1
|
Qian Q, Cai S, Zhang X, Huang J, Chen Y, Wang A, Zhang M. Seeing is believing: Larger Colavita effect in school-aged children with attention-deficit/hyperactivity disorder. J Exp Child Psychol 2024; 238:105798. [PMID: 37844345 DOI: 10.1016/j.jecp.2023.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that leads to visually relevant compensatory activities and cognitive strategies in children. Previous studies have identified difficulties with audiovisual integration in children with ADHD, but the characteristics of the visual dominance effect when processing multisensory stimuli are not clear in children with ADHD. The current study used the Colavita paradigm to explore the visual dominance effect in school-aged children with ADHD. The results found that, compared with typically developing children, children with ADHD had a higher proportion of "visual-auditory" trials and a lower proportion of "simultaneous" trials. The study also found that the proportion of visual-auditory trials in children with ADHD decreased as their Swanson, Nolan, and Pelham-IV rating scale (SNAP-IV) inattention scores increased. The results showed that school-aged children with ADHD had a larger Colavita effect, which decreased with the severity of inattentive symptoms. This may be due to an overreliance on visual information and an abnormal integration time window. The connection between multisensory cognitive processing performance and clinical symptoms found in the current study provides empirical and theoretical support for the knowledge base of multisensory and cognitive abilities in disorders.
Collapse
Affiliation(s)
- Qinyue Qian
- Department of Psychology, Soochow University, Suzhou, Jiangsu 215123, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shizhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, China
| | - Xianghui Zhang
- Department of Psychology, Soochow University, Suzhou, Jiangsu 215123, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Huang
- Department of Psychology, Soochow University, Suzhou, Jiangsu 215123, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yan Chen
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, China.
| | - Aijun Wang
- Department of Psychology, Soochow University, Suzhou, Jiangsu 215123, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Ming Zhang
- Department of Psychology, Soochow University, Suzhou, Jiangsu 215123, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Department of Psychology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215011, China; Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
Richter Y, Gordon C, Vainstein G, Bublil-Mor C, Geisinger D, Meital-Kfir N, Elyoseph Z. A novel intervention for treating adults with ADHD using peripheral visual stimulation. Front Psychiatry 2023; 14:1280440. [PMID: 37928920 PMCID: PMC10623343 DOI: 10.3389/fpsyt.2023.1280440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Objective Stimulation of the peripheral visual field has been previously reported as beneficial for cognitive performance in ADHD. This study assesses the safety and efficacy of a novel intervention involving peripheral visual stimuli in managing attention deficit hyperactivity disorder (ADHD). Methods One hundred and eight adults, 18-40 years old, with ADHD, were enrolled in a two-month open-label study. The intervention (i.e., Neuro-glasses) consisted of standard eyeglasses with personalized peripheral visual stimuli embedded on the lenses. Participants were assessed at baseline and at the end of the study with self-report measures of ADHD symptoms (the Adult ADHD Self-Report Scale; ASRS), and executive functions (The Behavior Rating Inventory of Executive Function Adult Version; BRIEF-A). A computerized test of continuous performance (The Conners' Continuous Performance Test-3; CPT-3) was tested at baseline with standard eyeglasses and at the end of study using Neuro-glasses. The Clinical Global Impression-Improvement scale (CGI-I) was assessed at the intervention endpoint. Safety was monitored by documentation of adverse events. Results The efficacy analysis included 97 participants. Significant improvements were demonstrated in self-reported measures of inattentive symptoms (ASRS inattentive index; p = 0.037) and metacognitive functions concerning self-management and performance monitoring (BRIEF-A; p = 0.029). A continuous-performance test (CPT-3) indicated significant improvement in detectability (d'; p = 0.027) and reduced commission errors (p = 0.004), suggesting that the Neuro-glasses have positive effects on response inhibition. Sixty-two percent of the participants met the response criteria assessed by a clinician (CGI-I). No major adverse events were reported. Conclusion Neuro-glasses may offer a safe and effective approach to managing adult ADHD. Results encourage future controlled efficacy studies to confirm current findings in adults and possibly children with ADHD.Clinical trial registration: https://www.clinicaltrials.gov/, Identifier NCT05777785.
Collapse
Affiliation(s)
| | | | - Gabriel Vainstein
- Kahan-Sagol-Maccabi Research and Innovation Institute, Tel Aviv, Israel
| | | | | | | | - Zohar Elyoseph
- The Department of Educational Psychology and Educational Counseling, Max Stern Yezreel Valley College, Emek Yezreel, Israel
| |
Collapse
|
3
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Droguerre M, Vidal B, Valdebenito M, Mouthon F, Zimmer L, Charvériat M. Impaired Local and Long-Range Brain Connectivity and Visual Response in a Genetic Rat Model of Hyperactivity Revealed by Functional Ultrasound. Front Neurosci 2022; 16:865140. [PMID: 35401075 PMCID: PMC8987929 DOI: 10.3389/fnins.2022.865140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Attention-Deficit hyperactivity disorder (ADHD) is a central nervous system (CNS) disorder frequently associated with other psychiatric disorders. Pathophysiology processes at stake in ADHD are still under investigation and interestingly neuroimaging data points to modulated brain connectivity in patients. The genetic spontaneously hypertensive rat (SHR) model has been widely used to study pathophysiological underpinnings of ADHD and resting-state brain connectivity using functional magnetic resonance imaging. Here, functional ultrasound imaging, a new technique enabling fast measurement of cerebral blood volume (CBV), was used to further characterize resting-state functional connectivity - at both local and long-range - and visual response in SHR. We demonstrated that response to visual stimulation was increased in SHR in the visual cortex and the superior colliculus. They displayed altered long-range functional connectivity between spatially distinct regions. SHR also displayed modulated local connectivity, with strong increases of regional homogeneity in parts of the motor and visual cortex, along with decreases in the secondary cingulate cortex, the superior colliculus and the pretectal area. As CBV is intricately coupled to cerebral activity, these results suggest an abnormal neural activity in the SHR animal model, consistent with previous clinical studies and demonstrate the potential of functional ultrasound imaging as a translational tool in ADHD.
Collapse
Affiliation(s)
| | - Benjamin Vidal
- Theranexus, Lyon, France
- CNRS, UMR 5292, INSERM U1028, Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | - Luc Zimmer
- CNRS, UMR 5292, INSERM U1028, Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- CERMEP-Imaging Platform, Bron, France
- Hospices Civils de Lyon, Lyon, France
| | | |
Collapse
|
5
|
Duval F, Erb A, Mokrani M, Weiss T, Carcangiu R. First‐Dose Methylphenidate‐Induced Changes in the Anti‐Saccade Task Performance and Outcome in Adults with Attention‐Deficit/Hyperactivity Disorder. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2021; 3:146-152. [PMID: 36101656 PMCID: PMC9175892 DOI: 10.1176/appi.prcp.20210010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
Objective We examined whether the anti‐saccade task (AST) performance after the first methylphenidate (MPH) dose could be associated with subsequent clinical outcome in adults with attention‐deficit/hyperactivity disorder (ADHD). Methods Ninety‐seven drug‐naive DSM‐5 ADHD adults participated in this study. The AST parameters were measured at baseline, after the first MPH‐dose (10 mg orally), and 6 months after chronic MPH treatment. Results were compared with those of 50 healthy control (HC) subjects. Results At baseline, ADHDs showed longer saccadic reaction times and more direction errors than HCs (both p < 0.00001). Acute and chronic MPH administration resulted in normalization of the AST performances. Multivariate regression analysis after adjusting for age, sex, weight, and severity of symptoms at baseline, revealed that a low percentage of direction errors after the first MPH‐dose (i.e., ≤10%) could predict remission at month 6 (OR: 5.84; 95% CI: 2.00–17.11; p = 0.001). Conclusions Our findings indicate that: (1) impairments of motor planning and response inhibition in adults with ADHD are improved with MPH, and (2) a low direction error percentage after the first MPH‐dose may be an independent predictor of remission. ClinicalTrials.gov identifier: NCT03411434 The antisaccade task (AST) is useful to reveal impairments in inhibitory control in ADHD. Never‐medicated adult ADHD subjects show delays in reaction times and increased direction errors. Methyphenidate (MPH) administration, either acute or chronic, normalizes AST performances. Direction error percentages after the first MPH‐dose could predict treatment outcome.
Collapse
Affiliation(s)
- Fabrice Duval
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France (F. Duval, A. Erb, M. Mokrani, T. Weiss, R. Carcangiu)
| | - Alexis Erb
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France (F. Duval, A. Erb, M. Mokrani, T. Weiss, R. Carcangiu)
| | - Marie‐Claude Mokrani
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France (F. Duval, A. Erb, M. Mokrani, T. Weiss, R. Carcangiu)
| | - Thomas Weiss
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France (F. Duval, A. Erb, M. Mokrani, T. Weiss, R. Carcangiu)
| | - Roberta Carcangiu
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France (F. Duval, A. Erb, M. Mokrani, T. Weiss, R. Carcangiu)
| |
Collapse
|
6
|
Benavidez NL, Bienkowski MS, Zhu M, Garcia LH, Fayzullina M, Gao L, Bowman I, Gou L, Khanjani N, Cotter KR, Korobkova L, Becerra M, Cao C, Song MY, Zhang B, Yamashita S, Tugangui AJ, Zingg B, Rose K, Lo D, Foster NN, Boesen T, Mun HS, Aquino S, Wickersham IR, Ascoli GA, Hintiryan H, Dong HW. Organization of the inputs and outputs of the mouse superior colliculus. Nat Commun 2021; 12:4004. [PMID: 34183678 PMCID: PMC8239028 DOI: 10.1038/s41467-021-24241-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
The superior colliculus (SC) receives diverse and robust cortical inputs to drive a range of cognitive and sensorimotor behaviors. However, it remains unclear how descending cortical input arising from higher-order associative areas coordinate with SC sensorimotor networks to influence its outputs. Here, we construct a comprehensive map of all cortico-tectal projections and identify four collicular zones with differential cortical inputs: medial (SC.m), centromedial (SC.cm), centrolateral (SC.cl) and lateral (SC.l). Further, we delineate the distinctive brain-wide input/output organization of each collicular zone, assemble multiple parallel cortico-tecto-thalamic subnetworks, and identify the somatotopic map in the SC that displays distinguishable spatial properties from the somatotopic maps in the neocortex and basal ganglia. Finally, we characterize interactions between those cortico-tecto-thalamic and cortico-basal ganglia-thalamic subnetworks. This study provides a structural basis for understanding how SC is involved in integrating different sensory modalities, translating sensory information to motor command, and coordinating different actions in goal-directed behaviors.
Collapse
Affiliation(s)
- Nora L Benavidez
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Bienkowski
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Muye Zhu
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Luis H Garcia
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marina Fayzullina
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lei Gao
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ian Bowman
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lin Gou
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Neda Khanjani
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaelan R Cotter
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Laura Korobkova
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marlene Becerra
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chunru Cao
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Monica Y Song
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Bin Zhang
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Seita Yamashita
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Amanda J Tugangui
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian Zingg
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kasey Rose
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Darrick Lo
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas N Foster
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Tyler Boesen
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hyun-Seung Mun
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sarvia Aquino
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Houri Hintiryan
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hong-Wei Dong
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
The relationship between sensory processing sensitivity and attention deficit hyperactivity disorder traits: A spectrum approach. Psychiatry Res 2020; 293:113477. [PMID: 33198048 DOI: 10.1016/j.psychres.2020.113477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the relationship between sensory processing sensitivity (SPS) and symptoms of Attention Deficit Hyperactivity Disorder (ADHD) in adults. The Highly Sensitive Person Scale (HSPS) scale and the Adult ADHD Self-Report Scale (ASRS) were administered to a non-clinical group of 274 participants recruited from a university volunteers list. We found a highly significant positive correlation between number of self-reported ADHD traits and sensory sensitivity. Furthermore, ADHD traits and age were predictors of SPS and exploratory factor analysis revealed a factor that combined ADHD traits and items from the HSPS. The psychometric properties of the HSPS were also examined supporting the unidimensional nature of the concept. To our knowledge, this is the first study to identify a positive relationship between HSPS and ADHD traits in the general population. Our results further support recent findings suggesting abnormal sensory processing in ADHD.
Collapse
|
8
|
Janmohammadi S, Haghgoo HA, Farahbod M, Overton PG, Pishyareh E. Effect of a visual tracking intervention on attention and behavior of children with Attention Deficit Hyperactivity Disorder. J Eye Mov Res 2020; 12. [PMID: 33828777 PMCID: PMC7881896 DOI: 10.16910/jemr.12.8.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Attention deficit hyperactivity disorder is characterized by several cognitive and behavioral problems such as inattention and impulsivity, abnormal control of eye movements and
relocation, visual fixation and visuospatial perception. There is a link between core motor
functions such as oculomotor function and cognition to the extent that the oculomotor
system acts as a mediator between the motor and cognitive functions. Therefore, the effects of eye-tracking intervention were investigated on attention in these children. Thirty -
nine boys with ADHD, 6 to 10 years of age were recruited and randomized to receive
current occupational therapy (control group), or occupational therapy accompanied with
eye-tracking exercises (experimental group). They were evaluated using the Conner's
Parent Rating Scale, the Continuous Performance Task-2, and the Test of Visual-Motor
Skills-Revised before and after the intervention. Significant improvements in the mean
scores of cognitive problems (F=9/22), coping behavior (F=6.03) and hyperactivity (F=9.77) were detected in the posttest between the two groups (p<0.05). Furthermore, in
the Continuous Performance Test scores, detectability (F=5.68), omission errors (F=17.89), commission errors (F=19.45), reaction time (F=8.95), variability (F=7.07), and
preservation (F=6.33) showed significant differences between control and experimental
groups (p<0.01). It appears that eye-tracking interventions designed based on the isolation
of neck and eye movement might have an important role in improving cognitive function
and coping behaviors in these children. It seems that these exercises could increase eye
movement control; improve cognitive function and response inhibition.
Collapse
Affiliation(s)
| | | | - Mojgan Farahbod
- Exceptional Children Research Institute, Institute of Education, Organization for Education and Planning, Tehran, Iran
| | | | - Ebrahim Pishyareh
- University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
9
|
The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat Rev Neurosci 2020; 21:264-276. [PMID: 32269315 DOI: 10.1038/s41583-020-0287-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
The very earliest stages of sensory processing have the potential to alter how we perceive and respond to our environment. These initial processing circuits can incorporate subcortical regions, such as the thalamus and brainstem nuclei, which mediate complex interactions with the brain's cortical processing hierarchy. These subcortical pathways, many of which we share with other animals, are not merely vestigial but appear to function as 'shortcuts' that ensure processing efficiency and preservation of vital life-preserving functions, such as harm avoidance, adaptive social interactions and efficient decision-making. Here, we propose that functional interactions between these higher-order and lower-order brain areas contribute to atypical sensory and cognitive processing that characterizes numerous neuropsychiatric disorders.
Collapse
|
10
|
Karaca I, Demirkılınç Biler E, Palamar M, Özbaran B, Üretmen Ö. Stereoacuity, Fusional Vergence Amplitudes, and Refractive Errors Prior to Treatment in Patients with Attention-Deficit Hyperactivity Disorder. Turk J Ophthalmol 2020; 50:15-19. [PMID: 32166943 PMCID: PMC7086097 DOI: 10.4274/tjo.galenos.2019.17802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives: To evaluate stereoacuity, fusional vergence amplitudes, and refractive errors in patients with attention-deficit hyperactivity disorder (ADHD). Materials and Methods: Twenty-three patients who were newly diagnosed as having ADHD and had not started medication, and 48 children without ADHD were included. Retrospective data analysis of comprehensive eye examination, stereoacuity, and fusional vergence amplitudes of the patients were performed. Results: The mean age at ADHD diagnosis was 10.68±2.34 (7-16) years in the ADHD group (14 male, 9 female) and 12.23±2.16 (7-15) years in the control group (25 male, 23 female) patients (p=0.605). The mean stereoacuity was 142.14±152.65 (15-480) sec/arc in patients with ADHD and 46.3±44.11 (15-240) sec/arc in the control group (p<0.001). For ADHD patients, the mean convergence and divergence amplitudes at distance were 19.87±8.40 (6 to 38) prism diopter (PD) and -9.09±-4.34 (-4 to -25) PD, and 37.30±12.81 (14 to 70) PD and -13.13±-3.45 (-4 to -20) PD at near, respectively. The mean cycloplegic spherical equivalent was 1.06±1.13 (-1 to 4.63) diopter in ADHD patients, with 6 patients having significant refractive errors (hyperopia in 4 patients, astigmatism in 2 patients). There were no significant differences between groups in terms of spherical equivalents (p=0.358) or convergence and divergence amplitudes at distance (p=0.289 and p=0.492, respectively) or near (p=0.452 and p=0.127, respectively). Conclusion: Fusional vergence amplitudes did not present significant difference, while the mean value of stereoacuity was significantly lower in newly diagnosed ADHD patients prior to treatment.
Collapse
Affiliation(s)
- Irmak Karaca
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | | | - Melis Palamar
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Burcu Özbaran
- Ege University Faculty of Medicine, Department of Child and Adolescent Psychiatry, İzmir, Turkey
| | - Önder Üretmen
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| |
Collapse
|
11
|
Riley TB, Overton PG. Enhancing the efficacy of 5-HT uptake inhibitors in the treatment of attention deficit hyperactivity disorder. Med Hypotheses 2019; 133:109407. [PMID: 31586811 DOI: 10.1016/j.mehy.2019.109407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 10/26/2022]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common childhood behavioural disorders, the frontline treatments for which are drugs with abuse potential. As a consequence, there is an urgent need to develop non addictive drug treatments with equivalent efficacy. Preclinical evidence suggests that selective serotonin uptake inhibitors (SSRIs) are likely to be effective in ADHD, however clinical reports suggest that SSRIs are of limited therapeutic value for the treatment of ADHD. We propose that this disconnect can be explained by the pattern of drug administration in existing clinical trials (administration for short periods of time, or intermittently) leading to inadequate control of the autoregulatory processes which control 5-HT release, most notably at the level of inhibitory 5-HT1A somatodendritic autoreceptors. These autoreceptors reduce the firing rate of 5-HT neurons (limiting release) unless they are desensitised by a long term, frequent pattern of drug administration. As such, we argue that the participants in earlier trials were not administered SSRIs in a manner which realises any potential benefits of targeting 5-HT in the pharmacotherapy of ADHD. In light of this, we hypothesise that there may be under-researched potential to exploit 5-HT transmission therapeutically in ADHD, either through changing the administration regime, or by pharmacological means. Recent pharmacological research has successfully potentiated the effects of SSRIs in acute animal preparations by antagonising inhibitory 5-HT1A autoreceptors prior to the administration of the SSRI fluoxetine. We suggest that combination therapies linking SSRIs and 5-HT1A antagonists are a potential way forward in the development of efficacious non-addictive pharmacotherapies for ADHD.
Collapse
Affiliation(s)
- Timothy B Riley
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK
| |
Collapse
|
12
|
Hampsey E, Overton PG, Stafford T. Microsaccade rate as a measure of drug response. J Eye Mov Res 2019; 12:10.16910/jemr.12.6.12. [PMID: 33828750 PMCID: PMC7962677 DOI: 10.16910/jemr.12.6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In 22 human subjects we measured microsaccade count across 60 brief fixation trials both pre- and post- administration of 300mg of caffeine. There was a statistically significant reduction in average microsaccade count post-caffeine administration, with a moderate effect size (Cohen's d of 0.42). Microsaccade count was stable within individuals across time points (Pearson's r of 0.89). Sensitivity analysis suggests that the pre/post caffeine effect size is robust to choice of parameters used to identify microsaccades. Bootstrap resampling suggests that both the pre/post-caffeine difference and the across-time stability within individuals could be reliably assessed with far fewer trials. The results support the use of microsaccade count as both a trait measure of individual differences and a state measure of caffeine response. We discuss the results in the context of the theory that the superior colliculus is central to the generation of microsaccades and hence that microsaccade rate may be a useful assay for at least some drug-induced changes at the level of the colliculus: a potentially useful tool in the development of therapies for disorders that may involve collicular dysfunction such as ADHD.
Collapse
Affiliation(s)
| | | | - Tom Stafford
- Department of Psychology, University of Sheffield, UK
| |
Collapse
|
13
|
Lane SJ, Reynolds S. Sensory Over-Responsivity as an Added Dimension in ADHD. Front Integr Neurosci 2019; 13:40. [PMID: 31555103 PMCID: PMC6742721 DOI: 10.3389/fnint.2019.00040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/02/2019] [Indexed: 01/07/2023] Open
Abstract
Years of research have added to our understanding of Attention Deficit Hyperactivity Disorder (ADHD). None-the-less there is still much that is poorly understood. There is a need for, and ongoing interest in, developing a deeper understanding of this disorder to optimally identify risk and better inform treatment. Here, we present a compilation of findings examining ADHD both behaviorally and using neurophysiologic markers. Drawing on early work of McIntosh and co-investigators, we examined response to sensory challenge in children with ADHD, measuring HPA activity and electrodermal response (EDR) secondary to sensory stressors. In addition, we have examined the relationship between these physiologic measures, and reports of behavioral sensory over-responsivity and anxiety. Findings suggest that sensory responsivity differentiates among children with ADHD and warrants consideration. We link these findings with research conducted both prior to and after our own work and emphasize that there a growing knowledge supporting a relationship between ADHD and sensory over-responsivity, but more research is needed. Given the call from the National Institute of Health to move toward a more dimensional diagnostic process for mental health concerns, and away from the more routine categorical diagnostic process, we suggest sensory over-responsivity as a dimension in the diagnostic process for children with ADHD.
Collapse
Affiliation(s)
- Shelly J. Lane
- Department of Occupational Therapy, College of Health and Human Science, Colorado State University, Fort Collins, CO, United States
- Faculty of Health and Medicine, School of Health Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Stacey Reynolds
- Department of Occupational Therapy, Kathryn Lawrence Dragas Sensory Processing and Stress Evaluation Laboratory, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
14
|
Hetzler BE, McLester-Davis LWY, Tenpas SE. Methylphenidate and alcohol effects on flash-evoked potentials, body temperature, and behavior in Long-Evans rats. Alcohol 2019; 77:79-89. [PMID: 30394288 DOI: 10.1016/j.alcohol.2018.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/30/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
Methylphenidate (MPD) is a psychostimulant used to treat attention deficit hyperactivity disorder (ADHD). Most adult ADHD patients use ethanol in combination with MPD. This research examined the effects of MPD and ethanol on flash-evoked potentials (FEPs; cortical responses frequently used to assess neural activity and sensory processing) recorded from the visual cortex (VC) and superior colliculus (SC; a structure involved in attention and orientation) of chronically implanted male Long-Evans rats, and on body temperature and open field behavior. For one group of rats, either saline or ethanol (2.0 g/kg) was given 5 min prior to either saline or MPD (2.9 mg/kg). FEPs were recorded 10 and 20 min later. In the VC, ethanol decreased amplitudes of several components, but increased P2. MPD increased N3, but decreased P3 and P4. Ethanol increased the latency of several components. In the SC, ethanol decreased all three components, while MPD increased P3. Ethanol increased latency of all components. During FEP testing, ethanol decreased body movement while MPD increased movement. In the open field, line crossings were increased but rearings were decreased by ethanol. Both ethanol and MPD produced hypothermia. A second group of rats was given MPD at 11.6 mg/kg. Ethanol decreased several VC amplitudes, but increased P2. MPD increased N3 amplitude but decreased amplitude for other components. MPD also counteracted the effect of ethanol on the amplitude of P2 and N3. Both ethanol and MPD increased the latency of several components. In the SC, ethanol decreased all component amplitudes, while MPD increased P3 but decreased N4. Ethanol increased all component latencies, while MPD increased latency for two components. During FEP testing, ethanol decreased body movement while MPD increased movement. In the open field, line crossings were increased by ethanol and MPD. Rearings were eliminated by ethanol in the open field but increased by MPD, and MPD counteracted the effect of ethanol on rearings. Both ethanol and MPD produced hypothermia. Some of these results might help explain why users take MPD and ethanol in combination in order to enable consuming larger amounts of alcohol.
Collapse
Affiliation(s)
- Bruce E Hetzler
- Department of Psychology, Lawrence University, 711 E. Boldt Way, Appleton, WI, 54911, United States.
| | | | - Sadie E Tenpas
- Department of Psychology, Lawrence University, 711 E. Boldt Way, Appleton, WI, 54911, United States
| |
Collapse
|
15
|
Navarra RL, Waterhouse BD. Considering noradrenergically mediated facilitation of sensory signal processing as a component of psychostimulant-induced performance enhancement. Brain Res 2019; 1709:67-80. [DOI: 10.1016/j.brainres.2018.06.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
|
16
|
Lange-Malecki B, Treue S, Rothenberger A, Albrecht B. Cognitive Control Over Visual Motion Processing - Are Children With ADHD Especially Compromised? A Pilot Study of Flanker Task Event-Related Potentials. Front Hum Neurosci 2018; 12:491. [PMID: 30568588 PMCID: PMC6290085 DOI: 10.3389/fnhum.2018.00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/21/2018] [Indexed: 11/26/2022] Open
Abstract
Performance deficits and diminished brain activity during cognitive control and error processing are frequently reported in attention deficit/hyperactivity disorder (ADHD), indicating a “top-down” deficit in executive attention. So far, these findings are almost exclusively based on the processing of static visual forms, neglecting the importance of visual motion processing in everyday life as well as important attentional and neuroanatomical differences between processing static forms and visual motion. For the current study, we contrasted performance and electrophysiological parameters associated with cognitive control from two Flanker-Tasks using static stimuli and moving random dot patterns. Behavioral data and event-related potentials were recorded from 16 boys with ADHD (combined type) and 26 controls (aged 8–15 years). The ADHD group showed less accuracy especially for moving stimuli, and prolonged response times for both stimulus types. Analyses of electrophysiological parameters of cognitive control revealed trends for diminished N2-enhancements and smaller error-negativities (indicating medium effect sizes), and we detected significantly lower error positivities (large effect sizes) compared to controls, similarly for both static and moving stimuli. Taken together, the study supports evidence that motion processing is not fully developed in childhood and that the cognitive control deficit in ADHD is of higher order and independent of stimulus type.
Collapse
Affiliation(s)
| | - Stefan Treue
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.,Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Aribert Rothenberger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Albrecht
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Mihali A, Young AG, Adler LA, Halassa MM, Ma WJ. A Low-Level Perceptual Correlate of Behavioral and Clinical Deficits in ADHD. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2018; 2:141-163. [PMID: 30381800 PMCID: PMC6184361 DOI: 10.1162/cpsy_a_00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/10/2018] [Indexed: 11/04/2022]
Abstract
In many studies of attention-deficit hyperactivity disorder (ADHD), stimulus encoding and processing (perceptual function) and response selection (executive function) have been intertwined. To dissociate deficits in these functions, we introduced a task that parametrically varied low-level stimulus features (orientation and color) for fine-grained analysis of perceptual function. It also required participants to switch their attention between feature dimensions on a trial-by-trial basis, thus taxing executive processes. Furthermore, we used a response paradigm that captured task-irrelevant motor output (TIMO), reflecting failures to use the correct stimulus-response rule. ADHD participants had substantially higher perceptual variability than controls, especially for orientation, as well as higher TIMO. In both ADHD and controls, TIMO was strongly affected by the switch manipulation. Across participants, the perceptual variability parameter was correlated with TIMO, suggesting that perceptual deficits are associated with executive function deficits. Based on perceptual variability alone, we were able to classify participants into ADHD and controls with a mean accuracy of about 77%. Participants' self-reported General Executive Composite score correlated not only with TIMO but also with the perceptual variability parameter. Our results highlight the role of perceptual deficits in ADHD and the usefulness of computational modeling of behavior in dissociating perceptual from executive processes.
Collapse
Affiliation(s)
- Andra Mihali
- Center for Neural Science, New York University, New York, New York, USA
- Department of Psychology, New York University, New York, New York, USA
| | - Allison G. Young
- Department of Psychiatry, NYU School of Medicine, New York, New York, USA
| | - Lenard A. Adler
- Department of Psychiatry, NYU School of Medicine, New York, New York, USA
| | - Michael M. Halassa
- Department of Brain and Cognitive Science, MIT, Boston, Massachusetts, USA
| | - Wei Ji Ma
- Center for Neural Science, New York University, New York, New York, USA
- Department of Psychology, New York University, New York, New York, USA
| |
Collapse
|
18
|
Chronic amphetamine enhances visual input to and suppresses visual output from the superior colliculus in withdrawal. Neuropharmacology 2018; 138:118-129. [DOI: 10.1016/j.neuropharm.2018.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 11/23/2022]
|
19
|
Attention-deficit/hyperactivity disorder children exhibit an impaired accommodative response. Graefes Arch Clin Exp Ophthalmol 2018; 256:1023-1030. [DOI: 10.1007/s00417-018-3948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
|
20
|
Panagiotidi M, Overton PG, Stafford T. The relationship between ADHD traits and sensory sensitivity in the general population. Compr Psychiatry 2018; 80:179-185. [PMID: 29121555 DOI: 10.1016/j.comppsych.2017.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023] Open
Abstract
Preliminary studies in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) report both hypo-responsiveness and hyper-responsiveness to sensory stimuli, as well as problems modulating sensory input. As it has been suggested that those with ADHD exist at the extreme end of a continuum of ADHD traits, which are also evident in the general population, we investigated the link between ADHD and sensory sensitivity in the general population. Two online questionnaires measuring ADHD traits and sensory responsivity across various sensory domains were administered to 234 participants. Results showed a highly significant positive correlation between the number of ADHD traits and the frequency of reported sensory processing problems. An increased number of sensory difficulties across all modalities were associated with the level of ADHD. Furthermore, ADHD traits predicted sensory difficulties and exploratory factor analysis revealed a factor that combined ADHD trait and sensory processing items. This is the first study to identify a positive relationship between sensory processing and ADHD traits in the general population. Our results suggest that sensory difficulties could be part of the ADHD phenotype.
Collapse
Affiliation(s)
- Maria Panagiotidi
- School of Psychology, Sport and Exercise, Staffordshire University, College Road, Stoke-on-Trent, Staffordshire ST4 2DE, UK.
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tom Stafford
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
21
|
Panagiotidi M, Overton PG, Stafford T. Multisensory integration and ADHD-like traits: Evidence for an abnormal temporal integration window in ADHD. Acta Psychol (Amst) 2017; 181:10-17. [PMID: 29024843 DOI: 10.1016/j.actpsy.2017.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/12/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
Abnormalities in multimodal processing have been found in many developmental disorders such as autism and dyslexia. However, surprisingly little empirical work has been conducted to test the integrity of multisensory integration in Attention Deficit Hyperactivity Disorder (ADHD). The main aim of the present study was to examine links between symptoms of ADHD (as measured using a self-report scale in a healthy adult population) and the temporal aspects of multisensory processing. More specifically, a Simultaneity Judgement (SJ) and a Temporal Order Judgement (TOJ) task were used in participants with low and high levels of ADHD-like traits to measure the temporal integration window and Just-Noticeable Difference (JND) (respectively) between the timing of an auditory beep and a visual pattern presented over a broad range of stimulus onset asynchronies. The Point of Subjective Similarity (PSS) was also measured in both cases. In the SJ task, participants with high levels of ADHD-like traits considered significantly fewer stimuli to be simultaneous than participants with high levels of ADHD-like traits, and the former were found to have significantly smaller temporal windows of integration (although no difference was found in the PSS in the SJ or TOJ tasks, or the JND in the latter). This is the first study to identify an abnormal temporal integration window in individuals with ADHD-like traits. Perceived temporal misalignment of two or more modalities can lead to distractibility (e.g., when the stimulus components from different modalities occur separated by too large of a temporal gap). Hence, an abnormality in the perception of simultaneity could lead to the increased distractibility seen in ADHD.
Collapse
|
22
|
Hetherington L, Dommett EJ, Turner AC, Riley TB, Haensel JX, Overton PG. Effect of methylphenidate on visual responses in the superior colliculus in the anaesthetised rat: Role of cortical activation. J Psychopharmacol 2017; 31:1347-1361. [PMID: 28925314 DOI: 10.1177/0269881117730661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mechanism of action of psychostimulant drugs in the treatment of Attention Deficit Hyperactivity Disorder is still largely unknown, although recent evidence suggests one possibility is that the drugs affect the superior colliculus (SC). We have previously demonstrated that systemically administered d-amphetamine attenuates/abolishes visual responses to wholefield light flashes in the superficial layers of the SC in anaesthetised rats, and the present study sought to extend this work to methylphenidate (MPH). Anaesthetised rats were administered MPH at a range of doses (or saline) and subjected to monocular wholefield light flashes at two intensities, juxta-threshold and super-threshold. In contrast to d-amphetamine, systemic MPH produced an enhancement of visual activity at both intensities. Methylphenidate was also found to produce activation of the cortical EEG in anaesthetised rats. Furthermore, cortical activation induced by electrical stimulation of the pons was found to enhance visual responses in superficial layers of the SC, and when MPH was paired with pontine-induced cortical activation, the response-enhancing effects of MPH were substantially attenuated. Taken together, the results suggest that the enhancement of visual responses in the superficial layers of the SC by MPH in the anaesthetised rat is an artefact of the drug's interaction with cortical arousal.
Collapse
Affiliation(s)
- L Hetherington
- 1 Department of Psychology, University of Sheffield, Sheffield, UK
| | - E J Dommett
- 2 Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A C Turner
- 3 School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - T B Riley
- 1 Department of Psychology, University of Sheffield, Sheffield, UK
| | - J X Haensel
- 4 Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - P G Overton
- 1 Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Panagiotidi M, Overton PG, Stafford T. Attention-Deficit Hyperactivity Disorder-Like Traits and Distractibility in the Visual Periphery. Perception 2016; 46:665-678. [DOI: 10.1177/0301006616681313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We examined the performance of nonclinical subjects with high and low levels of self-reported attention-deficit hyperactivity disorder (ADHD)-like traits in a novel distractibility paradigm with far peripheral visual distractors, the likely origin of many distractors in everyday life. Subjects were tested on a Sustained Attention to Response Task with distractors appearing before some of the target or nontarget stimuli. When the distractors appeared 80 ms before the targets or nontargets, participants with high levels of ADHD-like traits were less affected in their reaction times than those with lower levels. Reducing the distractor-target or nontarget interval to 10 ms removed the reaction time advantage for the high group. We suggest that at 80 ms, the distractors were cueing the arrival of the target or nontarget, and that those with high levels of ADHD-like traits were more sensitive to the cues. Increased sensitivity to stimuli in the visual periphery is consistent with hyperresponsiveness at the level of the superior colliculus.
Collapse
Affiliation(s)
| | - Paul G. Overton
- Department of Psychology, University of Sheffield, Western Bank, UK
| | - Tom Stafford
- Department of Psychology, University of Sheffield, Western Bank, UK
| |
Collapse
|
24
|
Bellot E, Coizet V, Warnking J, Knoblauch K, Moro E, Dojat M. Effects of aging on low luminance contrast processing in humans. Neuroimage 2016; 139:415-426. [DOI: 10.1016/j.neuroimage.2016.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/02/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022] Open
|
25
|
Do children and adolescents with attention deficit hyperactivity disorder have ocular abnormalities? Eur J Ophthalmol 2016; 22:931-5. [PMID: 22505050 DOI: 10.5301/ejo.5000145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2012] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate visual function and ocular features in children with attention deficit hyperactivity disorder (ADHD). METHODS Fifty-one children underwent a detailed ophthalmologic evaluation. Thirty-two were diagnosed with ADHD, and 19 children with attention deficit disorder (ADD). The mean age was 9.9±3.1 years. RESULTS The average best-corrected visual acuity of the better-seeing eye was 1 (range 0.9-1.25) and 0.96 (range 0.5-1.25) for the fellow eye. Eighteen percent (10) had amblyopia in one or both eyes (3 had strabismic and 7 had ametropic amblyopia). Heterotropia was found in 5 (10%), and absent stereo acuity was found in 3 (6%). Subnormal convergence amplitude was noted in 2 patients (4%). The mean spherical equivalent (SE) of the eyes in this study was 0.17±1.73 (range -5.5 to +7). Twenty-two subjects (43%) had a myopia of -0.50 D or higher. Hyperopia higher than 3.5 D was seen in 10 cases(20%), and astigmatism larger or equal to 1.0 D was observed in 10 patients (20%). With-the-rule a stigmatism was by far most common type in the 29 eyes with an astigmatic refractive error (59%).Significant ametropia was detected in 42 (83%) of the patients. In contrast to other studies, we did not find a higher rate of convergence insufficiency or heterotropia. CONCLUSIONS Children diagnosed with either ADHD or ADD can present with significant ametropia but infrequent heterotropia.
Collapse
|
26
|
Riley E, Kopotiyenko K, Zhdanova I. Prenatal and acute cocaine exposure affects neural responses and habituation to visual stimuli. Front Neural Circuits 2015; 9:41. [PMID: 26379509 PMCID: PMC4548223 DOI: 10.3389/fncir.2015.00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022] Open
Abstract
Psychostimulants have many effects on visual function, from adverse following acute and prenatal exposure to therapeutic on attention deficit. To determine the impact of prenatal and acute cocaine exposure on visual processing, we studied neuronal responses to visual stimuli in two brain regions of a transgenic larval zebrafish expressing the calcium indicator GCaMP-HS. We found that both red light (LF) and dark (DF) flashes elicited similar responses in the optic tectum neuropil (TOn), while the dorsal telencephalon (dTe) responded only to LF. Acute cocaine (0.5 μM) reduced neuronal responses to LF in both brain regions but did not affect responses to DF. Repeated stimulus presentation (RSP) led to habituation of dTe neurons to LF. Acute cocaine prevented habituation. TOn habituated to DF, but not LF, and DF habituation was not modified by cocaine. Remarkably, prenatal cocaine exposure (PCE) prevented the effects of acute cocaine on LF response amplitude and habituation later in development in both brain regions, but did not affect DF responses. We discovered that, in spite of similar neural responses to LF and DF in the TO (superior colliculus in mammals), responses to LF are more complex, involving dTe (homologous to the cerebral cortex), and are more vulnerable to cocaine. Our results demonstrate that acute cocaine exposure affects visual processing differentially by brain region, and that PCE modifies zebrafish visual processing in multiple structures in a stimulus-dependent manner. These findings are in accordance with the major role that the optic tectum and cerebral cortex play in sustaining visual attention, and support the hypothesis that modification of these areas by PCE may be responsible for visual deficits noted in humans. This model offers new methodological approaches for studying the adverse and therapeutic effects of psychostimulants on attention, and for the development of new pharmacological interventions.
Collapse
Affiliation(s)
- Elizabeth Riley
- Boston University Graduate Program in Neuroscience, Boston University School of Medicine Boston, MA, USA
| | - Konstantin Kopotiyenko
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Irina Zhdanova
- Boston University Graduate Program in Neuroscience, Boston University School of Medicine Boston, MA, USA ; Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
27
|
Bucci MP, Mélithe D, Ajrezo L, Bui-Quoc E, Gérard CL. The influence of oculomotor tasks on postural control in dyslexic children. Front Hum Neurosci 2014; 8:981. [PMID: 25538603 PMCID: PMC4260515 DOI: 10.3389/fnhum.2014.00981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022] Open
Abstract
Dual task is known to affect postural stability in children. We explored the effect of visual tasks on postural control in thirty dyslexic children. A selected group of thirty chronological age-matched non-dyslexic children (mean age: 9.92 ± 0.35 years) and a group of thirty reading age-matched non-dyslexic children (mean reading age: 7.90 ± 0.25 years) were chosen for comparison. All children underwent ophthalmologic and optometric evaluation. Eye movements were recorded by a video-oculography system (EyeBrain® T2) and postural sway was recorded simultaneously by a force platform (TechnoConept®). All children performed fixations, pursuits, pro- and anti-saccades tasks. Dyslexic children showed significantly poor near fusional vergence ranges (convergence and divergence) with respect to the non-dyslexic children groups. During the postural task, quality of fixation and anti-saccade performance in dyslexic children were significantly worse compared to the two non-dyslexic children groups. In contrast, the number of catch-up saccades during pursuits and the latency of pro- and anti-saccades were similar in the three groups of children examined. Concerning postural quality, dyslexic children were more unstable than chronological age-matched non-dyslexic children group. For all three groups of children tested we also observed that executing saccades (pro- and anti-saccades) reduced postural values significantly in comparison with fixation and pursuit tasks. The impairment in convergence and divergence fusional capabilities could be due to an immaturity in cortical structures controlling the vergence system. The poor oculomotor performance reported in dyslexic children suggested a deficit in allocating visual attention and their postural instability observed is in line with the cerebellar impairment previously reported in dyslexic children. Finally, pro- or anti-saccades reduce postural values compared to fixation and pursuit tasks in all groups of children tested, suggesting a different influence of visual tasks on postural control according to their attentional demand.
Collapse
Affiliation(s)
- Maria Pia Bucci
- UMR 1141, INSERM-Université Paris 7, Hôpital Robert Debré Paris, France
| | - Damien Mélithe
- UMR 1141, INSERM-Université Paris 7, Hôpital Robert Debré Paris, France
| | - Layla Ajrezo
- UMR 1141, INSERM-Université Paris 7, Hôpital Robert Debré Paris, France
| | - Emmanuel Bui-Quoc
- Service d'Ophtalmologie, Hôpital Universitaire Robert Debré Paris, France
| | - Christophe-Loic Gérard
- Service de Psychopathologie de l'Enfant et de l'Adolescent, Hôpital Universitaire Robert Debré Paris, France
| |
Collapse
|
28
|
Clements KM, Devonshire IM, Reynolds JNJ, Overton PG. Enhanced visual responses in the superior colliculus in an animal model of attention-deficit hyperactivity disorder and their suppression by D-amphetamine. Neuroscience 2014; 274:289-98. [PMID: 24905438 DOI: 10.1016/j.neuroscience.2014.05.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 11/20/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by overactivity, impulsiveness and attentional problems, including an increase in distractibility. A structure that is intimately linked with distractibility is the superior colliculus (SC), a midbrain sensory structure which plays a particular role in the production of eye and head movements. Although others have proposed the involvement of such diverse elements as the frontal cortex and forebrain noradrenaline in ADHD, given the role of the colliculus in distractibility and the increased distractibility in ADHD, we have proposed that distractibility in ADHD arises due to collicular sensory hyper-responsiveness. To further investigate this possibility, we recorded the extracellular activity (multi-unit (MUA) and local field potential (LFP)) in the superficial visual layers of the SC in an animal model of ADHD, the New Zealand genetically hypertensive (GH) rat, in response to wholefield light flashes. The MUA and LFP peak amplitude and summed activity within a one-second time window post-stimulus were both significantly greater in GH rats than in Wistar controls, across the full range of stimulus intensities. Given that baseline firing rate did not differ between the strains, this suggests that the signal-to-noise ratio is elevated in GH animals. D-Amphetamine reduced the peak amplitude and summed activity of the multi-unit response in Wistar animals. It also reduced the peak amplitude and summed activity of the multi-unit response in GH animals, at higher doses bringing it down to levels that were equivalent to those of Wistar animals at baseline. The present results provide convergent evidence that a collicular dysfunction (sensory hyper-responsiveness) is present in ADHD, and that it may underlie the enhanced distractibility. In addition, D-amphetamine - a widely used treatment in ADHD - may have one of its loci of therapeutic action at the level of the colliculus.
Collapse
Affiliation(s)
- K M Clements
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - I M Devonshire
- Laboratory of Developmental Nociception, Nottingham University Medical School, School of Life Sciences, Nottingham NG7 2UH, UK
| | - J N J Reynolds
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - P G Overton
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
29
|
Mathis C, Savier E, Bott JB, Clesse D, Bevins N, Sage-Ciocca D, Geiger K, Gillet A, Laux-Biehlmann A, Goumon Y, Lacaud A, Lelièvre V, Kelche C, Cassel JC, Pfrieger FW, Reber M. Defective response inhibition and collicular noradrenaline enrichment in mice with duplicated retinotopic map in the superior colliculus. Brain Struct Funct 2014; 220:1573-84. [PMID: 24647754 PMCID: PMC4409641 DOI: 10.1007/s00429-014-0745-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 10/27/2022]
Abstract
The superior colliculus is a hub for multisensory integration necessary for visuo-spatial orientation, control of gaze movements and attention. The multiple functions of the superior colliculus have prompted hypotheses about its involvement in neuropsychiatric conditions, but to date, this topic has not been addressed experimentally. We describe experiments on genetically modified mice, the Isl2-EphA3 knock-in line, that show a well-characterized duplication of the retino-collicular and cortico-collicular axonal projections leading to hyperstimulation of the superior colliculus. To explore the functional impact of collicular hyperstimulation, we compared the performance of homozygous knock-in, heterozygous knock-in and wild-type mice in several behavioral tasks requiring collicular activity. The light/dark box test and Go/No-Go conditioning task revealed that homozygous mutant mice exhibit defective response inhibition, a form of impulsivity. This defect was specific to attention as other tests showed no differences in visually driven behavior, motivation, visuo-spatial learning and sensorimotor abilities among the different groups of mice. Monoamine quantification and gene expression profiling demonstrated a specific enrichment of noradrenaline only in the superficial layers of the superior colliculus of Isl2-EphA3 knock-in mice, where the retinotopy is duplicated, whereas transcript levels of receptors, transporters and metabolic enzymes of the monoaminergic pathway were not affected. We demonstrate that the defect in response inhibition is a consequence of noradrenaline imbalance in the superficial layers of the superior colliculus caused by retinotopic map duplication. Our results suggest that structural abnormalities in the superior colliculus can cause defective response inhibition, a key feature of attention-deficit disorders.
Collapse
Affiliation(s)
- Chantal Mathis
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Elise Savier
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Jean-Bastien Bott
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Daniel Clesse
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Nicholas Bevins
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, San Diego, CA 92037 USA
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92039 USA
| | | | - Karin Geiger
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Anaïs Gillet
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Alexis Laux-Biehlmann
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Yannick Goumon
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Adrien Lacaud
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Vincent Lelièvre
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Christian Kelche
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Frank W. Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Michael Reber
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| |
Collapse
|
30
|
Hetzler BE, Meckel KR, Stickle BA. Methylphenidate alters flash-evoked potentials, body temperature, and behavior in Long–Evans rats. Pharmacol Biochem Behav 2014; 116:75-83. [DOI: 10.1016/j.pbb.2013.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/07/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022]
|
31
|
Rao DB, Little PB, Sills R. Subsite awareness in neuropathology evaluation of National Toxicology Program (NTP) studies: a review of select neuroanatomical structures with their functional significance in rodents. Toxicol Pathol 2013; 42:487-509. [PMID: 24135464 PMCID: PMC3965620 DOI: 10.1177/0192623313501893] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review article is designed to serve as an introductory guide in neuroanatomy for toxicologic pathologists evaluating general toxicity studies. The article provides an overview of approximately 50 neuroanatomical subsites and their functional significance across 7 transverse sections of the brain. Also reviewed are 3 sections of the spinal cord, cranial and peripheral nerves (trigeminal and sciatic, respectively), and intestinal autonomic ganglia. The review is limited to the evaluation of hematoxylin and eosin-stained tissue sections, as light microscopic evaluation of these sections is an integral part of the first-tier toxicity screening of environmental chemicals, drugs, and other agents. Prominent neuroanatomical sites associated with major neurological disorders are noted. This guide, when used in conjunction with detailed neuroanatomic atlases, may aid in an understanding of the significance of functional neuroanatomy, thereby improving the characterization of neurotoxicity in general toxicity and safety evaluation studies.
Collapse
Affiliation(s)
- Deepa B. Rao
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina
| | - Peter B. Little
- Consultant, Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina
| | - Robert Sills
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
32
|
Saccadic alterations in severe developmental dyslexia. Case Rep Neurol Med 2013; 2013:406861. [PMID: 23819080 PMCID: PMC3684089 DOI: 10.1155/2013/406861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/19/2013] [Indexed: 11/17/2022] Open
Abstract
It is not sure if persons with dyslexia have ocular motor deficits in addition to their deficits in rapid visual information processing. A 15-year-old boy afflicted by severe dyslexia was submitted to saccadic eye movement recording. Neurological and ophthalmic examinations were normal apart from the presence of an esophoria for near and slightly longer latencies of pattern visual evoked potentials. Subclinical saccadic alterations were present, which could be at the basis of the reading pathology: (1) low velocities (and larger durations) of the adducting saccades of the left eye with undershooting and long-lasting postsaccadic onward drift, typical of the internuclear ophthalmoplegia; (2) saccades interrupted in mid-flight and fixation instability, which are present in cases of brainstem premotor disturbances.
Collapse
|
33
|
Bittencourt J, Velasques B, Teixeira S, Basile LF, Salles JI, Nardi AE, Budde H, Cagy M, Piedade R, Ribeiro P. Saccadic eye movement applications for psychiatric disorders. Neuropsychiatr Dis Treat 2013; 9:1393-409. [PMID: 24072973 PMCID: PMC3783508 DOI: 10.2147/ndt.s45931] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE The study presented here analyzed the patterns of relationship between oculomotor performance and psychopathology, focusing on depression, bipolar disorder, schizophrenia, attention-deficit hyperactivity disorder, and anxiety disorder. METHODS Scientific articles published from 1967 to 2013 in the PubMed/Medline, ISI Web of Knowledge, Cochrane, and SciELO databases were reviewed. RESULTS Saccadic eye movement appears to be heavily involved in psychiatric diseases covered in this review via a direct mechanism. The changes seen in the execution of eye movement tasks in patients with psychopathologies of various studies confirm that eye movement is associated with the cognitive and motor system. CONCLUSION Saccadic eye movement changes appear to be heavily involved in the psychiatric disorders covered in this review and may be considered a possible marker of some disorders. The few existing studies that approach the topic demonstrate a need to improve the experimental paradigms, as well as the methods of analysis. Most of them report behavioral variables (latency/reaction time), though electrophysiological measures are absent.
Collapse
Affiliation(s)
- Juliana Bittencourt
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil ; Institute of Applied Neuroscience, Rio de Janeiro, Brazil ; Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil ; Laboratory of Physical Therapy, Veiga de Almeida University, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abnormal air righting behaviour in the spontaneously hypertensive rat model of ADHD. Exp Brain Res 2011; 215:45-52. [PMID: 21931982 DOI: 10.1007/s00221-011-2869-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
Abstract
The spontaneously hypertensive rat (SHR) is the most commonly used model of attention-deficit hyperactivity disorder (ADHD), displaying the main symptoms of the disorder which are responsive to psychostimulant treatments. Research to date has focused on behavioural tests investigating functioning of the striatum or prefrontal cortex in these rats. However, there is now evidence that the superior colliculus, a structure associated with head and eye movements, may also be dysfunctional in ADHD. Therefore, the aim of this study was to investigate whether the SHR demonstrated impairment in collicular-dependent behaviour. To this end, we examined air righting behaviour, which has previously been shown to be modulated in a height-dependent manner reliant on a functional superior colliculus. We assessed SHR, Wistar Kyotos and Wistars on static righting and air righting at 50 and 10 cm drop heights. There were no differences in static righting, indicating that there were no gross motor differences that would confound air righting. Qualitative analysis of video footage of the righting did not reveal any changes previously associated with collicular damage, unique to the SHR. However, the SHR did show impairment in height-dependent modulation of righting in contrast to both control strains, such that the SHR failed to modulate righting latency according to drop height. This failure is indicative of collicular abnormality. Given that many rodent tests of attentional mechanisms involve head and eye orienting, which are heavily dependent on the colliculus, a collicular dysfunction has strong implications for the type of attentional task used in this strain.
Collapse
|
35
|
Utley A, Nasr M, Astill S. The use of sound during exercise to assist development for children with and without movement difficulties. Disabil Rehabil 2010; 32:1495-500. [DOI: 10.3109/09638288.2010.496946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Rosas R, Ceric F, Tenorio M, Mourgues C, Thibaut C, Hurtado E, Aravena MT. ADHD children outperform normal children in an artificial grammar implicit learning task: ERP and RT evidence. Conscious Cogn 2010; 19:341-51. [DOI: 10.1016/j.concog.2009.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 09/08/2009] [Accepted: 09/13/2009] [Indexed: 10/19/2022]
|
37
|
Dommett EJ, Overton PG, Greenfield SA. Drug therapies for attentional disorders alter the signal-to-noise ratio in the superior colliculus. Neuroscience 2009; 164:1369-76. [PMID: 19747530 DOI: 10.1016/j.neuroscience.2009.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/27/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
Despite high levels of use, the mechanism of action of effective pharmacotherapies in attention deficit hyperactivity disorder (ADHD) is unknown. It has recently been hypothesized that one site of therapeutic action is the midbrain superior colliculus, a structure traditionally associated with visual processing, but also strongly implicated in distractibility, a core symptom of ADHD. We used male juvenile Wistar rats to examine the effects of therapeutically relevant doses of methylphenidate and d-amphetamine on collicular activity in vitro. Here we report a novel shared mechanism of the two drugs whereby they enhance the signal-to-noise ratio in the superior colliculus. The effects on the signal-to-noise ratio were mediated by serotonin (5-HT) via a pre-synaptic mechanism. This modulatory action would bias the system towards salient events and lead to an overall decrease in distractibility.
Collapse
Affiliation(s)
- E J Dommett
- Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | | | | |
Collapse
|