1
|
Ghaemi S, Abdoli A, Karimi H, Saadatpour F, Arefian E. The impact of host microRNAs on the development of conserved mutations of SARS-CoV-2. Sci Rep 2024; 14:22091. [PMID: 39333651 PMCID: PMC11437047 DOI: 10.1038/s41598-024-70974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024] Open
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has undergone various genetic alterations due to evolutionary pressures exerted by host cells, including intracellular antiviral mechanisms such as targeting by human microRNAs (miRNAs). This study investigates the impact of miRNAs hsa-miR-3132 and hsa-miR-4650 on the viral genome. Sequence alignment revealed conserved mutations in the binding sites of these miRNAs in adapted strains compared to the original Wuhan-Hu-1 strain, leading to their deletion. Despite modest expression of these miRNAs in SARS-CoV-2 target tissues, their efficacy against mutant strains is reduced due to the loss of binding sites. Structural analysis indicates that the mutant genome is more stable than the Wuhan-Hu-1 genome. Luciferase and virus titration assays demonstrate that hsa-miR-3132 and hsa-miR-4650 effectively target the Nsp3 gene in the Wuhan-Hu-1 strain but not in mutant strains lacking their binding sites. These findings suggest that the observed mutations help the virus evade selective pressure from human miRNAs, contributing to its adaptation.
Collapse
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Amirabad Virology Laboratory, Vaccine Unit, Tehran, 1413693341, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
- Stem Cells Technology and Tissue Regeneration Department, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Dash MK, Samal S, Rout S, Behera CK, Sahu MC, Das B. Immunomodulation in dengue: towards deciphering dengue severity markers. Cell Commun Signal 2024; 22:451. [PMID: 39327552 PMCID: PMC11425918 DOI: 10.1186/s12964-024-01779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Dengue is a vector-borne debilitating disease that is manifested as mild dengue fever, dengue with warning signs, and severe dengue. Dengue infection provokes a collective immune response; in particular, the innate immune response plays a key role in primary infection and adaptive immunity during secondary infection. In this review, we comprehensively walk through the various markers of immune response against dengue pathogenesis and outcome. MAIN BODY Innate immune response against dengue involves a collective response through the expression of proinflammatory cytokines, such as tumor necrosis factors (TNFs), interferons (IFNs), and interleukins (ILs), in addition to anti-inflammatory cytokines and toll-like receptors (TLRs) in modulating viral pathogenesis. Monocytes, dendritic cells (DCs), and mast cells are the primary innate immune cells initially infected by DENV. Such immune cells modulate the expression of various markers, which can influence disease severity by aiding virus entry and proinflammatory responses. Adaptive immune response is mainly aided by B and T lymphocytes, which stimulate the formation of germinal centers for plasmablast development and antibody production. Such antibodies are serotype-dependent and can aid in virus entry during secondary infection, mediated through a different serotype, such as in antibody-dependent enhancement (ADE), leading to DENV severity. The entire immunological repertoire is exhibited differently depending on the immune status of the individual. SHORT CONCLUSION Dengue fever through severe dengue proceeds along with the modulated expression of several immune markers. In particular, TLR2, TNF-α, IFN-I, IL-6, IL-8, IL-17 and IL-10, in addition to intermediate monocytes (CD14+CD16+) and Th17 (CD4+IL-17+) cells are highly expressed during severe dengue. Such markers could assist greatly in severity assessment, prompt diagnosis, and treatment.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Shailesh Rout
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Chinmay Kumar Behera
- Department of Pediatrics, Kalinga Institute of Medical Sciences, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | | | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
3
|
Grant WB. Vitamin D and viral infections: Infectious diseases, autoimmune diseases, and cancers. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:271-314. [PMID: 38777416 DOI: 10.1016/bs.afnr.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Viruses can cause many human diseases. Three types of human diseases caused by viruses are discussed in this chapter: infectious diseases, autoimmune diseases, and cancers. The infectious diseases included in this chapter include three respiratory tract diseases: influenza, COVID-19, and respiratory syncytial virus. In addition, the mosquito-borne dengue virus diseases are discussed. Vitamin D can reduce risk, severity, and mortality of the respiratory tract diseases and possibly for dengue virus. Many autoimmune diseases are initiated by the body's reaction to a viral infection. The protective role of vitamin D in Epstein-Barr virus-related diseases such as multiple sclerosis is discussed. There are a few cancers linked to viral infections. Such cancers include cervical cancer, head and neck cancers, Hodgkin's and non-Hodgkin's lymphoma, and liver cancer. Vitamin D plays an important role in reducing risk of cancer incidence and mortality, although not as strongly for viral-linked cancers as for other types of cancer.
Collapse
Affiliation(s)
- William B Grant
- Sunlight, Nutrition and Health Research Center, San Francisco, USA.
| |
Collapse
|
4
|
Hernández-Díazcouder A, Romero-Nava R, Del-Río-Navarro BE, Sánchez-Muñoz F, Guzmán-Martín CA, Reyes-Noriega N, Rodríguez-Cortés O, Leija-Martínez JJ, Vélez-Reséndiz JM, Villafaña S, Hong E, Huang F. The Roles of MicroRNAs in Asthma and Emerging Insights into the Effects of Vitamin D 3 Supplementation. Nutrients 2024; 16:341. [PMID: 38337625 PMCID: PMC10856766 DOI: 10.3390/nu16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Asthma is one of the most common chronic non-communicable diseases worldwide, characterized by variable airflow limitation secondary to airway narrowing, airway wall thickening, and increased mucus resulting from chronic inflammation and airway remodeling. Current epidemiological studies reported that hypovitaminosis D is frequent in patients with asthma and is associated with worsening the disease and that supplementation with vitamin D3 improves asthma symptoms. However, despite several advances in the field, the molecular mechanisms of asthma have yet to be comprehensively understood. MicroRNAs play an important role in controlling several biological processes and their deregulation is implicated in diverse diseases, including asthma. Evidence supports that the dysregulation of miR-21, miR-27b, miR-145, miR-146a, and miR-155 leads to disbalance of Th1/Th2 cells, inflammation, and airway remodeling, resulting in exacerbation of asthma. This review addresses how these molecular mechanisms explain the development of asthma and its exacerbation and how vitamin D3 may modulate these microRNAs to improve asthma symptoms.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Laboratorio de Investigación de Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico; (A.H.-D.); (N.R.-N.)
- Instituto Mexicano del Seguro Social, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Unidad de Investigación Médica en Bioquímica, Ciudad de Mexico 06720, Mexico
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (R.R.-N.); (S.V.)
| | - Blanca E. Del-Río-Navarro
- Servicio de Alergia e Inmunología, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (F.S.-M.); (C.A.G.-M.)
| | - Carlos A. Guzmán-Martín
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (F.S.-M.); (C.A.G.-M.)
| | - Nayely Reyes-Noriega
- Laboratorio de Investigación de Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico; (A.H.-D.); (N.R.-N.)
- Servicio de Alergia e Inmunología, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
| | - Octavio Rodríguez-Cortés
- Laboratorio de Inflamación y Obesidad, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico;
| | - José J. Leija-Martínez
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Juan Manuel Vélez-Reséndiz
- Laboratorio Multidisciplinario de Nanomedicina y de Farmacología Cardiovascular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico;
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (R.R.-N.); (S.V.)
| | - Enrique Hong
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 14330, Mexico;
| | - Fengyang Huang
- Laboratorio de Investigación de Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico; (A.H.-D.); (N.R.-N.)
| |
Collapse
|
5
|
Zhang W, Yin J, Deng Y, Gong Y, Sun X, Chen J. Prostaglandin E2 promotes Th17 differentiation induces corneal epithelial cell apoptosis and participates in the progression of dry eye. Arch Biochem Biophys 2024; 751:109823. [PMID: 37984760 DOI: 10.1016/j.abb.2023.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
This study is mainly based on T helper type 17 (Th17) cells analysis of the mechanism of prostaglandin E2 (PGE2) promoting the progression of dry eye (DE). Scopolamine and dry environment were used to induce mice DE model. Celecoxib was used to inhibit PGE2. Corneal epithelial cells and CD4+ T cells were used to construct a co-culture system. The osmotic pressure was increased by adding NaCl to simulate DE in vitro. AH6809 and E7046 were used to pre-culture to inhibit EP2/4 in T cells to verify the effect of exogenous PGE2 on Th17 cell differentiation and corneal epithelial cell apoptosis. The function of Th17 cells was analyzed by detecting RORγt and interleukin-17 (IL-17). PGE2 was instilled on the ocular surface to induce DE symptoms of mice. AH6809 and E7046 were used to inhibit EP2/4. The corneal epithelial cell apoptosis was observed by TUNEL. The proportion of Th17 cells in corneal tissue and draining lymph nodes (DLNs) was detected by flow cytometry. In DE mice, the concentration of PGE2 and IL-17 increased in tears, and the proportion of Th17 increased, while inhibition of PGE2 alleviated the symptoms of DE and inhibited Th17 differentiation. Hypertonic environment induces corneal epithelial cells to secrete PGE2. PGE2 promoted the expression of EP2/4 and the differentiation of Th17 cells in vitro. The hypertonic environment promoted PGE2 level and the apoptosis of corneal epithelial cells in the co-culture system. PGE2 alone did not cause corneal epithelial cell apoptosis, while PGE2 promoted apoptosis by promoting Th17. Blocking EP2/4 reduced the induction of Th17 differentiation by PGE2 and the promoted corneal epithelial cell apoptosis. Animal experiments showed that exogenous PGE2 induced DE symptoms. Blocking EP2/4 not only inhibited the proportion of Th17, but also alleviated the apoptosis of corneal epithelial cells caused by PGE2. PGE2 induces aggravation of inflammation by promoting the level of Th17 in the ocular surface, and causes corneal epithelial cell apoptosis, thereby participating in the progression of DE.
Collapse
Affiliation(s)
- Weijia Zhang
- Department of Ophthalmology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Jianwei Yin
- Department of Anesthesiology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yachun Deng
- Department of Ophthalmology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yu Gong
- Department of Ophthalmology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoyu Sun
- Department of Ophthalmology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Jingyao Chen
- Department of Ophthalmology, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Liu X, Han J, Cui R, Peng M, Song H, Li R, Chen G. The Promotion of Humoral Immune Responses in Humans via SOCS1-Mediated Th2-Bias Following SARS-CoV-2 Vaccination. Vaccines (Basel) 2023; 11:1730. [PMID: 38006062 PMCID: PMC10674672 DOI: 10.3390/vaccines11111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The effectiveness of SARS-CoV-2 vaccines varies among individuals. During the COVID-19 global pandemic, SARS-CoV-2 infection showed significant Th1 characteristics, suggesting that the immune disorder and production of SARS-CoV-2 antibodies may be related to Th1/Th2 bias. However, the molecular mechanisms underlying Th1/Th2 bias effects on host immune responses to viruses remain unclear. In this study, the top three subjects with the highest and lowest changes in anti-SARS-CoV-2 antibodies after receiving three doses of SARS-CoV-2 vaccination were selected and defined as the elevated group (E) and the control group (C), respectively. Peripheral blood was collected, single-cell sequencing was performed before and after the third dose of the SARS-CoV-2 vaccine, and the changes in T cell clusters were analyzed. Compared with the C group, the Treg pre-vaccination proportion was lower in E, while the post-vaccination proportion was higher, suggesting that Tregs may be crucial in this process. Differential analysis results of Tregs between the two groups revealed that differentially expressed genes (DEGs) were significantly enriched in the IL4 pathway. Correlation analysis between DEGs and serum antibody showed that the expression of NR4A2, SOCS1, and SOCS3 in Tregs was significantly correlated with serum antibodies, suggesting that the immune response in E group changed to Th2 bias, thereby promoting host humoral immune responses. On the other hand, antibody-related genes SOCS1 and NR4A2, as well as lnc-RNA MALAT1 and NEAT1, were highly expressed in the CD4-MALAT1 subclusters. In summary, our study revealed that Th2 bias promotes humoral immune responses in humans by increasing SOCS1 in T cells after SARS-CoV-2 vaccination. Moreover, NR4A2, SOCS1, MALAT1, and NEAT1 were identified as the potential key biomarkers or treatment targets for enhanced SARS-CoV-2 antibody production by influencing the Th1/Th2 balance in T cells. Our findings have important implications for population stratification and tailored therapeutics for more effective SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Xiaoyu Liu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Junyong Han
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China;
| | - Renjie Cui
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Meifang Peng
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
- Department of Endocrinology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Gang Chen
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China;
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
7
|
Jaratsittisin J, Sornjai W, Chailangkarn T, Jongkaewwattana A, Smith DR. The vitamin D receptor agonist EB1089 can exert its antiviral activity independently of the vitamin D receptor. PLoS One 2023; 18:e0293010. [PMID: 37847693 PMCID: PMC10581485 DOI: 10.1371/journal.pone.0293010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Vitamin D has been shown to have antiviral activity in a number of different systems. However, few studies have investigated whether the antiviral activity is exerted through the vitamin D receptor (VDR). In this study, we investigated whether the antiviral activity of a vitamin D receptor agonist (EB1089) towards dengue virus (DENV) was modulated by VDR. To undertake this, VDR was successively overexpressed, knocked down and retargeted through mutation of the nuclear localization signal. In no case was an effect seen on the level of the antiviral activity induced by EB1089, strongly indicating that the antiviral activity of EB1089 is not exerted through VDR. To further explore the antiviral activity of EB1089 in a more biologically relevant system, human neural progenitor cells were differentiated from induced pluripotent stem cells, and infected with Zika virus (ZIKV). EB1089 exerted a significant antiviral effect, reducing virus titers by some 2Log10. In support of the results seen with DENV, no expression of VDR at the protein level was observed. Collectively, these results show that the vitamin D receptor agonist EB1089 exerts its antiviral activity independently of VDR.
Collapse
Affiliation(s)
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| |
Collapse
|
8
|
Casseb SMM, Melo KFLD, Carvalho CAMD, Santos CRD, Franco ECS, Vasconcelos PFDC. Experimental Dengue Virus Type 4 Infection Increases the Expression of MicroRNAs-15/16, Triggering a Caspase-Induced Apoptosis Pathway. Curr Issues Mol Biol 2023; 45:4589-4599. [PMID: 37367040 DOI: 10.3390/cimb45060291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/28/2023] Open
Abstract
The World Health Organization has estimated the annual occurrence of approximately 392 million dengue virus (DENV) infections in more than 100 countries where the virus is endemic, which represents a serious threat to humanity. DENV is a serologic group with four distinct serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) belonging to the genus Flavivirus, in the family Flaviviridae. Dengue is the most widespread mosquito-borne disease in the world. The ~10.7 kb DENV genome encodes three structural proteins (capsid (C), pre-membrane (prM), and envelope (E)) and seven non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The NS1 protein is a membrane-associated dimer and a secreted, lipid-associated hexamer. Dimeric NS1 is found on membranes both in cellular compartments and cell surfaces. Secreted NS1 (sNS1) is often present in patient serum at very high levels, which correlates with severe dengue symptoms. This study was conducted to discover how the NS1 protein, microRNAs-15/16 (miRNAs-15/16), and apoptosis are related during DENV-4 infection in human liver cell lines. Huh 7.5 and HepG2 cells were infected with DENV-4, and miRNAs-15/16, viral load, NS1 protein, and caspases-3/7 were quantified after different durations of infection. This study demonstrated that miRNAs-15/16 were overexpressed during the infection of HepG2 and Huh 7.5 cells with DENV-4 and had a relationship with NS1 protein expression, viral load, and the activity of caspases-3/7, thus making these miRNAs potential injury markers during DENV infection in human hepatocytes.
Collapse
Affiliation(s)
- Samir Mansour Moraes Casseb
- Experimental Pathology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Elmoselhi AB, Seif Allah M, Bouzid A, Ibrahim Z, Venkatachalam T, Siddiqui R, Khan NA, Hamoudi RA. Circulating microRNAs as potential biomarkers of early vascular damage in vitamin D deficiency, obese, and diabetic patients. PLoS One 2023; 18:e0283608. [PMID: 36952563 PMCID: PMC10035929 DOI: 10.1371/journal.pone.0283608] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
Vitamin D3 deficiency, obesity, and diabetes mellitus (DM) have been shown to increase the risk of cardiovascular diseases (CVDs). However, the early detection of vascular damage in those patients is still difficult to ascertain. MicroRNAs (miRNAs) are recognized to play a critical role in initiation and pathogenesis of vascular dysfunction. Herein, we aimed to identify circulating miRNA biomarkers of vascular dysfunction as early predictors of CVDs. We have recruited 23 middle-aged Emiratis patients with the following criteria: A healthy control group with vitamin D ≥ 20ng, and BMI < 30 (C1 group = 11 individuals); A vitamin D deficiency (Vit D level ≤ 20 ng) and obese (BMI ≥ 30) group (A1 group = 9 patients); A vitamin D deficiency, obese, plus DM (A2 group = 3 patients). Arterial stiffness via pulse wave velocity (PWV) was measured and the whole transcriptome analysis with qPCR validation for miRNA in plasma samples were tested. PWV relative to age was significantly higher in A1 group 19.4 ± 4.7 m/s and A2 group 18.3 ± 1.3 m/s compared to controls 14.7 ± 2.1 m/s (p < 0.05). Similar patterns were also observed in the Augmentation pressure (AP) and Alx%. Whole RNA-Sequencing revealed miR-182-5p; miR-199a-5p; miR-193a-5p; and miR-155-5p were differentially over-expressed (logFC > 1.5) in high-risk patients for CVDs vs healthy controls. Collectively, our result indicates that four specific circulating miRNA signature, may be utilized as non-invasive, diagnostic and prognostic biomarkers for early vascular damage in patients suffering from vitamin D deficiency, obesity and DM.
Collapse
Affiliation(s)
- Adel B. Elmoselhi
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
- * E-mail:
| | - Mohamed Seif Allah
- College of Medicine, University of Sharjah, Sharjah, UAE
- Cardiology Department, University Hospital Sharjah, Sharjah, UAE
| | - Amal Bouzid
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Zeinab Ibrahim
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Thenmozhi Venkatachalam
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, UAE
| | - Naveed Ahmed Khan
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Rifat A. Hamoudi
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
10
|
Castillo JA, Urcuqui-Inchima S. Vitamin D modulates inflammatory response of DENV-2-infected macrophages by inhibiting the expression of inflammatory-liked miRNAs. Pathog Glob Health 2023; 117:167-180. [PMID: 35850625 PMCID: PMC9970239 DOI: 10.1080/20477724.2022.2101840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Dengue disease caused by dengue virus (DENV) infection is the most common vector-borne viral disease worldwide. Currently, no treatment is available to fight dengue symptoms. We and others have demonstrated the antiviral and immunomodulatory properties of VitD3 as a possible therapy for DENV infection. MicroRNAs (miRNAs) are small non-coding RNAs responsible for the regulation of cell processes including antiviral defense. Previous transcriptomic analysis showed that VitD3 regulates the expression of genes involved in stress and immune response by inducing specific miRNAs. Here, we focus on the effects of VitD3 supplementation in the regulation of the expression of inflammatory-liked miR-182-5p, miR-130a-3p, miR125b-5p, miR146a-5p, and miR-155-5p during DENV-2 infection of monocyte-derived macrophages (MDMs). Further, we evaluated the effects of inhibition of these miRNAs in the innate immune response. Our results showed that supplementation with VitD3 differentially regulated the expression of these inflammatory miRNAs. We also observed that inhibition of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p, led to decreased production of TNF-α and TLR9 expression, while increased the expression of SOCS-1, IFN-β, and OAS1, without affecting DENV replication. By contrast, over-expression of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p significantly decreased DENV-2 infection rates and also DENV-2 replication in MDMs. Our results suggest that VitD3 immunomodulatory effects involve regulation of inflammation-linked miRNAs expression, which might play a key role in the inflammatory response during DENV infection.
Collapse
Affiliation(s)
- Jorge Andrés Castillo
- Grupo de Inmunovirología. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo de Inmunovirología. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
11
|
Fei Y, Wang Z, Huang M, Wu X, Hu F, Zhu J, Yu Y, Shen H, Wu Y, Xie G, Zhou Z. MiR-155 regulates M2 polarization of hepatitis B virus-infected tumour-associated macrophages which in turn regulates the malignant progression of hepatocellular carcinoma. J Viral Hepat 2023; 30:417-426. [PMID: 36704832 DOI: 10.1111/jvh.13809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) initiated by hepatitis B virus (HBV) infection is a complicated process. MiR-155 can alter the immune microenvironment to affect the host's anti-infective ability. This study investigated the mechanism by which miR-155 affects tumour-associated macrophage (TAM) polarization at a molecular level, thus affecting the malignant progression of HBV+ HCC. MiR-155 and TAM-related cytokine expression were analysed by qRT-PCR. The distribution of TAMs was detected by immunohistochemistry. The effect of the aberrant miR-155 expression on macrophage polarization was examined by flow cytometry. The targeted relationship was verified by dual-luciferase assay, and the protein level of src homology 2 domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) was detected by western blot. The proliferation of HCC cells was examined by CCK-8 and colony formation assays. Invasion and migration of HCC cells were detected by transwell assay. In HBV+ HCC tissues, miR-155 was significantly highly expressed and the number of CD206-positive TAM (CD206+ TAM) and CD68-positive TAM (CD68+ TAM) were higher than those in HBV- HCC tissues. In addition, miR-155 overexpression significantly promoted M2-type macrophage polarization, whilst miR-155 silencing expression significantly promoted M1-type macrophage polarization. Besides, the miR-155/SHIP1 axis accelerated HCC cell invasion, proliferation and migration by inducing M2-type macrophage polarization. MiR-155 accelerates HCC cell proliferation, migration and invasion by targeting SHIP1 expression and inducing macrophage M2 polarization. This finding provides new insights into the development of novel therapeutic strategies for combatting HBV+ HCC and a new reference for exploring anti-tumour immunotherapy.
Collapse
Affiliation(s)
- Yingming Fei
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Zhiwei Wang
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Minmin Huang
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Xinjuan Wu
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Fangqin Hu
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Jinlong Zhu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Youlin Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Huajiang Shen
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Yong Wu
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Guilin Xie
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Zumo Zhou
- Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| |
Collapse
|
12
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
13
|
Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022. [PMID: 36222134 PMCID: PMC9425815 DOI: 10.1007/s12038-022-00288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
|
14
|
The Role of Diet in Regulation of Macrophages Functioning. Biomedicines 2022; 10:biomedicines10092087. [PMID: 36140188 PMCID: PMC9495355 DOI: 10.3390/biomedicines10092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
The great importance of diet for health and high life-expectancy is established. The impact of nutrients on immune system is a point of growing research interest. Recent studies have found pro- and anti-inflammatory properties of some diet patterns and nutrients that can be used from the bench to the bedside for chronic low-grade inflammatory status correction. In this regard, the assessment of potential effects of nutrition on macrophage differentiation, proliferation, and functioning in health and disease is highly demanded. In this review, we present current data on the effects of nutrients on the macrophage functioning.
Collapse
|
15
|
Cai W, Pan Y, Cheng A, Wang M, Yin Z, Jia R. Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Front Microbiol 2022; 13:869441. [PMID: 35479613 PMCID: PMC9036177 DOI: 10.3389/fmicb.2022.869441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that affect mRNA abundance or translation efficiency by binding to the 3′UTR of the mRNA of the target gene, thereby participating in multiple biological processes, including viral infection. Flavivirus genus consists of small, positive-stranded, single-stranded RNA viruses transmitted by arthropods, especially mosquitoes and ticks. The genus contains several globally significant human/animal pathogens, such as Dengue virus, Japanese encephalitis virus, West Nile virus, Zika virus, Yellow fever virus, Tick-borne encephalitis virus, and Tembusu virus. After flavivirus invades, the expression of host miRNA changes, exerting the immune escape mechanism to create an environment conducive to its survival, and the altered miRNA in turn affects the life cycle of the virus. Accumulated evidence suggests that host miRNAs influence flavivirus replication and host–virus interactions through direct binding of viral genomes or through virus-mediated host transcriptome changes. Furthermore, miRNA can also interweave with other non-coding RNAs, such as long non-coding RNA and circular RNA, to form an interaction network to regulate viral replication. A variety of non-coding RNAs produced by the virus itself exert similar function by interacting with cellular RNA and viral RNA. Understanding the interaction sites between non-coding RNA, especially miRNA, and virus/host genes will help us to find targets for antiviral drugs and viral therapy.
Collapse
Affiliation(s)
- Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Renyong Jia,
| |
Collapse
|
16
|
Li G, Sun J, Zhang J, Lv Y, Liu D, Zhu X, Qi L, Chen Z, Ye Z, Su X, Li L. Identification of Inflammation-Related Biomarkers in Diabetes of the Exocrine Pancreas With the Use of Weighted Gene Co-Expression Network Analysis. Front Endocrinol (Lausanne) 2022; 13:839865. [PMID: 35498402 PMCID: PMC9046596 DOI: 10.3389/fendo.2022.839865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes of the exocrine pancreas (DEP), also commonly described as pancreatogenic diabetes mellitus, is a type of diabetes secondary to abnormalities in pancreatic or exocrine secretion of the pancreas. However, its pathogenesis is not yet known. The aim of this article was to explore the biomarkers of DEP and their potential molecular mechanisms. Based on GSE76896 dataset, which was acquired from Gene Expression Omnibus (GEO), we identified 373 genes by weighted gene co-expression network analysis (WGCNA) and differential expression analysis. In addition, protein-protein interaction (PPI) network analysis and cytoHubba were used to screen potential hub genes. Five hub genes were determined, comprising Toll-like receptor 4 (TLR4), ITGAM, ITGB2, PTPRC, and CSF1R. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways suggested macrophage activation and Toll-like receptor signaling pathway as important pathophysiological features of DEP. CIBERSORT suggested that TLR4 may regulate the immune pathway via macrophages. Next, we validated the expression and receiver operating characteristic curve (ROC) of the hub genes using the GSE164416 dataset. In addition, we used miRNet to predict the target miRNAs of hub genes and intersected them with common miRNAs in diabetes from the Human MicroRNA Disease Database (HMDD), which was used to propose a possible mechanistic model for DEP. The miRNA-mRNA network showed that has-miR-155-5p/has-miR-27a-3p/has-miR-21-5p-TLR4 might lead to TLR4 signaling pathway activation in DEP. In conclusion, we identified five hub genes, namely, TLR4, ITGAM, ITGB2, PTPRC, and CSF1R, as biomarkers to aid in the diagnosis of DEP and conducted an in-depth study of the pathogenesis of DEP at the genetic level.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jinfang Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jun Zhang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingqi Lv
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dechen Liu
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiangyun Zhu
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhiwei Chen
- Department of Endocrinology, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Hunan, China
| | - Zheng Ye
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xianghui Su
- Department of Endocrinology, Changji Branch, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- *Correspondence: Xianghui Su, ; Ling Li,
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
- *Correspondence: Xianghui Su, ; Ling Li,
| |
Collapse
|
17
|
Majumdar A, Basu A. Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022; 47:54. [PMID: 36222134 PMCID: PMC9425815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/17/2022] [Indexed: 09/07/2024]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| |
Collapse
|
18
|
Abstract
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease, worldwide. The molecular pathogenesis of NAFLD is complex, involving numerous signalling molecules including microRNAs (miRNAs). Dysregulation of miRNA expression is associated with hepatic inflammation, fibrosis and hepatocellular carcinoma. Although miRNAs are also critical to the cellular response to vitamin D, mediating regulation of the vitamin D receptor (VDR) and vitamin D’s anticancer effects, a role for vitamin D regulated miRNAs in NAFLD pathogenesis has been relatively unexplored. Therefore, this review aimed to critically assess the evidence for a potential subset of miRNAs that are both dysregulated in NAFLD and modulated by vitamin D. Comprehensive review of 89 human studies identified 25 miRNAs found dysregulated in more than one NAFLD study. In contrast, only 17 studies, including a protocol for a trial in NAFLD, had examined miRNAs in relation to vitamin D status, response to supplementation, or vitamin D in the context of the liver. This paper summarises these data and reviews the biological roles of six miRNAs (miR-21, miR-30, miR-34, miR-122, miR-146, miR-200) found dysregulated in multiple independent NAFLD studies. While modulation of miRNAs by vitamin D has been understudied, integrating the data suggests seven vitamin D modulated miRNAs (miR-27, miR-125, miR-155, miR-192, miR-223, miR-375, miR-378) potentially relevant to NAFLD pathogenesis. Our summary tables provide a significant resource to underpin future hypothesis-driven research, and we conclude that the measurement of serum and hepatic miRNAs in response to vitamin D supplementation in larger trials is warranted.
Collapse
|
19
|
Khokhar M, Tomo S, Purohit P. MicroRNAs based regulation of cytokine regulating immune expressed genes and their transcription factors in COVID-19. Meta Gene 2021; 31:100990. [PMID: 34722158 PMCID: PMC8547816 DOI: 10.1016/j.mgene.2021.100990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus disease 2019 is characterized by the elevation of a broad spectrum of inflammatory mediators associated with poor disease outcomes. We aimed at an in-silico analysis of regulatory microRNA and their transcription factors (TF) for these inflammatory genes that may help to devise potential therapeutic strategies in the future. Methods The cytokine regulating immune-expressed genes (CRIEG) were sorted from literature and the GEO microarray dataset. Their co-differentially expressed miRNA and transcription factors were predicted from publicly available databases. Enrichment analysis was done through mienturnet, MiEAA, Gene Ontology, and pathways predicted by KEGG and Reactome pathways. Finally, the functional and regulatory features were analyzed and visualized through Cytoscape. Results Sixteen CRIEG were observed to have a significant protein-protein interaction network. The ontological analysis revealed significantly enriched pathways for biological processes, molecular functions, and cellular components. The search performed in the miRNA database yielded ten miRNAs that are significantly involved in regulating these genes and their transcription factors. Conclusion An in-silico representation of a network involving miRNAs, CRIEGs, and TF, which take part in the inflammatory response in COVID-19, has been elucidated. Thus, these regulatory factors may have potentially critical roles in the inflammatory response in COVID-19 and may be explored further to develop targeted therapeutic strategies and mechanistic validation.
Collapse
Key Words
- AHR, Aryl hydrocarbon receptor
- ARDS, acute respiratory distress syndrome
- BAL, Bronchoalveolar Lavage
- CC, Cellular components
- CCL, Chemokine (C-C motif) ligands
- CCL2, C-C motif chemokine 2
- CCL3, C-C motif chemokine 3
- CCL4, C-C motif chemokine 4
- CCR, CC chemokine receptor
- CEBPA, CCAAT/enhancer-binding protein alpha
- COVID-19
- COVID-19, Coronavirus Disease 2019
- CREM, cAMP responsive element modulator
- CRIEGs, Cytokine regulating immune expressed genes
- CSF2, Granulocyte-macrophage colony-stimulating factor
- CSF3, Granulocyte colony-stimulating factor
- CXCL10, C-X-C motif chemokine 10
- CXCL2, Chemokine (C-X-C motif) ligand 2
- CXCL8, Interleukin-8
- CXCR, C-X-C chemokine receptor
- Cytokine storm
- Cytokines
- DDIT3, DNA damage-inducible transcript 3 protein
- DEGs, Differentially expressed genes
- E2F1, Transcription factor E2F1
- EGR1, Early growth response protein 1
- EP300, Histone acetyltransferase p300
- ESR1, Estrogen receptor, Nuclear hormone receptor
- ETS2, Protein C-ets-2
- FOXP3, Forkhead box protein P3
- GO, Gene Ontology
- GSEs, Gene Series Expressions
- HDAC1, Histone deacetylase 1
- HDAC2, Histone deacetylase 2
- HSF1, Heat shock factor protein 1
- IL-6, interleukin-6
- IL10, Interleukin-10
- IL17A, Interleukin-17A
- IL1B, Interleukin-1
- IL2, Interleukin-2
- IL6, Interleukin-6
- IL7, Interleukin-7
- IL9, Interleukin-9
- IP-10, Interferon-Inducible Protein 10
- IRF1, Interferon regulatory factor 1
- Immuno-interactomics
- JAK-STAT, Janus kinase (JAK)-signal transducer and activator
- JAK2, Tyrosine-protein kinase JAK2
- JUN, Transcription factor AP-1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- KLF4, Krueppel-like factor 4
- MicroRNA, SARS-CoV-2
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NFAT5, Nuclear factor of activated T-cells 5
- NFKB1, Nuclear factor NF-kappa-B p105 subunit
- NFKBIA, NF-kappa-B inhibitor alpha
- NR1I2, Nuclear receptor subfamily 1 group I member 2
- PDM, peripheral blood mononuclear cell
- REL, Proto-oncogene c-Rel
- RELA, Transcription factor p65
- RUNX1, Runt-related transcription factor 1
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SIRT1, NAD-dependent protein deacetylase sirtuin-1
- SP1, Transcription factor Sp1
- SPI1, Transcription factor PU.1
- STAT1, Signal transducer and activator of transcription 1-alpha/beta
- STAT3, Signal transducer and activator of transcription 3
- TLR3, Toll-like receptor 3 (TLR3)
- TNF, Tumor necrosis factor
- TNF-α, Tumor Necrosis Factor-Alpha
- VDR, Vitamin D3 receptor
- XBP1, X-box-binding protein 1
- ZFP36, mRNA decay activator protein ZFP36
- ZNF300, Zinc finger protein 300, heme oxygenase-1 (HO-1)
- miEAA, miRNA Enrichment Analysis and Annotation t
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| |
Collapse
|
20
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
21
|
Jafarzadeh A, Naseri A, Shojaie L, Nemati M, Jafarzadeh S, Bannazadeh Baghi H, Hamblin MR, Akhlagh SA, Mirzaei H. MicroRNA-155 and antiviral immune responses. Int Immunopharmacol 2021; 101:108188. [PMID: 34626873 DOI: 10.1016/j.intimp.2021.108188] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
The microRNA, miR-155 regulates both adaptive and innate immune responses. In viral infections, miR-155 can affect both innate immunity (interferon response, natural killer cell activity, and macrophage polarization) and adaptive immunity (including generation of anti-viral antibodies, CD8+ cytotoxic T lymphocytes, Th17, Th2, Th1, Tfh and Treg cells). In many viral infections, the proper and timely regulation of miR-155 expression is critical for the induction of an effective anti-virus immune response and viral clearance without any harmful immunopathologic consequences. MiR-155 may also exert pro-viral effects, mainly through the inhibition of the anti-viral interferon response. Thus, dysregulated expression of miR-155 can result in virus persistence and disruption of the normal response to viral infections. This review provides a thorough discussion of the role of miR-155 in immune responses and immunopathologic reactions during viral infections, and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Alma Naseri
- Department of Immunology, Islamic Azadi university of Zahedan, Zahedan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal 2021; 19:90. [PMID: 34479599 PMCID: PMC8414775 DOI: 10.1186/s12964-021-00771-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) has closely been associated with an increased risk of colorectal cancer. However, the exact mechanisms underlying colitis-associated cancer (CAC) development remain unclear. As a classic pattern-recognition receptor, Toll like receptor (TLR)4 is a canonical receptor for lipopolysaccharide of Gram-negative bacteria (including two CAC-associated pathogens Fusobacterium nucleatum and Salmonella), and functions as a key bridge molecule linking oncogenic infection to colonic inflammatory and malignant processes. Accumulating studies verified the overexpression of TLR4 in colitis and CAC, and the over-expressed TLR4 might promote colitis-associated tumorigenesis via facilitating cell proliferation, protecting malignant cells against apoptosis, accelerating invasion and metastasis, as well as contributing to the creation of tumor-favouring cellular microenvironment. In recent years, considerable attention has been focused on the regulation of TLR4 signaling in the context of colitis-associated tumorigenesis. MicroRNA (miR)-155 and TLR4 exhibited a similar dynamic expression change during CAC development and shared similar CAC-promoting properties. The available data demonstrated an interplay between TLR4 and miR-155 in the context of different disorders or cell lines. miR-155 could augment TLR4 signaling through targeting negative regulators SOCS1 and SHIP1; and TLR4 activation would induce miR-155 expression via transcriptional and post-transcriptional mechanisms. This possible TLR4-miR-155 positive feedback loop might result in the synergistic accelerating effect of TLR4 and miR-155 on CAC development.![]() Video abstract
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China. .,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
23
|
Alagarasu K. Immunomodulatory effect of vitamin D on immune response to dengue virus infection. VITAMINS AND HORMONES 2021; 117:239-252. [PMID: 34420583 DOI: 10.1016/bs.vh.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dengue, an acute febrile illness which in some cases requires hospitalization and occasionally a fatal disease, caused by dengue virus is a potential threat to the public health systems throughout the world. Approved antivirals are not available for treating dengue. Immunomodulators, that can reduce inflammation which if not treated properly results in vascular leakage, are being attempted as therapeutics against severe dengue. Vitamin D, an immunomodulatory hormone, with both antiviral and immunomodulatory effects, is an appropriate choice for investigation as a potential drug against dengue. Investigations of vitamin D levels by many studies have suggested vitamin D levels as a potential marker for predicting severe dengue. In-vitro studies have shown that 1, 25 dihydroxy vitamin D3 (1,25(OH)2D3), active form of vitamin D, can reduce the expression of dengue virus entry receptors, restrict the viral replication and can modulate the expression of inflammatory cytokines in dengue virus infected cells. The results from in-vitro studies also have cautioned that insufficient levels of vitamin D supplementation might increase the virus replication. Available evidence suggests vitamin D based therapeutics against dengue and provides ray of light for treating dengue patients but, the available evidence needs to be supported by beneficial outcomes in clinical trials.
Collapse
Affiliation(s)
- K Alagarasu
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India.
| |
Collapse
|
24
|
The Role of miR-155 in Nutrition: Modulating Cancer-Associated Inflammation. Nutrients 2021; 13:nu13072245. [PMID: 34210046 PMCID: PMC8308226 DOI: 10.3390/nu13072245] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Nutrition plays an important role in overall human health. Although there is no direct evidence supporting the direct involvement of nutrition in curing disease, for some diseases, good nutrition contributes to disease prevention and our overall well-being, including energy level, optimum internal function, and strength of the immune system. Lately, other major, but more silent players are reported to participate in the body’s response to ingested nutrients, as they are involved in different physiological and pathological processes. Furthermore, the genetic profile of an individual is highly critical in regulating these processes and their interactions. In particular, miR-155, a non-coding microRNA, is reported to be highly correlated with such nutritional processes. In fact, miR-155 is involved in the orchestration of various biological processes such as cellular signaling, immune regulation, metabolism, nutritional responses, inflammation, and carcinogenesis. Thus, this review aims to highlight those critical aspects of the influence of dietary components on gene expression, primarily on miR-155 and its role in modulating cancer-associated processes.
Collapse
|
25
|
Gao Y, Han T, Han C, Sun H, Yang X, Zhang D, Ni X. Propofol Regulates the TLR4/NF-κB Pathway Through miRNA-155 to Protect Colorectal Cancer Intestinal Barrier. Inflammation 2021; 44:2078-2090. [PMID: 34081253 DOI: 10.1007/s10753-021-01485-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 12/22/2022]
Abstract
Surgery for colorectal cancer (CRC) can cause damage to the intestinal mucosal barrier and lead to bacterial invasion. This study mainly analyzed whether propofol (PPF) could protect the intestinal mucosal barrier damage caused by CRC surgery, and explored its molecular mechanism. A mouse CRC model was constructed using azomethane and dextran sulfate sodium. During anesthesia, continuous intravenous injection of PPF was used for intervention. The influences of PPF on intestinal mucosal permeability and bacterial invasion were detected. The levels of microRNA (miR)-155, Toll-like receptor 4 (TLR4)/NF-κB in the intestinal mucosa, and the location of miR-155 were detected by fluorescence in situ hybridization (FISH). Mouse macrophages were used to analyze the regulation of miR-155 on the secretion of inflammatory cytokines through the TLR4/NF-κB pathway. PPF treatment promoted the expression of tight junction protein in the intestinal mucosa, protected the intestinal barrier, inhibited the translocation of intestinal bacteria, and increased the level of the beneficial bacterium Lactobacillus on the mucosal surface. In addition, PPF treatment could inhibit the expression of miR-155, TLR4/NF-KB, and reverse inflammatory response. miR-155 was expressed in macrophages of intestinal mucosa tissue. Overexpression of miR-155 promoted the nuclear translocation of NF-κB and the expression of inflammatory cytokines in macrophages. The use of VIPER to inhibit TLR4 reversed the pro-inflammatory effects of miR-155. PPF might inhibit the activation of the NF-κB pathway by downregulating miR-155 expression, thereby reducing the secretion of inflammatory cytokines. This might be the mechanism by which PPF protected the intestinal barrier of CRC surgical model mice.
Collapse
Affiliation(s)
- Yuhua Gao
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tao Han
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Cailing Han
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Hua Sun
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Xiaoxia Yang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Dongmei Zhang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Xinli Ni
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
26
|
Tanner A, Tiwari D, Allen S. Covid-19 Susceptibility and Severity Might be Modified by Vitamin D Status: Theoretical and Practical Considerations. CURRENT RESPIRATORY MEDICINE REVIEWS 2021. [DOI: 10.2174/1568009620999200924155221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background:
The recently identified SARS-CoV-2 coronavirus has resulted in the
Covid-19 pandemic with severe morbidity and high mortality, particularly in certain sections of the
population. The co-morbidity patterns associated with adverse outcomes are multiple and complex
and there is emerging epidemiological, nutritional and molecular biological evidence that an inadequate
vitamin D status is a contributing factor.
Objective:
The aim was to review the role of vitamin D in immune function with particular reference
to the mechanisms whereby it supports immune efficiency, host protection and immune modulation.
The evidence for the possible benefit of vitamin D supplementation to ameliorate the severity
of respiratory infection by SARS-CoV-2 and other pathogens was also reviewed with a view to
making a recommendation.
Methods:
PubMed, MEDLINE and Google Scholar were searched using the terms: Covid-19, coronavirus,
SARS-CoV-2, vitamin D, calcitriol, deficiency, adaptive immunity, innate immunity, ventilation,
critical care, intensive care, acute respiratory distress syndrome, cytokine storm, respiratory
viruses, respiratory tract infection, respiratory syncytial virus, influenza, supplementation. Papers
for inclusion were selected on the basis of relevance and quality.
Findings:
Vitamin D insufficiency is widespread in many parts of the world. Vitamin D is needed
for normal protective and surveillance immune function and there is evidence that deficiency increases
the risk of some respiratory infections, probably including Covid-19. By binding with dedicated
receptors on immune cells vitamin D influences several strands of immune function, including
the production of anti-microbial peptides and several cytokines that promote an appropriate immune
response. Vitamin D supplementation probably reduces the risk of respiratory infection, with
persuasive biological, epidemiological and observational evidence for possible benefit against
Covid-19.
Conclusion:
Despite the lack of direct evidence specific to Covid-19 a cogent theoretical case can
be made for giving adults from selected groups, and arguably all adults, routine supplementation
with vitamin D to improve immune efficiency and reduce the incidence and severity of respiratory
infections. This could be particularly important in sections of the population with a high prevalence
of vitamin D insufficiency. Targeted research is required to provide firm evidence to guide practice.
Collapse
Affiliation(s)
- Alex Tanner
- The Royal Bournemouth Hospital, Dorset, United Kingdom
| | - Divya Tiwari
- The Royal Bournemouth Hospital, Dorset, United Kingdom
| | - Stephen Allen
- The Royal Bournemouth Hospital, Dorset, United Kingdom
| |
Collapse
|
27
|
Rhodes JM, Subramanian S, Laird E, Griffin G, Kenny RA. Perspective: Vitamin D deficiency and COVID-19 severity - plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J Intern Med 2021; 289:97-115. [PMID: 32613681 PMCID: PMC7361294 DOI: 10.1111/joim.13149] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND SARS-CoV-2 coronavirus infection ranges from asymptomatic through to fatal COVID-19 characterized by a 'cytokine storm' and lung failure. Vitamin D deficiency has been postulated as a determinant of severity. OBJECTIVES To review the evidence relevant to vitamin D and COVID-19. METHODS Narrative review. RESULTS Regression modelling shows that more northerly countries in the Northern Hemisphere are currently (May 2020) showing relatively high COVID-19 mortality, with an estimated 4.4% increase in mortality for each 1 degree latitude north of 28 degrees North (P = 0.031) after adjustment for age of population. This supports a role for ultraviolet B acting via vitamin D synthesis. Factors associated with worse COVID-19 prognosis include old age, ethnicity, male sex, obesity, diabetes and hypertension and these also associate with deficiency of vitamin D or its response. Vitamin D deficiency is also linked to severity of childhood respiratory illness. Experimentally, vitamin D increases the ratio of angiotensin-converting enzyme 2 (ACE2) to ACE, thus increasing angiotensin II hydrolysis and reducing subsequent inflammatory cytokine response to pathogens and lung injury. CONCLUSIONS Substantial evidence supports a link between vitamin D deficiency and COVID-19 severity but it is all indirect. Community-based placebo-controlled trials of vitamin D supplementation may be difficult. Further evidence could come from study of COVID-19 outcomes in large cohorts with information on prescribing data for vitamin D supplementation or assay of serum unbound 25(OH) vitamin D levels. Meanwhile, vitamin D supplementation should be strongly advised for people likely to be deficient.
Collapse
Affiliation(s)
- J. M. Rhodes
- From theDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| | - S. Subramanian
- From theDepartment of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| | - E. Laird
- The Irish Longitudinal Study on AgeingSchool of MedicineTrinity College DublinDublinIreland
| | - G. Griffin
- Infectious Diseases and MedicineSt George’sUniversity of LondonLondonUK
| | - R. A. Kenny
- Department of Medical GerontologyMercers Institute for AgeingSt James HospitalDublin 8Ireland
| |
Collapse
|
28
|
Pinzon RT, Angela, Pradana AW. Vitamin D deficiency among patients with COVID-19: case series and recent literature review. Trop Med Health 2020; 48:102. [PMID: 33342439 PMCID: PMC7750008 DOI: 10.1186/s41182-020-00277-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The world is now challenging the pandemic of COVID-19 infection. This is the third and most extensive pandemic. Previous studies showed the plausibility of vitamin D prophylaxis and therapy for COVID-19, particularly in settings where hypovitaminosis D is frequent. Recent study from Indonesian showed that the prevalence of vitamin D deficiency was 23.0%. The examination of vitamin D status is not a routine in the Indonesian clinical setting. METHODS This study is a case series from confirmed cases of COVID-19 in Bethesda Hospital Yogyakarta Indonesia. The data of clinical symptoms, signs and laboratory examinations were obtained from the electronic medical records. The vitamin D status was measured by Enzyme-Linked Fluorescent Assay (ELFA) method. We searched PubMed and Google Scholar for studies that included terms for Vitamin D and COVID-19. RESULTS The data were obtained from 10 participants consisting of 50% male and 50% female. The mean age was 49.6 years. The prevalence of vitamin D deficiency in this study was 90% (vitamin D levels < 20 ng/mL) and 10% of insufficiency (vitamin D levels < 30 ng/mL). Patients in this study had various symptoms such as fatigue (60%), fever (50%), dry cough (40%), non-specific headache (10%), and diarrhea (10%); have no symptoms (20%); and also had the various chronic diseases as comorbidity such as hypertension (40%), diabetes (10%), COPD (10%), and post stroke (10%). CONCLUSIONS All of the COVID-19 patients in this study had hypovitaminosis D. The prevalence of vitamin D deficiency in this case series is 90% and only 1 patient (10%) had vitamin D insufficiency. There are many health benefits of vitamin D and very few adverse effects. Randomized controlled trials need to determine and evaluate this recommendation in preventing or treating COVID-19. Clinicians should continue to treat people with vitamin D deficiency especially in managing COVID-19 patients.
Collapse
Affiliation(s)
- Rizaldy Taslim Pinzon
- Duta Wacana Christian University School of Medicine, Dr. Wahidin Sudirohusodo street number 5-25, Yogyakarta, 55224, Indonesia. .,Bethesda Hospital Yogyakarta, Jendral Sudirman street number 70, Yogyakarta, 55224, Indonesia.
| | - Angela
- Duta Wacana Christian University School of Medicine, Dr. Wahidin Sudirohusodo street number 5-25, Yogyakarta, 55224, Indonesia
| | - Andryawan Wahyu Pradana
- Duta Wacana Christian University School of Medicine, Dr. Wahidin Sudirohusodo street number 5-25, Yogyakarta, 55224, Indonesia
| |
Collapse
|
29
|
Langerman SD, Ververs M. Micronutrient Supplementation and Clinical Outcomes in Patients with Dengue Fever. Am J Trop Med Hyg 2020; 104:45-51. [PMID: 33258437 PMCID: PMC7790074 DOI: 10.4269/ajtmh.20-0731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue fever (DF) is a viral infection that is common in tropical countries and represents a significant cause of global morbidity and mortality. Despite its prevalence and severity, treatment options for DF remain limited and consist primarily of supportive measures. Several recent studies have concluded that micronutrient supplementation may improve clinical outcomes in patients with DF, but no review has summarized and synthesized these findings. We conducted a literature review to identify articles investigating the effect of micronutrient supplementation on clinical outcomes among patients with DF. We found several studies which indicated that supplemental vitamin C, vitamin D, vitamin E, and zinc may be useful adjuncts in DF treatment. Folic acid supplementation did not appear to affect clinical outcomes. The reviewed studies have significant limitations including small sample sizes and limited data about the baseline nutritional status of study subjects. We identify a need for additional high-quality randomized trials to elucidate the role of micronutrient supplementation in DF treatment.
Collapse
Affiliation(s)
| | - Mija Ververs
- Address correspondence to Mija Ververs, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333. E-mail:
| |
Collapse
|
30
|
Griffin G, Hewison M, Hopkin J, Kenny R, Quinton R, Rhodes J, Subramanian S, Thickett D. Vitamin D and COVID-19: evidence and recommendations for supplementation. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201912. [PMID: 33489300 PMCID: PMC7813231 DOI: 10.1098/rsos.201912] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 05/18/2023]
Abstract
Vitamin D is a hormone that acts on many genes expressed by immune cells. Evidence linking vitamin D deficiency with COVID-19 severity is circumstantial but considerable-links with ethnicity, obesity, institutionalization; latitude and ultraviolet exposure; increased lung damage in experimental models; associations with COVID-19 severity in hospitalized patients. Vitamin D deficiency is common but readily preventable by supplementation that is very safe and cheap. A target blood level of at least 50 nmol l-1, as indicated by the US National Academy of Medicine and by the European Food Safety Authority, is supported by evidence. This would require supplementation with 800 IU/day (not 400 IU/day as currently recommended in UK) to bring most people up to target. Randomized placebo-controlled trials of vitamin D in the community are unlikely to complete until spring 2021-although we note the positive results from Spain of a randomized trial of 25-hydroxyvitamin D3 (25(OH)D3 or calcifediol) in hospitalized patients. We urge UK and other governments to recommend vitamin D supplementation at 800-1000 IU/day for all, making it clear that this is to help optimize immune health and not solely for bone and muscle health. This should be mandated for prescription in care homes, prisons and other institutions where people are likely to have been indoors for much of the summer. Adults likely to be deficient should consider taking a higher dose, e.g. 4000 IU/day for the first four weeks before reducing to 800 IU-1000 IU/day. People admitted to the hospital with COVID-19 should have their vitamin D status checked and/or supplemented and consideration should be given to testing high-dose calcifediol in the RECOVERY trial. We feel this should be pursued with great urgency. Vitamin D levels in the UK will be falling from October onwards as we head into winter. There seems nothing to lose and potentially much to gain.
Collapse
Affiliation(s)
- George Griffin
- Infectious Diseases and Medicine, St George's University of London, London, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Julian Hopkin
- Medical School, Swansea University, Swansea, West Glamorgan, UK
| | - Rose Kenny
- Medical Gerontology, Trinity College Dublin School of Medicine, Dublin, Ireland
| | - Richard Quinton
- Endocrinology, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Jonathan Rhodes
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | - David Thickett
- Institute of Inflammation and Ageing, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| |
Collapse
|
31
|
Huang S, Liu K, Cheng A, Wang M, Cui M, Huang J, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Mao S, Gao Q, Yu Y, Tian B, Liu Y, Zhang L, Yin Z, Jing B, Chen X, Jia R. SOCS Proteins Participate in the Regulation of Innate Immune Response Caused by Viruses. Front Immunol 2020; 11:558341. [PMID: 33072096 PMCID: PMC7544739 DOI: 10.3389/fimmu.2020.558341] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
The host immune system has multiple innate immune receptors that can identify, distinguish and react to viral infections. In innate immune response, the host recognizes pathogen-associated molecular patterns (PAMP) in nucleic acids or viral proteins through pathogen recognition receptors (PRRs), especially toll-like receptors (TLRs) and induces immune cells or infected cells to produce type I Interferons (IFN-I) and pro-inflammatory cytokines, thus when the virus invades the host, innate immunity is the earliest immune mechanism. Besides, cytokine-mediated cell communication is necessary for the proper regulation of immune responses. Therefore, the appropriate activation of innate immunity is necessary for the normal life activities of cells. The suppressor of the cytokine signaling proteins (SOCS) family is one of the main regulators of the innate immune response induced by microbial pathogens. They mainly participate in the negative feedback regulation of cytokine signal transduction through Janus kinase signal transducer and transcriptional activator (JAK/STAT) and other signal pathways. Taken together, this paper reviews the SOCS proteins structures and the function of each domain, as well as the latest knowledge of the role of SOCS proteins in innate immune caused by viral infections and the mechanisms by which SOCS proteins assist viruses to escape host innate immunity. Finally, we discuss potential values of these proteins in future targeted therapies.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Ohadian Moghadam S. A Review on Currently Available Potential Therapeutic Options for COVID-19. Int J Gen Med 2020; 13:443-467. [PMID: 32801840 PMCID: PMC7387864 DOI: 10.2147/ijgm.s263666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
A series of unexplained pneumonia cases currently were first reported in December 2019 in Wuhan, China. Official names have been announced for the virus responsible, previously known as "2019 novel coronavirus" and the diseases it causes are, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19), respectively. Despite great efforts worldwide to control SARS-CoV-2, the spread of the virus has reached a pandemic. Infection prevention and control of this virus is the primary concern of public health officials and professionals. Currently, several therapeutic options for COVID-19 are proposed and vaccine development has been initiated for prevention purposes. In this review, we will discuss the most recent evidence about the current potential treatment options including anti-inflammatory drugs, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, nucleoside analogs, protease inhibitors, monoclonal antibodies, and convalescent plasma therapy. Some other agents such as vitamin D and melatonin, which were recommended as potential adjuvant treatments for COVID-19 infection are also presented. Moreover, the potential use of convalescent plasma for treatment of COVID-19 infection was described. Furthermore, in the next part of the current review, various vaccination approaches against COVID-19 including whole virus vaccines, recombinant subunit vaccine, DNA vaccines, and mRNA vaccines are discussed.
Collapse
|
33
|
Abstract
LINKED CONTENT This article is linked to Tian et al and Tian and Rong papers. To view these articles, visit https://doi.org/10.1111/apt.15731 and https://doi.org/10.1111/apt.15764 .
Collapse
Affiliation(s)
- Alba Panarese
- Department of Gastroenterology and Digestive EndoscopyNational Institute of Gastroenterology, "Saverio De Bellis" Research HospitalCastellana Grotte (Bari)Italy
| | | |
Collapse
|
34
|
Lee C. Controversial Effects of Vitamin D and Related Genes on Viral Infections, Pathogenesis, and Treatment Outcomes. Nutrients 2020; 12:nu12040962. [PMID: 32235600 PMCID: PMC7230640 DOI: 10.3390/nu12040962] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Vitamin D (VD) plays an essential role in mineral homeostasis and bone remodeling. A number of different VD-related genes (VDRG) are required for the metabolic activation of VD and the subsequent induction of its target genes. They include a set of genes that encode for VD-binding protein, metabolic enzymes, and the VD receptor. In addition to its well-characterized skeletal function, the immunoregulatory activities of VD and the related polymorphisms of VDRG have been reported and linked to its therapeutic and preventive actions for the control of several viral diseases. However, in regards to their roles in the progression of viral diseases, inconsistent and, in some cases, contradictory results also exist. To resolve this discrepancy, I conducted an extensive literature search by using relevant keywords on the PubMed website. Based on the volume of hit papers related to a certain viral infection, I summarized and compared the effects of VD and VDRG polymorphism on the infection, pathogenesis, and treatment outcomes of clinically important viral diseases. They include viral hepatitis, respiratory viral infections, acquired immunodeficiency syndrome (AIDS), and other viral diseases, which are caused by herpesviruses, dengue virus, rotavirus, and human papillomavirus. This review will provide the most current information on the nutritional and clinical utilization of VD and VDRG in the management of the key viral diseases. This information should be valuable not only to nutritionists but also to clinicians who wish to provide evidence-based recommendations on the use of VD to virally infected patients.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
35
|
Islam MT. Vitamin D with calcium supplements: a new hope for the treatment of dengue infection. DRUGS & THERAPY PERSPECTIVES 2019. [DOI: 10.1007/s40267-019-00676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Thorenoor N, Kawasawa YI, Gandhi CK, Zhang X, Floros J. Differential Impact of Co-expressed SP-A1/SP-A2 Protein on AM miRNome; Sex Differences. Front Immunol 2019; 10:1960. [PMID: 31475015 PMCID: PMC6707024 DOI: 10.3389/fimmu.2019.01960] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/02/2019] [Indexed: 12/04/2022] Open
Abstract
In humans there are two surfactant protein A (SP-A) functional genes SFTPA1 and SFTPA2 encoding innate immune molecules, SP-A1 and SP-A2, respectively, with numerous genetic variants each. SP-A interacts and regulates many of the functions of alveolar macrophages (AM). It is shown that SP-A variants differ in their ability to regulate the AM miRNome in response to oxidative stress (OxS). Because humans have both SP-A gene products, we were interested to determine the combined effect of co-expressed SP-A1/SP-A2 (co-ex) in response to ozone (O3) induced OxS on AM miRNome. Human transgenic (hTG) mice, carrying both SP-A1/SP-A2 (6A2/1A0, co-ex) and SP-A- KO were utilized. The hTG and KO mice were exposed to filtered air (FA) or O3 and miRNA levels were measured after AM isolation with or without normalization to KO. We found: (i) The AM miRNome of co-ex males and females in response to OxS to be largely downregulated after normalization to KO, but after Bonferroni multiple comparison analysis only in females the AM miRNome remained significantly different compared to control (FA); (ii) The targets of the significantly changed miRNAs were downregulated in females and upregulated in males; (iii) Several of the validated mRNA targets were involved in pro-inflammatory response, anti-apoptosis, cell cycle, cellular growth and proliferation; (iv) The AM of SP-A2 male, shown, previously to have major effect on the male AM miRNome in response to OxS, shared similarities with the co-ex, namely in pathways involved in the pro-inflammatory response and anti-apoptosis but also exhibited differences with the cell-cycle, growth, and proliferation pathway being involved in co-ex and ROS homeostasis in SP-A2 male. We speculate that the presence of both gene products vs. single gene products differentially impact the AM responses in males and females in response to OxS.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chintan K Gandhi
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xuesheng Zhang
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
37
|
Zhao Y, Ran Z, Jiang Q, Hu N, Yu B, Zhu L, Shen L, Zhang S, Chen L, Chen H, Jiang J, Chen D. Vitamin D Alleviates Rotavirus Infection through a Microrna-155-5p Mediated Regulation of the TBK1/IRF3 Signaling Pathway In Vivo and In Vitro. Int J Mol Sci 2019; 20:ijms20143562. [PMID: 31330869 PMCID: PMC6678911 DOI: 10.3390/ijms20143562] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Vitamin D (VD) plays a vital role in anti-viral innate immunity. However, the role of VD in anti-rotavirus and its mechanism is still unclear. The present study was performed to investigate whether VD alleviates rotavirus (RV) infection through a microRNA-155-5p (miR-155-5p)-mediated regulation of TANK-binding kinase 1 (TBK1)/interferon regulatory factors 3 (IRF3) signaling pathway in vivo and in vitro. (2) Methods: The efficacy of VD treatment was evaluated in DLY pig and IPEC-J2. Dual-luciferase reporter activity assay was performed to verify the role of miR-155-5p in 1α,25-dihydroxy-VD3 (1,25D3) mediating the regulation of the TBK1/IRF3 signaling pathway. (3) Results: A 5000 IU·kg–1 dietary VD3 supplementation attenuated RV-induced the decrease of the villus height and crypt depth (p < 0.05), and up-regulated TBK1, IRF3, and IFN-β mRNA expressions in the jejunum (p < 0.05). Incubation with 1,25D3 significantly decreased the RV mRNA expression and the RV antigen concentration, and increased the TBK1 mRNA and protein levels, and the phosphoprotein IRF3 (p-IRF3) level (p < 0.05). The expression of miR-155-5p was up-regulated in response to an RV infection in vivo and in vitro (p < 0.05). 1,25D3 significantly repressed the up-regulation of miR-155-5p in vivo and in vitro (p < 0.05). Overexpression of miR-155-5p remarkably suppressed the mRNA and protein levels of TBK1 and p-IRF3 (p < 0.01), while the inhibition of miR-155-5p had an opposite effect. Luciferase activity assays confirmed that miR-155-5p regulated RV replication by directly targeting TBK1, and miR-155-5p suppressed the TBK1 protein level (p < 0.01). (4) Conclusions: These results indicate that miR-155-5p is involved in 1,25D3 mediating the regulation of the TBK1/IRF3 signaling pathway by directly targeting TBK1.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China.
| | - Zhiming Ran
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ningming Hu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|