11471096 DOI: 10.1016/j.psj.2024.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
The consumption of poultry products contaminated with Salmonella species is one of the most common causes of Salmonella infections. In vivo studies demonstrated the potential application of peanut skins (PS) as an antimicrobial poultry feed additive to help mitigate the proliferation of Salmonella in poultry environments. Tons of PS, a waste by-product of the peanut industry, are generated and disposed in U.S. landfills annually. Peanut skins and extracts have been shown to possess antimicrobial and antioxidant properties. Hence, we aimed to determine the effect of PS as a feed additive on the gut microbiota of broilers fed a control or PS supplemented (4% inclusion) diet and inoculated with or without Salmonella enterica Enteritidis (SE). At hatch 160 male broilers were randomly assigned to 4 treatments: 1) CON-control diet without SE, 2) PS-PS diet without SE, 3) CONSE-control diet with SE, 4) PSSE-PS diet with SE. On d 3, birds from CONSE and PSSE treatments were inoculated with 4.2 × 109 CFU/mL SE. At termination (4 wk), 10 birds/treatment were euthanized and ileal and cecal contents were collected for 16S rRNA analysis using standard methodologies. Sequencing data were analyzed using QIIME2. No effect of PS or SE was observed on ileal alpha and beta diversity, while evenness, richness, number of amplicon sequence variants (ASV) and Shannon, as well as beta diversity were significantly (P < 0.05) affected in ceca. Similarly, more differentially abundant taxa between treatment groups were identified in ceca than in ileum. However, more microbiota functional changes, based on the PICRUST2 prediction, were observed in ileum. Overall, relatively minor changes in microbiota were observed during SE infection and PS treatment, suggesting that PS addition may not attenuate the SE proliferation, as shown previously, through modulation of microbiota in gastrointestinal tract. However, while further studies are warranted, these results suggest that PS may potentially serve as a functional feed additive for poultry for improvement of animal health.
Collapse
Affiliation(s)
- Ondulla T Toomer
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA.
| | - Adam K Redhead
- Math and Science Department, Andrew College, Cuthbert, GA 39840, USA
| | - Thien C Vu
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA
| | - Fernanda Santos
- Food, Bioprocessing and Nutrition Sciences Dept., NC State University, Raleigh, NC 27695, USA
| | - Ramon Malheiros
- Prestage Department of Poultry Science, NC State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
3
|
Kappari L, Dasireddy JR, Applegate TJ, Selvaraj RK, Shanmugasundaram R. MicroRNAs: exploring their role in farm animal disease and mycotoxin challenges. Front Vet Sci 2024; 11:1372961. [PMID: 38803799 PMCID: PMC11129562 DOI: 10.3389/fvets.2024.1372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
MicroRNAs (miRNAs) serve as key regulators in gene expression and play a crucial role in immune responses, holding a significant promise for diagnosing and managing diseases in farm animals. This review article summarizes current research on the role of miRNAs in various farm animal diseases and mycotoxicosis, highlighting their potential as biomarkers and using them for mitigation strategies. Through an extensive literature review, we focused on the impact of miRNAs in the pathogenesis of several farm animal diseases, including viral and bacterial infections and mycotoxicosis. They regulate gene expression by inducing mRNA deadenylation, decay, or translational inhibition, significantly impacting cellular processes and protein synthesis. The research revealed specific miRNAs associated with the diseases; for instance, gga-miR-M4 is crucial in Marek's disease, and gga-miR-375 tumor-suppressing function in Avian Leukosis. In swine disease such as Porcine Respiratory and Reproductive Syndrome (PRRS) and swine influenza, miRNAs like miR-155 and miR-21-3p emerged as key regulatory factors. Additionally, our review highlighted the interaction between miRNAs and mycotoxins, suggesting miRNAs can be used as a biomarker for mycotoxin exposure. For example, alterations in miRNA expression, such as the dysregulation observed in response to Aflatoxin B1 (AFB1) in chickens, may indicate potential mechanisms for toxin-induced changes in lipid metabolism leading to liver damage. Our findings highlight miRNAs potential for early disease detection and intervention in farm animal disease management, potentially reducing significant economic losses in agriculture. With only a fraction of miRNAs functionally characterized in farm animals, this review underlines more focused research on specific miRNAs altered in distinct diseases, using advanced technologies like CRISPR-Cas9 screening, single-cell sequencing, and integrated multi-omics approaches. Identifying specific miRNA targets offers a novel pathway for early disease detection and the development of mitigation strategies against mycotoxin exposure in farm animals.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | | | - Todd J. Applegate
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
4
|
Yi SW, Lee HG, Kim E, Jung YH, Bok EY, Cho A, Do YJ, So KM, Hur TY, Oh SI. Gut microbiota alteration with growth performance, histopathological lesions, and immune responses in Salmonella Typhimurium-infected weaned piglets. Vet Anim Sci 2023; 22:100324. [PMID: 38125715 PMCID: PMC10730377 DOI: 10.1016/j.vas.2023.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Salmonella Typhimurium can cause gastroenteritis in weaned piglets, which are particularly vulnerable to dietary changes and dysfunction of their immature organs. The colonization of S. Typhimurium could disrupt the gut microbiota and increase susceptibility to the bacterium. This study aimed to investigate the alterations of gut microbiota in S. Typhimurium-infected weaned piglets. Ten 49-day-old pigs were divided into two groups: S. Typhimurium-inoculated (ST, n = 6) and negative control (NC, n = 4) groups. The body weight and S. Typhimurium fecal shedding were monitored for 14 days after S. Typhimurium inoculation (dpi). The intestinal tissues were collected at 14 dpi; histopathological lesions and cytokine gene expression were evaluated. The gut microbiome composition and short-chain fatty acid concentrations were analyzed in fecal samples collected at 14 dpi. The average daily gain and gut microbiota alpha diversity in ST group tended to be lower than NC group at 14 dpi. Linear discriminant analysis effect size results showed a significant increase in the abundance of two genera and five species, while a significant decrease was observed in the five genera and nine species within the gut microbiota of ST group. Among the significantly less abundant bacteria in the ST group, Lachnospira eligens and Anaerobium acetethylicum produce acetate and butyrate, and may be considered as key S. Typhimurium infection-preventing bacteria. The overall results provide invaluable information about changes in the gut microbiota of S. Typhimurium-infected weaned piglets, which can be used to develop alternative measures to antibiotics and prevent ST bacterial infection.
Collapse
Affiliation(s)
- Seung-Won Yi
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Han Gyu Lee
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Young-Hun Jung
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Ara Cho
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Yoon Jung Do
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Kyoung-Min So
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Tai-Young Hur
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Sang-Ik Oh
- Laboratory of Veterinary Pathology and Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, South Korea
| |
Collapse
|
5
|
Larivière-Gauthier G, Kerouanton A, Mompelat S, Bougeard S, Denis M, Fravalo P. Monophasic Variant of Salmonella Typhimurium Infection Affects the Serum Metabolome in Swine. Microorganisms 2023; 11:2565. [PMID: 37894223 PMCID: PMC10608901 DOI: 10.3390/microorganisms11102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Salmonella is the most relevant foodborne zoonotic agent found in swine, and its presence in French herds is significant. Its carriage is asymptomatic, which makes it difficult to detect during rearing, thus increasing the risk of its presence on pork meat. Studies have shown that enteric infection in animals could be associated with changes in the serum metabolome composition, through the immune response or changes in the digestive microbiota composition. We hypothesized that these changes in the serum metabolome composition could be used as markers for the detection of asymptomatic animals infected by Salmonella. Using untargeted analysis by liquid chromatography coupled with mass spectrometry, we showed that significant differences in the composition of the serum metabolome could be detected between infected or noninfected animals both 1 and 21 days after experimental infection. This serum metabolome composition significantly changed during the 21 days postinfection in the infected animal groups, suggesting an evolution of the impact of infection with time. Despite this evolution, differences in the serum metabolome composition persisted between infected and noninfected animals 21 days after the initial infection. We also showed a possible difference between high-shedding and low-shedding animals 21 days postinfection. Finally, some of the variations in the metabolome were found to be significantly associated with variations of specific members of the fecal microbiota. Thus, excreting and asymptomatic animals, but also high-shedding animals, could be identified on the basis of their serum metabolome composition.
Collapse
Affiliation(s)
- Guillaume Larivière-Gauthier
- USC Metabiot, Cnam, 22440 Ploufragan, France;
- USC Metabiot, Anses, Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, 22440 Ploufragan, France;
| | - Annaëlle Kerouanton
- USC Metabiot, Anses, Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, 22440 Ploufragan, France;
| | - Sophie Mompelat
- Anses, Fougères Laboratory, Analysis of Residues and Contaminants Unit, 35133 Fougères, France;
| | - Stéphanie Bougeard
- Anses, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Unit, 22440 Ploufragan, France;
| | - Martine Denis
- USC Metabiot, Anses, Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, 22440 Ploufragan, France;
| | | |
Collapse
|
6
|
Gomes-Neto JC, Pavlovikj N, Korth N, Naberhaus SA, Arruda B, Benson AK, Kreuder AJ. Salmonella enterica induces biogeography-specific changes in the gut microbiome of pigs. Front Vet Sci 2023; 10:1186554. [PMID: 37781286 PMCID: PMC10537282 DOI: 10.3389/fvets.2023.1186554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Swine are a major reservoir of an array of zoonotic Salmonella enterica subsp. enterica lineage I serovars including Derby, Typhimurium, and 4,[5],12:i:- (a.k.a. Monophasic Typhimurium). In this study, we assessed the gastrointestinal (GI) microbiome composition of pigs in different intestinal compartments and the feces following infection with specific zoonotic serovars of S. enterica (S. Derby, S. Monophasic, and S. Typhimurium). 16S rRNA based microbiome analysis was performed to assess for GI microbiome changes in terms of diversity (alpha and beta), community structure and volatility, and specific taxa alterations across GI biogeography (small and large intestine, feces) and days post-infection (DPI) 2, 4, and 28; these results were compared to disease phenotypes measured as histopathological changes. As previously reported, only S. Monophasic and S. Typhimurium induced morphological alterations that marked an inflammatory milieu restricted to the large intestine in this experimental model. S. Typhimurium alone induced significant changes at the alpha- (Simpson's and Shannon's indexes) and beta-diversity levels, specifically at the peak of inflammation in the large intestine and feces. Increased community dispersion and volatility in colonic apex and fecal microbiomes were also noted for S. Typhimurium. All three Salmonella serovars altered community structure as measured by co-occurrence networks; this was most prominent at DPI 2 and 4 in colonic apex samples. At the genus taxonomic level, a diverse array of putative short-chain fatty acid (SCFA) producing bacteria were altered and often decreased during the peak of inflammation at DPI 2 and 4 within colonic apex and fecal samples. Among all putative SCFA producing bacteria, Prevotella showed a broad pattern of negative correlation with disease scores at the peak of inflammation. In addition, Prevotella 9 was found to be significantly reduced in all Salmonella infected groups compared to the control at DPI 4 in the colonic apex. In conclusion, this work further elucidates that distinct swine-related zoonotic serovars of S. enterica can induce both shared (high resilience) and unique (altered resistance) alterations in gut microbiome biogeography, which helps inform future investigations of dietary modifications aimed at increasing colonization resistance against Salmonella through GI microbiome alterations.
Collapse
Affiliation(s)
- Joao Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Natasha Pavlovikj
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nate Korth
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Samantha A. Naberhaus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bailey Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
In Vitro Evaluation of Brown Seaweed Laminaria spp. as a Source of Antibacterial and Prebiotic Extracts That Could Modulate the Gastrointestinal Microbiota of Weaned Pigs. Animals (Basel) 2023; 13:ani13050823. [PMID: 36899679 PMCID: PMC10000092 DOI: 10.3390/ani13050823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Laminaria spp. and their extracts have preventative potential as dietary supplements during weaning in pigs. The first objective of this study was to evaluate increasing concentrations of four whole seaweed biomass samples from two different Laminaria species harvested in two different months in a weaned pig faecal batch fermentation assay. Particularly, February and November whole seaweed biomass samples of L. hyperborea (LHWB-F and LHWB-N) and L. digitata (LDWB-F and LDWB-N) were used. In the next part of the study, the increasing concentrations of four extracts produced from L. hyperborea (LHE1-4) and L. digitata (LDE1-4) were evaluated in individual pure-culture growth assays using a panel of beneficial and pathogenic bacterial strains (second objective). The LHE1-4 and LDE1-4 were obtained using different combinations of temperature, incubation time and volume of solvent within a hydrothermal-assisted extraction methodology (E1-4). In the batch fermentation assay, the L. hyperborea biomass samples, LHWB-F and LHWB-N, lowered Bifidobacterium spp. counts compared to the L. digitata biomass samples, LDWB-F and LDWB-N (p < 0.05). LHWB-F and LDWB-N reduced Enterobacteriaceae counts (p < 0.05). LHWB-F and LDWB-F were selected as the most and least promising sources of antibacterial extracts from which to produce LHE1-4 and LDE1-4. In the pure-culture growth assays, E1- and E4-produced extracts were predominantly associated with antibacterial and bifidogenic activities, respectively. LHE1 reduced both Salmonella Typhimurium and Enterotoxigenic Escherichia coli with LDE1 having a similar effect on both of these pathogenic strains, albeit to a lesser extent (p < 0.05). Both LHE1 and LDE1 reduced B. thermophilum counts (p < 0.05). LDE4 exhibited strong bifidogenic activity (p < 0.05), whereas LHE4 increased Bifidobacterium thermophilum and Lactiplantibacillus plantarum counts (p < 0.05). In conclusion, antibacterial and bifidogenic extracts of Laminaria spp. were identified in vitro with the potential to alleviate gastrointestinal dysbiosis in newly weaned pigs.
Collapse
|
8
|
Inflammatory Responses Induced by the Monophasic Variant of Salmonella Typhimurium in Pigs Play a Role in the High Shedder Phenotype and Fecal Microbiota Composition. mSystems 2023; 8:e0085222. [PMID: 36629432 PMCID: PMC9948705 DOI: 10.1128/msystems.00852-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pigs infected with Salmonella may excrete large amounts of Salmonella, increasing the risk of spread of this pathogen in the food chain. Identifying Salmonella high shedder pigs is therefore required to mitigate this risk. We analyzed immune-associated markers and composition of the gut microbiota in specific-pathogen-free pigs presenting different shedding levels after an oral infection with Salmonella. Immune response was studied through total blood cell counts, production of anti-Salmonella antibodies and cytokines, and gene expression quantification. Total Salmonella shedding for each pig was estimated and hierarchical clustering was used to cluster pigs into high, intermediate, and low shedders. Gut microbiota compositions were assessed using 16S rRNA microbial community profiling. Comparisons were made between control and inoculated pigs, then between high and low shedders pigs. Prior to infection, high shedders had similar immunological profiles compared to low shedders. As soon as 1 day postinoculation (dpi), significant differences on the cytokine production level and on the expression level of several host genes related to a proinflammatory response were observed between high and low shedders. Infection with Salmonella induced an early and profound remodeling of the immune response in all pigs, but the intensity of the response was stronger in high shedders. In contrast, low shedders seroconverted earlier than high shedders. Just after induction of the proinflammatory response (at 2 dpi), some taxa of the fecal microbiota were specific to the shedding phenotypes. This was related to the enrichment of several functional pathways related to anaerobic respiration in high shedders. In conclusion, our data show that the immune response to Salmonella modifies the fecal microbiota and subsequently could be responsible for shedding phenotypes. Influencing the gut microbiota and reducing intestinal inflammation could be a strategy for preventing Salmonella high shedding in livestock. IMPORTANCE Salmonellosis remains the most frequent human foodborne zoonosis after campylobacteriosis and pork meat is considered one of the major sources of human foodborne infections. At the farm, host heterogeneity in pig infection is problematic. High Salmonella shedders contribute more significantly to the spread of this foodborne pathogen in the food chain. The identification of predictive biomarkers for high shedders could help to control Salmonella in pigs. The purpose of the present study was to investigate why some pigs become super shedders and others low shedders. We thus investigated the differences in the fecal microbial composition and the immune response in orally infected pigs presenting different Salmonella shedding patterns. Our data show that the proinflammatory response induced by S. Typhimurium at 1 dpi could be responsible for the modification of the fecal microbiota composition and functions observed mainly at 2 and 3 dpi and to the low and super shedder phenotypes.
Collapse
|
9
|
Lessard M, Talbot G, Bergeron N, Lo Verso L, Morissette B, Yergeau É, Matte JJ, Bissonnette N, Blais M, Gong J, Wang Q, Quessy S, Guay F. Weaning diet supplemented with health-promoting feed additives influences microbiota and immune response in piglets challenged with Salmonella. Vet Immunol Immunopathol 2023; 255:110533. [PMID: 36563567 DOI: 10.1016/j.vetimm.2022.110533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The aim of this study was to evaluate the potential of micronutrients and feed additives to modulate intestinal microbiota and systemic and mucosal immune responses in weaned pigs infected with Salmonella. At weaning, 32 litters of 12 piglets each were allocated to four dietary treatments: 1) control diet (CTRL), 2) CTRL supplemented with chlortetracycline (ATB), 3) CTRL supplemented with a cocktail of feed additives (CKTL); and 4) CKTL diet containing bovine colostrum in replacement of spray-dry animal plasma (CKTL+COL). The CKTL supplement included cranberry extract, encapsulated carvacrol and yeast-derived products and an enriched selenium and vitamin premix. Three weeks after weaning, four pigs per litter were orally inoculated with Salmonella Typhimurium DT104. Half of them were euthanized 3 days post-infection (dpi) and the other half, 7 dpi. The expression of IL6, TNF, IL8, monocyte chemoattractant protein 1 (MCP1), IFNG, cyclooxygenase 2 (COX2), glutathione peroxidase 2 (GPX2) and β-defensin 2 (DEFB2) showed a peaked response at 3 dpi (P < 0.05). Results also revealed that DEFB2 expression was higher at 3 dpi in CTRL and CKTL groups than in ATB (P = 0.01 and 0.06, respectively) while GPX2 gene was markedly increased at 3 and 7 dpi in pigs fed CKTL or CKTL+COL diet compared to CTRL pigs (P < 0.05). In piglets fed CKTL or CKTL+COL diet, intestinal changes in microbial communities were less pronounced after exposure to Salmonella compared to CTRL and progressed faster toward the status before Salmonella challenge (AMOVA P < 0.01). Furthermore, the relative abundance of several families was either up- or down-regulated in pigs fed CKTL or CKTL+COL diet after Salmonella challenge. In conclusion, weaning diet enriched with bovine colostrum, vitamins and mixture of feed additives mitigated the influence of Salmonella infection on intestinal microbial populations and modulate systemic and intestinal immune defences.
Collapse
Affiliation(s)
- Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département de sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Nadia Bergeron
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département de sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Bruno Morissette
- Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Étienne Yergeau
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| | - Jacques J Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Sylvain Quessy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Frédéric Guay
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département de sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Saladrigas-García M, Durán M, D’Angelo M, Coma J, Pérez JF, Martín-Orúe SM. An insight into the commercial piglet's microbial gut colonization: from birth towards weaning. Anim Microbiome 2022; 4:68. [PMID: 36572944 PMCID: PMC9791761 DOI: 10.1186/s42523-022-00221-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The establishment of the gut microbiota can be influenced by several perinatal factors, including, most importantly, the maternal microbiota. Moreover, early-life environmental variation affects gut microbial colonization and the intestinal health of offspring throughout life. The present study aimed to explore the development of piglet gut microbiota from birth to weaning in the commercial practice and also to assess how different farm environments could condition this process. Although it is possible to find in the literature other studies with similar objectives this work probably represents one of the few studies that make a systematic evaluation of such differential factors under a real scenario. To achieve this objective, we performed two trials. In a first Trial, we selected 2 farms in which we performed an intensive sampling (5 samples /animal) to characterize the gut colonization pattern during the first days of life and to identify the time window with the greatest impact. Both farms differed in their health status and the use of antimicrobials in the piglets. In a second Trial, we selected 4 additional farms with variable rearing conditions and a distinctive use of antimicrobials in the sows with a simplified sampling pattern (2 samples/animal). Faecal samples were obtained with swabs and DNA was extracted by using the PSP® Spin Stool DNA Kit and sequencing of the 16S rRNA gene (V3-V4 region) performed by Illumina MiSeq Platform. RESULTS The present study contributes to a better understanding of microbiome development during the transition from birth to weaning in commercial conditions. Alpha diversity was strongly affected by age, with an increased richness of species through time. Beta diversity decreased after weaning, suggesting a convergent evolvement among individuals. We pinpointed the early intestinal colonizers belonging to Bacteroides, Escherichia-Shigella, Clostridium sensu stricto 1, and Fusobacterium genera. During lactation(d7-d21 of life), the higher relative abundances of Bacteroides and Lactobacillus genera were correlated with a milk-oriented microbiome. As the piglets aged and after weaning (d36 of life), increasing abundances of genera such as Prevotella, Butyricimonas, Christensenellaceae R-7 group, Dorea, Phascolarctobacterium, Rikenellaceae RC9 gut group, Subdoligranulum, and Ruminococcaceae UCG-002 were observed. These changes indicate the adaptation of the piglets to a cereal-based diet rich in oligosaccharides and starch. Our results also show that the farm can have a significant impact in such a process, evidencing the influence of different environments and rearing systems on the gut microbiota development of the young piglet. Differences between farms were more noticeable after weaning than during lactation with changes in alpha and beta biodiversity and specific taxa. The analysis of such differences suggests that piglets receiving intramuscular amoxicillin (days 2-5 of life) and being offered an acidifying rehydrating solution (Alpha farm in Trial 1) have a greater alpha diversity and more abundant Lactobacillus population. Moreover, the only farm that did not offer any rehydrating solution (Foxtrot farm in Trial 2) showed a lower alpha diversity (day 2 of life) and increased abundance of Enterobacteriaceae (both at 2 and 21 days). The use of in-feed antibiotics in the sows was also associated with structural changes in the piglets' gut ecosystem although without changes in richness or diversity. Significant shifts could be registered in different microbial groups, particularly lower abundances of Fusobacterium in those piglets from medicated sows. CONCLUSIONS In conclusion, during the first weeks of life, the pig microbiota showed a relevant succession of microbial groups towards a more homogeneous and stable ecosystem better adapted to the solid dry feed. In this relevant early-age process, the rearing conditions, the farm environment, and particularly the antimicrobial use in piglets and mothers determine changes that could have a relevant impact on gut microbiota maturation. More research is needed to elucidate the relative impact of these farm-induced early life-long changes in the growing pig.
Collapse
Affiliation(s)
- Mireia Saladrigas-García
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | - Matilde D’Angelo
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Coma
- Grupo Vall Companys, 25191 Lleida, Spain
| | - José Francisco Pérez
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Susana María Martín-Orúe
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Li Z, Sang QQ, Sun YX, Liu Y, Hou ZC. Exploring the effect of the microbiota on the production of duck striped eggs. Poult Sci 2022; 102:102436. [PMID: 36623335 PMCID: PMC9842688 DOI: 10.1016/j.psj.2022.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The microbiota has received plenty of attention in recent years due to its influence on host health and productivity. The striped eggs have reduced hatching performance and resulted in economic loss. The reasons are still unknown. Microbiota is one of the potentially important factors contributing to striped egg formation. This study investigates the relationship between the microbiota and striped eggs. The litter samples, feed samples, and cloacal swab samples of female ducks that produce striped eggs and normal eggs were performed for microbial diversity and composition using 16S rRNA sequencing. The results showed that there was no significant difference between feed microbiota and cloacal swab microbiota by alpha diversity, whereas, the number of microorganisms in the litter samples of female ducks that produced striped eggs was less than those of female ducks with normal eggs. There were compositional differences in litter microbiota of female ducks between the striped egg and the normal eggs. Among them, the abundance of Staphylococcus, Corynebacterium, and Brevibacterium in the litter of female ducks that produced striped eggs was significantly higher than that produced normal eggs. And these differential bacteria maybe affect the health of female ducks and cause abnormalities in the formation process of duck eggs. Therefore, the reduction of harmful bacteria may protect the reproductive health of female ducks and decrease the proportion of striped eggs. It provides an important reference to explore why female ducks produce striped eggs.
Collapse
Affiliation(s)
| | | | | | | | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Kempf F, La Ragione R, Chirullo B, Schouler C, Velge P. Super Shedding in Enteric Pathogens: A Review. Microorganisms 2022; 10:2101. [PMID: 36363692 PMCID: PMC9692634 DOI: 10.3390/microorganisms10112101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/24/2024] Open
Abstract
Super shedding occurs when a small number of individuals from a given host population shed high levels of a pathogen. Beyond this general definition, various interpretations of the shedding patterns have been proposed to identify super shedders, leading to the description of the super shedding phenomenon in a wide range of pathogens, in particular enteric pathogens, which are of considerable interest. Several underlying mechanisms may explain this observation, including factors related to the environment, the gut microbiota, the pathogen itself (i.e., genetic polymorphism), and the host (including immune factors). Moreover, data suggest that the interplay of these parameters, in particular at the host-pathogen-gut microbiota interface, is of crucial importance for the determination of the super shedding phenotype in enteric pathogens. As a phenomenon playing an important role in the epidemics of enteric diseases, the evidence of super shedding has highlighted the need to develop various control strategies.
Collapse
Affiliation(s)
- Florent Kempf
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Barbara Chirullo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 000161 Rome, Italy
| | | | - Philippe Velge
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France
| |
Collapse
|
13
|
Hankel J, Chuppava B, Wilke V, Hartung CB, Muthukumarasamy U, Strowig T, Bach Knudsen KE, Kamphues J, Visscher C. High Dietary Intake of Rye Affects Porcine Gut Microbiota in a Salmonella Typhimurium Infection Study. PLANTS 2022; 11:plants11172232. [PMID: 36079614 PMCID: PMC9460007 DOI: 10.3390/plants11172232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Bacterial fermentation of undigested carbohydrates in the hindgut has considerable potential for the stimulation or inhibition of the growth of distinct bacteria within microbiota. The aim of the present study was to evaluate whether high levels of rye affect porcine gut microbiota composition with subsequent effects on the load of Salmonella Typhimurium, an intestinal pathogen with zoonotic relevance. Therefore, forty-two 25-day-old piglets were allocated to two groups and fed a diet containing either 69% wheat or 69% rye for 35 days. One week after introducing the two different diets, the piglets were experimentally infected with Salmonella Typhimurium. The microbiota composition of cecal and fecal samples of the piglets were evaluated 28 days after infection. In the cecum, promoted growth of Bifidobacterium, several lactic acid bacteria and Faecalibacterium prausnitzii were seen in pigs fed the diet containing 69% rye. Bacterial species belonging to the genera Bifidobacterium and Catenisphaera were associated with differing bacterial counts of Salmonella Typhimurium detected in the cecal contents of all piglets in both feeding groups via cultural cultivation. The high intake of rye instead of wheat seems to promote the growth of beneficial intestinal bacteria accompanied by impaired growth conditions for the foodborne pathogen Salmonella Typhimurium.
Collapse
Affiliation(s)
- Julia Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Correspondence:
| | - Bussarakam Chuppava
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Volker Wilke
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Clara Berenike Hartung
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Uthayakumar Muthukumarasamy
- Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
- Hannover Medical School, 30625 Hannover, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
- Hannover Medical School, 30625 Hannover, Germany
| | | | - Josef Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
14
|
Trachsel JM, Bearson BL, Kerr BJ, Shippy DC, Byrne KA, Loving CL, Bearson SMD. Short Chain Fatty Acids and Bacterial Taxa Associated with Reduced Salmonella enterica serovar I 4,[5],12:i:- Shedding in Swine Fed a Diet Supplemented with Resistant Potato Starch. Microbiol Spectr 2022; 10:e0220221. [PMID: 35532355 PMCID: PMC9241843 DOI: 10.1128/spectrum.02202-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/17/2022] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen of concern because many isolates are multidrug-resistant (resistant to ≥3 antimicrobial classes) and metal tolerant. In this study, three in-feed additives were individually tested for their ability to reduce Salmonella I 4,[5],12:i:- shedding in swine: resistant potato starch (RPS), high amylose corn starch, and a fatty acid blend, compared with a standard control diet over 21 days. Only RPS-fed pigs exhibited a reduction in Salmonella fecal shedding, different bacterial community compositions, and different cecal short chain fatty acid (SCFA) profiles relative to control animals. Within the RPS treatment group, pigs shedding the least Salmonella tended to have greater cecal concentrations of butyrate, valerate, caproate, and succinate. Additionally, among RPS-fed pigs, several bacterial taxa (Prevotella_7, Olsenella, and Bifidobacterium, and others) exhibited negative relationships between their abundances of and the amount of Salmonella in the feces of their hosts. Many of these same taxa also had significant positive associations with cecal concentrations of butyrate, valerate, caproate, even though they are not known to produce these SCFAs. Together, these data suggest the RPS-associated reduction in Salmonella shedding may be dependent on the establishment of bacterial cross feeding interactions that result in the production of certain SCFAs. However, directly feeding a fatty acid mix did not replicate the effect. RPS supplementation could be an effective means to reduce multidrug-resistant (MDR) S. enterica serovar I 4,[5],12:i:- in swine, provided appropriate bacterial communities are present in the gut. IMPORTANCE Prebiotics, such as resistant potato starch (RPS), are types of food that help to support beneficial bacteria and their activities in the intestines. Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen that commonly resides in the intestines of pigs without disease, but can make humans sick if unintentionally consumed. Here we show that in Salmonella inoculated pigs, feeding them a diet containing RPS altered the colonization and activity of certain beneficial bacteria in a way that reduced the amount of Salmonella in their feces. Additionally, within those fed RPS, swine with higher abundance of these types of beneficial bacteria had less Salmonella I 4,[5],12:i:- in their feces. This work illustrates likely synergy between the prebiotic RPS and the presence of certain gut microorganisms to reduce the amount of Salmonella in the feces of pigs and therefore reduce the risk that humans will become ill with MDR Salmonella serovar I 4,[5],12:i:-.
Collapse
Affiliation(s)
- Julian M. Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Bradley L. Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Brian J. Kerr
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Daniel C. Shippy
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Shawn M. D. Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| |
Collapse
|
15
|
Grzymajlo K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front Microbiol 2022; 13:854112. [PMID: 35516427 PMCID: PMC9062650 DOI: 10.3389/fmicb.2022.854112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by enteric pathogens occurs in a context strongly determined by host-specific gut microbiota, which can significantly affect the outcome of infection. The complex gameplay between the trillions of microbes that inhabit the GI tract, the host, and the infecting pathogen defines a specific triangle of interaction; therefore, a complete model of infection should consider all of these elements. Many different infection models have been developed to explain the complexity of these interactions. This review sheds light on current knowledge, along with the strengths and limitations of in vitro and in vivo models utilized in the study of Salmonella–host–microbiome interactions. These models range from the simplest experiment simulating environmental conditions using dedicated growth media through in vitro interaction with cell lines and 3-D organoid structure, and sophisticated “gut on a chip” systems, ending in various animal models. Finally, the challenges facing this field of research and the important future directions are outlined.
Collapse
|
16
|
Prevalence of Salmonella in Free-Range Pigs: Risk Factors and Intestinal Microbiota Composition. Foods 2021; 10:foods10061410. [PMID: 34207083 PMCID: PMC8235412 DOI: 10.3390/foods10061410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 01/02/2023] Open
Abstract
Extensive pig systems are gaining importance as quality production systems and as the standard for sustainable rural development and animal welfare. However, the effects of natural foods on Salmonella epidemiology remain unknown. Herein, we assessed the presence of Salmonella and the composition of the gut microbiota in pigs from both Salmonella-free and high Salmonella prevalence farms. In addition, risk factors associated with the presence of Salmonella were investigated. The pathogen was found in 32.2% of animals and 83.3% of farms, showing large differences in prevalence between farms. Most isolates were serovars Typhimurium monophasic (79.3%) and Bovismorbificans (10.3%), and exhibited a multi-drug resistance profile (58.6%). Risk factor analysis identified feed composition, type/variety of vegetation available, and silos' cleaning/disinfection as the main factors associated with Salmonella prevalence. Clear differences in the intestinal microbiota were found between Salmonella-positive and Salmonella-negative populations, showing the former with increasing Proteobacteria and decreasing Bacteroides populations. Butyrate and propionate producers including Clostridium, Turicibacter, Bacteroidaceae_uc, and Lactobacillus were more abundant in the Salmonella-negative group, whereas acetate producers like Sporobacter, Escherichia or Enterobacter were more abundant in the Salmonella-positive group. Overall, our results suggest that the presence of Salmonella in free-range pigs is directly related to the natural vegetation accessible, determining the composition of the intestinal microbiota.
Collapse
|
17
|
Pedroso AA, Lee MD, Maurer JJ. Strength Lies in Diversity: How Community Diversity Limits Salmonella Abundance in the Chicken Intestine. Front Microbiol 2021; 12:694215. [PMID: 34211451 PMCID: PMC8239400 DOI: 10.3389/fmicb.2021.694215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The transfer of the intestinal microbiota from adult to juvenile animals reduces Salmonella prevalence and abundance. The mechanism behind this exclusion is unknown, however, certain member species may exclude or promote pathogen colonization and Salmonella abundance in chickens correlates with intestinal community composition. In this study, newly hatched chicks were colonized with Salmonella Typhimurium and 16S rRNA libraries were generated from the cecal bacterial community at 21, 28, 35, and 42 days of age. Salmonella was quantified by real-time PCR. Operational taxonomic units (OTUs) were assigned, and taxonomic assignments were made, using the Ribosomal Database Project. Bacterial diversity was inversely proportional to the Salmonella abundance in the chicken cecum (p < 0.01). In addition, cecal communities with no detectable Salmonella (exclusive community) displayed an increase in the abundance of OTUs related to specific clostridial families (Ruminococcaceae, Eubacteriaceae, and Oscillospiraceae), genera (Faecalibacterium and Turicibacter) and member species (Ethanoligenens harbinense, Oscillibacter ruminantium, and Faecalibacterium prausnitzii). For cecal communities with high Salmonella abundance (permissive community), there was a positive correlation with the presence of unclassified Lachnospiraceae, clostridial genera Blautia and clostridial species Roseburia hominis, Eubacterium biforme, and Robinsoniella peoriensis. These findings strongly support the link between the intestinal bacterial species diversity and the presence of specific member species with Salmonella abundance in the chicken ceca. Exclusive bacterial species could prove effective as direct-fed microbials for reducing Salmonella in poultry while permissive species could be used to predict which birds will be super-shedders.
Collapse
Affiliation(s)
- Adriana A Pedroso
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Margie D Lee
- Department of Population Health, University of Georgia, Athens, GA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - John J Maurer
- Department of Population Health, University of Georgia, Athens, GA, United States.,Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
18
|
Luise D, Le Sciellour M, Buchet A, Resmond R, Clement C, Rossignol MN, Jardet D, Zemb O, Belloc C, Merlot E. The fecal microbiota of piglets during weaning transition and its association with piglet growth across various farm environments. PLoS One 2021; 16:e0250655. [PMID: 33905437 PMCID: PMC8078812 DOI: 10.1371/journal.pone.0250655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
This study describes the fecal microbiota from piglets reared in different living environments during the weaning transition, and presents the characteristics of microbiota associated with good growth of piglets after weaning. Fecal samples were collected pre- (d26) and post-weaning (d35) from 288 male piglets in 16 conventional indoor commercial farms located in the West of France. The changes one week after weaning on the most abundant microbial families was roughly the same in all farms: alpha diversity increased, the relative abundance of Bacteroidaceae (-61%), Christensenellaceae (-35%), Enterobacteriaceae (-42%), and Clostridiaceae (-32%) decreased, while the relative abundance of Prevotellaceae (+143%) and Lachnospiraceae (+21%) increased. Among all the collected samples, four enterotypes that were ubiquitous in all farms were identified. They could be discriminated by their respective relative abundances of Prevotella, Faecalibacterium, Roseburia, and Lachnospira, and likely corresponded to a gradual maturational shift from pre- to post-weaning microbiota. The rearing environment influenced the frequency of enterotypes, as well as the relative abundance of 6 families at d26 (including Christensenellaceae and Lactobacillaceae), and of 21 families at d35. In all farms, piglets showing the highest relative growth rate during the first three weeks after weaning, which were characterized as more robust, had a higher relative abundance of Bacteroidetes, a lower relative abundance of Proteobacteria, and showed a greater increase in Prevotella, Coprococcus, and Lachnospira in the post-weaning period. This study revealed the presence of ubiquitous enterotypes among the farms of this study, reflecting maturational stages of microbiota from a young suckling to an older cereal-eating profile. Despite significant variation in the microbial profile between farms, piglets whose growth after weaning was less disrupted were, those who had reached the more mature phenotype characterized by Prevotella the fastest.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), Agricultural, Environmental, Food Science and Technology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Arnaud Buchet
- PEGASE, INRAE, Institut Agro, Saint Gilles, France
- Cooperl Arc Atlantique, Lamballe, France
| | - Rémi Resmond
- PEGASE, INRAE, Institut Agro, Saint Gilles, France
| | | | | | | | | | | | - Elodie Merlot
- PEGASE, INRAE, Institut Agro, Saint Gilles, France
- * E-mail:
| |
Collapse
|
19
|
Salmonella enterica Serovar Typhimurium Temporally Modulates the Enteric Microbiota and Host Responses To Overcome Colonization Resistance in Swine. Appl Environ Microbiol 2020; 86:AEM.01569-20. [PMID: 32859592 DOI: 10.1128/aem.01569-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a prevalent incitant of enteritis in human beings and nonhuman animals. It has been proposed that host defense responses incited by Salmonella allow the bacterium to overcome colonization resistance. Piglets (n = 24) were orally inoculated with S. enterica serovar Typhimurium DT104 or buffer alone, and the host and microbial responses were temporally examined at the acute (2 days postinoculation [dpi]), subacute (6 dpi), and recovery (10 dpi) stages of salmonellosis. At the acute stage of disease, body temperatures were elevated, and feed consumption and weight gain were reduced. The densities of Salmonella associated with the gut mucosa decreased over time, with higher densities of the bacterium in the ileum and the large intestine. Moreover, substantive histopathological changes were observed as a function of time, with prominent epithelial injury and neutrophil infiltration observed at 2 dpi. Correspondingly, a variety of host metrics were temporally affected in piglets with salmonellosis (e.g., TNFα, IFNγ, PR39, βD2, iNOS, IL8, REGIIIγ). The enteric microbiota was characterized using culture-independent and -dependent methods in concert, and taxon- and location-specific changes to the microbiota were observed in infected piglets. Bacteroides spp. (e.g., Bacteroides uniformis, Bacteroides fragilis), Streptococcus spp. (e.g., Streptococcus gallolyticus), and various Gammaproteobacteria were highly associated with inflamed tissues, while bacteria within the Ruminococcaceae and Veillonellaceae families were mainly associated with healthy mucosae. In conclusion, the study findings showed that S Typhimurium incited temporal and spatial modifications to the swine autochthonous microbiota, and to host defense responses, that were consistent with overcoming colonization resistance to incite salmonellosis in swine.IMPORTANCE Limited information is available on host and enteric microbiota responses incited by Salmonella enterica serovar Typhimurium in swine and on possible mechanisms by which the bacterium overcomes colonization resistance to incite salmonellosis. Temporal characterization of a variety of host metrics in piglets (e.g., physiological, histopathological, and immunological) showed the importance of studying the progression of salmonellosis. A number of host responses integrally associated with disease development were identified. Utilization of next-generation sequence analysis to characterize the enteric microbiota was found to lack sufficient resolution; however, culture-dependent and -independent methods in combination identified taxon- and location-specific changes to bacterial communities in infected piglets. The study identified bacterial and host responses associated with salmonellosis, which will be beneficial in understanding colonization resistance and in the development of effective alternatives to antibiotics to mitigate salmonellosis.
Collapse
|
20
|
Kempf F, Menanteau P, Rychlik I, Kubasová T, Trotereau J, Virlogeux‐Payant I, Schaeffer S, Schouler C, Drumo R, Guitton E, Velge P. Gut microbiota composition before infection determines the Salmonella super- and low-shedder phenotypes in chicken. Microb Biotechnol 2020; 13:1611-1630. [PMID: 32639676 PMCID: PMC7415355 DOI: 10.1111/1751-7915.13621] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of infection and extreme shedding patterns are common features of animal infectious diseases. Individual hosts that are super-shedders are key targets for control strategies. Nevertheless, the mechanisms associated with the emergence of super-shedders remain largely unknown. During chicken salmonellosis, a high heterogeneity of infection is observed when animal-to-animal cross-contaminations and reinfections are reduced. We hypothesized that unlike super-shedders, low-shedders would be able to block the first Salmonella colonization thanks to a different gut microbiota. The present study demonstrates that (i) axenic and antibiotic-treated chicks are more prone to become super-shedders; (ii) super or low-shedder phenotypes can be acquired through microbiota transfer; (iii) specific gut microbiota taxonomic features determine whether the chicks develop a low- and super-shedder phenotype after Salmonella infection in isolator; (iv) partial protection can be conferred by inoculation of four commensal bacteria prior to Salmonella infection. This study demonstrates the key role plays by gut microbiota composition in the heterogeneity of infection and pave the way for developing predictive biomarkers and protective probiotics.
Collapse
Affiliation(s)
- Florent Kempf
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
| | | | - Ivan Rychlik
- Veterinary Research InstituteHudcova 70Brno621 00Czech Republic
| | - Tereza Kubasová
- Veterinary Research InstituteHudcova 70Brno621 00Czech Republic
| | - Jérôme Trotereau
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
| | | | - Samantha Schaeffer
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
- Present address:
INSERM Unité 1162Génomique Fonctionnelle des Tumeurs Solides HépatiquesParisFrance
| | - Catherine Schouler
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
| | - Rosanna Drumo
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
| | - Edouard Guitton
- Plate‐Forme d'Infectiologie ExpérimentaleINRAENouzilly37380France
| | - Philippe Velge
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
| |
Collapse
|
21
|
Huang T, Jiang C, Yang M, Xiao H, Huang X, Wu L, Yao M. Salmonella enterica serovar Typhimurium inhibits the innate immune response and promotes apoptosis in a ribosomal/TRP53-dependent manner in swine neutrophils. Vet Res 2020; 51:105. [PMID: 32854785 PMCID: PMC7450969 DOI: 10.1186/s13567-020-00828-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Neutrophils are the first barriers for resisting the invasion, proliferation, and damage caused by Salmonella Typhimurium. However, the mechanisms that control this resistance are not completely understood. In this study, we established an in vitro Salmonella infection model in porcine neutrophils, and analyzed the cellular transcriptome by deep sequencing and flow cytometry. The results showed that ribosomal gene transcription was inhibited, and two of these genes, RPL39 and RPL9, were related to TRP53 activation. Furthermore, several important innate immunity genes were also inhibited. Knock-down of RPL39 and RPL9 by siRNA caused an approximate fourfold up-regulation of TRP53. Knock-down of RPL39 and RPL9 also resulted in a significant down-regulation of IFNG and TNF, indicating an inhibition of the innate immune response. Silencing of RPL39 and RPL9 also resulted in the up-regulation of FAS, RB1, CASP6, and GADD45A, which play roles in cell cycle arrest and apoptosis. Neutrophils were either first treated with RPL39 siRNA, RPL9 siRNA, TRP53 activator, or TRP53 inhibitor, and then infected with Salmonella. Knock-down of RPL39 and RPL9, or treatment with TRP53 activator, can increase the intracellular proliferation of Salmonella in neutrophils. We speculate that much of the Salmonella virulence can be attributed to the enhancement of cell cycle arrest and the inhibition of the innate immune response, which allows the bacteria to successfully proliferate intracellularly.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Caiyun Jiang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Min Yang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Hong Xiao
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Lingbo Wu
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China.
| |
Collapse
|
22
|
Munyaka PM, Blanc F, Estellé J, Lemonnier G, Leplat JJ, Rossignol MN, Jardet D, Plastow G, Billon Y, Willing BP, Rogel-Gaillard C. Discovery of Predictors of Mycoplasma hyopneumoniae Vaccine Response Efficiency in Pigs: 16S rRNA Gene Fecal Microbiota Analysis. Microorganisms 2020; 8:E1151. [PMID: 32751315 PMCID: PMC7464067 DOI: 10.3390/microorganisms8081151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 01/18/2023] Open
Abstract
The gut microbiota comprises a large and diverse community of bacteria that play a significant role in swine health. Indeed, there is a tight association between the enteric immune system and the overall composition and richness of the microbiota, which is key in the induction, training and function of the host immunity, and may therefore, influence the immune response to vaccination. Using vaccination against Mycoplasma hyopneumoniae (M. hyo) as a model, we investigated the potential of early-life gut microbiota in predicting vaccine response and explored the post-vaccination dynamics of fecal microbiota at later time points. At 28 days of age (0 days post-vaccination; dpv), healthy piglets were vaccinated, and a booster vaccine was administered at 21 dpv. Blood samples were collected at 0, 21, 28, 35, and 118 dpv to measure M. hyo-specific IgG levels. Fecal samples for 16S rRNA gene amplicon sequencing were collected at 0, 21, 35, and 118 dpv. The results showed variability in antibody response among individual pigs, whilst pre-vaccination operational taxonomic units (OTUs) primarily belonging to Prevotella, [Prevotella], Anaerovibrio, and Sutterella appeared to best-predict vaccine response. Microbiota composition did not differ between the vaccinated and non-vaccinated pigs at post-vaccination time points, but the time effect was significant irrespective of the animals' vaccination status. Our study provides insight into the role of pre-vaccination gut microbiota composition in vaccine response and emphasizes the importance of studies on full metagenomes and microbial metabolites aimed at deciphering the role of specific bacteria and bacterial genes in the modulation of vaccine response.
Collapse
Affiliation(s)
- Peris M. Munyaka
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (G.P.); (B.P.W.)
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Gaëtan Lemonnier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Jean-Jacques Leplat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Marie-Noëlle Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Déborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (G.P.); (B.P.W.)
- Livestock Gentec, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (G.P.); (B.P.W.)
| | - Claire Rogel-Gaillard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| |
Collapse
|
23
|
Gao B, Zhong M, Shen Q, Wu Y, Cao M, Ju S, Chen L. Gut microbiota in early pregnancy among women with Hyperglycaemia vs. Normal blood glucose. BMC Pregnancy Childbirth 2020; 20:284. [PMID: 32393255 PMCID: PMC7216510 DOI: 10.1186/s12884-020-02961-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies suggest that there is a link between the gut microbiota and glucose metabolism. This study aimed to compare the gut microbiota during early pregnancy of women with hyperglycymia to those with normal blood glucose. Methods Gut microbial composition was analysed in 22 women with hyperglycaemia and 28 age-matched healthy controls during their first prenatal visits (< 20 weeks) using high throughput sequencing of the V3-V4 region of the 16S ribosomal RNA gene. Hyperglycemia was diagnosed based on the criteria recommended by the International Association of Diabetes and Pregnancy Study Groups in 2010. Results Women with hyperglycemia in pregnancy (HIP) had significantly lower microbial richness and diversity compared with healthy pregnant women. The proportions of the Firmicutes and Bacteroidetes phyla and the ratio of Firmicutes:Bacteroidetes were not different between the two groups. We observed that individuals with HIP had an increased abundance of Nocardiaceae, Fusobacteriaceae, etc., whereas healthy controls had significantly higher levels of Christensenellaceae, Clostridiales_vadinBB60_group, Coriobacteriaceae, etc. Similarly, levels of the members of the Ruminococcaceae family, including Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-003, and Ruminococcaceae_UCG-002, were significantly reduced in the HIP group and were negatively correlated with HbA1c. HbA1c levels were positively correlated with Bacteroidaceae and Enterobacteriaceae and negatively correlated with Christensenellaceae, etc. CRP was positively correlated with the Bacteroidaceae and Fusobacteriaceae families and the Fusobacterium genus. Conclusions Our study revealed that individuals with HIP have gut microbial dysbiosis and that certain bacterial groups are associated with glucose metabolism during pregnancy. Further study is needed to provide new ideas to control glucose by modifying the gut microbiota.
Collapse
Affiliation(s)
- Beibei Gao
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, China
| | - Mengdan Zhong
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, China
| | - Qiong Shen
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, China
| | - Ying Wu
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, China
| | - Mengdie Cao
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, China
| | - Songwen Ju
- Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, China
| | - Lei Chen
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215000, China.
| |
Collapse
|
24
|
Dietary supplementation with vitamin C ameliorates the adverse effects of Salmonella Enteritidis-challenge in broilers by shaping intestinal microbiota. Poult Sci 2020; 99:3663-3674. [PMID: 32616263 PMCID: PMC7597860 DOI: 10.1016/j.psj.2020.03.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Salmonella Enteritidis (SE) infection is not only a leading cause of poor production performance and compromised animal welfare in broilers but also a potential threat to public health. Two experiments were conducted to evaluate the effects of dietary supplemental vitamin C (VC) on SE challenged-broilers. In experiment 1, one hundred eighty 1-day-old Arbor Acre broilers were randomly allocated into 3 treatments, with 0, 500, or 1,000 mg/kg VC included in the diet. In experiment 2, dietary VC at 0 or 500 mg/kg, with or without SE challenge was applied in a 2 × 2 factorial arrangement in 6 randomized complete blocks. In experiment 1, addition with 500 mg/kg VC increased BW and infectious bursal disease (IBD) titer of broilers on 35 D (P < 0.05), whereas 1,000 mg/kg VC had no effects on the IBD titer (P > 0.05) compared with the control group. In experiment 2, SE challenge depressed BW on 11 and 21 D (P < 0.05 and P = 0.088, respectively), whereas increased mortality and hepatic bacterial translocation (P < 0.05) on 21 D. Further, SE challenge resulted in lower villus height in jejunum, lower microbial richness, and diversity, whereas higher abundance of Enterobacteriaceae in cecum (P < 0.05). Importantly, supplementation with VC increased BW on both 21 and 35 D (P < 0.05 and P = 0.088, respectively) and enhanced the intestinal health by improving villus morphology and microbial structure as indicated by higher cecal microbial richness and Firmicutes to Bacteroidetes ratio, while lower abundance of Enterobacteriaceae (P < 0.05). In addition, birds fed with 500 mg/kg VC in the diet had significantly increased jejunal secretory immunoglobulin A levels, T lymphocytes stimulation index, and serum total antioxidant capability compared with groups without VC (P < 0.05). In conclusion, SE challenge induced lower production performance and higher mortality in broilers. However, dietary supplementation with VC ameliorated SE-caused damage in broilers by improving the intestinal health, partly mediated by shaping the structure of cecal microbiota.
Collapse
|
25
|
Massacci FR, Morelli A, Cucco L, Castinel A, Ortenzi R, Tofani S, Pezzotti G, Estellé J, Paniccià M, Magistrali CF. Transport to the Slaughterhouse Affects the Salmonella Shedding and Modifies the Fecal Microbiota of Finishing Pigs. Animals (Basel) 2020; 10:E676. [PMID: 32294951 PMCID: PMC7222783 DOI: 10.3390/ani10040676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Contaminated pork is a significant source of foodborne Salmonellosis. Pork is contaminated at the slaughterhouse and the intestinal content is the predominant source of Salmonella for carcass contamination. The prevalence of Salmonella-positive pigs increases significantly when the time of transport to the slaughterhouse is longer than two hours. The hypothesis behind this study is that transport to the slaughterhouse increases the load of Salmonella in feces and determines a shift of the fecal microbiota in finishing pigs. Fecal samples were collected in a pig herd positive for Salmonella spp., the day before the transport and at the slaughterhouse. Salmonella loads were estimated by the most probable number (MPN) technique, according to the ISO/TS 6579-2:2012/A1. Moreover, the fecal bacteria composition was assessed by sequencing the V3-V4 hypervariable regions of the 16S rRNA gene. Our study showed that the load of Salmonella increases after transport, confirming that this phase of the production chain is a critical point for the control of Salmonella contamination. A lower richness and an increased beta-diversity characterized the fecal microbiota composition of Salmonella-positive animals after transport. In this stage, a natural Salmonella infection causes a disruption of the fecal microbiota as observed in challenge studies.
Collapse
Affiliation(s)
- Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (A.M.); (L.C.); (R.O.); (S.T.); (G.P.); (M.P.); (C.F.M.)
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, 78352 Jouy-en-Josas, France ;
| | - Alessandra Morelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (A.M.); (L.C.); (R.O.); (S.T.); (G.P.); (M.P.); (C.F.M.)
| | - Lucilla Cucco
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (A.M.); (L.C.); (R.O.); (S.T.); (G.P.); (M.P.); (C.F.M.)
| | - Adrien Castinel
- GeT-PlaGe, Genotoul, INRAE US1426, 31320 Castanet-Tolosan CEDEX, France;
| | - Roberta Ortenzi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (A.M.); (L.C.); (R.O.); (S.T.); (G.P.); (M.P.); (C.F.M.)
| | - Silvia Tofani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (A.M.); (L.C.); (R.O.); (S.T.); (G.P.); (M.P.); (C.F.M.)
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana ‘M. Aleandri’, 00178 Roma, Italy
| | - Giovanni Pezzotti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (A.M.); (L.C.); (R.O.); (S.T.); (G.P.); (M.P.); (C.F.M.)
| | - Jordi Estellé
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, 78352 Jouy-en-Josas, France ;
| | - Marta Paniccià
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (A.M.); (L.C.); (R.O.); (S.T.); (G.P.); (M.P.); (C.F.M.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (A.M.); (L.C.); (R.O.); (S.T.); (G.P.); (M.P.); (C.F.M.)
| |
Collapse
|
26
|
Pollock J, Gally DL, Glendinning L, Tiwari R, Hutchings MR, Houdijk JGM. Analysis of temporal fecal microbiota dynamics in weaner pigs with and without exposure to enterotoxigenic Escherichia coli1,2. J Anim Sci 2020; 96:3777-3790. [PMID: 29982429 PMCID: PMC6127793 DOI: 10.1093/jas/sky260] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
The primary aim of this work was to study potential effects of subclinical enterotoxigenic Escherichia coli (ETEC) exposure on porcine fecal microbiota composition, with a secondary aim of profiling temporal shifts in bacterial communities over the weaning transition period. 16S rRNA gene metabarcoding and quantitative PCR (qPCR) were used to profile the fecal microbiota and quantify ETEC excretion in the feces, respectively. Temporal shifts in fecal microbiota structure and stability were observed across the immediate postweaning period (P < 0.05), including significant shifts in the relative levels of specific bacterial phylotypes (P < 0.05). ETEC exposure did not change the fecal microbiota structure (P > 0.05), but significant variations in fecal community structure and stability were linked to variations in ETEC excretion level at particular time points (P < 0.05). In this study, marked temporal changes in microbiota structure and stability were evident over the short weaning transition period, with a relationship between ETEC excretion level and fecal microbiota composition being observed. This study has provided a detailed analysis of fecal microbiota dynamics in the pig, which should help to inform the development of novel management strategies for enteric disorders based on an improved understanding of microbial populations during the challenging postweaning period.
Collapse
Affiliation(s)
- Jolinda Pollock
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - David L Gally
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Laura Glendinning
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Raksha Tiwari
- Research and Development, Zoetis, Kalamazoo, MI, USA
| | - Michael R Hutchings
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Jos G M Houdijk
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| |
Collapse
|
27
|
Fouhse JM, Tsoi S, Clark B, Gartner S, Patterson JL, Foxcroft GR, Willing BP, Dyck MK. Outcomes of a low birth weight phenotype on piglet gut microbial composition and intestinal transcriptomic profile. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decades of selection for increased litter size has caused a proportion of sows to consistently produce low birth weight (LBW) litters resulting in economic loss for producers due to reduced piglet survivability and growth. We hypothesized that piglets from LBW litters would have altered gut microbial composition, intestinal architecture, and intestinal transcriptomic profiles compared with piglets from high birth weight (HBW) litters. Sows were designated LBW (n = 45) or HBW (n = 46) based on litter birth weights of three successive parities. LBW piglets were 22% lighter (P < 0.001) at birth; however, no longer differed (P > 0.05) in weight at weaning compared with HBW piglets. LBW piglets had reduced (P < 0.05) fecal microbial diversity with a 114% increase in fecal Enterobacteriaceae (P < 0.05), as well as reduced (P < 0.05) abundance of cecal Roseburia and Faecalibacterium, fiber-degrading butyrate producers. Several genes associated with metabolic (PER2, CES1, KLHL38, and HK2) and immune pathways (IL-1B, IRF8, and TNIP3) were differentially expressed, suggesting altered metabolic and immune function in LBW piglets. In conclusion, LBW piglets had potentially unfavorable shifts in microbial structure in comparison to HBW piglets accompanied with alterations in metabolic and immune gene expression. Results indicate some biological consequences linking LBW phenotype to changes in production efficiency later in life.
Collapse
Affiliation(s)
- Janelle M. Fouhse
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Stephen Tsoi
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Brenna Clark
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Stephanie Gartner
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Jennifer L. Patterson
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - George R. Foxcroft
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Michael K. Dyck
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
28
|
Marcolla CS, Alvarado CS, Willing BP. Early life microbial exposure shapes subsequent animal health. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2019-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biosecurity standards and farming practices have profoundly changed the way domestic animals interact with the environment and themselves. Farm intensification processes resemble the lifestyle changes that humans underwent post industrialization, which have been linked to the occurrence of immune-mediated and metabolic disorders. Modern rearing practices reduce maternal and offspring interactions, promote changes in diet, restrict animals indoors, and rely on the use of antibiotics and vaccines to maintain animal health. These practices may hinder the proper colonization of the gastrointestinal tract with commensal organisms that co-evolved with livestock species. The gut microbiota aids nutrient digestion, stimulates immune and intestinal development and maturation, and promotes the competitive exclusion of pathogens. Microbial colonization in early life is critical for host metabolic and immune programming, and disruptions of gut microbial community stability can lead to development of metabolic and immune disorders seen at later stages of life. Identifying how farming practices influence microbial composition and the potential effects on host physiology, metabolism, and disease resistance is necessary to guide intervention strategies to promote beneficial microbial–host interactions, and improve animal health and performance.
Collapse
Affiliation(s)
- Camila Schultz Marcolla
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Carla Sosa Alvarado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Benjamin Peter Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
29
|
Lépine AFP, Konstanti P, Borewicz K, Resink JW, de Wit NJ, Vos PD, Smidt H, Mes JJ. Combined dietary supplementation of long chain inulin and Lactobacillus acidophilus W37 supports oral vaccination efficacy against Salmonella Typhimurium in piglets. Sci Rep 2019; 9:18017. [PMID: 31784576 PMCID: PMC6884548 DOI: 10.1038/s41598-019-54353-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Routine use of antibiotics in livestock animals strongly contributed to the creation of multidrug-resistant Salmonella Typhimurium strains (STM). Vaccination is an alternative to the use of antibiotics but often suffers from low efficacy. The present study investigated whether long-chain inulin (lcITF) and Lactobacillus acidophilus W37 (LaW37) can support vaccination efficacy against STM and if the interventions influence possible gut microbiota changes. Piglets received daily supplementation until sacrifice. Animals were vaccinated on day 25 after birth, one day after weaning, and were challenged with STM on days 52–54. Dietary intervention with lcITF/LaW37 enhanced vaccination efficacy by 2-fold during challenge and resulted in higher relative abundance of Prevotellaceae and lower relative abundance of Lactobacillaceae in faeces. Although strongest microbial effects were observed post STM challenge on day 55, transient effects of the lcITF/LaW37 intervention were also detected on day 10 after birth, and post-weaning on day 30 where increased relative abundance of faecal lactobacilli was correlated with higher faecal consistency. LcITF treatment increased post-weaning feed efficiency and faecal consistency but did not support vaccination efficacy. Vaccination in immune-immature young animals can be enhanced with functional additives which can simultaneously promote health in an ingredient-dependent fashion.
Collapse
Affiliation(s)
- Alexia F P Lépine
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.,Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Klaudyna Borewicz
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jan-Willem Resink
- Trouw Nutrition Research & Development, Stationsstraat 77, 3811 MH, Amersfoort, The Netherlands
| | - Nicole J de Wit
- Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jurriaan J Mes
- Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
30
|
Shin D, Chang SY, Bogere P, Won K, Choi JY, Choi YJ, Lee HK, Hur J, Park BY, Kim Y, Heo J. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS One 2019; 14:e0220843. [PMID: 31461453 PMCID: PMC6713323 DOI: 10.1371/journal.pone.0220843] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
The importance of probiotics in swine production is widely acknowledged as crucial. However, gaps still remain in the exact roles played by probiotics in modulation of gut microbiota and immune response. This study determined the roles of probiotic Lactobacillus plantarum strain JDFM LP11in gut microbiota modulation and immune response in weaned piglets. L. plantarum JDFM LP11 increased the population of lactic acid bacteria in feces and enhanced the development of villi in the small intestine. Metagenome analysis showed that microbial diversity and richness (Simpson, Shannon, ACE, Chao1) and the relative abundance of the Firmicutes were higher in weaned piglets fed probiotics. Five bacterial families were different in the relative abundance, especially; Prevotellaceae occupied the largest part of microbial community showed the most difference between two groups. Transcriptome analysis identified 25 differentially expressed genes using RNA-sequencing data of the ileum. Further gene ontology and immune DB analysis determined 8 genes associated with innate defense response and cytokine production. BPI, RSAD2, SLPI, LUM, OLFM4, DMBT1 and C6 genes were down-regulated by probiotic supplementation except PLA2G2A. PICRUSt analysis predicting functional profiling of microbial communities indicated branched amino acid biosynthesis and butyrate metabolism promoting gut development and health were increased by probiotics. Altogether, our data suggest that L. plantarum JDFM LP11 increases the diversity and richness in the microbial community, and attenuates the ileal immune gene expression towards gut inflammation, promoting intestinal development in weaned piglets.
Collapse
Affiliation(s)
- Donghyun Shin
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| | - Sung Yong Chang
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju, Republic of Korea
| | - Paul Bogere
- Department of Agricultural Convergence Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - KyeongHye Won
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| | - Jae-Young Choi
- The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, Republic of Korea
| | - Yeon-Jae Choi
- International Agricultural Development and Cooperation Center, Chonbuk National University, Jeonju, Republic of Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
- The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, Republic of Korea
| | - Jin Hur
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Byung-Yong Park
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jaeyoung Heo
- International Agricultural Development and Cooperation Center, Chonbuk National University, Jeonju, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
Huang T, Huang X, Chen W, Yin J, Shi B, Wang F, Feng W, Yao M. MicroRNA responses associated with Salmonella enterica serovar typhimurium challenge in peripheral blood: effects of miR-146a and IFN-γ in regulation of fecal bacteria shedding counts in pig. BMC Vet Res 2019; 15:195. [PMID: 31186019 PMCID: PMC6560770 DOI: 10.1186/s12917-019-1951-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/05/2019] [Indexed: 01/15/2023] Open
Abstract
Background MicroRNAs are involved in a broad range of biological processes and are known to be differentially expressed in response to bacterial pathogens. Results The present study identified microRNA responses in porcine peripheral blood after inoculation with the human foodborne pathogen Salmonella enterica serovar Typhimurium strain LT2. We compared the microRNA transcriptomes of the whole blood of pigs (Duroc × Landrace × Yorkshire) at 2-days post inoculation and before Salmonella infection. The analysis identified a total of 29 differentially expressed microRNAs, most of which are implicated in Salmonella infection and immunology signaling pathways. Joint analysis of the microRNA and mRNA transcriptomes identified 24 microRNAs with binding sites that were significantly enriched in 3′ UTR of differentially expressed mRNAs. Of these microRNAs, three were differentially expressed after Salmonella challenge in peripheral blood (ssc-miR-146a-5p, ssc-miR-125a, and ssc-miR-129a-5p). Expression of 23 targets of top-ranked microRNA, ssc-miR-146a-5p, was validated by real-time PCR. The effects of miR-146a, IFN-γ, and IL-6 on the regulation of fecal bacteria shedding counts in pigs were investigated by in vivo study with a Salmonella challenge model. Conclusions The results indicated that induction of miR-146a in peripheral blood could significantly increase the fecal bacterial load, whereas IFN-γ had the reverse effect. These microRNAs can be used to identify targets for controlling porcine salmonellosis.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wang Chen
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jun Yin
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Fangfang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wenzhao Feng
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
32
|
Argüello H, Estellé J, Leonard FC, Crispie F, Cotter PD, O’Sullivan O, Lynch H, Walia K, Duffy G, Lawlor PG, Gardiner GE. Influence of the Intestinal Microbiota on Colonization Resistance to Salmonella and the Shedding Pattern of Naturally Exposed Pigs. mSystems 2019; 4:e00021-19. [PMID: 31020042 PMCID: PMC6478965 DOI: 10.1128/msystems.00021-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Salmonella colonization and infection in production animals such as pigs are a cause for concern from a public health perspective. Variations in susceptibility to natural infection may be influenced by the intestinal microbiota. Using 16S rRNA compositional sequencing, we characterized the fecal microbiome of 15 weaned pigs naturally infected with Salmonella at 18, 33, and 45 days postweaning. Dissimilarities in microbiota composition were analyzed in relation to Salmonella infection status (infected, not infected), serological status, and shedding pattern (nonshedders, single-point shedders, intermittent-persistent shedders). Global microbiota composition was associated with the infection outcome based on serological analysis. Greater richness within the microbiota postweaning was linked to pigs being seronegative at the end of the study at 11 weeks of age. Members of the Clostridia, such as Blautia, Roseburia, and Anaerovibrio, were more abundant and part of the core microbiome in nonshedder pigs. Cellulolytic microbiota (Ruminococcus and Prevotella) were also more abundant in noninfected pigs during the weaning and growing stages. Microbial profiling also revealed that infected pigs had a higher abundance of Lactobacillus and Oscillospira, the latter also being part of the core microbiome of intermittent-persistent shedders. These findings suggest that a lack of microbiome maturation and greater proportions of microorganisms associated with suckling increase susceptibility to infection. In addition, the persistence of Salmonella shedding may be associated with an enrichment of pathobionts such as Anaerobiospirillum. Overall, these results suggest that there may be merit in manipulating certain taxa within the porcine intestinal microbial community to increase disease resistance against Salmonella in pigs. IMPORTANCE Salmonella is a global threat for public health, and pork is one of the main sources of human salmonellosis. However, the complex epidemiology of the infection limits current control strategies aimed at reducing the prevalence of this infection in pigs. The present study analyzes for the first time the impact of the gut microbiota in Salmonella infection in pigs and its shedding pattern in naturally infected growing pigs. Microbiome (16S rRNA amplicon) analysis reveals that maturation of the gut microbiome could be a key consideration with respect to limiting the infection and shedding of Salmonella in pigs. Indeed, seronegative animals had higher richness of the gut microbiota early after weaning, and uninfected pigs had higher abundance of strict anaerobes from the class Clostridia, results which demonstrate that a fast transition from the suckling microbiota to a postweaning microbiota could be crucial with respect to protecting the animals.
Collapse
Affiliation(s)
- Héctor Argüello
- Teagasc, Food Research Centre, Ashtown, Dublin, Ireland
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Jordi Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Finola C. Leonard
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Fiona Crispie
- Teagasc, Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Paul D. Cotter
- Teagasc, Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Orla O’Sullivan
- Teagasc, Food Research Centre, Fermoy, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Helen Lynch
- Teagasc, Food Research Centre, Ashtown, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Kavita Walia
- Teagasc, Food Research Centre, Ashtown, Dublin, Ireland
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | | | - Peadar G. Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gillian E. Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
33
|
Characterization of whole blood transcriptome and early-life fecal microbiota in high and low responder pigs before, and after vaccination for Mycoplasma hyopneumoniae. Vaccine 2019; 37:1743-1755. [PMID: 30808565 DOI: 10.1016/j.vaccine.2019.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
We investigated gene expression patterns in whole blood and fecal microbiota profile as potential predictors of immune response to vaccination, using healthy M. hyopneumoniae infection free piglets (n = 120). Eighty piglets received a dose of prophylactic antibiotics during the first two days of life, whereas the remaining 40 did not. Blood samples for RNA-Seq analysis were collected on experimental Day 0 (D0; 28 days of age) just prior to vaccination, D2, and D6 post-vaccination. A booster vaccine was given at D24. Fecal samples for microbial 16SrRNA sequencing were collected at 7 days of age, and at D0 and D35 post-vaccination. Pigs were ranked based on the levels of M. hyopneumoniae-specific antibodies in serum samples collected at D35, and groups of 'high' (HR) and 'low' (LR) responder pigs (n = 15 each) were selected. Prophylactic antibiotics did not influence antibody titer levels and differential expression analysis did not reveal differences between HR and LR at any time-point (FDR > 0.05); however, based on functional annotation with Ingenuity Pathway Analysis, D2 post-vaccination, HR pigs were enriched for biological terms relating to increased activation of immune cells. In contrast, the immune activation decreased in HR, 6 days post-vaccination. No significant differences were observed prior to vaccination (D0). Two days post-vaccination, multivariate analysis revealed that ADAM8, PROSER3, B4GALNT1, MAP7D1, SPP1, HTRA4, and ENO3 genes were the most promising potential biomarkers. At D0, OTUs annotated to Prevotella, CF21, Bacteroidales and S24-7 were more abundant in HR, whereas Fibrobacter, Paraprevotella, Anaerovibrio, [Prevotella], YRC22, and Helicobacter positively correlated with the antibody titer as well as MYL1, SPP1, and ENO3 genes. Our study integrates gene differential expression and gut microbiota to predict vaccine response in pigs. The results indicate that post-vaccination gene-expression and early-life gut microbiota profile could potentially predict vaccine response in pigs, and inform a direction for future research.
Collapse
|
34
|
Chlortetracycline Enhances Tonsil Colonization and Fecal Shedding of Multidrug-Resistant Salmonella enterica Serovar Typhimurium DT104 without Major Alterations to the Porcine Tonsillar and Intestinal Microbiota. Appl Environ Microbiol 2019; 85:AEM.02354-18. [PMID: 30530706 DOI: 10.1128/aem.02354-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022] Open
Abstract
Salmonella spp. are estimated to cause 1.2 million cases of human foodborne illness each year in the United States, and pigs can often be asymptomatically colonized with Salmonella spp. (>50% of farms). Recent reports state that 18.3% of Salmonella enterica serovar Typhimurium isolates are resistant to ≥3 antimicrobial classes, and multidrug-resistant (MDR) strains are associated with an increased hospitalization rate and other complications. Chlortetracycline is commonly used in swine production to prevent/treat various diseases; therefore, chlortetracycline treatment of pigs unknowingly colonized with MDR Salmonella may have collateral effects on Salmonella spp. (and other gut bacteria). In this study, we determined the effect of in-feed chlortetracycline (400 g/ton) on shedding and colonization of pigs challenged with the MDR S Typhimurium strain DT104 (n = 11/group). We also assessed the impact on the fecal microbiota over the 12-day experimental period and on the ileum, cecum, and tonsil microbiota at 7 days postinoculation (dpi). In MDR S Typhimurium-inoculated pigs, chlortetracycline administration significantly increased fecal shedding at 2 dpi (+1.4 log10 CFU/g; P < 0.001) and enhanced tonsil colonization (+3.1 log10 CFU/g; P < 0.001). There were few major alterations detected in the gut or tonsillar microbiota of pigs treated with MDR S Typhimurium and/or chlortetracycline. The tonsillar transcriptome was largely unaffected despite increased colonization by MDR S Typhimurium following inoculation of the chlortetracycline-treated pigs. These results highlight the idea that chlortetracycline administration can enhance shedding and colonization of MDR S Typhimurium in pigs, which could increase the risk of environmental dissemination of MDR Salmonella strains.IMPORTANCE Salmonella spp. are an important cause of foodborne illness in North America, and pork products are associated with sporadic cases and outbreaks of human salmonellosis. Isolates of Salmonella may be resistant to multiple antibiotics, and infections with multidrug-resistant (MDR) Salmonella spp. are more difficult to treat, leading to increased hospitalization rates. Swine operations commonly use antimicrobials, such as chlortetracycline, to prevent/treat infections, which may have collateral effects on pig microbial populations. Recently, we demonstrated that chlortetracycline induces the expression of genes associated with pathogenesis and invasion in MDR Salmonella enterica serovar Typhimurium in vitro In our current study, we show increased tonsillar colonization and fecal shedding of the MDR S Typhimurium strain DT104 from pigs administered chlortetracycline. Therefore, pigs unknowingly colonized with multidrug-resistant Salmonella spp. and receiving chlortetracycline for an unrelated infection may be at a greater risk for disseminating MDR Salmonella spp. to other pigs and to humans through environmental or pork product contamination.
Collapse
|
35
|
He T, Zhu YH, Yu J, Xia B, Liu X, Yang GY, Su JH, Guo L, Wang ML, Wang JF. Lactobacillus johnsonii L531 reduces pathogen load and helps maintain short-chain fatty acid levels in the intestines of pigs challenged with Salmonella enterica Infantis. Vet Microbiol 2019; 230:187-194. [PMID: 30827387 DOI: 10.1016/j.vetmic.2019.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/04/2019] [Accepted: 02/03/2019] [Indexed: 12/13/2022]
Abstract
In the current study, we screened Lactobacillus strains isolated from the colon of clinically healthy weaned piglets for potential probiotic properties and isolated Lactobacillus. johnsonii L531, which produced high levels of beneficial metabolites (butyric, acetic, and lactic acid) in vitro. We also evaluated the efficacy of this metabolites-producing probiotic in treating Salmonella. Infantis infection. Oral administration of L. johnsonii L531 to newly weaned piglets significantly decreased levels of Salmonella colonization in colonic and jejunal contents, accelerated the clearance of Salmonella in feces after infection, and reduced S. Infantis translocation to the spleen. Pretreatment with SCFAs-promoting probiotic L. johnsonii L531 significantly ameliorated the depletion of SCFAs induced by S. Infantis infection and led to significantly greater weight gain and better feed conversion ratios compared to piglets challenged only with S. Infantis. These data provide further evidence that SCFAs-promoting probiotic L. johnsonii L531 treatment could be a suitable nonantibiotic alternative for controlling Salmonella infection and maintaining metabolic homeostasis, thereby enhancing the gut health of piglets during the critical weaning period.
Collapse
Affiliation(s)
- Ting He
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yao-Hong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiao Yu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Bing Xia
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiao Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Gui-Yan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jin-Hui Su
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Liang Guo
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Meng-Ling Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiu-Feng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
36
|
Huang T, Huang X, Shi B, Wang F, Feng W, Yao M. Regulators of Salmonella-host interaction identified by peripheral blood transcriptome profiling: roles of TGFB1 and TRP53 in intracellular Salmonella replication in pigs. Vet Res 2018; 49:121. [PMID: 30541630 PMCID: PMC6292071 DOI: 10.1186/s13567-018-0616-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Peripheral blood transcriptome is an important intermediate data source for investigating the mechanism of Salmonella invasion, proliferation, and transmission. We challenged 4-week old piglets with Salmonella enterica serovar Typhimurium LT2 and investigated the peripheral blood gene expression profile before treatment (d0) and at 2 and 7 days post-inoculation (dpi) using deep sequencing. Regulator pathways were first predicted in silico and validated by wet-lab experiments. In total, 1255, 765, and 853 genes were differentially expressed between 2 dpi/d0, 7 dpi/d0, and 7 dpi/2 dpi, respectively. Additionally, 1333 genes showed a time effect during the investigated Salmonella infection period. Clustering analysis showed that the differentially expressed genes fell into six distinct expression clusters. Pathway annotation of these gene clusters showed that the innate immune system was first significantly upregulated at 2 dpi and then attenuated at 7 dpi. Toll-like receptor cascades, MyD88 cascade, phagosome pathway, cytokine signaling pathway, and lysosome pathway showed a similar expression pattern. Interestingly, we found that the ribosome pathway was significantly inhibited at 2 and 7 dpi. Gene expression regulation network enrichment analysis identified several candidate factors controlling the expression clusters. Further in vitro study showed that TGFB1 can inhibit Salmonella replication whereas TRP53 can promote Salmonella replication in porcine peripheral blood mononuclear cells and murine macrophages. These results provide new insights into the molecular mechanism of Salmonella-host interactions and clues for the genetic improvement of Salmonella infection resistance in pigs.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Fangfang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wenzhao Feng
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
37
|
Larivière-Gauthier G, Thibodeau A, Letellier A, Yergeau É, Fravalo P. Salmonella
shedding status of the sow affects the microbiota of their piglets at weaning. J Appl Microbiol 2018; 126:411-423. [DOI: 10.1111/jam.14139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- G. Larivière-Gauthier
- Faculty of Veterinary Medicine; NSERC Industrial Research Chair in Meat-Safety (CRSV), University of Montreal; Saint-Hyacinthe QC Canada
| | - A. Thibodeau
- Faculty of Veterinary Medicine; NSERC Industrial Research Chair in Meat-Safety (CRSV), University of Montreal; Saint-Hyacinthe QC Canada
| | - A. Letellier
- Faculty of Veterinary Medicine; NSERC Industrial Research Chair in Meat-Safety (CRSV), University of Montreal; Saint-Hyacinthe QC Canada
| | - É. Yergeau
- Centre INRS-Institut Armand-Frappier; Institut National de la Recherche Scientifique, Université du Québec; Laval QC Canada
| | - P. Fravalo
- Faculty of Veterinary Medicine; NSERC Industrial Research Chair in Meat-Safety (CRSV), University of Montreal; Saint-Hyacinthe QC Canada
| |
Collapse
|
38
|
Shippy DC, Bearson BL, Cai G, Brunelle BW, Kich JD, Bearson SM. Modulation of porcine microRNAs associated with apoptosis and NF-κB signaling pathways in response to Salmonella enterica serovar Typhimurium. Gene 2018; 676:290-297. [DOI: 10.1016/j.gene.2018.08.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
|
39
|
Menanteau P, Kempf F, Trotereau J, Virlogeux-Payant I, Gitton E, Dalifard J, Gabriel I, Rychlik I, Velge P. Role of systemic infection, cross contaminations and super-shedders in Salmonella carrier state in chicken. Environ Microbiol 2018; 20:3246-3260. [PMID: 29921019 DOI: 10.1111/1462-2920.14294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/20/2017] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Carriage of Salmonella is often associated with a high level of bacterial excretion and generally occurs after a short systemic infection. However, we do not know whether this systemic infection is required or whether the carrier-state corresponds to continuous reinfection or real persistence in caecal tissue. The use of a Salmonella Enteritidis bamB mutant demonstrated that a carrier-state could be obtained in chicken in the absence of systemic infection. The development of a new infection model in isolator showed that a marked decrease in animal reinfection and host-to-host transmission between chicks led to a heterogeneity of S. Enteritidis excretion and colonization contrary to what was observed in cages. This heterogeneity of infection was characterized by the presence of super-shedders, which constantly disseminated Salmonella to the low-shedder chicks, mainly through airborne movements of contaminated dust particles. The presence of super-shedders, in the absence of host-to-host transmission, demonstrated that constant reinfection was not required to induce a carrier-state. Finally, our results suggest that low-shedder chicks do not have a higher capability to destroy Salmonella but instead can block initial Salmonella colonization. This new paradigm opens new avenues to improve understanding of the carrier-state mechanisms and to define new strategies to control Salmonella infections.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Pierrette Menanteau
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Florent Kempf
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Jérôme Trotereau
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | | | - Edouard Gitton
- Plate-Forme d'Infectiologie Expérimentale, INRA, 37380, Nouzilly, France
| | - Julie Dalifard
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | | | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Philippe Velge
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| |
Collapse
|
40
|
He B, Bai Y, Jiang L, Wang W, Li T, Liu P, Tao S, Zhao J, Han D, Wang J. Effects of Oat Bran on Nutrient Digestibility, Intestinal Microbiota, and Inflammatory Responses in the Hindgut of Growing Pigs. Int J Mol Sci 2018; 19:ijms19082407. [PMID: 30111703 PMCID: PMC6121460 DOI: 10.3390/ijms19082407] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
Oat bran has drawn great attention within human research for its potential role in improving gut health. However, research regarding the impact of oat bran on nutrient utilization and intestinal functions in pigs is limited. The purpose of this study was to investigate the effects of oat bran on nutrient digestibility, intestinal microbiota, and inflammatory responses in the hindgut of growing pigs. Twenty-six growing pigs were fed either a basal diet (CON) or a basal diet supplemented with 10% oat bran (OB) within a 28 day feeding trial. Results showed that digestibility of dietary gross energy, dry matter, organic matter, and crude protein were lower in the OB group compared to the CON group on day 14, but no differences were observed between the two groups on day 28. In the colon, the relative abundance of operational taxonomic units (OTUs) associated with Prevotella, Butyricicoccus, and Catenibacterium were higher, while those associated with Coprococcus and Desulfovibrio were lower in the OB group compared to the CON group. Oat bran decreased mRNA expression of caecal interleukin-8 (IL-8), as well as colonic IL-8, nuclear factor-κB (NF-κB), and tumor necrosis factor-α (TNF-α) of the pigs. In summary, oat bran treatment for 28 day did not affect dietary nutrient digestibility, but promoted the growth of cellulolytic bacteria and ameliorated inflammatory reactions in the hindgut of growing pigs.
Collapse
Affiliation(s)
- Beibei He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Wei Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Tiantian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ping Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Junjun Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
41
|
Argüello H, Estellé J, Zaldívar-López S, Jiménez-Marín Á, Carvajal A, López-Bascón MA, Crispie F, O'Sullivan O, Cotter PD, Priego-Capote F, Morera L, Garrido JJ. Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa. Sci Rep 2018; 8:7788. [PMID: 29773876 PMCID: PMC5958136 DOI: 10.1038/s41598-018-26083-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Salmonella is a major foodborne pathogen which successfully infects animal species for human consumption such as swine. The pathogen has a battery of virulence factors which it uses to colonise and persist within the host. The host microbiota may play a role in resistance to, and may also be indirectly responsible from some of the consequences of, Salmonella infection. To investigate this, we used 16S rRNA metagenomic sequencing to determine the changes in the gut microbiota of pigs in response to infection by Salmonella Typhimurium at three locations: ileum mucosa, ileum content and faeces. Early infection (2 days post-infection) impacted on the microbiome diversity at the mucosa, reflected in a decrease in representatives of the generally regarded as desirable genera (i.e., Bifidobacterium and Lactobacillus). Severe damage in the epithelium of the ileum mucosa correlated with an increase in synergistic (with respect to Salmonella infection; Akkermansia) or opportunistically pathogenic bacteria (Citrobacter) and a depletion in anaerobic bacteria (Clostridium spp., Ruminococcus, or Dialliser). Predictive functional analysis, together with metabolomic analysis revealed changes in glucose and lipid metabolism in infected pigs. The observed changes in commensal healthy microbiota, including the growth of synergistic or potentially pathogenic bacteria and depletion of beneficial or competing bacteria, could contribute to the pathogen's ability to colonize the gut successfully. The findings from this study could be used to form the basis for further research aimed at creating intervention strategies to mitigate the effects of Salmonella infection.
Collapse
Affiliation(s)
- Héctor Argüello
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.
| | - Jordi Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Sara Zaldívar-López
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Mª Asunción López-Bascón
- Departamento de Química Analítica Universidad de Córdoba, Córdoba, CeiA3 Campus de Excelencia Agroalimentaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Fiona Crispie
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Paul D Cotter
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Feliciano Priego-Capote
- Departamento de Química Analítica Universidad de Córdoba, Córdoba, CeiA3 Campus de Excelencia Agroalimentaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Luis Morera
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| |
Collapse
|
42
|
Leite FLL, Singer RS, Ward T, Gebhart CJ, Isaacson RE. Vaccination Against Lawsonia intracellularis Decreases Shedding of Salmonella enterica serovar Typhimurium in Co-Infected Pigs and Alters the Gut Microbiome. Sci Rep 2018; 8:2857. [PMID: 29434295 PMCID: PMC5809363 DOI: 10.1038/s41598-018-21255-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Salmonella enterica serovar Typhimurium continues to be a major cause of foodborne illness worldwide and pork can serve as a source of infection. Co-infection of S. enterica with Lawsonia intracellularis, a common intestinal pathogen of swine, has been found as risk factor for increased S. enterica shedding. The objective of this study was to investigate if vaccination against L. intracellularis could lead to decreased S. Typhimurium shedding. To test this hypothesis, pigs were challenged with either S. Typhimurium or S. Typhimurium and L. intracellularis, with and without L. intracellularis vaccination (n = 9 per group). A non-challenged group served as a negative control. Vaccination decreased the shedding of S. Typhimurium in co-infected animals by 2.12 log10 organisms per gram of feces at 7 days post infection. Analysis of the microbiome showed that vaccination led to changes in the abundance of Clostridium species, including Clostridium butyricum, in addition to other compositional changes that may explain the protection mediated against S. Typhimurium. These results indicate that vaccination against L. intracellularis in co-infected herds may provide a new tool to increase food safety by helping to prevent S. enterica without the need for antibiotics.
Collapse
Affiliation(s)
- Fernando L L Leite
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Tonya Ward
- Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Connie J Gebhart
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
43
|
Shippy DC, Bearson BL, Holman DB, Brunelle BW, Allen HK, Bearson SMD. Porcine Response to a Multidrug-Resistant Salmonella enterica serovar I 4,[5],12:i:- Outbreak Isolate. Foodborne Pathog Dis 2018; 15:253-261. [PMID: 29412766 DOI: 10.1089/fpd.2017.2378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica serovar I 4,[5],12:i:- has emerged as a common nontyphoidal Salmonella serovar to cause human foodborne illness. An interesting trait of serovar I 4,[5],12:i:- is that it only expresses the fliC gene for bacterial motility (i.e., monophasic), while most Salmonella strains alternately express two flagellin genes (fliC and fljB). The goal of this study was to characterize the porcine response following inoculation with a multidrug-resistant (MDR) serovar I 4,[5],12:i:- isolate associated with a multistate pork outbreak to determine if the increased prevalence of serovar I 4,[5],12:i:- in swine is due to enhanced pathogenicity. Pigs were inoculated and subsequently evaluated for the ability of the isolate to colonize intestinal tissues, cause clinical symptoms, induce an immune response, and alter the fecal microbiota over a 7-day period. Pigs exhibited a significant increase in rectal temperature (fever) (p < 0.01) and fecal moisture content (diarrhea) (p < 0.05) at 2 days postinoculation (d.p.i.) compared with preinoculation (day 0). Serum analyses revealed significantly increased interferon-gamma (IFN-γ) levels at 2 (p ≤ 0.0001) and 3 (p < 0.01) d.p.i. compared with day 0, and antibodies against Salmonella lipopolysaccharide (LPS) were present in all pigs by 7 d.p.i. Serovar I 4,[5],12:i:- colonized porcine intestinal tissues and was shed in the feces throughout the 7-day study. Analysis of the 16S rRNA gene sequences demonstrated that the fecal microbiota was significantly altered following MDR serovar I 4,[5],12:i:- inoculation, with the largest shift observed between 0 and 7 d.p.i. Our data indicate that the pork outbreak-associated MDR serovar I 4,[5],12:i:- isolate induced transient clinical disease in swine and perturbed the gastrointestinal microbial community. The porcine response to MDR serovar I 4,[5],12:i:- is similar to previous studies with virulent biphasic Salmonella enterica serovar Typhimurium, suggesting that the absence of fljB does not substantially alter acute colonization or pathogenesis in pigs.
Collapse
Affiliation(s)
- Daniel C Shippy
- 1 Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center , Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa
| | - Bradley L Bearson
- 2 Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, Agricultural Research Service, U.S. Department of Agriculture , Ames, Iowa
| | - Devin B Holman
- 1 Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center , Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa
| | - Brian W Brunelle
- 1 Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center , Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa
| | - Heather K Allen
- 1 Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center , Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa
| | - Shawn M D Bearson
- 1 Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center , Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa
| |
Collapse
|
44
|
Pampillón-González L, Ortiz-Cornejo NL, Luna-Guido M, Dendooven L, Navarro-Noya YE. Archaeal and Bacterial Community Structure in an Anaerobic Digestion Reactor (Lagoon Type) Used for Biogas Production at a Pig Farm. J Mol Microbiol Biotechnol 2017; 27:306-317. [DOI: 10.1159/000479108] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/03/2017] [Indexed: 01/02/2023] Open
Abstract
Biogas production from animal waste is an economically viable way to reduce environmental pollution and produce valuable products, i.e<i>.</i>, methane and a nutrient-rich organic waste product. An anaerobic digestion reactor for biogas production from pig waste was sampled at the entrance, middle (digestion chamber), and exit of a digester, while the bacterial and archaeal community structure was studied by 16S rRNA gene metagenomics. The number of bacterial operational taxonomic units (OTU)-97% was 3-7 times larger than that of archaeal ones. Bacteria and Archaea found in feces of animals (e.g., Clostridiaceae, Lachnospiraceae, Ruminococcaceae, <i>Methanosarcina</i>, <i>Methanolobus</i>, <i>Methanosaeta</i>, and <i>Methanospirillum</i>) dominated the entrance of the digester. The digestion chamber was dominated by anaerobic sugar-fermenting OP9 bacteria and the syntrophic bacteria <i>Candidatus</i> Cloacamonas (Waste Water of Evry 1; WWE1). The methanogens dominant in the digestion chamber were the acetoclastic <i>Methanosaeta</i> and the hydrogenothrophic <i>Methanoculleus</i> and <i>Methanospirillum</i>. Similar bacterial and archaeal groups that dominated in the middle of the digestion chamber were found in the waste that left the digester. Predicted functions associated with degradation of xenobiotic compounds were significantly different between the sampling locations. The microbial community found in an anaerobic digestion reactor loaded with pig manure contained microorganisms with biochemical capacities related to the 4 phases of methane production.
Collapse
|
45
|
Larivière-Gauthier G, Thibodeau A, Letellier A, Yergeau É, Fravalo P. Reduction of Salmonella Shedding by Sows during Gestation in Relation to Its Fecal Microbiome. Front Microbiol 2017; 8:2219. [PMID: 29209285 PMCID: PMC5701629 DOI: 10.3389/fmicb.2017.02219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/27/2017] [Indexed: 12/28/2022] Open
Abstract
Pork meat is estimated to be responsible for 10–20% of human salmonellosis cases in Europe. Control strategies at the farm could reduce contamination at the slaughterhouse. One of the targeted sectors of production is maternity, where sows could be Salmonella reservoirs. The aim of this study was to assess the dynamics of shedding of Salmonella in terms of variation in both shedding prevalence and strains excreted during gestation in Quebec’s maternity sector. The evolution of the fecal microbiota of these sows during gestation was also assessed to detect bacterial populations associated with these variations. A total of 73 sows both at the beginning and the end of the gestation were randomly selected and their fecal matter was analyzed. Salmonella detection was conducted using a method that includes two selective enrichment media (MSRV and TBG). Nine isolates per positive samples were collected. Among the 73 sows tested, 27 were shedding Salmonella. Sows in the first third of their gestation shed Salmonella significantly more frequently (21/27) than those in the last third (6/46) (χ2P < 0.05). The shedding status of 19 of the sows that were previously sampled in the first third of their gestation was followed, this time in the last third of their gestation, which confirmed reduction of shedding. Using 16S rRNA gene sequencing and qPCR, significant differences between the fecal flora of sows at the beginning and the end of the gestation, shedding Salmonella or not and with different parity number were detected. Using MaAsLin, multiple OTUs were found to be associated with the time of gestation, the status of Salmonella excretion and parity number. Some of the identified taxa could be linked to the reduction of the shedding of Salmonella at the end of gestation. In this study, we showed that the level of Salmonella shedding was variable during gestation with significantly higher shedding at the beginning rather than at the end of gestation. We also observed for the first time a significant change in the microbiota during sow gestation and identified interesting taxa which could be linked to a reduced Salmonella shedding.
Collapse
Affiliation(s)
- Guillaume Larivière-Gauthier
- NSERC Industrial Research Chair in Meat-Safety (CRSV), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat-Safety (CRSV), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Ann Letellier
- NSERC Industrial Research Chair in Meat-Safety (CRSV), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Étienne Yergeau
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| | - Philippe Fravalo
- NSERC Industrial Research Chair in Meat-Safety (CRSV), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
46
|
Reducing Foodborne Pathogen Persistence and Transmission in Animal Production Environments: Challenges and Opportunities. Microbiol Spectr 2017; 4. [PMID: 27726803 DOI: 10.1128/microbiolspec.pfs-0006-2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Preharvest strategies to reduce zoonotic pathogens in food animals are important components of the farm-to-table food safety continuum. The problem is complex; there are multiple pathogens of concern, multiple animal species under different production and management systems, and a variety of sources of pathogens, including other livestock and domestic animals, wild animals and birds, insects, water, and feed. Preharvest food safety research has identified a number of intervention strategies, including probiotics, direct-fed microbials, competitive exclusion cultures, vaccines, and bacteriophages, in addition to factors that can impact pathogens on-farm, such as seasonality, production systems, diet, and dietary additives. Moreover, this work has revealed both challenges and opportunities for reducing pathogens in food animals. Animals that shed high levels of pathogens and predominant pathogen strains that exhibit long-term persistence appear to play significant roles in maintaining the prevalence of pathogens in animals and their production environment. Continued investigation and advancements in sequencing and other technologies are expected to reveal the mechanisms that result in super-shedding and persistence, in addition to increasing the prospects for selection of pathogen-resistant food animals and understanding of the microbial ecology of the gastrointestinal tract with regard to zoonotic pathogen colonization. It is likely that this continued research will reveal other challenges, which may further indicate potential targets or critical control points for pathogen reduction in livestock. Additional benefits of the preharvest reduction of pathogens in food animals are the reduction of produce, water, and environmental contamination, and thereby lower risk for human illnesses linked to these sources.
Collapse
|
47
|
Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: A review. JOURNAL OF SPORT AND HEALTH SCIENCE 2017; 6:179-197. [PMID: 30356594 PMCID: PMC6188999 DOI: 10.1016/j.jshs.2016.05.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/25/2016] [Accepted: 03/14/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a decrease in glycogen storage and the increase of oxidative stress, intestinal permeability, muscle damage, and systemic inflammatory response. Adaptations to exercise might be influenced by the gut microbiota, which plays an important role in the production, storage, and expenditure of energy obtained from the diet as well as in inflammation, redox reactions, and hydration status. METHODS A systematic and comprehensive search of electronic databases, including MEDLINE, Scopus, ClinicalTrials.gov, ScienceDirect, Springer Link, and EMBASE was done. The search process was completed using the keywords: "endurance", "exercise", "immune response", "microbiota", "nutrition", and "probiotics". RESULTS Reviewed literature supports the hypothesis that intestinal microbiota might be able to provide a measureable, effective marker of an athlete's immune function and that microbial composition analysis might also be sensitive enough to detect exercise-induced stress and metabolic disorders. The review also supports the hypothesis that modifying the microbiota through the use of probiotics could be an important therapeutic tool to improve athletes' overall general health, performance, and energy availability while controlling inflammation and redox levels. CONCLUSION The present review provides a comprehensive overview of how gut microbiota may have a key role in controlling the oxidative stress and inflammatory responses as well as improving metabolism and energy expenditure during intense exercise.
Collapse
Affiliation(s)
- Núria Mach
- Health Science Department, International Graduate Institute of the Open University of Catalonia (UOC), Barcelona 08035, Spain
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, Jouy-en-Josas 78350, France
- Corresponding author.
| | - Dolors Fuster-Botella
- Health Science Department, International Graduate Institute of the Open University of Catalonia (UOC), Barcelona 08035, Spain
| |
Collapse
|
48
|
Meta-analysis To Define a Core Microbiota in the Swine Gut. mSystems 2017; 2:mSystems00004-17. [PMID: 28567446 PMCID: PMC5443231 DOI: 10.1128/msystems.00004-17] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The swine gut microbiota encompasses a large and diverse population of bacteria that play a significant role in pig health. As such, a number of recent studies have utilized high-throughput sequencing of the 16S rRNA gene to characterize the composition and structure of the swine gut microbiota, often in response to dietary feed additives. It is important to determine which factors shape the composition of the gut microbiota among multiple studies and if certain bacteria are always present in the gut microbiota of swine, independently of study variables such as country of origin and experimental design. Therefore, we performed a meta-analysis using 20 publically available data sets from high-throughput 16S rRNA gene sequence studies of the swine gut microbiota. Next to the "study" itself, the gastrointestinal (GI) tract section that was sampled had the greatest effect on the composition and structure of the swine gut microbiota (P = 0.0001). Technical variation among studies, particularly the 16S rRNA gene hypervariable region sequenced, also significantly affected the composition of the swine gut microbiota (P = 0.0001). Despite this, numerous commonalities were discovered. Among fecal samples, the genera Prevotella, Clostridium, Alloprevotella, and Ruminococcus and the RC9 gut group were found in 99% of all fecal samples. Additionally, Clostridium, Blautia, Lactobacillus, Prevotella, Ruminococcus, Roseburia, the RC9 gut group, and Subdoligranulum were shared by >90% of all GI samples, suggesting a so-called "core" microbiota for commercial swine worldwide. IMPORTANCE The results of this meta-analysis demonstrate that "study" and GI sample location are the most significant factors in shaping the swine gut microbiota. However, in comparisons of results from different studies, some biological factors may be obscured by technical variation among studies. Nonetheless, there are some bacterial taxa that appear to form a core microbiota within the swine GI tract regardless of country of origin, diet, age, or breed. Thus, these results provide the framework for future studies to manipulate the swine gut microbiota for potential health benefits.
Collapse
|
49
|
Niederwerder MC. Role of the microbiome in swine respiratory disease. Vet Microbiol 2017; 209:97-106. [PMID: 28318782 DOI: 10.1016/j.vetmic.2017.02.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/20/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Microbiome is a term used to describe the community of microorganisms that live on the skin and mucosal surfaces of animals. The gastrointestinal microbiome is essential for proper nutrition and immunity. How the gastrointestinal microbiome impacts primary respiratory or systemic infections is an emerging area of study. Porcine reproductive and respiratory syndrome (PRRS) is caused by a systemic virus infection with primary lung pathology and continues to be the most costly disease of swine worldwide. Recent studies have demonstrated that improved outcome after experimental infection with PRRS virus and porcine circovirus type 2 (PCV2) is associated with increased fecal microbiome diversity and the presence of non-pathogenic Escherichia coli. In this review, we will discuss the factors that influence microbiome development in swine, associations of the microbiome with growth and immunity during infection with respiratory pathogens, and the role of the microbiome in PRRS. Taken together, modulation of the microbiome may be an alternative tool in the control of PRRS due to its intricate role in digestion of nutrients, systemic immunity, and response to pulmonary infections.
Collapse
Affiliation(s)
- Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA; Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
50
|
Lebel P, Letellier A, Longpré J, Laplante B, Yergeau E, Fravalo P. Feed presentation options in Swine early fattening mitigates Salmonella shedding and specifically modulates the faecal microbiota. J Appl Microbiol 2016; 122:30-39. [PMID: 27684482 DOI: 10.1111/jam.13305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/20/2016] [Accepted: 09/11/2016] [Indexed: 01/01/2023]
Abstract
AIMS The object of this study was to determine the impact of only modifying the processing and/or particle size of pig feed on Salmonella shedding and faecal microbiota. METHODS AND RESULTS Pigs were fed a diet that varied only by their processing (pellet or mash) and their particle size (500, 750 or 1250 μm) for 21 days. Salmonella detection in faeces and seroconversion were determined. Faecal microbiota was assessed by Ion Torrent amplicon sequencing and real-time PCR. Significantly fewer pigs (P < 0·05) shed Salmonella in the groups fed mash 500 (1) and mash or pellet 1250 (5 each) compared to the commercial reference group (15) fed pellet 500. Both mash processing and large particle size raised the proportion and number of bacteria from the Bifidobacterium genus in the faecal microbiota of the pigs. Thirteen other taxa significantly varied (P < 0·0005) with feed presentation. CONCLUSION Mash processing and/or large particle size in pig feed reduces Salmonella shedding prevalence and promotes beneficial populations of digestive microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first to demonstrate a difference in Salmonella shedding through only modifying pig feed presentation and is the first to extensively describe modifications of faecal microbiota.
Collapse
Affiliation(s)
- P Lebel
- Faculty of Veterinary Medicine, NSERC Industrial Research Chair in Meat-Safety (CRSV), Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Faculty of Veterinary Medicine, Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Faculty of Veterinary Medicine, Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - A Letellier
- Faculty of Veterinary Medicine, NSERC Industrial Research Chair in Meat-Safety (CRSV), Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Faculty of Veterinary Medicine, Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Faculty of Veterinary Medicine, Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - J Longpré
- Faculty of Veterinary Medicine, NSERC Industrial Research Chair in Meat-Safety (CRSV), Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Faculty of Veterinary Medicine, Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Faculty of Veterinary Medicine, Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - B Laplante
- F. Ménard Inc., Ange-Gardien, Quebec, Canada
| | - E Yergeau
- Centre INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Laval, Canada
| | - P Fravalo
- Faculty of Veterinary Medicine, NSERC Industrial Research Chair in Meat-Safety (CRSV), Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Faculty of Veterinary Medicine, Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Faculty of Veterinary Medicine, Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|