1
|
Abstract
The Ras homologous (Rho) protein family of GTPases (RhoA, RhoB and RhoC) are the members of the Ras superfamily and regulate cellular processes such as cell migration, proliferation, polarization, adhesion, gene transcription and cytoskeletal structure. Rho GTPases function as molecular switches that cycle between GTP-bound (active state) and GDP-bound (inactive state) forms. Leukaemia-associated RhoGEF (LARG) is a guanine nucleotide exchange factor (GEF) that activates RhoA subfamily GTPases by promoting the exchange of GDP for GTP. LARG is selective for RhoA subfamily GTPases and is an essential regulator of cell migration and invasion. Here, we describe the mechanisms by which LARG is regulated to facilitate the understanding of how LARG mediates functions like cell motility and to provide insight for better therapeutic targeting of these functions.
Collapse
Affiliation(s)
- Neda Z. Ghanem
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, USA,Molecular Biosciences and BioEngineering Graduate Program, University of Hawaii at Mānoa, Honolulu, USA
| | - Michelle L. Matter
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, USA,Molecular Biosciences and BioEngineering Graduate Program, University of Hawaii at Mānoa, Honolulu, USA
| | - Joe W. Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, USA,Molecular Biosciences and BioEngineering Graduate Program, University of Hawaii at Mānoa, Honolulu, USA,CONTACT Joe W. Ramos Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, USA
| |
Collapse
|
2
|
Anti-inflammatory Effects of Statins in Lung Vascular Pathology: From Basic Science to Clinical Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:33-56. [PMID: 33788186 DOI: 10.1007/978-3-030-63046-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
HMG-CoA reductase inhibitors (or statins) are cholesterol-lowering drugs and are among the most widely prescribed medications in the United States. Statins exhibit pleiotropic effects that extend beyond cholesterol reduction including anti-atherosclerotic, antiproliferative, anti-inflammatory, and antithrombotic effects. Over the last 20 years, statins have been studied and examined in pulmonary vascular disorders, including both chronic pulmonary vascular disease such as pulmonary hypertension, and acute pulmonary vascular endothelial injury such as acute lung injury. In both research and clinical settings, statins have demonstrated promising vascular protection through modulation of the endothelium, attenuation of vascular leak, and promotion of endothelial repair following lung inflammation. This chapter provides a summary of the rapidly changing literature, summarizes the anti-inflammatory mechanism of statins on pulmonary vascular disorders, and explores clinical evidence for statins as a potential therapeutic approach to modulation of the endothelium as well as a means to broaden our understanding of pulmonary vasculopathy pathophysiology.
Collapse
|
3
|
Lei S, Peng F, Li ML, Duan WB, Peng CQ, Wu SJ. LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2020; 319:H377-H391. [PMID: 32559140 DOI: 10.1152/ajpheart.00717.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal progressive disease characterized by an increased blood pressure in the pulmonary arteries. RhoA/Rho-kinase (RhoA/ROCK) signaling activation is often associated with PAH. The purpose of this study is to investigate the role and mechanisms of long noncoding RNA (lncRNA) smooth muscle-induced lncRNA (SMILR) to activate the RhoA/ROCK pathway in PAH. SMILR, microRNA-141 (miR-141), and RhoA were identified by qRT-PCR in PAH patients' serum. 3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), wound-healing assay, cell counting kit-8 (CCK-8) assay, and flow cytometry were performed to determine cell viability, migration, proliferation, and cell cycle in human pulmonary arterial smooth muscle cells (hPASMCs) and primary PASMCs from PAH patients. We also performed bioinformatical prediction, luciferase reporter assay, and RNA-binding protein immunoprecipitation (RIP) to assess the interaction among SMILR, miR-141, and RhoA. The RhoA/ROCK pathway and proliferation-related proteins were measured by Western blotting. Finally, we introduced the small hairpin (sh)SMILR to monocrotaline-induced PAH rat model and used the hemodynamic measurement, qRT-PCR, and immunohistochemistry to examine the therapeutic effects of shSMILR. SMILR and RhoA expression were upregulated, while miR-141 expression was downregulated in PAH patients. SMILR directly interacted with miR-141 and negatively regulated its expression. Knockdown of SMILR suppressed PASMC proliferation and migration induced by hypoxia. Furthermore, overexpression of miR-141 could inhibit the RhoA/ROCK pathway by binding to RhoA, thereby repressing cell proliferation-related signals. Knockdown of SMILR significantly inhibited the Rho/ROCK activation and vascular remodeling in monocrotaline-induced rats. Knockdown of SMILR effectively elevated miR-141 expression and in turn inhibited the RhoA/ROCK pathway to regulate vascular remodeling and reduce blood pressure in PAH.NEW & NOTEWORTHY Smooth muscle enriched long noncoding RNA (SMILR), as a long noncoding RNA (lncRNA), was increased in pulmonary arterial hypertension (PAH) patients and in vitro and in vivo models. SMILR activated RhoA/ROCK signaling by targeting miR-141 to disinhibit its downstream target RhoA. SMILR knockdown or miR-141 overexpression inhibited hypoxia-induced cell proliferation and migration via repressing RhoA/ROCK signaling in pulmonary arterial smooth muscle cells (PASMCs), which was confirmed in vivo experiments that knockdown of SMILR inhibited vascular remodeling and alleviated PAH in rats. SMILR may be a promising and novel therapeutic target for the treatment and drug development of PAH.
Collapse
Affiliation(s)
- Si Lei
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Fei Peng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Mei-Lei Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Wen-Bing Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Cai-Qin Peng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Shang-Jie Wu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Wu WT, Chen CY. Protective Effect of Statins on Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease Patients: A Nationwide Retrospective, Matched Cohort Study. Sci Rep 2020; 10:3104. [PMID: 32080265 PMCID: PMC7033169 DOI: 10.1038/s41598-020-59828-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/04/2020] [Indexed: 01/26/2023] Open
Abstract
In Taiwan, patients with pulmonary hypertension (PH) related to chronic obstructive pulmonary disease (COPD) are most common PH population (group 3). However, efficacy of medical treatments and optimal prevention methods in this group remain uncertain. Statins such as indirect RhoA/Rho-kinase inhibitors influence one of key signalling pathways that promote PH onset. In this study, we explored protective effects of statins against PH in COPD patients using database from Taiwan National Health Insurance programme from 2002 to 2017. The main outcome was the risk of PH. The Cox proportional-hazards model and the Fine and Gray model were used to adjust covariate and competing risks to estimate the subdistribution hazard ratios (sHRs). 553,617 newly diagnosed COPD patients were stratified by statin users (n = 41,168) and statin nonusers (n = 512,449). After 1:1 propensity score matching of statin users (n = 41,163), and 41,163 statin nonusers were included for outcome analysis. Statin users had a 22% lower risk of PH than nonusers (sHR: 0.78, 95% confidence interval: 0.65-0.94). During subgroup analysis, taking higher daily doses and for a longer duration displayed a more significantly reduced risk of PH (both P for trend <0.001). Statins may have a protective effect against PH that is dose- and time-dependent.
Collapse
Affiliation(s)
- Wen-Ting Wu
- Master Program in Clinical Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chung-Yu Chen
- Master Program in Clinical Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Xing XQ, Li B, Xu SL, Liu J, Zhang CF, Yang J. MicroRNA-214-3p Regulates Hypoxia-Mediated Pulmonary Artery Smooth Muscle Cell Proliferation and Migration by Targeting ARHGEF12. Med Sci Monit 2019; 25:5738-5746. [PMID: 31373336 PMCID: PMC6689201 DOI: 10.12659/msm.915709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/17/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND miR-214-3p has been found to inhibit proliferation and migration in cancer cells. The objective of this study was to determine whether ARHGEF12 is involved in miR-214-3p-mediated suppression of proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). MATERIAL AND METHODS PASMCs were cultured under normoxia or hypoxia. miR-214-3p mimics or inhibitors were transiently transfected into PASMCs. Proliferation, apoptosis, and migration of PASMCs were evaluated using MTT assay, flow cytometry, and Boyden chamber apparatus. Western blot analysis was used to examine expression of Rho guanine nucleotide exchange factor 12 (ARHGEF12), c-fos, c-jun, and caspase-3. Luciferase reporter assay was used to test the direct regulation of miR-214-3p on the 3'-untranslated region (UTR) of ARHGEF12. RESULTS miR-214-3p was significantly upregulated in hypoxia-treated PASMCs. Knockdown of miR-214-3p significantly attenuated hypoxia-induced proliferation and migration in PASMCs and promoted apoptosis, whereas this effect was aggravated by overexpression of miR-214-3p. In addition, dual-luciferase reporter assay demonstrated that ARHGEF12 is a direct target gene of miR-214-3p. The protein levels of ARHGEF12 were downregulated after knockdown of miR-214-3p in PASMCs. Rescue experiment results indicated that decreased proliferation of PASMCs resulted from knockdown of miR-214-3p were partially reversed by silencing of ARHGEF12 by siRNA. Furthermore, knockdown of miR-214-3p reduced expression of c-jun and c-fos, but increased expression of caspase-3 in PASMCs under hypoxia. CONCLUSIONS In conclusion, these results indicate that miR-214-3p acts as a novel regulator of hypoxia-induced proliferation and migration by directly targeting ARHGEF12 and dysregulating c-jun and c-fos in PASMCs, and may be a potential therapeutic target for treating pulmonary hypertension.
Collapse
Affiliation(s)
- Xi-Qian Xing
- Department of Respiratory Medicine, Fourth Affiliated Hospital of Kunming Medical University, Second People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Bo Li
- College of Pharmacy, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Shuang-Lan Xu
- Department of Respiratory Medicine, Fourth Affiliated Hospital of Kunming Medical University, Second People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Jie Liu
- Department of Respiratory Medicine, Fourth Affiliated Hospital of Kunming Medical University, Second People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Chun-Fang Zhang
- Department of Respiratory Medicine, Fourth Affiliated Hospital of Kunming Medical University, Second People’s Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Jiao Yang
- Department of Respiratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| |
Collapse
|
6
|
Are statins beneficial for the treatment of pulmonary hypertension? Chronic Dis Transl Med 2017; 3:213-220. [PMID: 29354804 PMCID: PMC5747501 DOI: 10.1016/j.cdtm.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Indexed: 12/27/2022] Open
Abstract
Pulmonary hypertension (PH) is a condition characterized by vasoconstriction and vascular remodeling with a poor prognosis. The current medical treatments available are supportive care therapy and pulmonary vascular-targeted therapy. Targeted treatments for PH include prostacyclin analogs, endothelin receptor antagonists, and phosphodiesterase type 5 inhibitors; however, these treatments cannot reverse pulmonary vascular remodeling. Recently, many novel treatment options involving drugs such as statins have been emerging. In this review, we attempt to summarize the current knowledge of the role of statins in PH treatment and their potential clinical effects. Many basic researches have proved that statins can be helpful for the treatment of PH both in vitro and in experimental models. The main mechanisms underlying the effects of statins are restoration of endothelial function, attenuation of pulmonary vascular remodeling, regulation of gene expression, regulation of intracellular signaling processes involved in PH, anti-inflammatory responses, and synergy with other targeted drugs. Nevertheless, clinical researches, especially randomized controlled trials for PH are rare. The current clinical researches show contrasting results on the clinical effects of statins in patients with PH. Carefully designed randomized, controlled trials are needed to test the safety and efficacy of statins for PH treatment.
Collapse
|
7
|
Chen IC, Tan MS, Wu BN, Chai CY, Yeh JL, Chou SH, Chen IJ, Dai ZK. Statins ameliorate pulmonary hypertension secondary to left ventricular dysfunction through the Rho-kinase pathway and NADPH oxidase. Pediatr Pulmonol 2017; 52:443-457. [PMID: 28029743 DOI: 10.1002/ppul.23610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 07/31/2016] [Accepted: 09/18/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disorder, for which no therapy is curative. It has been reported that pulmonary vascular remodeling, associated with increasing mean pulmonary arterial pressure and upregulated expression of endothelial nitric oxide synthase (eNOS), endothelin-1 (ET-1), RhoA/RhoH-kinase results in the development of PH. Oxidative stress and the RhoA/Rho-kinase pathway are also thought to be involved in the pathophysiology of PH. Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (HMG-CoA reductase inhibitors) with pleiotropic effects and are potential agents for the treatment of PH. In this study, we investigated the beneficial effects of simvastatin on the development of PH secondary to left ventricular dysfunction. METHODS A PH secondary to left ventricular dysfunction model was established in 6-week-old aortic-banded rats. The pulmonary expression of Rho kinase, ET-1, eNOS, p-eNOS, nitrite/nitrate (NOx), cGMP, p47Phox , and p67Phox were investigated in the early-treatment group, to which was administered simvastatin (30 mg/kg/day) from days 1 to 42 or the late-treatment group, to which was administered simvastatin (30 mg/kg/day) from days 29 to 42. RESULTS Simvastatin attenuated the mean pulmonary artery pressure, pulmonary arteriolar remodeling, plasma brain natriuretic peptide, ET-1, reactive oxygen species, and the NADPH oxidase 2 regulatory subunits, p47Phox and p67Phox , and upregulated pulmonary p-eNOS, NOx, and cGMP in both the early- and late-treated groups. CONCLUSIONS Inhibiting HMG-CoA reductase may have therapeutic potential for preventing and attenuating the development of PH in left ventricular dysfunction through the Rho-kinase pathway and NADPH oxidase. A translational study in humans is needed to substantiate these findings. Pediatr Pulmonol. 2017;52:443-457. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Sun-Ming District, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mian-Shin Tan
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shah-Hwa Chou
- Department of Thoracic Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Sun-Ming District, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Statins Have No Additional Benefit for Pulmonary Hypertension: A Meta-Analysis of Randomized Controlled Trials. PLoS One 2016; 11:e0168101. [PMID: 27992469 PMCID: PMC5167271 DOI: 10.1371/journal.pone.0168101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES We performed a meta-analysis to explore the effects of adding statins to standard treatment on adult patients of pulmonary hypertension (PH). METHODS A systematic search up to December, 2015 of Medline, EMBASE, Cochrane Database of Systematic reviews and Cochrane Central Register of Controlled Trials was performed to identify randomized controlled trials with PH patients treated with statins. RESULTS Five studies involving 425 patients were included into this meta-analysis. The results of our analysis showed that the statins can't significantly increase 6-minute walking distance (6MWD, mean difference [MD] = -0.33 [CI: -18.25 to 17.59]), decrease the BORG dyspnea score (MD = -0.72 [CI: -2.28 to 0.85]), the clinical worsening risk (11% in statins vs. 10.1% in controls, Risk ratio = 1.06 [CI: 0.61, 1.83]), or the systolic pulmonary arterial pressure (SPAP) (MD = -0.72 [CI: -2.28 to 0.85]). Subgroup analysis for PH due to COPD or non-COPD also showed no significance. CONCLUSIONS Statins have no additional beneficial effect on standard therapy for PH, but the results from subgroup of PH due to COPD seem intriguing and further study with larger sample size and longer follow-up is suggested.
Collapse
|
9
|
Xing XQ, Li YL, Zhang YX, Xiao Y, Li ZD, Liu LQ, Zhou YS, Zhang HY, Liu YH, Zhang LH, Zhuang M, Chen YP, Ouyang SR, Wu XW, Yang J. Sphingosine kinase 1/sphingosine 1-phosphate signalling pathway as a potential therapeutic target of pulmonary hypertension. Int J Clin Exp Med 2015; 8:11930-5. [PMID: 26550106 DOI: pmid/26550106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/28/2015] [Indexed: 02/08/2023]
Abstract
Pulmonary hypertension is characterized by extensive vascular remodelling, leading to increased pulmonary vascular resistance and eventual death due to right heart failure. The pathogenesis of pulmonary hypertension involves vascular endothelial dysfunction and disordered vascular smooth muscle cell (VSMC) proliferation and migration, but the exact processes remain unknown. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid involved in a wide spectrum of biological processes. S1P has been shown to regulate VSMC proliferation and migration and vascular tension via a family of five S1P G-protein-coupled receptors (S1P1-SIP5). S1P has been shown to have both a vasoconstrictive and vasodilating effect. The S1P receptors S1P1 and S1P3 promote, while S1P2 inhibits VSMC proliferation and migration in vitro in response to S1P. Moreover, it has been reported recently that sphingosine kinase 1 and S1P2 inhibitors might be useful therapeutic agents in the treatment of empirical pulmonary hypertension. The sphingosine kinase 1/S1P signalling pathways may play a role in the pathogenesis of pulmonary hypertension. Modulation of this pathway may offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Xi-Qian Xing
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yan-Li Li
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yu-Xuan Zhang
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yi Xiao
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Zhi-Dong Li
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Li-Qiong Liu
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yu-Shan Zhou
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Hong-Yan Zhang
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yan-Hong Liu
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Li-Hui Zhang
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Min Zhuang
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yan-Ping Chen
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Sheng-Rong Ouyang
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Xu-Wei Wu
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, First Affiliated Hospital of Kunming Medical University Kunming, Yunnan, China
| |
Collapse
|
10
|
Krishna RK, Issa O, Saha D, Macedo FYB, Correal B, Santana O. Pleiotropic effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors in pulmonary diseases: A comprehensive review. Pulm Pharmacol Ther 2015; 30:134-40. [DOI: 10.1016/j.pupt.2014.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022]
|
11
|
Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther 2014; 141:172-91. [DOI: 10.1016/j.pharmthera.2013.10.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 12/21/2022]
|
12
|
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a rare disease with a complex pathogenesis. It is often associated with an increased vascular resistance, whilst in the more advanced stages there is a remodelling of the vascular walls. PAH has an intricate involvement of various signaling pathways, including the ras homolog family member A (RhoA)-Rho kinase (ROCK) axis. Currently, available therapies are not always able to significantly slow PAH progression. Therefore, newer approaches are needed. AREAS COVERED In this review, areas covered include the role of the RhoA/ROCK in PAH pathogenesis and the plausibility of its therapeutic targeting. Furthermore, various inhibitory compounds are discussed, including Fasudil and SB-772077-B. EXPERT OPINION Currently, specific RhoA/ROCK inhibition is the most promising therapeutic approach for PAH. Research has shown that it suppresses both the components of this axis and the upstream upregulating mediators. An inhaled RhoA/ROCK inhibitor may be a successful future therapy; however, further clinical trials are needed to support this approach.
Collapse
Affiliation(s)
- Sabina Antonela Antoniu
- 'Gr T Popa' University of Medicine and Pharmacy Iaşi, Pulmonary Disease University Hospital, Department of Medicine II -Pulmonary Disease, Romania.
| |
Collapse
|
13
|
|
14
|
Dewachter L, Dewachter C, Naeije R. New therapies for pulmonary arterial hypertension: an update on current bench to bedside translation. Expert Opin Investig Drugs 2010; 19:469-88. [PMID: 20367190 DOI: 10.1517/13543781003727099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE OF THE FIELD Treatments of pulmonary arterial hypertension (PAH) that have so far proven efficacious are all based on the restoration of endothelium control of pulmonary vascular tone and structure, by administration of prostacyclins, endothelin receptor antagonists and phosphodiesterase-5 inhibitors. However, results remain unsatisfactory, with persistent high mortality, insufficient clinical improvement and no convincing report of any reversal of the disease process. AREAS COVERED IN THIS REVIEW New antiproliferative approaches that aim to actively limit pulmonary vascular remodeling are being sought. Several such treatments have shown promise in experimental models and in preliminary clinical studies. Noteworthy among these are dichloroacetate, survivin antagonists, nuclear factor of activated T-cell inhibitors, PPAR-gamma agonists, tyrosine kinase inhibitors, Rho-kinase inhibitors, statins, vasoactive intestinal peptide, soluble guanylate cyclase stimulators/activators, adrenomedullin, elastase inhibitors, serotonin reuptake inhibitors, anti-inflammatory agents, and bone marrow-derived progenitor cells. WHAT THE READER WILL GAIN Update on various strategies targeting proliferative, inflammatory and regenerating processes currently under evaluation in patients with PAH. TAKE HOME MESSAGE In spite of favorable results in experimental models, none of these strategies has achieved the ultimate goal of curing PAH. Further developments will depend on progress made in our pathobiological understanding of the disease and carefully designed randomized, controlled trials.
Collapse
Affiliation(s)
- Laurence Dewachter
- Free University of Brussels, Department of Physiology, Faculty of Medicine, Erasme Campus CP 604, Lennik Road 808, B-1070 Brussels, Belgium.
| | | | | |
Collapse
|
15
|
Wright JL, Zhou S, Preobrazhenska O, Marshall C, Sin DD, Laher I, Golbidi S, Churg AM. Statin reverses smoke-induced pulmonary hypertension and prevents emphysema but not airway remodeling. Am J Respir Crit Care Med 2010; 183:50-8. [PMID: 20709821 DOI: 10.1164/rccm.201003-0399oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE the potential role of statins in treating chronic obstructive pulmonary disease (COPD) is controversial, and it is unclear what anatomic COPD lesions statins affect. OBJECTIVES to determine whether an intervention of simvastatin could alter cigarette smoke-induced pulmonary hypertension. METHODS we exposed guinea pigs to cigarette smoke for 6 months. In half the animals, simvastatin therapy was initiated after 3 months of smoke exposure. Pulmonary arterial systolic pressures were monitored weekly with a radiotelemetric catheter; additional physiologic and morphologic measurements were made at sacrifice after 6 months. Precision-cut lung explants were assessed for evidence of endothelial dysfunction, and in situ vascular nitric oxide generation was measured with 4,5-diaminofluorescein diacetate. MEASUREMENTS AND MAIN RESULTS cigarette smoke increased the pulmonary arterial systolic pressure after approximately 4 weeks. Simvastatin returned the pressure to control levels within 4 weeks of starting treatment, and ameliorated smoke-induced small arterial remodeling as well as emphysema measured both physiologically and morphometrically at 6 months, but did not prevent smoke-induced small airway remodeling either physiologically or morphologically. In precision-cut lung slices simvastatin reversed small arterial endothelial dysfunction, and partially reversed smoke-induced loss of vascular nitric oxide generation. CONCLUSIONS simvastatin, as an intervention therapy, reverses the pulmonary vascular effects of cigarette smoke, including pulmonary hypertension, and prevents smoke-induced emphysema, but does not prevent small airway remodeling. This is the first demonstration that an intervention can reverse a COPD-associated cigarette smoke-induced anatomic abnormality. The study also shows the importance of examining all three anatomic lung compartments when assessing the effects of a potential drug intervention in patients with COPD.
Collapse
Affiliation(s)
- Joanne L Wright
- Department of Pathology, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5 Canada.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Katheria AC, Masliah E, Benirschke K, Jones KL, Kim JH. Idiopathic persistent pulmonary hypertension in an infant with Smith-Lemli-Opitz syndrome. Fetal Pediatr Pathol 2010; 29:373-9. [PMID: 21043560 DOI: 10.3109/15513815.2010.512045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Persistent pulmonary hypertension (PPHN) of the newborn remains a challenging condition to diagnose and treat. It has been reported in infants with Smith-Lemli-Opitz syndrome (SLOS), a rare defect in cholesterol synthesis. Typically, there is evidence of pulmonary hypoplasia. We report the first case of PPHN in the absence of pulmonary hypoplasia or other parenchymal diseases in an infant with SLOS. Perturbations in cholesterol metabolism interrupt key signaling pathways that participate in the normal maintenance of pulmonary vascular tone. We found that caveolae-dependent signaling may be involved in this process since our patient had altered expression of caveolin-1.
Collapse
Affiliation(s)
- Anup C Katheria
- UC San Diego Medical Center, Division of Neonatology, San Diego, California 92130, USA
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Li M, Li Z, Sun X. Statins suppress MMP2 secretion via inactivation of RhoA/ROCK pathway in pulmonary vascular smooth muscles cells. Eur J Pharmacol 2008; 591:219-23. [DOI: 10.1016/j.ejphar.2008.06.082] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 06/05/2008] [Accepted: 06/12/2008] [Indexed: 11/28/2022]
|
19
|
Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol 2008; 155:444-54. [PMID: 18536743 DOI: 10.1038/bjp.2008.239] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A burgeoning body of evidence suggests that RhoA/Rho kinase (ROCK) signalling plays an important role in the pathogenesis of various experimental models of pulmonary hypertension (PH), including chronic hypoxia-, monocrotaline-, bleomycin-, shunt- and vascular endothelial growth factor receptor inhibition plus chronic hypoxia-induced PH. ROCK has been incriminated in pathophysiologic events ranging from mediation of sustained abnormal vasoconstriction to promotion of vascular inflammation and remodelling. In addition, the 3-hydroxy-3-methylglutaryl CoA reductase inhibitors, statins, which inhibit activation of RhoA by preventing post-translational isoprenylation of the protein and its translocation to the plasma membrane ameliorate PH in several different rat models, and may also be effective in PH patients. Also, phosphorylation of RhoA and prevention of its translocation to the plasma membrane are involved in the protective effect of the type 5-PDE inhibitor, sildenafil, against hypoxia- and bleomycin-induced PH. Collectively, these and other observations indicate that independent of the cause of PH, activation of the RhoA/ROCK pathway serves as a point of convergence of various signalling cascades in the pathogenesis of the disease. We propose that ROCK inhibitors and other drugs that inhibit this pathway might be useful in the treatment of various forms of PH.
Collapse
|
20
|
Markel TA, Wairiuko GM, Lahm T, Crisostomo PR, Wang M, Herring CM, Meldrum DR. The Right Heart and Its Distinct Mechanisms of Development, Function, and Failure. J Surg Res 2008; 146:304-13. [DOI: 10.1016/j.jss.2007.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/27/2007] [Accepted: 04/02/2007] [Indexed: 01/21/2023]
|