1
|
Ling X, Gu X, Shen Y, Fu C, Zhou Y, Yin Y, Gao Y, Zhu Y, Lou Y, Zheng M. Comparative genomic analysis of Acanthamoeba from different sources and horizontal transfer events of antimicrobial resistance genes. mSphere 2024; 9:e0054824. [PMID: 39352766 PMCID: PMC11520307 DOI: 10.1128/msphere.00548-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Acanthamoeba species are among the most common free-living amoeba and ubiquitous protozoa, mainly distributed in water and soil, and cause Acanthamoeba keratitis (AK) and severe visual impairment in patients. Although several studies have reported genomic characteristics of Acanthamoeba, limited sample sizes and sources have resulted in an incomplete understanding of the genetic diversity of Acanthamoeba from different sources. While endosymbionts exert a significant influence on the phenotypes of Acanthamoeba, including pathogenicity, virulence, and drug resistance, the species diversity and functional characterization remain largely unexplored. Herein, our study sequenced and analyzed the whole genomes of 19 Acanthamoeba pathogenic strains that cause AK, and by integrating publicly available genomes, we sampled 29 Acanthamoeba strains from ocular, environmental, and other sources. Combined pan-genomic and comparative functional analyses revealed genetic differences and evolutionary relationships among the different sources of Acanthamoeba, as well as classification into multiple functional groups, with ocular isolates in particular showing significant differences that may account for differences in pathogenicity. Phylogenetic and rhizome gene mosaic analyses of ocular Acanthamoeba strains suggested that genomic exchanges between Acanthamoeba and endosymbionts, particularly potential antimicrobial resistance genes trafficking including the adeF, amrA, and amrB genes exchange events, potentially contribute to Acanthamoeba drug resistance. In conclusion, this study elucidated the adaptation of Acanthamoeba to different ecological niches and the influence of gene exchange on the evolution of ocular Acanthamoeba genome, guiding the clinical diagnosis and treatment of AK and laying a theoretical groundwork for developing novel therapeutic approaches. IMPORTANCE Acanthamoeba causes a serious blinding keratopathy, Acanthamoeba keratitis, which is currently under-recognized by clinicians. In this study, we analyzed 48 strains of Acanthamoeba using a whole-genome approach, revealing differences in pathogenicity and function between strains of different origins. Horizontal transfer events of antimicrobial resistance genes can help provide guidance as potential biomarkers for the treatment of specific Acanthamoeba keratitis cases.
Collapse
Affiliation(s)
- Xinyi Ling
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobin Gu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunyan Fu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yumei Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiling Yin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanqiu Gao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwei Zhu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meiqin Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Krisna MA, Alimsardjono L, Salsabila K, Vermasari N, Daningrat WOD, Kuntaman K, Harrison OB, Maiden MCJ, Safari D. Whole-genome sequencing of non-typeable Haemophilus influenzae isolated from a tertiary care hospital in Surabaya, Indonesia. BMC Infect Dis 2024; 24:1097. [PMID: 39358708 PMCID: PMC11448046 DOI: 10.1186/s12879-024-09826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Haemophilus influenzae causes life-threatening invasive diseases such as septicaemia and meningitis. Reports on circulating H. influenzae causing invasive disease in lower-middle income settings, including Indonesia, are lacking. This study describes the serotype distributions and whole-genome sequence (WGS) data of H. influenzae isolated from hospitalized patients at Soetomo Hospital, Surabaya, Indonesia. METHODS H. influenzae isolates were isolated from blood and pleural fluid specimens and identified using culture-based and molecular methods, followed by serotyping and WGS using RT‒PCR and Illumina MiSeq, respectively. Sequencing reads were assembled, and further analyses were undertaken to determine the genomic content and reconstruct the phylogeny. A second dataset consisting of publicly available H. influenzae genomes was curated to conduct phylogenetic analyses of isolates in this study in the context of globally circulating isolates. RESULTS Ten H. influenzae isolates from hospitalized patients were collected, and septicaemia was the most common diagnosis (n=8). RT‒PCR and WGS were performed to determine whether all the isolates were nontypeable H. influenzae (NTHi). There were four newly identified STs distributed across the two main clusters. A total of 91 out of 126 virulence factor (VF)-related genes in Haemophilus sp. were detected in at least one isolate. Further evaluation incorporating a global collection of H. influenzae genomes confirmed the diverse population structure of NTHi in this study. CONCLUSION This study showed that all H. influenzae recovered from invasive disease patients were nonvaccine-preventable NTHi isolates. The inclusion of WGS revealed four novel STs and the possession of key VF-associated genes.
Collapse
Affiliation(s)
- Made Ananda Krisna
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Cibinong, West Java, Indonesia.
- Department of Biology, University of Oxford, Oxford, UK.
| | - Lindawati Alimsardjono
- Department of Clinical Microbiology, Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Korrie Salsabila
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Cibinong, West Java, Indonesia
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naritha Vermasari
- Department of Clinical Microbiology, Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Wa Ode Dwi Daningrat
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Cibinong, West Java, Indonesia
- Centre for Genomic Pathogen Surveillance, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kuntaman Kuntaman
- Department of Clinical Microbiology, Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | | | | | - Dodi Safari
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Cibinong, West Java, Indonesia.
| |
Collapse
|
3
|
Wan TW, Huang YT, Lai JH, Chao QT, Yeo HH, Lee TF, Chang YC, Chiu HC. The emergence of transposon-driven multidrug resistance in invasive nontypeable Haemophilus influenzae over the last decade. Int J Antimicrob Agents 2024; 64:107319. [PMID: 39233216 DOI: 10.1016/j.ijantimicag.2024.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Nontypeable Haemophilus influenzae (NTHi), once considered a harmless commensal, has emerged as a significant concern due to the increased prevalence of multidrug-resistant (MDR) strains and their association with invasive infections. This study aimed to explore the epidemiology and molecular resistance mechanisms of 51 NTHi isolates collected from patients with invasive infections in northern Taiwan between 2011 and 2020. This investigation revealed substantial genetic diversity, encompassing 29 distinct sequence types and 18 clonal complexes. Notably, 68.6% of the isolates exhibited ampicillin resistance, with 28 categorised as MDR and four isolates were even resistant to up to six antibiotic classes. Among the MDR isolates, 18 pulsotypes were identified, indicating diverse genetic lineages. Elucidation of their resistance mechanisms revealed 18 β-lactamase-producing amoxicillin-clavulanate-resistant (BLPACR) isolates, 12 β-lactamase-producing ampicillin-resistant (BLPAR) isolates, and 5 β-lactamase-nonproducing ampicillin-resistant (BLNAR) isolates. PBP3 analysis revealed 22 unique substitutions in BLPACR and BLNAR, potentially contributing to cephem resistance. Notably, novel transposons, Tn7736-Tn7739, which contain critical resistance genes, were discovered. Three strains harboured Tn7739, containing seven resistance genes [aph(3')-Ia, blaTEM-1, catA, sul2, strA, strB, and tet(B)], while four other strains carried Tn7736, Tn7737, and Tn7738, each containing three resistance genes [blaTEM-1, catA, and tet(B)]. The emergence of these novel transposons underscores the alarming threat posed by highly resistant NTHi strains. Our findings indicated that robust surveillance and comprehensive genomic studies are needed to address this growing public health challenge.
Collapse
Affiliation(s)
- Tsai-Wen Wan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jian-Hong Lai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Qiao-Ting Chao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Hui Yeo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tai-Fen Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Chi Chang
- Department of Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Le DQ, Nguyen TA, Nguyen SH, Nguyen TT, Nguyen CH, Phung HT, Ho TH, Vo NS, Nguyen T, Nguyen HA, Cao MD. Efficient inference of large prokaryotic pangenomes with PanTA. Genome Biol 2024; 25:209. [PMID: 39107817 PMCID: PMC11304767 DOI: 10.1186/s13059-024-03362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Pangenome inference is an indispensable step in bacterial genomics, yet its scalability poses a challenge due to the rapid growth of genomic collections. This paper presents PanTA, a software package designed for constructing pangenomes of large bacterial datasets, showing unprecedented efficiency levels multiple times higher than existing tools. PanTA introduces a novel mechanism to construct the pangenome progressively without rebuilding the accumulated collection from scratch. The progressive mode is shown to consume orders of magnitude less computational resources than existing solutions in managing growing datasets. The software is open source and is publicly available at https://github.com/amromics/panta and at 10.6084/m9.figshare.23724705 .
Collapse
Affiliation(s)
- Duc Quang Le
- AMROMICS JSC, Nghe An, Vietnam
- Faculty of IT, Hanoi University of Civil Engineering, Hanoi, Vietnam
| | - Tien Anh Nguyen
- AMROMICS JSC, Nghe An, Vietnam
- Faculty of Biotechnology, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Tam Thi Nguyen
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Canh Hao Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Huong Thanh Phung
- Faculty of Biotechnology, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Tho Huu Ho
- Department of Medical Microbiology, The 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Genomics & Cytogenetics, Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nam S Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Vietnam
| | | | | | | |
Collapse
|
5
|
Krisna MA, Jolley KA, Monteith W, Boubour A, Hamers RL, Brueggemann AB, Harrison OB, Maiden MCJ. Development and implementation of a core genome multilocus sequence typing scheme for Haemophilus influenzae. Microb Genom 2024; 10:001281. [PMID: 39120932 PMCID: PMC11315579 DOI: 10.1099/mgen.0.001281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Haemophilus influenzae is part of the human nasopharyngeal microbiota and a pathogen causing invasive disease. The extensive genetic diversity observed in H. influenzae necessitates discriminatory analytical approaches to evaluate its population structure. This study developed a core genome multilocus sequence typing (cgMLST) scheme for H. influenzae using pangenome analysis tools and validated the cgMLST scheme using datasets consisting of complete reference genomes (N = 14) and high-quality draft H. influenzae genomes (N = 2297). The draft genome dataset was divided into a development dataset (N = 921) and a validation dataset (N = 1376). The development dataset was used to identify potential core genes, and the validation dataset was used to refine the final core gene list to ensure the reliability of the proposed cgMLST scheme. Functional classifications were made for all the resulting core genes. Phylogenetic analyses were performed using both allelic profiles and nucleotide sequence alignments of the core genome to test congruence, as assessed by Spearman's correlation and ordinary least square linear regression tests. Preliminary analyses using the development dataset identified 1067 core genes, which were refined to 1037 with the validation dataset. More than 70% of core genes were predicted to encode proteins essential for metabolism or genetic information processing. Phylogenetic and statistical analyses indicated that the core genome allelic profile accurately represented phylogenetic relatedness among the isolates (R 2 = 0.945). We used this cgMLST scheme to define a high-resolution population structure for H. influenzae, which enhances the genomic analysis of this clinically relevant human pathogen.
Collapse
Affiliation(s)
- Made Ananda Krisna
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Biology, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - William Monteith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Alexandra Boubour
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Raph L. Hamers
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - Odile B. Harrison
- Department of Biology, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Bajanca-Lavado MP, Pinto M, Carvalho MD, Jantarada Domingos G, Melo-Cristino J. Rare serotype c Haemophilus influenzae invasive isolate: characterization of the first case in Portugal. Eur J Clin Microbiol Infect Dis 2024; 43:791-795. [PMID: 38332396 DOI: 10.1007/s10096-024-04774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
We report for the first time in Portugal a serotype c Haemophilus influenzae isolated from an adult, with HIV-1 infection. Whole-genome sequencing characterized the isolate as clonal complex ST-7, albeit with a novel MLST (ST2754) due to a unique atpG profile. Integration of this genome with other available H. influenzae serotype c genomes from PubMLST revealed its overall genetic distinctiveness, with the closest related isolate being identified in France in 2020. This surveillance study, involving collaboration among hospitals and reference laboratory, successfully contributed to the identification and characterization of this rare serotype.
Collapse
Affiliation(s)
- Maria Paula Bajanca-Lavado
- Haemophilus Influenzae Reference Laboratory, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Maria Dinah Carvalho
- Laboratório de Microbiologia, Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Gonçalo Jantarada Domingos
- Infectious Diseases Department, Santa Maria Hospital-Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - José Melo-Cristino
- Laboratório de Microbiologia, Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Bibi N, Wajeeha AW, Mukhtar M, Tahir M, Zaidi NUSS. In Vivo Validation of Novel Synthetic tbp1 Peptide-Based Vaccine Candidates against Haemophilus influenzae Strains in BALB/c Mice. Vaccines (Basel) 2023; 11:1651. [PMID: 38005983 PMCID: PMC10675187 DOI: 10.3390/vaccines11111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Haemophilus influenzae is a Gram-negative bacterium characterized as a small, nonmotile, facultative anaerobic coccobacillus. It is a common cause of a variety of invasive and non-invasive infections. Among six serotypes (a-f), H. influenzae type b (Hib) is the most familiar and predominant mostly in children and immunocompromised individuals. Following Hib vaccination, infections due to other serotypes have increased in number, and currently, there is no suitable effective vaccine to induce cross-strain protective antibody responses. The current study was aimed to validate the capability of two 20-mer highly conserved synthetic tbp1 (transferrin-binding protein 1) peptide-based vaccine candidates (tbp1-E1 and tbp1-E2) predicted using in silico approaches to induce immune responses against H. influenzae strains. Cytokine induction ability, immune simulations, and molecular dynamics (MD) simulations were performed to confirm the candidacy of epitopic docked complexes. Synthetic peptide vaccine formulations in combination with two different adjuvants, BGs (Bacterial Ghosts) and CFA/IFA (complete/incomplete Freund's adjuvant), were used in BALB/c mouse groups in three booster shots at two-week intervals. An indirect ELISA was performed to determine endpoint antibody titers using the Student's t-distribution method. The results revealed that the synergistic use of both peptides in combination with BG adjuvants produced better results. Significant differences in absorbance values were observed in comparison to the rest of the peptide-adjuvant combinations. The findings of this study indicate that these tbp1 peptide-based vaccine candidates may present a preliminary set of peptides for the development of an effective cross-strain vaccine against H. influenzae in the future due to their highly conserved nature.
Collapse
Affiliation(s)
- Naseeha Bibi
- Vaccinology and Therapeutics Research Group, Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (N.B.); (A.W.W.); (M.M.)
| | - Amtul Wadood Wajeeha
- Vaccinology and Therapeutics Research Group, Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (N.B.); (A.W.W.); (M.M.)
| | - Mamuna Mukhtar
- Vaccinology and Therapeutics Research Group, Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (N.B.); (A.W.W.); (M.M.)
| | - Muhammad Tahir
- Department of Plant Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Najam us Sahar Sadaf Zaidi
- Vaccinology and Therapeutics Research Group, Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (N.B.); (A.W.W.); (M.M.)
| |
Collapse
|
8
|
Polland L, Rydén H, Su Y, Paulsson M. In vivo gene expression profile of Haemophilus influenzae during human pneumonia. Microbiol Spectr 2023; 11:e0163923. [PMID: 37707456 PMCID: PMC10581191 DOI: 10.1128/spectrum.01639-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023] Open
Abstract
Haemophilus influenzae is a major cause of community-acquired pneumonia. While studied extensively in various laboratory models, less is known about the cell function while inside the human lung. We present the first analysis of the global gene expression of H. influenzae while the bacteria are in the lung during pneumonia (in vivo conditions) and contrast it with bacterial isolates that have been cultured under standard laboratory conditions (in vitro conditions). Patients with pneumonia were recruited from emergency departments and intensive care units during 2018-2020 (n = 102). Lower respiratory samples were collected for bacterial culture and RNA extraction. Patient samples with H. influenzae (n = 8) and colonies from bacterial cultures (n = 6) underwent RNA sequencing. The reads were then pseudo-aligned to core and pan genomes created from 15 reference strains. While bacteria cultured in vitro clustered tightly by principal component analysis of core genome (n = 1067) gene expression, bacteria in the patient samples had more diverse transcriptomic signatures and did not group with their lab-cultured counterparts. In total, 328 core genes were significantly differentially expressed between in vitro and in vivo conditions. The most highly upregulated genes in vivo included tbpA and fbpA, which are involved in the acquisition of iron from transferrin, and the stress response gene msrAB. The biosynthesis of nucleotides/purines and molybdopterin-scavenging processes were also significantly enriched in vivo. In contrast, major metabolic pathways and iron-sequestering genes were downregulated under this condition. In conclusion, extensive transcriptomic differences were found between bacteria while in the human lung and bacteria that were cultured in vitro. IMPORTANCE The human-specific pathogen Haemophilus influenzae is generally not well suited for studying in animal models, and most laboratory models are unlikely to approximate the diverse environments encountered by bacteria in the human airways accurately. Thus, we have examined the global gene expression of H. influenzae during pneumonia. Extensive differences in the global gene expression profiles were found in H. influenzae while in the human lung compared to bacteria that were grown in the laboratory. In contrast, the gene expression profiles of isolates collected from different patients were found to cluster together when grown under the same laboratory conditions. Interesting observations were made of how H. influenzae acquires and uses iron and molybdate, endures oxidative stress, and regulates central metabolism while in the lung. Our results indicate important processes during infection and can guide future research on genes and pathways that are relevant in the pathogenesis of H. influenzae pneumonia.
Collapse
Affiliation(s)
- Linnea Polland
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Hanna Rydén
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
- Experimental Infection Medicine, Department of Translational Medicine, Medical Faculty, Lund, Sweden
| | - Yi Su
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Magnus Paulsson
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
9
|
Marques JG, Inácio Cunha FM, Bajanca-Lavado MP. Haemophilus influenzae Type b Vaccine Failure in Portugal: A Nationwide Multicenter Pediatric Survey. Pediatr Infect Dis J 2023; 42:824-828. [PMID: 37406244 DOI: 10.1097/inf.0000000000004011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
BACKGROUND Despite the high effectiveness of the Haemophilus influenzae type b (Hib) vaccine in preventing invasive disease (ID) in children, Hib vaccine failures (VFs) cases may still occur. This study aimed to characterize the Hib-VF cases in Portugal in a 12-year period and trying to identify the possible associated risk factors. METHODS Prospective descriptive nationwide surveillance study. Bacteriologic and molecular studies were performed at the same Reference Laboratory. Clinical data were collected by the referring pediatrician. RESULTS Hib was identified in 41 children with ID and 26 (63%) were considered VF. Nineteen (73%) cases occurred in children less than 5 years old; 12 (46%) occurred before the Hib vaccine booster dose at 18 months of age. Comparing the first and the last 6-year periods of the study, the incidence rate of Hib, VF and total H. influenzae (Hi) ID significantly raised ( P < 0.05). VF cases corresponded, respectively, to 13.5% (7/52) and 22% (19/88) of total Hi-ID cases ( P = 0.232). Two children died due to epiglottitis and 1 acquired sensorineural hearing loss. Only 1 child had an inborn error of immunity. The immunologic workup performed in 9 children revealed no significant abnormalities. All 25 Hib-VF strains analyzed belonged to the same clonal complex 6. CONCLUSIONS In Portugal, more than 95% of children are vaccinated against Hib, but severe Hib-ID cases still occur. No predisposing factors were clearly identified to justify the increased number of VF in recent years. Along with continued Hi-ID surveillance, Hib colonization and serologic studies should be implemented.
Collapse
Affiliation(s)
- José Gonçalo Marques
- From the Infectious Diseases and Immunodeficiency's Unit, Department of Pediatrics, Centro Hospitalar Universitário Lisboa Norte, Lisbon
- Department of Pediatrics, Faculdade de Medicina da Universidade de Lisboa, Lisboa
| | | | - Maria Paula Bajanca-Lavado
- Haemophilus influenzae Reference Laboratory, Department of Infectious Diseases, National Institute of Health, Lisboa, Portugal
| |
Collapse
|
10
|
Carrera-Salinas A, González-Díaz A, Ehrlich RL, Berbel D, Tubau F, Pomares X, Garmendia J, Domínguez MÁ, Ardanuy C, Huertas D, Marín A, Montón C, Mell JC, Santos S, Marti S. Genetic Adaptation and Acquisition of Macrolide Resistance in Haemophilus spp. during Persistent Respiratory Tract Colonization in Chronic Obstructive Pulmonary Disease (COPD) Patients Receiving Long-Term Azithromycin Treatment. Microbiol Spectr 2023; 11:e0386022. [PMID: 36475849 PMCID: PMC9927455 DOI: 10.1128/spectrum.03860-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) benefit from the immunomodulatory effect of azithromycin, but long-term administration may alter colonizing bacteria. Our goal was to identify changes in Haemophilus influenzae and Haemophilus parainfluenzae during azithromycin treatment. Fifteen patients were followed while receiving prolonged azithromycin treatment (Hospital Universitari de Bellvitge, Spain). Four patients (P02, P08, P11, and P13) were persistently colonized by H. influenzae for at least 3 months and two (P04 and P11) by H. parainfluenzae. Isolates from these patients (53 H. influenzae and 18 H. parainfluenzae) were included to identify, by whole-genome sequencing, antimicrobial resistance changes and genetic variation accumulated during persistent colonization. All persistent lineages isolated before treatment were azithromycin-susceptible but developed resistance within the first months, apart from those belonging to P02, who discontinued the treatment. H. influenzae isolates from P08-ST107 acquired mutations in 23S rRNA, and those from P11-ST2480 and P13-ST165 had changes in L4 and L22. In H. parainfluenzae, P04 persistent isolates acquired changes in rlmC, and P11 carried genes encoding MefE/MsrD efflux pumps in an integrative conjugative element, which was also identified in H. influenzae P11-ST147. Other genetic variation occurred in genes associated with cell wall and inorganic ion metabolism. Persistent H. influenzae strains all showed changes in licA and hgpB genes. Other genes (lex1, lic3A, hgpC, and fadL) had variation in multiple lineages. Furthermore, persistent strains showed loss, acquisition, or genetic changes in prophage-associated regions. Long-term azithromycin therapy results in macrolide resistance, as well as genetic changes that likely favor bacterial adaptation during persistent respiratory colonization. IMPORTANCE The immunomodulatory properties of azithromycin reduce the frequency of exacerbations and improve the quality of life of COPD patients. However, long-term administration may alter the respiratory microbiota, such as Haemophilus influenzae, an opportunistic respiratory colonizing bacteria that play an important role in exacerbations. This study contributes to a better understanding of COPD progression by characterizing the clinical evolution of H. influenzae in a cohort of patients with prolonged azithromycin treatment. The emergence of macrolide resistance during the first months, combined with the role of Haemophilus parainfluenzae as a reservoir and source of resistance dissemination, is a cause for concern that may lead to therapeutic failure. Furthermore, genetic variations in cell wall and inorganic ion metabolism coding genes likely favor bacterial adaptation to host selective pressures. Therefore, the bacterial pathoadaptive evolution in these severe COPD patients raise our awareness of the possible spread of macrolide resistance and selection of host-adapted clones.
Collapse
Affiliation(s)
- Anna Carrera-Salinas
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Rachel L. Ehrlich
- Department of Microbiology and Immunology, Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Fe Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Xavier Pomares
- Department of Respiratory Medicine, Hospital de Sabadell, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Junkal Garmendia
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva, Spain
| | - M. Ángeles Domínguez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Daniel Huertas
- Department of Respiratory Medicine, Hospital Residència Sant Camil, Consorci Sanitari Alt Penedès-Garraf, Barcelona, Spain
| | - Alicia Marín
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Respiratory Medicine, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Conchita Montón
- Department of Respiratory Medicine, Hospital de Sabadell, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Salud Santos
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Respiratory Medicine, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Sara Marti
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
AlChalabi R, Al-Rahim A, Omer D, Suleiman AA. Immunoinformatics design of multi-epitope peptide-based vaccine against Haemophilus influenzae strain using cell division protein. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2022; 12:1. [PMID: 36465492 PMCID: PMC9707196 DOI: 10.1007/s13721-022-00395-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 05/28/2023]
Abstract
Haemophilus influenzae is a pathogen that causes invasive bacterial infections in humans. The highest prevalence lies in both young children and adults. Generally, there are no vaccines available that target all the strains of Haemophilus influenzae. Hence, the purpose of this research is to employ bioinformatics and immunoinformatics approaches to design a Multi-Epitope Vaccine candidate employing the pathogenic cell division protein FtsN that specifically combat all the Haemophilus influenzae strains. The current research focuses on developing subunit vaccine in contrast to vaccines generated from the entire pathogen. This will be accomplished by combining multiple bioinformatics and immunoinformatics approaches. As a result, prospective T cells (helper T lymphocyte and cytotoxic T lymphocytes) and B cells epitopes were investigated. The human leukocyte antigen allele having strong associations with the antigenic and overlapping epitopes were chosen, with 70% of the total coverage of the world population. To construct a linked vaccine design, multiple linkers were used. To increase the immunogenic profile, an adjuvant was linked using EAAAK linker. The final vaccine construct with 149 amino acids was obtained after adjuvants and linkers were added. The developed Multi-Epitope Vaccine has a high antigenicity as well as viable physiochemical features. The 3D conformation was modeled and undergoes refinement and validation using bioinformatics methods. Furthermore, protein-protein molecular docking analysis was performed to predict the effective binding poses of Multi-Epitope Vaccine with the Toll-like receptor 4 protein. Besides, vaccine underwent the codon translational optimization and computational cloning to verify the reliability and proper Multi-Epitope Vaccine expression. In addition, it is necessary to conduct experiments and research in the laboratory to demonstrate that the vaccine that has been developed is immunogenic and protective.
Collapse
Affiliation(s)
- Rawaa AlChalabi
- College of Biotechnology, Department of Molecular and Medical Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Aya Al-Rahim
- College of Biotechnology, Department of Molecular and Medical Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Dania Omer
- College of Biotechnology, Department of Molecular and Medical Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
12
|
Tønnessen R, García I, Debech N, Lindstrøm JC, Wester AL, Skaare D. Molecular epidemiology and antibiotic resistance profiles of invasive Haemophilus influenzae from Norway 2017-2021. Front Microbiol 2022; 13:973257. [PMID: 36106084 PMCID: PMC9467436 DOI: 10.3389/fmicb.2022.973257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Invasive Haemophilus influenzae (Hi) disease has decreased in countries that included Hi type b (Hib) vaccination in their childhood immunization programs in the 1990s. Non-typeable (NT) and non-b strains are now the leading causes of invasive Hi disease in Europe, with most cases reported in young children and the elderly. Concerningly, no vaccines toward such strains are available and beta-lactam resistance is increasing. We describe the epidemiology of invasive Hi disease reported to the Norwegian Surveillance System for Communicable Diseases (MSIS) (2017-2021, n = 407). Whole-genome sequencing (WGS) was performed on 245 isolates. We investigated the molecular epidemiology (core genome phylogeny) and the presence of antibiotic resistance markers (including chromosomal mutations associated with beta-lactam or quinolone resistance). For isolates characterized with both WGS and phenotypic antibiotic susceptibility testing (AST) (n = 113) we assessed correlation between resistance markers and susceptibility categorization by calculation of sensitivity, specificity, and predictive values. Incidence rates of invasive Hi disease in Norway ranged from 0.7 to 2.3 per 100,000 inhabitants/year (mean 1.5 per 100,000) and declined during the COVID-19 pandemic. The bacterial population consisted of two major phylogenetic groups with subclustering by serotype and multi-locus sequence type (ST). NTHi accounted for 71.8% (176). The distribution of STs was in line with previous European reports. We identified 13 clusters, including four encapsulated and three previously described international NTHi clones with bla TEM-1 (ST103) or altered PBP3 (rPBP3) (ST14/IIA and ST367/IIA). Resistance markers were detected in 25.3% (62/245) of the isolates, with bla TEM-1 (31, 50.0%) and rPBP3 (28, 45.2%) being the most frequent. All isolates categorized as resistant to aminopenicillins, tetracycline or chloramphenicol possessed relevant resistance markers, and the absence of relevant substitutions in PBP3 and GyrA/ParC predicted susceptibility to cefotaxime, ceftriaxone, meropenem and quinolones. Among the 132 WGS-only isolates, one isolate had PBP3 substitutions associated with resistance to third-generation cephalosporins, and one isolate had GyrA/ParC alterations associated with quinolone resistance. The detection of international virulent and resistant NTHi clones underlines the need for a global molecular surveillance system. WGS is a useful supplement to AST and should be performed on all invasive isolates.
Collapse
Affiliation(s)
- Ragnhild Tønnessen
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
- European Public Health Microbiology Training Program (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Ignacio García
- Department of Bacteriology, Norwegian Institute of Public Health, Oslo, Norway
| | - Nadia Debech
- Department of Bacteriology, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Dagfinn Skaare
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
13
|
Annotated Whole-Genome Multilocus Sequence Typing Schema for Scalable High-Resolution Typing of Streptococcus pyogenes. J Clin Microbiol 2022; 60:e0031522. [DOI: 10.1128/jcm.00315-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Streptococcus pyogenes
is a major human pathogen with high genetic diversity, largely created by recombination and horizontal gene transfer, making it difficult to use single nucleotide polymorphism (SNP)-based genome-wide analyses for surveillance. Using a gene-by-gene approach on 208 complete genomes of
S. pyogenes
, a novel whole-genome multilocus sequence typing (wgMLST) schema was developed, comprising 3,044 target loci.
Collapse
|
14
|
Topaz N, Tsang R, Deghmane AE, Claus H, Lâm TT, Litt D, Bajanca-Lavado MP, Pérez-Vázquez M, Vestrheim D, Giufrè M, Van Der Ende A, Gaillot O, Kuch A, McElligott M, Taha MK, Wang X. Phylogenetic Structure and Comparative Genomics of Multi-National Invasive Haemophilus influenzae Serotype a Isolates. Front Microbiol 2022; 13:856884. [PMID: 35401483 PMCID: PMC8988223 DOI: 10.3389/fmicb.2022.856884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent reports have indicated a rise of invasive disease caused by Haemophilus influenzae serotype a (Hia) in North America and some European countries. The whole-genome sequences for a total of 410 invasive Hia isolates were obtained from 12 countries spanning the years of 1998 to 2019 and underwent phylogenetic and comparative genomic analysis in order to characterize the major strains causing disease and the genetic variation present among factors contributing to virulence and antimicrobial resistance. Among 410 isolate sequences received, 408 passed our quality control and underwent genomic analysis. Phylogenetic analysis revealed that the Hia isolates formed four genetically distinct clades: clade 1 (n = 336), clade 2 (n = 13), clade 3 (n = 3) and clade 4 (n = 56). A low diversity subclade 1.1 was found in clade 1 and contained almost exclusively North American isolates. The predominant sequence types in the Hia collection were ST-56 (n = 125), ST-23 (n = 98) and ST-576 (n = 51), which belonged to clade 1, and ST-62 (n = 54), which belonged to clade 4. Clades 1 and 4 contained predominantly North American isolates, and clades 2 and 3 predominantly contained European isolates. Evidence of the presence of capsule duplication was detected in clade 1 and 2 isolates. Seven of the virulence genes involved in endotoxin biosynthesis were absent from all Hia isolates. In general, the presence of known factors contributing to β-lactam antibiotic resistance was low among Hia isolates. Further tests for virulence and antibiotic susceptibility would be required to determine the impact of these variations among the isolates.
Collapse
Affiliation(s)
- Nadav Topaz
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Raymond Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Ala-Eddine Deghmane
- Centre National de Référence des Méningocoques, Institut Pasteur, Paris, France
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - David Litt
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Maria Paula Bajanca-Lavado
- Haemophilus Influenzae Reference Laboratory, Department of Infectious Disease, National Institute of Health, Lisbon, Portugal
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Didrik Vestrheim
- Norwegian Institute of Public Health, Division of Infection Control and Environmental Health, Oslo, Norway
| | - Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Arie Van Der Ende
- Department of Medical Microbiology and Infection Prevention and the Netherlands Reference Laboratory for Bacterial Meningitis, University of Amsterdam, Amsterdam, Netherlands
| | - Olivier Gaillot
- Service de Bactériologie-Hygiène, CHU Lille, Lille, France
- CNRS, INSERM, U1019-UMR 8204, Center for Infection and Immunity, CHU Lille, Lille, France
| | - Alicja Kuch
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Martha McElligott
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland at Temple Street, Dublin, Ireland
| | - Muhamed-Kheir Taha
- Centre National de Référence des Méningocoques, Institut Pasteur, Paris, France
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
15
|
Grenni P. Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:687-714. [PMID: 35191071 DOI: 10.1002/etc.5289] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/11/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.
Collapse
Affiliation(s)
- Paola Grenni
- Water Research Institute, National Research Council of Italy, via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| |
Collapse
|
16
|
Comparative pangenome analysis of capsulated Haemophilus influenzae serotype f highlights their high genomic stability. Sci Rep 2022; 12:3189. [PMID: 35210526 PMCID: PMC8873416 DOI: 10.1038/s41598-022-07185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is an opportunistic pathogen adapted to the human respiratory tract. Non-typeable H. influenzae are highly heterogeneous, but few studies have analysed the genomic variability of capsulated strains. This study aims to examine the genetic diversity of 37 serotype f isolates from the Netherlands, Portugal, and Spain, and to compare all capsulated genomes available on public databases. Serotype f isolates belonged to CC124 and shared few single nucleotide polymorphisms (SNPs) (n = 10,999), but a high core genome (> 80%). Three main clades were identified by the presence of 75, 60 and 41 exclusive genes for each clade, respectively. Multi-locus sequence type analysis of all capsulated genomes revealed a reduced number of clonal complexes associated with each serotype. Pangenome analysis showed a large pool of genes (n = 6360), many of which were accessory genome (n = 5323). Phylogenetic analysis revealed that serotypes a, b, and f had greater diversity. The total number of SNPs in serotype f was significantly lower than in serotypes a, b, and e (p < 0.0001), indicating low variability within the serotype f clonal complexes. Capsulated H. influenzae are genetically homogeneous, with few lineages in each serotype. Serotype f has high genetic stability regardless of time and country of isolation.
Collapse
|
17
|
Diricks M, Kohl TA, Käding N, Leshchinskiy V, Hauswaldt S, Jiménez Vázquez O, Utpatel C, Niemann S, Rupp J, Merker M. Whole genome sequencing-based classification of human-related Haemophilus species and detection of antimicrobial resistance genes. Genome Med 2022; 14:13. [PMID: 35139905 PMCID: PMC8830169 DOI: 10.1186/s13073-022-01017-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background Bacteria belonging to the genus Haemophilus cause a wide range of diseases in humans. Recently, H. influenzae was classified by the WHO as priority pathogen due to the wide spread of ampicillin resistant strains. However, other Haemophilus spp. are often misclassified as H. influenzae. Therefore, we established an accurate and rapid whole genome sequencing (WGS) based classification and serotyping algorithm and combined it with the detection of resistance genes. Methods A gene presence/absence-based classification algorithm was developed, which employs the open-source gene-detection tool SRST2 and a new classification database comprising 36 genes, including capsule loci for serotyping. These genes were identified using a comparative genome analysis of 215 strains belonging to ten human-related Haemophilus (sub)species (training dataset). The algorithm was evaluated on 1329 public short read datasets (evaluation dataset) and used to reclassify 262 clinical Haemophilus spp. isolates from 250 patients (German cohort). In addition, the presence of antibiotic resistance genes within the German dataset was evaluated with SRST2 and correlated with results of traditional phenotyping assays. Results The newly developed algorithm can differentiate between clinically relevant Haemophilus species including, but not limited to, H. influenzae, H. haemolyticus, and H. parainfluenzae. It can also identify putative haemin-independent H. haemolyticus strains and determine the serotype of typeable Haemophilus strains. The algorithm performed excellently in the evaluation dataset (99.6% concordance with reported species classification and 99.5% with reported serotype) and revealed several misclassifications. Additionally, 83 out of 262 (31.7%) suspected H. influenzae strains from the German cohort were in fact H. haemolyticus strains, some of which associated with mouth abscesses and lower respiratory tract infections. Resistance genes were detected in 16 out of 262 datasets from the German cohort. Prediction of ampicillin resistance, associated with blaTEM-1D, and tetracycline resistance, associated with tetB, correlated well with available phenotypic data. Conclusions Our new classification database and algorithm have the potential to improve diagnosis and surveillance of Haemophilus spp. and can easily be coupled with other public genotyping and antimicrobial resistance databases. Our data also point towards a possible pathogenic role of H. haemolyticus strains, which needs to be further investigated. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01017-x.
Collapse
Affiliation(s)
- Margo Diricks
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Nadja Käding
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Infection Research (DZIF), TTU HAARBI, Lübeck, Germany
| | - Vladislav Leshchinskiy
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susanne Hauswaldt
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Omar Jiménez Vázquez
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Infection Research (DZIF), TTU HAARBI, Lübeck, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany. .,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany. .,Evolution of the Resistome, Research Center Borstel, Borstel, Germany.
| |
Collapse
|
18
|
Guellil M, Keller M, Dittmar JM, Inskip SA, Cessford C, Solnik A, Kivisild T, Metspalu M, Robb JE, Scheib CL. An invasive Haemophilus influenzae serotype b infection in an Anglo-Saxon plague victim. Genome Biol 2022; 23:22. [PMID: 35109894 PMCID: PMC8812261 DOI: 10.1186/s13059-021-02580-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human pathogen Haemophilus influenzae was the main cause of bacterial meningitis in children and a major cause of worldwide infant mortality before the introduction of a vaccine in the 1980s. Although the occurrence of serotype b (Hib), the most virulent type of H. influenzae, has since decreased, reports of infections with other serotypes and non-typeable strains are on the rise. While non-typeable strains have been studied in-depth, very little is known of the pathogen's evolutionary history, and no genomes dating prior to 1940 were available. RESULTS We describe a Hib genome isolated from a 6-year-old Anglo-Saxon plague victim, from approximately 540 to 550 CE, Edix Hill, England, showing signs of invasive infection on its skeleton. We find that the genome clusters in phylogenetic division II with Hib strain NCTC8468, which also caused invasive disease. While the virulence profile of our genome was distinct, its genomic similarity to NCTC8468 points to mostly clonal evolution of the clade since the 6th century. We also reconstruct a partial Yersinia pestis genome, which is likely identical to a published first plague pandemic genome of Edix Hill. CONCLUSIONS Our study presents the earliest genomic evidence for H. influenzae, points to the potential presence of larger genomic diversity in the phylogenetic division II serotype b clade in the past, and allows the first insights into the evolutionary history of this major human pathogen. The identification of both plague and Hib opens questions on the effect of plague in immunocompromised individuals already affected by infectious diseases.
Collapse
Affiliation(s)
- Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Marcel Keller
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Jenna M Dittmar
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- Department of Archaeology, University of Aberdeen, St. Mary's, Elphinstone Road, Aberdeen, Scotland, AB24 3UF, UK
| | - Sarah A Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Craig Cessford
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- Cambridge Archaeological Unit, University of Cambridge, 34 A&B Storey's Way, Cambridge, CB3 0DT, UK
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - John E Robb
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3DZ, UK
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
- St John's College, University of Cambridge, St John's Street, Cambridge, CB2 1TP, UK.
| |
Collapse
|
19
|
Naz K, Ullah N, Naz A, Irum S, Dar HA, Zaheer T, Shahid F, Ali A. The Epidemiological and Pangenome Landscape of Staphylococcus aureus and Identification of Conserved Novel Candidate Vaccine Antigens. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210212122847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background and Objective:
Staphylococcus aureus (S. aureus) is a gram-positive bacterium and one of the major nosocomial pathogen. It has the ability to acquire resistance against almost all available classes of antibiotics; Methicillin-Resistant S. aureus (MRSA) is a well-known antibiotic resistance. S. aureus is a globally distributed pathogen that need in-depth epidemiological and genomic level investigation for proper treatment and prevention.
Methods:
To explore the genomic epidemiology of S. aureus in-silico Multi Locus Sequence Typing (MLST) was carried out for 355 complete genomes. Diversity within the species was investigated through pan-genome analysis and subtractive genomic approach was employed for identification of core immunogenic targets.
Results:
Epidemiological study identified 62 different sequence types (STs) of S. aureus distributed worldwide, in which ST-8, ST-5, ST-398, ST-239, and ST-30 are the most dominant STs comprising more than 50% of the isolates. The pan-genome of S. aureus is still open with 7,199 genes and there is a major contribution (80%) of MRSA strains in the S. aureus species pangenome. The core genome (2,025 genes) of S. aureus is almost stable (comprises of 72% of S. aureus genome size) while accessory and unique genes (28% of S. aureus genome size) are gradually increasing. Screening of 2,025 core genes identified putative vaccine candidates. The best scoring and dominant B-cell and T-cell epitopes were predicted out of the selected potential vaccine candidate proteins with the help of a multi-step screening procedure.
Conclusion:
We believe that the current study will provide insight into the genetic epidemiology and diversity of S. aureus and the predicted epitopes against the pathogen can be tested further for its immunological responses within the host and may provide both humoral and cellular immunity against the disease.
Collapse
Affiliation(s)
- Kanwal Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
44000, Pakistan
| | - Nimat Ullah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
44000, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Sidra Irum
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
44000, Pakistan
| | - Hamza Arshad Dar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
44000, Pakistan
| | - Tahreem Zaheer
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
44000, Pakistan
| | - Fatima Shahid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
44000, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
44000, Pakistan
| |
Collapse
|
20
|
Carrera-Salinas A, González-Díaz A, Calatayud L, Mercado-Maza J, Puig C, Berbel D, Càmara J, Tubau F, Grau I, Domínguez MÁ, Ardanuy C, Martí S. Epidemiology and population structure of Haemophilus influenzae causing invasive disease. Microb Genom 2021; 7. [PMID: 34898424 PMCID: PMC8767337 DOI: 10.1099/mgen.0.000723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study provides an update on invasive Haemophilus influenzae disease in Bellvitge University Hospital (2014–2019), reporting its evolution from a previous period (2008–2013) and analysing the non-typeable H. influenzae (NTHi) population structure using a clade-related classification. Clinical data, antimicrobial susceptibility and serotyping were studied and compared with those of the previous period. Population structure was assessed by multilocus sequence typing (MLST), SNP-based phylogenetic analysis and clade-related classification. The incidence of invasive H. influenzae disease remained constant between the two periods (average 2.07 cases per 100 000 population), while the 30 day mortality rate decreased (20.7–14.7 %, respectively). Immunosuppressive therapy (40 %) and malignancy (36 %) were the most frequent comorbidities. Ampicillin and fluoroquinolone resistance rates had increased between the two periods (10–17.6 % and 0–4.4 %, respectively). NTHi was the main cause of invasive disease in both periods (84.3 and 85.3 %), followed by serotype f (12.9 and 8.8 %). NTHi displayed high genetic diversity. However, two clusters of 13 (n=20) and 5 sequence types (STs) (n=10) associated with clade V included NTHi strains of the most prevalent STs (ST3 and ST103), many of which showed increased frequency over time. Moreover, ST103 and ST160 from clade V were associated with β-lactam resistance. Invasive H. influenzae disease is uncommon, but can be severe, especially in the elderly with comorbidities. NTHi remains the main cause of invasive disease, with ST103 and ST160 (clade V) responsible for increasing β-lactam resistance over time.
Collapse
Affiliation(s)
- Anna Carrera-Salinas
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain
| | - Aida González-Díaz
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Laura Calatayud
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Julieta Mercado-Maza
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain
| | - Carmen Puig
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain
| | - Dàmaris Berbel
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Jordi Càmara
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Fe Tubau
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Imma Grau
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Infectious Diseases Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain
| | - M Ángeles Domínguez
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), ISCIII, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Sara Martí
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Pelerito A, Nunes A, Grilo T, Isidro J, Silva C, Ferreira AC, Valdezate S, Núncio MS, Georgi E, Gomes JP. Genetic Characterization of Brucella spp.: Whole Genome Sequencing-Based Approach for the Determination of Multiple Locus Variable Number Tandem Repeat Profiles. Front Microbiol 2021; 12:740068. [PMID: 34867857 PMCID: PMC8633399 DOI: 10.3389/fmicb.2021.740068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Brucellosis is an important zoonosis that is emerging in some regions of the world, gaining increased relevance with the inclusion of the causing agent Brucella spp. in the class B bioterrorism group. Until now, multi-locus VNTR Analysis (MLVA) based on 16 loci has been considered as the gold standard for Brucella typing. However, this methodology is laborious, and, with the rampant release of Brucella genomes, the transition from the traditional MLVA to whole genome sequencing (WGS)-based typing is on course. Nevertheless, in order to avoid a disruptive transition with the loss of massive genetic data obtained throughout the last decade and considering that the transition timings will vary considerably among different countries, it is important to determine WGS-based MLVA alleles of the nowadays sequenced genomes. On this regard, we aimed to evaluate the performance of a Python script that had been previously developed for the rapid in silico extraction of the MLVA alleles, by comparing it to the PCR-based MLVA procedure over 83 strains from different Brucella species. The WGS-based MLVA approach detected 95.3% of all possible 1,328 hits (83 strains×16 loci) and showed an agreement rate with the PCR-based MLVA procedure of 96.4% for MLVA-16. According to our dataset, we suggest the use of a minimal depth of coverage of ~50x and a maximum number of ~200 contigs as guiding “boundaries” for the future application of the script. In conclusion, the evaluated script seems to be a very useful and robust tool for the in silico determination of MLVA profiles of Brucella strains, allowing retrospective and prospective molecular epidemiological studies, which are important for maintaining an active epidemiological surveillance of brucellosis.
Collapse
Affiliation(s)
- Ana Pelerito
- Emergency Response and Biopreparedness Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.,CBIOS - Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal.,Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Teresa Grilo
- Emergency Response and Biopreparedness Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Catarina Silva
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal.,Centre for Toxicogenomics and Human Health (ToxOmics), Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Cristina Ferreira
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal.,National Institute for Agrarian and Veterinary Research, I.P. (INIAV, IP), Oeiras, Portugal
| | - Sylvia Valdezate
- ISCIII Reference and Research Laboratory for Taxonomy, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Sofia Núncio
- Emergency Response and Biopreparedness Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.,Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| |
Collapse
|
22
|
Kadry NA, Porsch EA, Shen H, St Geme JW. Immunization with HMW1 and HMW2 adhesins protects against colonization by heterologous strains of nontypeable Haemophilus influenzae. Proc Natl Acad Sci U S A 2021; 118:e2019923118. [PMID: 34344825 PMCID: PMC8364133 DOI: 10.1073/pnas.2019923118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a common cause of localized respiratory tract disease and results in significant morbidity. The pathogenesis of NTHi disease begins with nasopharyngeal colonization, and therefore, the prevention of colonization represents a strategy to prevent disease. The NTHi HMW1 and HMW2 proteins are a family of conserved adhesins that are present in 75 to 80% of strains and have been demonstrated to play a critical role in colonization of the upper respiratory tract in rhesus macaques. In this study, we examined the vaccine potential of HMW1 and HMW2 using a mouse model of nasopharyngeal colonization. Immunization with HMW1 and HMW2 by either the subcutaneous or the intranasal route resulted in a strain-specific antibody response associated with agglutination of bacteria and restriction of bacterial adherence. Despite the specificity of the antibody response, immunization resulted in protection against colonization by both the parent NTHi strain and heterologous strains expressing distinct HMW1 and HMW2 proteins. Pretreatment with antibody against IL-17A eliminated protection against heterologous strains, indicating that heterologous protection is IL-17A dependent. This work demonstrates the vaccine potential of the HMW1 and HMW2 proteins and highlights the importance of IL-17A in protection against diverse NTHi strains.
Collapse
Affiliation(s)
- Nadia A Kadry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eric A Porsch
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Joseph W St Geme
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
23
|
Espinosa-Gongora C, Hansen MJ, Bertelsen MF, Bojesen AM. Polar bear-adapted Ursidibacter maritimus are remarkably conserved after generations in captivity. Mol Ecol 2021; 30:4497-4504. [PMID: 34250662 DOI: 10.1111/mec.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Most species in the bacterial family of Pasteurellaceae colonize one specific host species. Vertebrates of very different evolutionary descent including fish, turtles, marsupials, eutherians and birds are colonized by different members of Pasteurellaceae. This one-to-one microbial-host species partnership makes Pasteurellaceae species valuable candidates to study biodiversity, bacterial-host co-evolution and host adaptation, and their widespread distribution across vertebrates provide the possibility to collect a wide array of data, where wildlife species are essential. However, obtaining samples from wild animals comes with logistic, technical and ethical challenges, and previous microbiota studies have led to the presumption that captive animals are poor models for microbial studies in wildlife. Here, we show that colonization of polar bears by Ursidibacter maritimus is unaffected by factors related to captivity, reflecting a deep symbiotic bond to the host. We argue that the study of ecological and evolutionary principles in captive wildlife is possible for host-adapted taxa such as those in the Pasteurellaceae family. Moreover, studying captive, often trained animals protects wild populations from the stress associated with obtaining samples.
Collapse
Affiliation(s)
- Carmen Espinosa-Gongora
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mie Johanne Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Mads Frost Bertelsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
24
|
Bibi N, Zaidi NUSS, Tahir M, Babar MM. Vaccinomics driven proteome-wide screening of Haemophilus influenzae for the prediction of common putative vaccine candidates. Can J Microbiol 2021; 67:799-812. [PMID: 34237220 DOI: 10.1139/cjm-2020-0535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Haemophilus influenzae colonizes the respiratory tract and is associated with life-threatening invasive infections. The recent rise in its global prevalence, even in the presence of multiple vaccines, indicate an urgent need for developing cross-strain effective vaccine strategies. Our work focused on identifying the universally conserved antigenic regions of H. influenzae that can be used for developing new vaccines. A variety of bioinformatics tools were applied for the comprehensive geno-proteomic analysis of H. influenzae type "a" strain, as reference serotype, through which subcellular localization, essentiality, virulence, and non-host homology were determined. B and T-Cell epitope mapping of 3D protein structures were performed. Thereafter, molecular docking with HLA DRB1*0101 and comparative genome analysis established the candidature of identified regions. Based on the established vaccinomics criteria, five target proteins were predicted as novel vaccine candidates. Among these, 9 epitopic regions were identified that could regulate the lymphocyte activity through strong protein-protein interactions. Comparative genomic analysis exhibited that the identified regions were highly conserved among the different strains of H. influenzae. Based on multiple immunogenic factors, the five prioritized proteins and their predicted epitopes were identified as the ideal common putative vaccine candidate against typeable strains.
Collapse
Affiliation(s)
- Naseeha Bibi
- National University of Sciences and Technology, 66959, Atta-ur-Rahman School of Applied Biosciences, Islamabad, ICT, Pakistan;
| | - Najam-Us-Sahar Sadaf Zaidi
- National University of Sciences and Technology, 66959, Atta-ur-Rahman School of Applied Biosciences, H-12, Srinagar Highway,, Islamabad. Pakistan, Islamabad, ICT, Pakistan, 44000;
| | - Muhammad Tahir
- National University of Sciences and Technology, 66959, Atta-ur-Rahman School of Applied Biosciences, Islamabad, ICT, Pakistan;
| | - Mustafeez Mujtaba Babar
- Shifa Tameer-e-Millat University, 384986, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Plot No. 72, Adjacent FBISE, H-8/4, Islamabad, Islamabad, Pakistan, 44000;
| |
Collapse
|
25
|
Sierra Y, González-Díaz A, Carrera-Salinas A, Berbel D, Vázquez-Sánchez DA, Tubau F, Cubero M, Garmendia J, Càmara J, Ayats J, Ardanuy C, Marti S. Genome-wide analysis of urogenital and respiratory multidrug-resistant Haemophilus parainfluenzae. J Antimicrob Chemother 2021; 76:1741-1751. [PMID: 33792695 DOI: 10.1093/jac/dkab109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To characterize the mechanisms of antimicrobial resistance and the prevalence of the polysaccharide capsule among urogenital and respiratory Haemophilus parainfluenzae isolates. METHODS Antimicrobial susceptibility was tested by microdilution. Fifty-five MDR strains were subjected to WGS and were phylogenetically compared with all the available H. parainfluenzae genomes from the NCBI database. The identification of the capsular bexA gene was performed by PCR in 266 non-MDR strains. RESULTS In 31 of the 42 ampicillin-resistant strains, blaTEM-1 located within Tn3 was identified. β-Lactamase-negative cefuroxime-resistant strains (n = 12) presented PBP3 substitutions. The catS gene (n = 14), the tet(M)-MEGA element (n = 18) and FolA substitutions (I95L and F154V/S) (n = 41) were associated with resistance to chloramphenicol, tetracycline plus macrolides, and co-trimoxazole, respectively. Thirty-seven isolates had a Tn10 harbouring tet(B)/(C)/(D)/(R) genes with (n = 15) or without (n = 22) catA2. Putative transposons (Tn7076-Tn7079), including aminoglycoside and co-trimoxazole resistance genes, were identified in 10 strains (18.2%). These transposons were integrated into three new integrative and conjugative elements (ICEs), which also included the resistance-associated transposons Tn3 and Tn10. The capsular operon was found only in the urogenital isolates (18/154, 11.7%), but no phylogenetic clustering was observed. The capsular operons identified were similar to those of Haemophilus influenzae serotype c and Haemophilus sputorum type 2. CONCLUSIONS The identification of ICEs with up to three resistance-associated transposons suggests that these transferable elements play an important role in the acquisition of multidrug resistance in H. parainfluenzae. Moreover, the presence of polysaccharide capsules in some of these urogenital isolates is a cause for concern.
Collapse
Affiliation(s)
- Yanik Sierra
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Anna Carrera-Salinas
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Daniel Antonio Vázquez-Sánchez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), ISCIII, Madrid, Spain
| | - Fe Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Meritxell Cubero
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Junkal Garmendia
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Instituto de Agrobiotecnología, CSIC-Gobierno Navarra, Mutilva, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Josefina Ayats
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Sara Marti
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
López-López N, Gil-Campillo C, Díez-Martínez R, Garmendia J. Learning from -omics strategies applied to uncover Haemophilus influenzae host-pathogen interactions: Current status and perspectives. Comput Struct Biotechnol J 2021; 19:3042-3050. [PMID: 34136102 PMCID: PMC8178019 DOI: 10.1016/j.csbj.2021.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
Haemophilus influenzae has contributed to key bacterial genome sequencing hallmarks, as being not only the first bacterium to be genome-sequenced, but also starring the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, and pioneering Tn-seq methodologies. Over the years, the phenomenal and constantly evolving development of -omic technologies applied to a whole range of biological questions of clinical relevance in the H. influenzae-host interplay, has greatly moved forward our understanding of this human-adapted pathogen, responsible for multiple acute and chronic infections of the respiratory tract. In this way, essential genes, virulence factors, pathoadaptive traits, and multi-layer gene expression regulatory networks with both genomic and epigenomic complexity levels are being elucidated. Likewise, the unstoppable increasing whole genome sequencing information underpinning H. influenzae great genomic plasticity, mainly when referring to non-capsulated strains, poses major challenges to understand the genomic basis of clinically relevant phenotypes and even more, to clearly highlight potential targets of clinical interest for diagnostic, therapeutic or vaccine development. We review here how genomic, transcriptomic, proteomic and metabolomic-based approaches are great contributors to our current understanding of the interactions between H. influenzae and the human airways, and point possible strategies to maximize their usefulness in the context of biomedical research and clinical needs on this human-adapted bacterial pathogen.
Collapse
Affiliation(s)
- Nahikari López-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | | | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
27
|
Invasive Bacterial Infections in Subjects with Genetic and Acquired Susceptibility and Impacts on Recommendations for Vaccination: A Narrative Review. Microorganisms 2021; 9:microorganisms9030467. [PMID: 33668334 PMCID: PMC7996259 DOI: 10.3390/microorganisms9030467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
The WHO recently endorsed an ambitious plan, “Defeating Meningitis by 2030”, that aims to control/eradicate invasive bacterial infection epidemics by 2030. Vaccination is one of the pillars of this road map, with the goal to reduce the number of cases and deaths due to Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus agalactiae. The risk of developing invasive bacterial infections (IBI) due to these bacterial species includes genetic and acquired factors that favor repeated and/or severe invasive infections. We searched the PubMed database to identify host risk factors that increase the susceptibility to these bacterial species. Here, we describe a number of inherited and acquired risk factors associated with increased susceptibility to invasive bacterial infections. The burden of these factors is expected to increase due to the anticipated decrease in cases in the general population upon the implementation of vaccination strategies. Therefore, detection and exploration of these patients are important as vaccination may differ among subjects with these risk factors and specific strategies for vaccination are required. The aim of this narrative review is to provide information about these factors as well as their impact on vaccination against the four bacterial species. Awareness of risk factors for IBI may facilitate early recognition and treatment of the disease. Preventive measures including vaccination, when available, in individuals with increased risk for IBI may prevent and reduce the number of cases.
Collapse
|
28
|
Tsang RSW. A Narrative Review of the Molecular Epidemiology and Laboratory Surveillance of Vaccine Preventable Bacterial Meningitis Agents: Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae and Streptococcus agalactiae. Microorganisms 2021; 9:449. [PMID: 33671611 PMCID: PMC7926440 DOI: 10.3390/microorganisms9020449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
This narrative review describes the public health importance of four most common bacterial meningitis agents, Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and S. agalactiae (group B Streptococcus). Three of them are strict human pathogens that normally colonize the nasopharynx and may invade the blood stream to cause systemic infections and meningitis. S. agalactiae colonizes the genito-gastrointestinal tract and is an important meningitis agent in newborns, but also causes invasive infections in infants or adults. These four bacteria have polysaccharide capsules that protect them against the host complement defense. Currently licensed conjugate vaccines (against S. pneumoniae, H. influenza, and N. meningitidis only but not S. agalactiae) can induce protective serum antibodies in infants as young as two months old offering protection to the most vulnerable groups, and the ability to eliminate carriage of homologous serotype strains in vaccinated subjects lending further protection to those not vaccinated through herd immunity. However, the serotype-specific nature of these vaccines have driven the bacteria to adapt by mechanisms that affect the capsule antigens through either capsule switching or capsule replacement in addition to the possibility of unmasking of strains or serotypes not covered by the vaccines. The post-vaccine molecular epidemiology of vaccine-preventable bacterial meningitis is discussed based on findings obtained with newer genomic laboratory surveillance methods.
Collapse
Affiliation(s)
- Raymond S W Tsang
- Laboratory for Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
29
|
Current status of pan-genome analysis for pathogenic bacteria. Curr Opin Biotechnol 2020; 63:54-62. [DOI: 10.1016/j.copbio.2019.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
|
30
|
Comparative genomic provides insight into the virulence and genetic diversity of Vibrio parahaemolyticus associated with shrimp acute hepatopancreatic necrosis disease. INFECTION GENETICS AND EVOLUTION 2020; 83:104347. [PMID: 32360538 DOI: 10.1016/j.meegid.2020.104347] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/15/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp disease of economic importance which causes mass mortality of cultivated penaeid shrimps in Southeast Asian countries, Mexico and South America. This disease was originally caused by Vibrio parahaemolyticus (VPAHPND) which is reported to harbour a transferable plasmid carrying the virulent PirAB-like toxin genes (pirABvp). However, little is known about the pathogenicity of VPAHPND. To extend our understanding, comparative genomic analyses was performed in this study to identify the genetic differences and to understand the phylogenetic relationship of VPAHPND strains. Seven Vibrio parahaemolyticus strains (five VPAHPND strains and two non-VPAHPND strains) were sequenced and 31 draft genomes of V. parahaemolyticus were retrieved from NCBI database and incorporated into the genomic comparison to elucidate their genomic diversity. The study showed that the genome sizes of the VPAHPND strains were approximately 5 Mbp. Ten sequence types (STs) were identified among the VPAHPND strains using in silico-Multilocus Sequence Typing analysis (MLST) and ST 970 was the predominant ST. Phylogenetic analysis based on MLST and single nucleotide polymorphisms (SNP) showed that the VPAHPND strains were genetically diverse. Based on the comparative genomic analysis, several functional proteins were identified from diiferent categories associated with virulence-related proteins, secretory proteins, conserved domain proteins, transporter proteins, and phage proteins. The CRISPR analysis showed that VPAHPND strains contained less number of CRISPRs elements than non-VPAHPND strains while six prophages regions were identified in the genomes, suggested the lack of CRISPR might promote prophage insertion. The genomic information in this study provide improved understanding of the virulence of these VPAHPND strains.
Collapse
|
31
|
Abstract
Antimicrobial resistance is a global concern, and prudent use of antibiotics is essential to preserve the current armamentarium of effective drugs. Acute respiratory tract infection is the most common reason for antibiotic prescription in adults. In particular, community-acquired pneumonia poses a significant health challenge and economic burden globally, especially in the current landscape of a dense and aging population. By updating the knowledge on the common antimicrobial-resistant pathogens in community-acquired respiratory tract infections, their prevalence, and resistance may pave the way to enhancing appropriate antibiotic use in the ambulatory and health care setting.
Collapse
|
32
|
Heliodoro CIM, Bettencourt CR, Bajanca-Lavado MP. Molecular epidemiology of invasive Haemophilus influenzae disease in Portugal: an update of the post-vaccine period, 2011-2018. Eur J Clin Microbiol Infect Dis 2020; 39:1471-1480. [PMID: 32172370 DOI: 10.1007/s10096-020-03865-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Haemophilus influenzae reference laboratory from Portugal characterized the entire collection of 260 H. influenzae invasive isolates received between 2011 and 2018, with the purpose of updating the last published data (2002-2010). Capsular serotypes and antimicrobial susceptibility patterns were determined. The ftsI gene encoding the transpeptidase domain of PBP3 was sequenced for β-lactamase-negative ampicillin-resistant (BLNAR) isolates. Multilocus sequence typing (MLST) was performed to examine genetic relatedness among isolates. The majority of H. influenzae invasive isolates are nonencapsulated (NTHi-79.2%). Among encapsulated isolates (20.8%), the most characterized serotype was serotype b (13.5%), followed by serotype f (3.1%), serotype a (2.7%), and serotype e (1.5%). In contrast to NTHi that mainly affected the elderly (64.0%; ≥ 65 years old), most encapsulated isolates were characterized in preschool children (55.6%). Comparing the two periods, β-lactamase production increased from 10.4 to 13.5% (p = 0.032) and low-BLNAR (MIC ≥ 1 mg/L) isolates from 7.7 to 10.5% (p = 0.017). NTHi showed high genetic diversity (60.7%), in opposition to encapsulated isolates that were clonal within each serotype. Interestingly, ST103 and ST57 were the predominant STs among NTHi, with ST103 being associated with β-lactamase-producers and ST57 with non-β-lactamase-producers. In Portugal, susceptible and genetically diverse NTHi H. influenzae continues to be responsible for invasive disease, mainly in the elderly. Nevertheless, we are now concerned with Hib circulating in children we believe to have been vaccinated. Our data reiterates the need for continued surveillance, which will be useful in the development of public health prevention strategies.
Collapse
Affiliation(s)
- Catarina Isabel Moreira Heliodoro
- Haemophilus influenzae Reference Laboratory, Department of Infectious Disease, National Institute of Health, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Célia Rodrigues Bettencourt
- Haemophilus influenzae Reference Laboratory, Department of Infectious Disease, National Institute of Health, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Maria Paula Bajanca-Lavado
- Haemophilus influenzae Reference Laboratory, Department of Infectious Disease, National Institute of Health, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| | | |
Collapse
|
33
|
Santos-Cortez RLP, Bhutta MF, Earl JP, Hafrén L, Jennings M, Mell JC, Pichichero ME, Ryan AF, Tateossian H, Ehrlich GD. Panel 3: Genomics, precision medicine and targeted therapies. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109835. [PMID: 32007292 PMCID: PMC7155947 DOI: 10.1016/j.ijporl.2019.109835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media. DATA SOURCES PubMed articles published since the last meeting in June 2015 up to June 2019. REVIEW METHODS A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. CONCLUSION Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media. IMPLICATIONS FOR PRACTICE In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics.
Collapse
Affiliation(s)
- Regie Lyn P. Santos-Cortez
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19 Ave., Aurora, CO 80045, USA
| | - Mahmood F. Bhutta
- Department of ENT, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, UK
| | - Joshua P. Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Tukholmankatu 8A, 00290 Helsinki, Finland
| | - Michael Jennings
- Institute for Glycomics, Gold Coast campus, Griffith University, QLD 4222, Australia
| | - Joshua C. Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, 1425 Portland Ave., Rochester, NY 14621, USA
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hilda Tateossian
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxford, Didcot OX11 0RD, UK
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| |
Collapse
|
34
|
Sierra Y, Tubau F, González-Díaz A, Carrera-Salinas A, Moleres J, Bajanca-Lavado P, Garmendia J, Domínguez MÁ, Ardanuy C, Martí S. Assessment of trimethoprim-sulfamethoxazole susceptibility testing methods for fastidious Haemophilus spp. Clin Microbiol Infect 2019; 26:944.e1-944.e7. [PMID: 31811916 DOI: 10.1016/j.cmi.2019.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To compare the determinants of trimethoprim-sulfamethoxazole resistance with established susceptibility values for fastidious Haemophilus spp., to provide recommendations for optimal trimethoprim-sulfamethoxazole measurement. METHODS We collected 50 strains each of Haemophilus influenzae and Haemophilus parainfluenzae at Bellvitge University Hospital. Trimethoprim-sulfamethoxazole susceptibility was tested by microdilution, E-test and disc diffusion using both Mueller-Hinton fastidious (MH-F) medium and Haemophilus test medium (HTM) following EUCAST and CLSI criteria, respectively. Mutations in folA, folP and additional determinants of resistance were identified in whole-genome-sequenced isolates. RESULTS Strains presented generally higher rates of trimethoprim-sulfamethoxazole resistance when grown on HTM than on MH-F, independent of the methodology used (average MIC 2.6-fold higher in H. influenzae and 1.2-fold higher in H. parainfluenzae). The main resistance-related determinants were as follows: I95L and F154S/V in folA; 3- and 15-bp insertions and substitutions in folP; acquisition of sul genes; and FolA overproduction potentially linked to mutations in -35 and -10 promoter motifs. Of note, 2 of 19 H. influenzae strains (10.5%) and 9 of 33 H. parainfluenzae strains (27.3%) with mutations and assigned as resistant by microdilution were inaccurately considered susceptible by disc diffusion. This misinterpretation was resolved by raising the clinical resistance breakpoint of the EUCAST guidelines to ≤30 mm. CONCLUSIONS Given the routine use of disc diffusion, a significant number of strains could potentially be miscategorized as susceptible to trimethoprim-sulfamethoxazole despite having resistance-related mutations. A simple modification to the current clinical resistance breakpoint given by the EUCAST guideline for MH-F ensures correct interpretation and correlation with the reference standard method of microdilution.
Collapse
Affiliation(s)
- Y Sierra
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
| | - F Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - A González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - A Carrera-Salinas
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
| | - J Moleres
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
| | - P Bajanca-Lavado
- Haemophilus Influenzae Reference Laboratory, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - J Garmendia
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
| | - M Ángeles Domínguez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - C Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| | - S Martí
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.
| |
Collapse
|
35
|
Latham RD, Torrado M, Atto B, Walshe JL, Wilson R, Guss JM, Mackay JP, Tristram S, Gell DA. A heme-binding protein produced by Haemophilus haemolyticus inhibits non-typeable Haemophilus influenzae. Mol Microbiol 2019; 113:381-398. [PMID: 31742788 DOI: 10.1111/mmi.14426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023]
Abstract
Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.
Collapse
Affiliation(s)
- Roger D Latham
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - James L Walshe
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - J Mitchell Guss
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - David A Gell
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
36
|
Potts CC, Topaz N, Rodriguez-Rivera LD, Hu F, Chang HY, Whaley MJ, Schmink S, Retchless AC, Chen A, Ramos E, Doho GH, Wang X. Genomic characterization of Haemophilus influenzae: a focus on the capsule locus. BMC Genomics 2019; 20:733. [PMID: 31606037 PMCID: PMC6790013 DOI: 10.1186/s12864-019-6145-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022] Open
Abstract
Background Haemophilus influenzae (Hi) can cause invasive diseases such as meningitis, pneumonia, or sepsis. Typeable Hi includes six serotypes (a through f), each expressing a unique capsular polysaccharide. The capsule, encoded by the genes within the capsule locus, is a major virulence factor of typeable Hi. Non-typeable (NTHi) does not express capsule and is associated with invasive and non-invasive diseases. Methods A total of 395 typeable and 293 NTHi isolates were characterized by whole genome sequencing (WGS). Phylogenetic analysis and multilocus sequence typing were used to characterize the overall genetic diversity. Pair-wise comparisons were used to evaluate the capsule loci. A WGS serotyping method was developed to predict the Hi serotype. WGS serotyping results were compared to slide agglutination (SAST) or real-time PCR (rt-PCR) serotyping. Results Isolates of each Hi serotype clustered into one or two subclades, with each subclade being associated with a distinct sequence type (ST). NTHi isolates were genetically diverse, with seven subclades and 125 STs being detected. Regions I and III of the capsule locus were conserved among the six serotypes (≥82% nucleotide identity). In contrast, genes in Region II were less conserved, with only six gene pairs from all serotypes showing ≥56% nucleotide identity. The WGS serotyping method was 99.9% concordant with SAST and 100% concordant with rt-PCR in determining the Hi serotype. Conclusions Genomic analysis revealed a higher degree of genetic diversity among NTHi compared to typeable Hi. The WGS serotyping method accurately predicted the Hi capsule type and can serve as an alternative method for Hi serotyping.
Collapse
Affiliation(s)
- Caelin C Potts
- Bacterial Meningitis Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H17-2, Atlanta, GA, 30329, USA
| | | | | | | | | | - Melissa J Whaley
- Bacterial Meningitis Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H17-2, Atlanta, GA, 30329, USA
| | - Susanna Schmink
- Bacterial Meningitis Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H17-2, Atlanta, GA, 30329, USA
| | - Adam C Retchless
- Bacterial Meningitis Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H17-2, Atlanta, GA, 30329, USA
| | - Alexander Chen
- Bacterial Meningitis Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H17-2, Atlanta, GA, 30329, USA
| | | | | | - Xin Wang
- Bacterial Meningitis Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H17-2, Atlanta, GA, 30329, USA.
| |
Collapse
|