1
|
Clemons GA, Silva ACE, Acosta CH, Udo MSB, Tesic V, Rodgers KM, Wu CYC, Citadin CT, Lee RHC, Neumann JT, Allani S, Prentice H, Zhang Q, Lin HW. Protein arginine methyltransferase 4 modulates nitric oxide synthase uncoupling and cerebral blood flow in Alzheimer's disease. J Cell Physiol 2024; 239:e30858. [PMID: 36036549 PMCID: PMC9971360 DOI: 10.1002/jcp.30858] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of mortality, disability, and long-term care burden in the United States, with women comprising the majority of AD diagnoses. While AD-related dementia is associated with tau and amyloid beta accumulation, concurrent derangements in cerebral blood flow have been observed alongside these proteinopathies in humans and rodent models. The homeostatic production of nitric oxide synthases (NOS) becomes uncoupled in AD which leads to decreased NO-mediated vasodilation and oxidative stress via the production of peroxynitrite (ONOO-∙) superoxide species. Here, we investigate the role of the novel protein arginine methyltransferase 4 (PRMT4) enzyme function and its downstream product asymmetric dimethyl arginine (ADMA) as it relates to NOS dysregulation and cerebral blood flow in AD. ADMA (type-1 PRMT product) has been shown to bind NOS as a noncanonic ligand causing enzymatic dysfunction. Our results from RT-qPCR and protein analyses suggest that aged (9-12 months) female mice bearing tau- and amyloid beta-producing transgenic mutations (3xTg-AD) express higher levels of PRMT4 in the hippocampus when compared to age- and sex-matched C57BL6/J mice. In addition, we performed studies to quantify the expression and activity of different NOS isoforms. Furthermore, laser speckle contrast imaging analysis was indicative that 3xTg-AD mice have dysfunctional NOS activity, resulting in reduced production of NO metabolites, enhanced production of free-radical ONOO-, and decreased cerebral blood flow. Notably, the aforementioned phenomena can be reversed via pharmacologic PRMT4 inhibition. Together, these findings implicate the potential importance of PRMT4 signaling in the pathogenesis of Alzheimer's-related cerebrovascular derangement.
Collapse
Affiliation(s)
- Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | - Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Mariana Sayuri Berto Udo
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Krista M Rodgers
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, USA
| | - Shailaja Allani
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida, USA
| | - Howard Prentice
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
2
|
Shah B, Jagtap P, Sarmah D, Datta A, Raut S, Sarkar A, Bohra M, Singh U, Baidya F, Kalia K, Borah A, Dave KR, Yavagal DR, Bhattacharya P. Cerebro-renal interaction and stroke. Eur J Neurosci 2020; 53:1279-1299. [PMID: 32979852 DOI: 10.1111/ejn.14983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Stroke is an event causing a disturbance in cerebral function leading to death and disability worldwide. Both acute kidney injury and chronic kidney disease (CKD) are associated with an increased risk of stroke and cerebrovascular events. The underlying mechanistic approach between impaired renal function and stroke is limitedly explored and has attracted researchers to learn more for developing therapeutic intervention. Common risk factors such as hypertension, hyperphosphatemia, atrial fibrillation, arteriosclerosis, hyperhomocysteinemia, blood-brain barrier disruption, inflammation, etc. are observed in the general population, but are high in renal failure patients. Also, risk factors like bone mineral metabolism, uremic toxins, and anemia, along with the process of dialysis in CKD patients, eventually increases the risk of stroke. Therefore, early detection of risks associated with stroke in CKD is imperative, which may decrease the mortality associated with it. This review highlights mechanisms by which kidney dysfunction can lead to cerebrovascular events and increase the risk of stroke in renal impairment.
Collapse
Affiliation(s)
- Birva Shah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Priya Jagtap
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Swapnil Raut
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Ankan Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Mariya Bohra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Upasna Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Falguni Baidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| |
Collapse
|
3
|
Abstract
Elevated plasma concentrations of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) are found in various clinical settings, including renal failure, coronary heart disease, hypertension, diabetes and pre eclampsia. In healthy people acute infusion of ADMA promotes vascular dysfunc tion, and in mice chronic infusion of ADMA promotes progression of atherosclerosis. Thus, ADMA may not only be a marker but also an active player in cardiovascular disease, which makes it a potential target for therapeutic interventions. This review provides a summary and critical discussion of the presently available data concern ing the effects on plasma ADMA levels of cardiovascular drugs, hypoglycemic agents, hormone replacement therapy, antioxidants, and vitamin supplementation. We assess the evidence that the beneficial effects of drug therapies on vascular func tion can be attributed to modification of ADMA levels. To develop more specific ADMA-lowering therapies, mechanisms leading to elevation of plasma ADMA con centrations in cardiovascular disease need to be better understood. ADMA is formed endogenously by degradation of proteins containing arginine residues that have been methylated by S-adenosylmethionine-dependent methyltransferases (PRMTs). There are two major routes of elimination: renal excretion and enzymatic degrada tion by the dimethylarginine dimethylaminohydrolases (DDAH-1 and -2). Oxidative stress causing upregulation of PRMT expression and/or attenuation of DDAH activity has been suggested as a mechanism and possible drug target in clinical conditions associated with elevation of ADMA. As impairment of DDAH activity or capacity is associated with substantial increases in plasma ADMA concentrations, DDAH is likely to emerge as a prime target for specific therapeutic interventions.
Collapse
Affiliation(s)
- Renke Maas
- Institute of Experimental and Clinical Pharmacology,
University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
McCarty MF. Asymmetric Dimethylarginine Is a Well Established Mediating Risk Factor for Cardiovascular Morbidity and Mortality-Should Patients with Elevated Levels Be Supplemented with Citrulline? Healthcare (Basel) 2016; 4:healthcare4030040. [PMID: 27417628 PMCID: PMC5041041 DOI: 10.3390/healthcare4030040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
The arginine metabolite asymmetric dimethylarginine (ADMA) is a competitive inhibitor and uncoupler of endothelial nitric oxide synthase (eNOS), an enzyme that acts in multifarious ways to promote cardiovascular health. This phenomenon likely explains, at least in part, why elevated ADMA has been established as an independent risk factor for cardiovascular events, ventricular hypertrophy, and cardiovascular mortality. Fortunately, the suppressive impact of ADMA on eNOS activity can be offset by increasing intracellular arginine levels with supplemental citrulline. Although the long-term impact of supplemental citrulline on cardiovascular health in patients with elevated ADMA has not yet been studied, shorter-term clinical studies of citrulline administration demonstrate effects suggestive of increased NO synthesis, such as reductions in blood pressure and arterial stiffness, improved endothelium-dependent vasodilation, increased erection hardness, and increased ejection fractions in patients with heart failure. Supplemental citrulline could be a practical option for primary or secondary prevention of cardiovascular events and mortality, as it is inexpensive, has a mild flavor, and is well tolerated in doses (3-6 g daily) that can influence eNOS activity. Large and long-term clinical trials, targeting patients at high risk for cardiovascular events in whom ADMA is elevated, are needed to evaluate citrulline's potential for aiding cardiovascular health.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 7831 Rush Rose Dr., Apt. 316, Carlsbad, CA 92009, USA.
| |
Collapse
|
5
|
Maladjusted host immune responses induce experimental cerebral malaria-like pathology in a murine Borrelia and Plasmodium co-infection model. PLoS One 2014; 9:e103295. [PMID: 25075973 PMCID: PMC4116174 DOI: 10.1371/journal.pone.0103295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/27/2014] [Indexed: 01/26/2023] Open
Abstract
In the Plasmodium infected host, a balance between pro- and anti-inflammatory responses is required to clear the parasites without inducing major host pathology. Clinical reports suggest that bacterial infection in conjunction with malaria aggravates disease and raises both mortality and morbidity in these patients. In this study, we investigated the immune responses in BALB/c mice, co-infected with Plasmodium berghei NK65 parasites and the relapsing fever bacterium Borrelia duttonii. In contrast to single infections, we identified in the co-infected mice a reduction of L-Arginine levels in the serum. It indicated diminished bioavailability of NO, which argued for a dysfunctional endothelium. Consistent with this, we observed increased sequestration of CD8+ cells in the brain as well over expression of ICAM-1 and VCAM by brain endothelial cells. Co-infected mice further showed an increased inflammatory response through IL-1β and TNF-α, as well as inability to down regulate the same through IL-10. In addition we found loss of synchronicity of pro- and anti-inflammatory signals seen in dendritic cells and macrophages, as well as increased numbers of regulatory T-cells. Our study shows that a situation mimicking experimental cerebral malaria (ECM) is induced in co-infected mice due to loss of timing and control over regulatory mechanisms in antigen presenting cells.
Collapse
|
6
|
Mah E, Noh SK, Ballard KD, Park HJ, Volek JS, Bruno RS. Supplementation of a γ-tocopherol-rich mixture of tocopherols in healthy men protects against vascular endothelial dysfunction induced by postprandial hyperglycemia. J Nutr Biochem 2013; 24:196-203. [DOI: 10.1016/j.jnutbio.2012.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/21/2022]
|
7
|
Asymmetric dimethylarginine as a risk marker for early-onset ischemic stroke in Indian population. Clin Chim Acta 2010; 412:139-42. [PMID: 20883678 DOI: 10.1016/j.cca.2010.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 12/23/2022]
Abstract
BACKGROUND Asymmetric dimethylarginine (ADMA), a circulating endogenous inhibitor of nitric oxide synthase, has been associated with the pathogenesis of atherosclerosis. The present study was initiated to investigate the role of ADMA as a biomarker of risk for early-onset ischemic stroke. METHODS Plasma ADMA levels were measured in 201 ischemic stroke patients aged between 15 and 50 years and 217, age and gender-matched healthy controls, by high performance liquid chromatography using pre-column derivatization with O-phthaldialdehyde. RESULTS Patients with ischemic stroke had significantly higher plasma ADMA compared with the controls (1.49 vs. 0.97 μmol/l, p < 0.001). After adjustment for vascular risk factors, increased ADMA was associated with stroke (OR=1.55, 95% CI 1.25-1.92, p < 0.001). Univariate analysis showed that ADMA was significantly associated with age, alcohol, smoking, hypertension, diabetes mellitus, low serum HDL-cholesterol and homocysteine. By multiple stepwise linear regression analysis, diabetes, HDL-cholesterol and homocysteine were found to be independent determinants of plasma ADMA. CONCLUSIONS Increased plasma ADMA is associated with increased risk for ischemic stroke in the young. Diabetes mellitus, HDL-cholesterol and homocysteine are independent predictors of elevation in plasma ADMA concentration.
Collapse
|
8
|
Sharma M, Zhou Z, Miura H, Papapetropoulos A, McCarthy ET, Sharma R, Savin VJ, Lianos EA. ADMA injures the glomerular filtration barrier: role of nitric oxide and superoxide. Am J Physiol Renal Physiol 2009; 296:F1386-95. [PMID: 19297451 PMCID: PMC2692444 DOI: 10.1152/ajprenal.90369.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 03/16/2009] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with decreased renal nitric oxide (NO) production and increased plasma levels of methylarginines. The naturally occurring guanidino-methylated arginines N-monomethyl-l-arginine (l-NMMA) and asymmetric dimethyl-l-arginine (ADMA) inhibit NO synthase activity. We hypothesized that ADMA and l-NMMA compromise the integrity of the glomerular filtration barrier via NO depletion. We studied the effect of ADMA on albumin permeability (P(alb)) in isolated glomeruli and examined whether this effect involves NO- and superoxide (O(2)(*-))-dependent mechanisms. ADMA at concentrations found in circulation of patients with CKD decreased cGMP and increased P(alb) in a dose-dependent manner. A similar increase in P(alb) was caused by l-NMMA but at a concentration two orders of magnitude higher than that of ADMA. NO donor DETA-NONOate or cGMP analog abrogated the effect of ADMA on P(alb). The SOD mimetic tempol or the NAD(P)H oxidase inhibitor apocynin also prevented the ADMA-induced increase in P(alb). The NO-independent soluble guanylyl cyclase (sGC) activator BAY 41-2272, at concentrations that increased glomerular cGMP production, attenuated the ADMA-induced increase in P(alb). Furthermore, sGC incapacitation by the heme site-selective inhibitor ODQ increased P(alb). We conclude that ADMA compromises the integrity of the filtration barrier by altering the bioavailability of NO and O(2)(*-) and that NO-independent activation of sGC preserves the integrity of this barrier under conditions of NO depletion. NO-independent activation of sGS may be a useful pharmacotherapeutic approach for preservation of glomerular function in CKD thereby reducing the risk for cardiovascular events.
Collapse
Affiliation(s)
- Mukut Sharma
- Division of Nephrology, Dept. of Medicine, Kidney Disease Center, Medical College of Wisconsin, M-4160, Nephrology/CVC/MEB, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fert-Bober J, Leon H, Sawicka J, Basran RS, Devon RM, Schulz R, Sawicki G. Inhibiting matrix metalloproteinase-2 reduces protein release into coronary effluent from isolated rat hearts during ischemia-reperfusion. Basic Res Cardiol 2008; 103:431-43. [PMID: 18512095 DOI: 10.1007/s00395-008-0727-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 04/28/2008] [Indexed: 01/24/2023]
Abstract
BACKGROUND Previous studies have shown that the disruption of the coronary endothelium and the increase in its permeability during ischemia-reperfusion (I/R), are linked to matrix metalloproteinase-2 (MMP-2) activity. Studies from our group have shown that during I/R, activity of MMP-2 in the coronary effluent increases and this increase is associated with cardiac dysfunction, which in turn, can be prevented by MMP inhibitors. Therefore, we hypothesize that inhibiting MMPs reduces the MMP-2 dependent disruption of the coronary endothelium and subsequent protein release during I/R. METHODS Isolated rat hearts were perfused in the Langendorff mode at a constant pressure and subjected to 15, 20 or 30 min no-flow ischemia followed by 30 min of reperfusion. The MMP inhibitors, o-phenanthroline (Phen, 100 microM) or doxycycline (Doxy, 30 microM) an inhibitors of MMPs, were added to the perfusion solution 10 min before ischemia and for the first 10 min of reperfusion. The coronary effluents were collected during perfusion for protein analysis. Creatine kinase was measured as an index of cellular damage. Endothelial integrity was assessed by measuring coronary flow and by measuring the levels of serotransferrin and interstitial albumin in the coronary effluent. Additionally, damage to the endothelium was assessed histologically by light microscopy analysis of the cellular structure of the myocardium. MMP-2 activity was measured by zymography in hearts subjected to 15, 20 and 30 min of ischemia without reperfusion. RESULTS MMP-2 activity was increased in heart tissue at the end of ischemia and was correlated with duration of ischemia. The post-ischemia decrease in coronary flow, and the increase in the release of serotransferrin and albumin were attenuated by Phen. Edema (another indirect marker of endothelial damage) was observed in I/R heart and the edema was abolished in I/R heart treated with MMP inhibitors. CONCLUSION MMP inhibition not only reduces cardiac mechanical dysfunction but also reduces endothelial damage resulting from cardiac I/R injury.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- Dept. of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Bozlar U, Ugurel MS, Ozcan O, Cakir E, Ustunsoz B, Ucoz T, Bilgi C, Somuncu I. Impact of Catheter Arteriography on the Serum Level of Asymmetric Dimethylarginine, an Endogenous Inhibitor of Nitric Oxide Synthase. Cardiovasc Intervent Radiol 2008; 31:490-5. [DOI: 10.1007/s00270-008-9312-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/24/2008] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
|
11
|
Kielstein A, Tsikas D, Galloway GP, Mendelson JE. Asymmetric dimethylarginine (ADMA)--a modulator of nociception in opiate tolerance and addiction? Nitric Oxide 2007; 17:55-9. [PMID: 17625935 PMCID: PMC2025594 DOI: 10.1016/j.niox.2007.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 05/09/2007] [Accepted: 05/29/2007] [Indexed: 01/17/2023]
Abstract
Nitric oxide (NO) is generated from l-arginine by NO synthases, of which three forms have been identified: endothelial, inducible and neuronal (eNOS, iNOS and nNOS, respectively). The l-arginine metabolite asymmetric dimethylarginine (ADMA) is a potent, noncompetitive inhibitor of nNOS, while its congener N(G)-monomethyl-l-arginine (l-NMMA) is a less potent, competitive inhibitor. In rat neurons large amounts of ADMA are found, suggesting its importance in modulating neuronal activity. Humans generate approximately 300mumol ( approximately 60mg) ADMA per day. It is released from myelin basic proteins that are highly expressed in neuronal tissue. ADMA is mainly degraded by the action of the enzyme dimethylarginine dimethylaminohydrolase (DDAH), which exists in two isoforms. DDAH1 is highly expressed in brain, suggesting specific function in this area. The presence of nNOS and DDAH1 in brain suggests that ADMA may have specific CNS activity and be more than an unregulated metabolite. Increased NO production-either prior to or concurrently with opioid administration-results in an enhanced rate and extent of development of tolerance to morphine in mice. NO produces an alteration in the mu-opioid receptor that increases constitutive receptor activity. It thereby reduces the ability of a selective mu-opioid agonist to activate the mu-opioid receptor; these in vitro molecular effects occur in a time course consistent with the in vivo development of antinociceptive tolerance in mice. Amongst many other synthetic NOS inhibitors of varying specificity, 7-nitroindazole (7-NI) has been shown to have a high affinity (IC(50) 0.71 microM) to nNOS. Selective blockade of nNOS by 7-NI attenuated morphine withdrawal in opiate dependent rats, suggesting nNOS as a viable target for development of pharmacotherapies. We hypothesize that, by inhibiting nNOS and reducing NO levels, ADMA may decrease mu-opiate receptor constitutive activity, resulting in alteration of the analgesic dose-response curve of morphine.
Collapse
Affiliation(s)
- Anousheh Kielstein
- Addiction Pharmacology Research Laboratory, California Pacific Medical Center Research Institute, St. Luke's Hospital, 3555 Cesar Chavez Street, San Francisco, CA 94110, USA.
| | | | | | | |
Collapse
|
12
|
Sorrenti V, Mazza F, Campisi A, Di Giacomo C, Acquaviva R, Vanella L, Galvano F. Heme oxygenase induction by cyanidin-3-O-β-glucoside in cultured human endothelial cells. Mol Nutr Food Res 2007; 51:580-6. [PMID: 17440991 DOI: 10.1002/mnfr.200600204] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of the present research was to investigate the effect of cyanidin-3-O-beta-glucoside (C3G) on heme oxygenase-1 (HO-1), endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS) and dimethylarginine dimethylamino hydrolase-2 (DDAH-2) expression in cultured endothelial cells. Different concentrations (0.00625-250 microM) of C3G were tested in order to investigate possible beneficial and harmful effects of C3G. Our data demonstrated that C3G increased the induction of eNOS and HO-1 in a dose-dependent manner. Higher concentration (62.5-250 microM) also resulted in increase of isoprostane, cGMP and PGE2 levels and in induction of iNOS with consequent oxidative stress. In conclusion, our data evidence that C3G may exert various protective effects against endothelial dysfunction, whereas potentially harmful effects of C3G appear to be limited to concentrations very difficult to be reached in physiological conditions unless there is abundant oral supplementation.
Collapse
Affiliation(s)
- Valeria Sorrenti
- Department of Biological Chemistry, Medical Chemistry, Molecular Biology, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
De Gennaro Colonna V, Bonomo S, Ferrario P, Bianchi M, Berti M, Guazzi M, Manfredi B, Muller EE, Berti F, Rossoni G. Asymmetric dimethylarginine (ADMA) induces vascular endothelium impairment and aggravates post-ischemic ventricular dysfunction in rats. Eur J Pharmacol 2006; 557:178-85. [PMID: 17258196 DOI: 10.1016/j.ejphar.2006.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 12/12/2022]
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide (NO) inhibitor recognized as an independent risk factor for endothelial dysfunction and coronary heart diseases. This study investigated whether ADMA (10 mg/kg day for 14 days) affected endothelial function and aggravated post-ischemic ventricular dysfunction in the perfused rat heart. Systolic blood pressure and heart rate, plasma levels of ADMA and nitrite/nitrate were measured in vehicle- and ADMA-treated rats. Perfused hearts were submitted to global ischemia-reperfusion and vascular endothelial dysfunction was examined with angiotensin II in coronary vessels and aortic rings. Endothelial NO synthase (eNOS) and angiotensin-converting enzyme (ACE) mRNA expression in aortic and cardiac tissues were measured. ADMA-treated rats had higher systolic blood pressure (1.3-fold, P<0.01) and slower heart rate (16%, P<0.05) than controls. Plasma ADMA rose (1.9-fold, P<0.01) and nitrite/nitrate concentration decreased 59% (P<0.001). Ventricular contraction (stiffness) increased significantly, with worsening of post-ischemic ventricular dysfunction. In preparations from ADMA-treated rats the coronary vasculature's response to angiotensin II was almost doubled (P<0.01) and the maximal vasorelaxant effect of acetylcholine in aortic rings was significantly lower than in preparations from vehicle-treated rats. In cardiac and aortic tissues eNOS mRNA and ACE mRNA levels were similar in controls and ADMA-treated rats. The increased plasma levels of ADMA presumably cause endothelial dysfunction because of a deficiency in NO production, which also appears involved in the aggravation of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Vito De Gennaro Colonna
- Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Via Vanvitelli 32, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qin C, Liu Z. In atherogenesis, the apoptosis of endothelial cell itself could directly induce over-proliferation of smooth muscle cells. Med Hypotheses 2006; 68:275-7. [PMID: 17011140 DOI: 10.1016/j.mehy.2006.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
Over-proliferation of SMC (smooth muscle cell) is one characteristics of atherosclerosis. One well accepted mechanism is that the decrease of ECs (endothelial cells) induced by over apoptosis leads to endothelial dysfunction, which in turn results in over-proliferation of SMC. Obviously, the mechanism works after endothelial apoptosis. Compared with necrosis, apoptosis is time and energy consuming. The question is why the cell ends in the form of apoptosis instead of necrosis. From the evolutionary standpoint, apoptosis has some useful functions other than removing the damaged or unwanted cells. Recent studies showed that cells nearby the apoptotic ones began to proliferate and differentiate before apoptosis and the apoptotic signals could induce the near cells to proliferate without the death of cells. Apparently, some mechanism in apoptosis results in the proliferation of cells. So, we hypotheses that endothelial apoptosis can directly induce the over-proliferation of SMC.
Collapse
Affiliation(s)
- Chunchang Qin
- Centre of pulmonary vascular disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 10037, China
| | | |
Collapse
|
15
|
Abstract
Elevated plasma concentrations of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) are found in various clinical settings, including renal failure, coronary heart disease, hypertension, diabetes and pre-eclampsia. In healthy people acute infusion of ADMA promotes vascular dysfunction, and in mice chronic infusion of ADMA promotes progression of atherosclerosis. Thus, ADMA may not only be a marker but also an active player in cardiovascular disease, which makes it a potential target for therapeutic interventions. This review provides a summary and critical discussion of the presently available data concerning the effects on plasma ADMA levels of cardiovascular drugs, hypoglycemic agents, hormone replacement therapy, antioxidants, and vitamin supplementation. We assess the evidence that the beneficial effects of drug therapies on vascular function can be attributed to modification of ADMA levels. To develop more specific ADMA-lowering therapies, mechanisms leading to elevation of plasma ADMA concentrations in cardiovascular disease need to be better understood. ADMA is formed endogenously by degradation of proteins containing arginine residues that have been methylated by S-adenosylmethionine-dependent methyltransferases (PRMTs). There are two major routes of elimination: renal excretion and enzymatic degradation by the dimethylarginine dimethylaminohydrolases (DDAH-1 and -2). Oxidative stress causing upregulation of PRMT expression and/or attenuation of DDAH activity has been suggested as a mechanism and possible drug target in clinical conditions associated with elevation of ADMA. As impairment of DDAH activity or capacity is associated with substantial increases in plasma ADMA concentrations, DDAH is likely to emerge as a prime target for specific therapeutic interventions.
Collapse
Affiliation(s)
- Renke Maas
- Institute of Experimental and Clinical Pharmacology, University Hospital Hamburg-Eppendorf, Germany.
| |
Collapse
|
16
|
Blardi P, de Lalla A, Pieragalli D, De Franco V, Meini S, Ceccatelli L, Auteri A. Effect of iloprost on plasma asymmetric dimethylarginine and plasma and platelet serotonin in patients with peripheral arterial occlusive disease. Prostaglandins Other Lipid Mediat 2006; 80:175-82. [PMID: 16939882 DOI: 10.1016/j.prostaglandins.2006.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/09/2006] [Accepted: 06/15/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND Iloprost, a prostacyclin analogue, is used in the treatment of peripheral arterial occlusive disease at Leriche-Fontaine stages III-IV, through intravenous infusion for at least 21 days. Recently, iloprost has been shown to be safe and effective in critical limb ischemia patients when administered per 7 days. We investigated in patients at Leriche-Fontaine stages III-IV the effect of 1-week treatment with iloprost on plasma asymmetric dimethylarginine (ADMA), plasma and platelet serotonin, and on clinical response. METHODS AND RESULTS Twenty-four critical limb ischemia patients (16 men and 8 women, mean age 76+/-9.7 years) were included in the study and treated with intravenous iloprost (titrated from 0.5 up to 1.5 ng/kg/min) for 16 h a day for seven consecutive days. Blood samples were drawn before infusion on days 1, 4 and 8 of treatment, under the same conditions. Clinical assessment was performed by clinical evaluation, ankle/brachial pressure index and treadmill exercise test. During treatment with iloprost patients clinically improved and plasma levels of ADMA significantly decreased (p<0.001). We also observed a significant increase of serotonin (p<0.01) in platelets and a significant decrease of serotonin (p<0.001) in plasma. Similar variations of ADMA and serotonin were found in two subgroups of patients, diabetics and non-diabetics. CONCLUSIONS One-week treatment with iloprost in critical limb ischemia patients induced changes of peripheral markers of endothelial dysfunction and atherosclerosis, such as ADMA and serotonin, associated to a clinical improvement.
Collapse
Affiliation(s)
- Patrizia Blardi
- Center of Clinical Pharmacology, University of Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
McCarty MF. Supplemental arginine and high-dose folate may promote bone health by supporting the activity of endothelial-type nitric oxide synthase in bone. Med Hypotheses 2005; 64:1030-3. [PMID: 15780506 DOI: 10.1016/j.mehy.2003.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 10/17/2003] [Indexed: 10/26/2022]
Abstract
The endothelial isoform of NO synthase promotes maintenance of bone density by stimulating osteoblastic activity while inhibiting bone catabolism; it appears to be a key mediator of the anabolic effects of mechanical loading, estrogens, and statin therapy on bone. This enzyme is susceptible to competitive inhibition by elevated systemic levels of asymmetric dimethylarginine (ADMA) encountered in vascular disorders associated with endotheliopathy; it may not be coincidental that reduced bone density has been observed in subjects afflicted with many of these disorders. Supplemental arginine has the potential to offset this adverse effect of ADMA. Superoxide production by osteoclasts may also impair bone NO synthase activity by oxidizing its cofactor tetrahydrobiopterin; high-dose folate has been shown to compensate for endothelial deficiency of this cofactor by effectively "pinch hitting" for it. These considerations suggest that supplementation with arginine as well as high-dose folate might aid maintenance of bone density by helping to preserve optimal NO synthase activity in bone cells.
Collapse
Affiliation(s)
- Mark F McCarty
- Pantox Laboratories, 4622 Santa Fe St., San Diego, CA 92109, USA.
| |
Collapse
|
18
|
McCarty MF. Marinobufagenin may mediate the impact of salty diets on left ventricular hypertrophy by disrupting the protective function of coronary microvascular endothelium. Med Hypotheses 2005; 64:854-63. [PMID: 15694707 DOI: 10.1016/j.mehy.2003.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 11/21/2003] [Indexed: 01/19/2023]
Abstract
Individuals who eat salty diets and who are "salt-sensitive" tend to have increased left ventricular mass, independent of blood pressure; this phenomenon awaits an explanation. It is clear that local up-regulation of angiotensin II (AngII) production and activity play a key role in the induction of left ventricular hypertrophy (LVH). Recent evidence suggests that a healthy coronary microvascular endothelium opposes this effect by serving as a paracrine source of nitric oxide (NO), a natural antagonist of AngII activity, and that up-regulation of this mechanism can account for the protective role of bradykinin with respect to LVH. The coronary microvasculature also possesses NAD(P)H oxidase activity that can generate superoxide, inimical to the bioactivity of endothelial NO. There is now good reason to believe that the triterpenoid marinobufagenin (MBG), a selective inhibitor of the alpha-1 isoform of the sodium pump, mediates the impact of salty diets on blood pressure; production of MBG by the adrenal cortex is boosted when salt-sensitive animals are fed salty diets. It is hypothesized that coronary microvascular endothelium expresses the alpha-1 isoform of the sodium pump, and that MBG thus can target this endothelium. If that is the case, MBG would be expected to decrease membrane potential in these cells; as a consequence, superoxide production would be up-regulated, NO synthase activity would be down-regulated, and myocardial NO bioactivity would thus be suppressed. This would offer a satisfying explanation for the impact of salt and salt-sensitivity on risk for LVH. If expression of the alpha-1 isoform of the sodium pump is a more general property of vascular endothelium, MBG may suppress NO bioactivity in other regions of the vascular tree, thereby contributing to other adverse effects elicited by salty diets: reduced arterial compliance, medial hypertrophy, impaired endothelium-dependent vasodilation, hypertensive/diabetic glomerulopathy, increased risk for stroke, and hypertension.
Collapse
Affiliation(s)
- Mark F McCarty
- Pantox Laboratories, 4622 Santa Fe Street, San Diego, CA 92109, USA.
| |
Collapse
|