1
|
Khan HR, Sultan R, Javeed M, Yasmeen H, Arooj I, Janiad S. Functional foods and immune system: A sustainable inhibitory approach against SARS-COV-2. Antivir Ther 2025; 30:13596535251322297. [PMID: 40138520 DOI: 10.1177/13596535251322297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Background: COVID-19 has become the center of attention since its outbreak in December 2019. Despite the discovery of its preventive vaccine, role of healthy immune system is undebatable. Functional foods are continuously hunted as a promising option for a safe natural therapeutic treatment.Purpose: This review demonstrates how functional foods can boost host immune system, promote antiviral operation, and synthesize biologically effective molecules against SARS-COV-2.Research Methodology: For current review, online search was conducted for nature-based functional immune boosters against SARS-COV-2.Conclusion: Functional foods, alongside a healthy lifestyle, fortifies the human immune system and could all help to dramatically lower the cost burden of COVID-19, the suffering of the patients, and the mortality rates worldwide.
Collapse
Affiliation(s)
- Hubza Ruatt Khan
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Rabia Sultan
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Mehvish Javeed
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Humaira Yasmeen
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Iqra Arooj
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Sara Janiad
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| |
Collapse
|
2
|
Bryliński Ł, Kostelecka K, Woliński F, Komar O, Miłosz A, Michalczyk J, Biłogras J, Machrowska A, Karpiński R, Maciejewski M, Maciejewski R, Garruti G, Flieger J, Baj J. Effects of Trace Elements on Endocrine Function and Pathogenesis of Thyroid Diseases-A Literature Review. Nutrients 2025; 17:398. [PMID: 39940256 PMCID: PMC11819802 DOI: 10.3390/nu17030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025] Open
Abstract
The thyroid gland is an endocrine organ whose hormones enable the proper functioning of the organism. The normal function of this organ is influenced by internal and external factors. One of the external factors is trace elements. Trace elements in appropriate concentrations are necessary for the proper functioning of the thyroid. Fe, Cu, Mn, I, Zn, and Se are part of the enzymes involved in oxidative stress reduction, while Cd, Hg, and Pb can increase ROS production. Cu and Fe are necessary for the correct TPO synthesis. An imbalance in the concentration of trace elements such as Fe, Cu, Co, I, Mn, Zn, Ag, Cd, Hg, Pb, and Se in thyroid cells can lead to thyroid diseases such as Graves' disease, Hashimoto's thyroiditis, hypothyroidism, autoimmune thyroiditis, thyroid nodules, thyroid cancer, and postpartum thyroiditis. Lack of adequate Fe levels may lead to hypothyroidism and cancer development. The thyroid gland's ability to absorb I is reversibly reduced by Co. Adequate levels of I are required for correct thyroid function; both deficiency and excess can predispose to the development of thyroid disorders. High concentrations of Mn may lead to hypothyroidism. Furthermore, Mn may cause cancer development and progression. Insufficient Zn supplementation causes hypothyroidism and thyroid nodule development. Cd affecting molecular mechanisms may also lead to thyroid disorders. Hg accumulating in the thyroid may interfere with hormone secretion and stimulate cancer cell proliferation. A higher risk of thyroid nodules, cancer, autoimmune thyroiditis, and hypothyroidism were linked to elevated Pb levels. Se deficiency disrupts thyroid cell function and may lead to several thyroid disorders. On the other hand, some of the trace elements may be useful in the treatment of thyroid diseases. Therefore, the effects of trace elements on the thyroid require further research.
Collapse
Affiliation(s)
- Łukasz Bryliński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (Ł.B.); (F.W.)
| | - Katarzyna Kostelecka
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (O.K.); (A.M.); (J.M.); (J.B.)
| | - Filip Woliński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (Ł.B.); (F.W.)
| | - Olga Komar
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (O.K.); (A.M.); (J.M.); (J.B.)
| | - Agata Miłosz
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (O.K.); (A.M.); (J.M.); (J.B.)
| | - Justyna Michalczyk
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (O.K.); (A.M.); (J.M.); (J.B.)
| | - Jan Biłogras
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (O.K.); (A.M.); (J.M.); (J.B.)
| | - Anna Machrowska
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Robert Karpiński
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
- Institute of Medical Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland; (M.M.); (R.M.)
| | - Marcin Maciejewski
- Institute of Medical Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland; (M.M.); (R.M.)
- Department of Electronics and Information Technology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Ryszard Maciejewski
- Institute of Medical Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland; (M.M.); (R.M.)
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (O.K.); (A.M.); (J.M.); (J.B.)
| |
Collapse
|
3
|
Chen F, Qiu R, Lin Z, Chen J, Liu P, Huang Y. Effect of micronutrients on the risk of Graves' disease: a Mendelian randomization study. Front Nutr 2024; 11:1432420. [PMID: 39717395 PMCID: PMC11663635 DOI: 10.3389/fnut.2024.1432420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Background Micronutrient research on Graves' disease (GD) is limited and controversial. Therefore, in order to explore possible correlations between genetically predicted amounts of six micronutrients [Copper (Cu), Iron (Ir), Zinc (Zn), Calcium (Ca), Vitamin C (VC), and Vitamin D (VD)] and GD risk, we carried out Mendelian randomization research (MR). Methods We conducted an MR analysis using genome-wide association studies (GWAS) from people of European ancestry and aggregated information from UK Biobank to provide insight into the relationships between micronutrients and GD. The causal link between exposure and outcome was tested using three different techniques: Inverse Variance Weighted (IVW), MR-Egger, and Weighted Median Estimator (WME). The heterogeneity of outcomes was also assessed using Cochran's Q statistic, and pleiotropy was assessed by MR-Egger intercept, MR-PRESSO. Results IVW analyses showed evidence of no significant effect of genetically predicted micronutrient concentrations on GD, except for Cu. (Cu: OR = 1.183, p = 0.025; Ir: OR = 1.031, p = 0.794; Zn: OR = 1.072, p = 0.426; Ca: OR = 1.040, p = 0.679; VC: OR = 1.011, p = 0.491; VD: OR = 0.902, p = 0.436). Significant heterogeneity was observed in Ca and VD (Ca: Q = 264.2, p = 0.002; VD: Q = 141.42, p = 0.047). The MR-Egger intercept method identified horizontal pleiotropy between serum Ca levels and GD (MR-Egger intercept = -0.010, p = 0.030), with no similar findings for other micronutrients. Conclusion MR analysis showed a possible causal relationship between the genetically predicted concentration of Cu and the risk of GD, whereas the genetically predicted concentrations of Ir, Zn, Ca, VC, and VD may not be causally related to the risk of GD.
Collapse
Affiliation(s)
- Fangsen Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Rongliang Qiu
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Zhiqing Lin
- Department of Pediatrics, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Junhan Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Peitian Liu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yanling Huang
- Department of Endocrinology and Metabolism, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Leal KNDS, Santos da Silva AB, Fonseca EKB, Moreira OBDO, de Lemos LM, Leal de Oliveira MA, Stewart AJ, Arruda MAZ. Metallomic analysis of urine from individuals with and without Covid-19 infection reveals extensive alterations in metal homeostasis. J Trace Elem Med Biol 2024; 86:127557. [PMID: 39500269 DOI: 10.1016/j.jtemb.2024.127557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Metal ions perform important functions in the body and their concentrations in cells and tissues are tightly controlled. Alterations in metal homeostasis can occur in certain disease states including infection. In this study urinary excretion of several metals including calcium, cadmium, cobalt, copper, iron, magnesium, nickel, selenium, and zinc in Covid-19 patients (n=35) and control (n=60) individuals, spanning ages and sexes. METHODS Urinary samples were analysed using ICP-MS and the differences in metal concentrations between the Covid-19-infected and control groups were assessed using multivariate data analysis and univariate data analysis employing Student's t-test and Pearson's correlation, with significance set at p<0.05. RESULTS The urinary concentrations of all metals analysed were significantly higher in the Covid-infected group (compared to controls), with the exception of copper, which was markedly reduced. The increase in calcium excretion was lower and magnesium excretion greater in Covid-19-positive individuals aged 41 or over compared to those aged 40 or lower. Whilst the increase in iron excretion was lower, and cobalt excretion greater in Covid-19-positive males compared to females. CONCLUSIONS The study highlights significant alterations in the handling of a range of metals in the body during Covid-19 infection. It also highlights both age and sex-specific differences in metal homeostasis. The results suggest an important role for copper in the body during Covid-19 infection and suggests that urinary concentrations of copper and other metals may serve as markers to predict progression of the disease.
Collapse
Affiliation(s)
- Ketolly Natanne da Silva Leal
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; School of Medicine, Medical and Biological Sciences Building, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom
| | - Ana Beatriz Santos da Silva
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil
| | - Elisânia Kelly Barbosa Fonseca
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil
| | - Olívia Brito de Oliveira Moreira
- Analytical Chemistry and Chemometrics Group (GQAQ), Institute of Exact Sciences, Juiz de Fora Federal University - UFJF, Juiz de Fora, MG 36036-90, Brazil
| | | | - Marcone Augusto Leal de Oliveira
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; Analytical Chemistry and Chemometrics Group (GQAQ), Institute of Exact Sciences, Juiz de Fora Federal University - UFJF, Juiz de Fora, MG 36036-90, Brazil
| | - Alan J Stewart
- School of Medicine, Medical and Biological Sciences Building, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom
| | - Marco Aurélio Zezzi Arruda
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
5
|
Pal S, Villani S, Mansi A, Marcelloni AM, Chiominto A, Amori I, Proietto AR, Calcagnile M, Alifano P, Bagheri S, Mele C, Licciulli A, Sannino A, Demitri C. Antimicrobial and Superhydrophobic CuONPs/TiO 2 Hybrid Coating on Polypropylene Substrates against Biofilm Formation. ACS OMEGA 2024; 9:45376-45385. [PMID: 39554441 PMCID: PMC11561633 DOI: 10.1021/acsomega.4c07345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 11/19/2024]
Abstract
Biofilm formation in common public places and hospitals is of great concern. Active antimicrobial coatings can prevent the formation of bacterial biofilms and the spreading of primary and secondary infections caused by contagious bacteria and viruses. In the present work, we report a simple spray coating process using copper oxide (CuO) nanoparticles (NPs) dispersed in a titanium dioxide (TiO2) sol, where CuONPs act as the active antimicrobial agent and TiO2 as the inorganic binder. Homogeneous CuONPs/TiO2 coating was obtained on polypropylene substrates by spraying the CuO/TiO2 sol using a commercial air gun, followed by drying at 80 °C. The amount of CuONPs loading in the coating was adjusted by controlling the number of coated layers. CuONPs and CuONPs/TiO2 coatings were characterized by XRD, BET, X-ray fluorescence spectroscopy, AFM, and field emission scanning electron microscopy techniques. All of the coated films showed dual activity, i.e., antimicrobial and superhydrophobicity. A high bactericidal effect against both Escherichia coli and Staphylococcus aureus was observed for the coated substrates. Coatings with higher CuONPs showed greater antibacterial activity, reaching R value >6, and no bacterial colonies were detected after 24 h of incubation. An increasing trend of water contact angle was observed with the increasing amount of CuONP loading.
Collapse
Affiliation(s)
- Sudipto Pal
- Department
of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Stefania Villani
- Department
of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Antonella Mansi
- Department
of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents
at Work (INAIL), Via
Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Anna Maria Marcelloni
- Department
of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents
at Work (INAIL), Via
Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Alessandra Chiominto
- Department
of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents
at Work (INAIL), Via
Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Ilaria Amori
- Department
of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents
at Work (INAIL), Via
Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Anna Rita Proietto
- Department
of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents
at Work (INAIL), Via
Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Matteo Calcagnile
- Department
of Experimental Medicine, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department
of Experimental Medicine, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Sonia Bagheri
- Institute
of Clinical Physiology, National Research Council, C/o Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Claudio Mele
- Department
of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Antonio Licciulli
- Department
of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department
of Experimental Medicine, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Christian Demitri
- Department
of Experimental Medicine, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| |
Collapse
|
6
|
Li J, Wang N, Mao G, Wang J, Xiang M, Zhang H, Zeng D, Ma H, Jiang J. Cuproptosis-associated lncRNA impact prognosis in patients with non-small cell lung cancer co-infected with COVID-19. J Cell Mol Med 2024; 28:e70059. [PMID: 39228012 PMCID: PMC11371660 DOI: 10.1111/jcmm.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) patients infected with COVID-19 experience much worse prognosis. However, the specific mechanisms behind this phenomenon remain unclear. We conducted a multicentre study, collecting surgical tissue samples from a total of 36 NSCLC patients across three centres to analyse. Among the 36 lung cancer patients, 9 were infected with COVID-19. COVID-19 infection (HR = 21.62 [1.58, 296.06], p = 0.021) was an independent risk factor of progression-free survival (PFS). Analysis of RNA-seq data of these cancer tissues demonstrated significantly higher expression levels of cuproptosis-associated genes in COVID-19-infected lung cancer patients. Using Lasso regression and Cox regression analysis, we identified 12 long noncoding RNAs (lncRNA) regulating cuproptosis. A score based on these lncRNA were used to divide patients into high-risk and low-risk groups. The results showed that the high-risk group had lower overall survival and PFS compared to the low-risk group. Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) database revealed that the high-risk group benefited more from immunotherapy. Drug sensitivity analysis identified cetuximab and gefitinib as potentially effective treatments for the high-risk group. Cuproptosis plays a significant role NSCLC patients infected with COVID-19. Promisingly, cetuximab and gefitinib have shown potential effectiveness for managing these patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Respiratory and Critical Care MedicineThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
| | - Nan Wang
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
| | - Guocai Mao
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouJiangsuChina
| | - Jiantang Wang
- Department of Respiratory and Critical Care MedicineThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
| | - Mengqi Xiang
- Department of Medical OncologySichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Huachuan Zhang
- Department of Thoracic SurgerySichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Daxiong Zeng
- Department of Respiratory and Critical Care MedicineThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouJiangsuChina
| | - Haitao Ma
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouJiangsuChina
| | - Junhong Jiang
- Department of Respiratory and Critical Care MedicineThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
7
|
Albalawi SA, Albalawi RA, Albalawi AA, Alanazi RF, Almahlawi RM, Alhwity BS, Alatawi BD, Elsherbiny N, Alqifari SF, Abdel-Maksoud MS. The Possible Mechanisms of Cu and Zn in the Treatment and Prevention of HIV and COVID-19 Viral Infection. Biol Trace Elem Res 2024; 202:1524-1538. [PMID: 37608131 DOI: 10.1007/s12011-023-03788-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Due to their unique properties and their potential therapeutic and prophylactic applications, heavy metals have attracted the interest of many researchers, especially during the outbreak of COVID-19. Indeed, zinc (Zn) and copper (Cu) have been widely used during viral infections. Zn has been reported to prevent excessive inflammatory response and cytokine storm, improve the response of the virus to Type I interferon (IFN-1), and enhance the production of IFN-a to counteract the antagonistic effect of SARS-CoV-2 virus protein on IFN. Additionally, Zn has been found to promote the proliferation and differentiation of T and B lymphocytes, thereby improving immune function, inhibiting RNA-dependent RNA polymerase (RdRp) in SARS- CoV-2 reducing the viral replication and stabilizing the cell membrane by preventing the proteolytic processing of viral polyprotein and proteases enzymes. Interestingly, Zn deficiency has been correlated with enhanced SARS-CoV-2 viral entry through interaction between the ACE2 receptor and viral spike protein. Along with zinc, Cu possesses strong virucidal capabilities and is known to be effective at neutralizing a variety of infectious viruses, including the poliovirus, influenza virus, HIV type 1, and other enveloped or nonenveloped, single- or double-stranded DNA and RNA viruses. Cu-related antiviral action has been linked to different pathways. First, it may result in permanent damage to the viral membrane, envelopes, and genetic material of viruses. Second, Cu produces reactive oxygen species to take advantage of the redox signaling mechanism to eradicate the virus. The present review focused on Zn and Cu in the treatment and prevention of viral infection. Moreover, the application of metals such as Cu and gold in nanotechnology for the development of antiviral therapies and vaccines has been also discussed.
Collapse
Affiliation(s)
- Shatha A Albalawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Raneem A Albalawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amaal A Albalawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Raghad F Alanazi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Raghad M Almahlawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Basma S Alhwity
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Bashayer D Alatawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Saleh F Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed S Abdel-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
8
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
9
|
Kumari P, Sainath K, Biswas S, Bellare J. Risk mitigation to healthcare workers against viral and bacterial bioaerosol load in laparoscopic surgical exhaust with a new flow mode in hollow fiber membranes-based filter. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132517. [PMID: 37757552 DOI: 10.1016/j.jhazmat.2023.132517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Laparoscopy of COVID-19-infected/suspected patients needs to be performed with the utmost care due to the chances of virus carryover through the pneumoperitoneum gas. In this study, polysulfone/polyvinyl-pyrrolidone hollow fiber membranes (HFMs) were fabricated by phase inversion process, and these HFMs were bundled into a module consisting of tortuous, circular-helical arrangement. Further, copper (Cu) and zinc (Zn) nanoparticles (NPs), known to have antimicrobial and antiviral properties, were flow-coated on the lumen side of the HFMs. To test functional efficiency, the modules were challenged with wet aerosol and bioaerosols. Wet aerosol removal efficiency was ∼98%. Bioaerosol-containing bacteria E. coli strain K-12, showed 2.6 log (∼99.8%), and 2.1 log (∼99.3%) removal efficiency for Cu NPs and Zn NPs coated HFMs modules, respectively, and 1.6 log (∼97%) removal for plain (uncoated) HFMs. Bioaerosols containing SARS-CoV-2 surrogate virus (MS2 bacteriophage) showed ∼5-7 log reduction of bacteriophage for plain HFMs, 3.9 log, and 2.3 log reduction for Cu and Zn coated HFMs, respectively. The flow of aerosols entirely through the HFM lumen helps in attaining a low ΔP of < 1 mm Hg, thus rendering its usefulness, particularly for exhausting pneumoperitoneum gases where high upstream pressures could lead to barotrauma. STATEMENT OF ENVIRONMENTAL IMPLICATION: Surgical smoke is generated during minimally invasive surgical (MIS) procedure such as laparoscopy when electrosurgical devices are used to cut any tissues. This smoke is a hazard as it contains toxic volatile compounds, mutagens, carcinogens, bacteria, and virus-laden aerosols. Infection to healthcare professionals through the bioaerosols containing smoke is well reported in literature. The limitation of using hypochlorite and pleated/HEPA filter, led us to design a low pressure drop bioaerosol filter, which can remove smoke, tissue fragments, and COVID-19 virus. It provides a much safer operation theatre environment during MIS procedures as well as in general for bioaerosol removal.
Collapse
Affiliation(s)
- Preety Kumari
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Krishnamurthy Sainath
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Department of Chemical Engineering, B.M.S. College of Engineering, Bengaluru, Karnataka 560019, India
| | - Snehasis Biswas
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
10
|
Jolaosho TL, Elegbede IO, Ndimele PE, Falebita TE, Abolaji OY, Oladipupo IO, Ademuyiwa FE, Mustapha AA, Oresanya ZO, Isaac OO. Occurrence, distribution, source apportionment, ecological and health risk assessment of heavy metals in water, sediment, fish and prawn from Ojo River in Lagos, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:109. [PMID: 38172417 DOI: 10.1007/s10661-023-12148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
The study investigates the occurrence and bioaccumulation of heavy metals in water, sediment, fish, and prawn from the Ojo River with a view to identify the source of origin and the associated ecological and human health risks. The result shows that heavy metal concentrations in water [As = 0.010, Cd = 0.001, Cr = 0.041, Cu = 0.019, Co = 0.050, Fe = 0.099, Pb = 0.006, Ni = 0.003, and Zn = 0.452(mg/L)] were within the acceptable limits. The heavy metals in the sediment [As = 0.050, Cd = 0.287, Cr = 0.509, Cu = 0.207, Co = 0.086, Fe = 33.093, Pb = 0.548, Ni = 0.153 and Zn = 4.249 (mg/kg)] were within their respective background levels or earth's crust and the TEL and PEL standard limits. The bioaccumulation of heavy metals in fish and prawn tissues are in this hierarchical form: Fe > Zn > Cu > Cr > Ni > Co > Pb > Ar > Cd and Fe > Zn > Cu > Cr > Pb > Ar > Ni > Co > Cd, respectively. The bioaccumulation factors of heavy metals in fish ranged from 0.893 - 16.611 and 1.056 - 49.204 in prawn, which were higher than the biota-sedimentation factors (BSAF) values, inferring that the fish and prawns of this study ingested heavy metals highly from water column. The aggregated BSAF scores (fish = 5.584 and prawn = 9.137) showed that these organisms are good concentrators of heavy metals in sediments. The water quality index and other pollution indices (Single pollution index, Heavy metal assessment index, and Heavy metal pollution index) demonstrates slightly clean water, with a moderate level of contamination. The HI values of heavy metals in water, fish, and prawn were lower than 1, implying non-carcinogenic risk in children or adults. The ADD and EDI values of the metals were within their respective oral reference doses (RfD). The TCR values showed that exposure to water, either by ingestion or dermal absorption and the consumption of P. obscura and M. vollenhovenii from the Ojo River would not induce cancer risks in people, though As, Cr, Cd, and Pb showed carcinogenic potentials. The sediment contamination indices such as CF, mCd, EF, and Igeo showed a moderate level of pollution. The ecological risk values (NMPI, mCd = 0.068, PLI = 0.016, and R.I = 86.651) of heavy metals implies "no-moderate risk" except for Cd, which showed high risk. The ecotoxicological parameters, m-PEL-Q (0.024) and m-ERM-Q (0.016) denotes low contamination and no probability of acute toxicity. The CV analysis showed high dispersions and variabilities in the distributions of the heavy metals in water. Other source analyses (Pearson's correlation matrix, PCA, and HCA) showed that both natural processes and anthropogenic activities are responsible for the occurrence of heavy metals in water and sediment from the Ojo River.
Collapse
Affiliation(s)
- Toheeb Lekan Jolaosho
- Department of Fisheries, Lagos State University, Ojo, Lagos State, Nigeria.
- Department of Fisheries Technology, Lagos State Polytechnic, Ikorodu, Nigeria.
| | - Isa Olalekan Elegbede
- Department of Fisheries, Lagos State University, Ojo, Lagos State, Nigeria
- Department of Environmental Planning, University of Technology, Cottbus-Senftenberg, Brandenburg, Germany
| | | | - Taiwo Elijah Falebita
- Department of Zoology and Environmental Biology, Lagos State University, Ojo, Lagos State, Nigeria
| | | | | | | | | | | | | |
Collapse
|
11
|
Paduano S, Granata M, Turchi S, Modenese A, Galante P, Poggi A, Marchesi I, Frezza G, Dervishaj G, Vivoli R, Verri S, Marchetti S, Gobba F, Bargellini A. Factors Associated with SARS-CoV-2 Infection Evaluated by Antibody Response in a Sample of Workers from the Emilia-Romagna Region, Northern Italy. Antibodies (Basel) 2023; 12:77. [PMID: 38131799 PMCID: PMC10740768 DOI: 10.3390/antib12040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Factors associated with SARS-CoV-2 infection risk are still debated. This case-control study aims to investigate the possible relationship between SARS-CoV-2 infection, evaluated through antibody response, and the main sociodemographic, occupational, clinical-anamnestic, and biochemical factors in a population of Modena province (Northern Italy), mainly workers. Both workers who voluntarily joined the screening campaign proposed by companies and self-referred individuals who underwent serological testing were enrolled. Subjects with antibody positivity were recruited as cases (n = 166) and subjects tested negative (n = 239) as controls. A questionnaire on sociodemographic, occupational, and clinical data was administered through telephone interviews. Serum zinc/iron/copper/chromium/nickel, vitamins D/B12, folates, triglycerides, and LDL/HDL/total cholesterol were measured. Cases lived more often in urban areas (61.8% vs. 57%). Cases and controls did not differ significantly by working macrocategories, but the percentage of workers in the ceramic sector was higher among cases. Low adherence to preventive measures in the workplace was more frequent among seropositives. Folate concentration was significantly lower among cases. Therefore, adequate folate levels, living in rural areas, and good adherence to preventive strategies seem protective against infection. Workers in the ceramic sector seem to be at greater risk; specific factors involved are not defined, but preventive interventions are needed.
Collapse
Affiliation(s)
- Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Michele Granata
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Sara Turchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Pasquale Galante
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Alessandro Poggi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Giulia Dervishaj
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Roberto Vivoli
- Test Laboratory, 41100 Modena, Italy; (R.V.); (S.V.); (S.M.)
| | - Sara Verri
- Test Laboratory, 41100 Modena, Italy; (R.V.); (S.V.); (S.M.)
| | | | - Fabriziomaria Gobba
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| |
Collapse
|
12
|
Stefanache A, Lungu II, Butnariu IA, Calin G, Gutu C, Marcu C, Grierosu C, Bogdan Goroftei ER, Duceac LD, Dabija MG, Popa F, Damir D. Understanding How Minerals Contribute to Optimal Immune Function. J Immunol Res 2023; 2023:3355733. [PMID: 37946846 PMCID: PMC10632063 DOI: 10.1155/2023/3355733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023] Open
Abstract
Sufficient mineral supply is vital not only for the innate immune system but also for the components of the adaptive immune defense, which encompass defense mechanisms against pathogens and the delicate balance of pro- and anti-inflammatory regulation in the long term. Generally, a well-balanced diet is capable of providing the necessary minerals to support the immune system. Nevertheless, specific vulnerable populations should be cautious about obtaining adequate amounts of minerals such as magnesium, zinc, copper, iron, and selenium. Inadequate levels of these minerals can temporarily impair immune competence and disrupt the long-term regulation of systemic inflammation. Therefore, comprehending the mechanisms and sources of these minerals is crucial. In exceptional circumstances, mineral deficiencies may necessitate supplementation; however, excessive intake of supplements can have adverse effects on the immune system and should be avoided. Consequently, any supplementation should be approved by medical professionals and administered in recommended doses. This review emphasizes the crucial significance of minerals in promoting optimal functioning of the immune system. It investigates the indispensable minerals required for immune system function and the regulation of inflammation. Moreover, it delves into the significance of maintaining an optimized intake of minerals from a nutritional standpoint.
Collapse
Affiliation(s)
- Alina Stefanache
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ionut-Iulian Lungu
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Gabriela Calin
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | - Cristian Gutu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Constantin Marcu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Carmen Grierosu
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | | | - Letitia-Doina Duceac
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | | | - Florina Popa
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Daniela Damir
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
13
|
Duman H, Karav S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front Immunol 2023; 14:1214514. [PMID: 37908368 PMCID: PMC10613682 DOI: 10.3389/fimmu.2023.1214514] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine colostrum (BC) is the initial milk an animal produces after giving birth, particularly in the first few days. Numerous bioactive substances found in BC, including proteins, enzymes, growth factors, immunoglobulins, etc., are beneficial to human health. BC has a significant role to play as part of a healthy diet, with well-documented health and nutritional advantages for people. Therefore, the use of BC and its crucial derivatives in the development of functional food and pharmaceuticals for the prevention of several diseases such as gastrointestinal and respiratory system disorders is becoming increasingly popular around the world. A novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of a cluster of pneumonia cases that is called Coronavirus Disease 2019 (COVID-19) in China. After the first SARS-CoV-2 virus-related fatality was announced, the illness quickly spread throughout China and to other continents, causing a pandemic. Since then, numerous studies have been initiated to develop safe and efficient treatments. To prevent viral infection and potential lingering effects, it is important to investigate alternative treatments for COVID-19. Due to its effective bioactive profile and its immunomodulatory roles in biological processes, BC might be considered a promising approach to assist in combating people affected by the SARS-CoV-2 or prevention from the virus. BC has immunomodulatory effects because to its high concentration of bioactive components such as immunoglobulins, lactoferrin, cytokines, and growth factors, etc., which might help control immunological responses, potentially fostering a balanced immune response. Furthermore, its bioactive components have a potential cross-reactivity against SARS-CoV-2, aiding in virus neutralization and its comprehensive food profile also supplies important vitamins, minerals, and amino acids, fostering a healthy immune system. Hence, the possible contributions of BC to the management of COVID-19 were reviewed in this article based on the most recent research on the subject. Additionally, the key BC components that influence immune system modulation were evaluated. These components may serve as potential mediators or therapeutic advantages in COVID-19.
Collapse
Affiliation(s)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| |
Collapse
|
14
|
Woźniak-Budych MJ, Staszak K, Staszak M. Copper and Copper-Based Nanoparticles in Medicine-Perspectives and Challenges. Molecules 2023; 28:6687. [PMID: 37764463 PMCID: PMC10536384 DOI: 10.3390/molecules28186687] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology has ushered in a new era of medical innovation, offering unique solutions to longstanding healthcare challenges. Among nanomaterials, copper and copper oxide nanoparticles stand out as promising candidates for a multitude of medical applications. This article aims to provide contemporary insights into the perspectives and challenges regarding the use of copper and copper oxide nanoparticles in medicine. It summarises the biomedical potential of copper-based nanoformulations, including the progress of early-stage research, to evaluate and mitigate the potential toxicity of copper nanomaterials. The discussion covers the challenges and prospects of copper-based nanomaterials in the context of their successful clinical translation. The article also addresses safety concerns, emphasizing the need for toxicity assessments of nanomedicines. However, attention is needed to solve the current challenges such as biocompatibility and controlled release. Ongoing research and collaborative efforts to overcome these obstacles are discussed. This analysis aims to provide guidance for the safe and effective integration of copper nanoparticles into clinical practice, thereby advancing their medical applications. This analysis of recent literature has highlighted the multifaceted challenges and prospects associated with copper-based nanomaterials in the context of their translation from the laboratory to the clinic. In particular, biocompatibility remains a formidable hurdle, requiring innovative solutions to ensure the seamless integration into the human body. Additionally, achieving the controlled release of therapeutic agents from copper nanoparticles poses a complex challenge that requires meticulous engineering and precise design.
Collapse
Affiliation(s)
- Marta J. Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.S.); (M.S.)
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.S.); (M.S.)
| |
Collapse
|
15
|
Kravchenko V, Zakharchenko T. Thyroid hormones and minerals in immunocorrection of disorders in autoimmune thyroid diseases. Front Endocrinol (Lausanne) 2023; 14:1225494. [PMID: 37711890 PMCID: PMC10499380 DOI: 10.3389/fendo.2023.1225494] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Thyroid hormones and essential elements iodine (I), selenium (Se), iron (Fe), copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg), etc. play an important role in the work of many organs and systems of the body, including the immune system and the thyroid gland, and a violation of their supply can be the cause of pathological changes in them. In pathology, the interaction between thyroid hormones (TG), minerals and the immune system is disturbed. The review of the literature examines the immunomodulatory role of TG, minerals, their properties, and their participation in the pathogenesis of autoimmune thyroid diseases (AITD). The study of the relationship between the excess or deficiency of minerals and AITD is described. The basis of the development of AITD - Hashimoto's thyroiditis (HT), Graves' disease (GD), Graves' ophthalmopathy (GO) is the loss of immune tolerance to thyroid antigens - thyroid peroxidase (TPO), thyroglobulin (Tg) and thyroid-stimulating hormone receptor (TSH-R). Immune-mediated mechanisms - production of autoantibodies to thyroid antigens and lymphocytic thyroid infiltration - are involved in the pathogenesis of AITD. Insufficiency of regulatory T cells (Treg) and regulatory B cells (Breg), imbalance between Th17-lymphocytes and Treg-lymphocytes, abnormal production of pro-inflammatory cytokines has a significant influence on the progression of AITD. With AITD, the balance between oxidants and antioxidants is disturbed and oxidative stress (OS) occurs. The lack of modern effective pharmacological therapy of AITD prompted us to consider the mechanisms of influence, possibilities of immunocorrection of pathogenetic factors using TG, micro/macronutrients. In order to develop a more effective treatment strategy, as well as approaches to prevention, a critical analysis of the ways of immunotherapeutic use of dietary supplements of I, Se, Zn, Mg and other minerals in AITD was carried out.
Collapse
Affiliation(s)
- Viktor Kravchenko
- Epidemiology of Endocrine Diseases, Vasily Pavlovich Komisarenko Institute of Endocrinology and Metabolism, Kyiv, Ukraine
| | | |
Collapse
|
16
|
Chruściel JJ, Olczyk J, Kudzin MH, Kaczmarek P, Król P, Tarzyńska N. Antibacterial and Antifungal Properties of Polyester, Polylactide, and Cotton Nonwovens and Fabrics, by Means of Stable Aqueous Dispersions Containing Copper Silicate and Some Metal Oxides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5647. [PMID: 37629939 PMCID: PMC10456794 DOI: 10.3390/ma16165647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Literature reviews have described the applications of silver, copper, and zinc ions and metallic particles of Cu, Ti, and Zn oxides, which have been found to be useful antimicrobial reagents for the biofunctionalization of various materials and their surfaces. For this purpose, compositions of water dispersions containing emulsions of synthetic copolymers based on acrylic and vinyl monomers, polysaccharides (hydroxyethyl cellulose and starch), and various additives with wetting and stabilizing properties were used. Many stable water dispersions of different chemical compositions containing bioactive chemical compounds (copper silicate hydrate, titanium dioxide, and zinc oxide (and other auxiliary substances)) were developed. They were used for the preparation of thin hybrid coatings having good antimicrobial properties against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and yeast fungus (Candida albicans). Polyester (PES) and polylactide (PLA) nonwovens were modified using the dip-coating method, while PES and cotton fabrics were biofunctionalized by means of dip-coating and coating methods. The antimicrobial (antibacterial and antifungal) properties of the textile materials (nonwovens and fabrics) biofunctionalized with the above-mentioned bioactive agents exhibiting antimicrobial properties (CuSiO3, TiO2, ZnO, or ZnO∙SiO2) were strongly dependent on the agents' content in the water dispersions. The PES and PLA nonwovens, modified on the surface with water compositions containing copper silicate hydrate, showed good antibacterial properties against the Gram-negative bacteria Escherichia coli, even at a content of 1 wt.% CuSiO3∙xH2O, and against the Gram-positive bacteria Staphylococcus aureus, at the content of at least 5 wt.% CuSiO3∙xH2O. The bacterial growth reduction factor (R) was greater than 99% for most of the samples tested. Good antifungal properties against the fungus Candida albicans were found for the PES and PLA nonwoven fabrics modified with dispersions containing 5-7 wt.% CuSiO3∙xH2O and 4.2-5.0 wt.% TiO2. The addition of TiO2 led to a significant improvement in the antifungal properties of the PES and PLA nonwovens modified in this way. For the samples of PES WIFP-270 and FS F-5 nonwovens, modified with water dispersions containing 5.0 wt.% CuSiO3∙xH2O and 4.2-5.0 wt.% TiO2, the growth reduction factor for the fungus Candida albicans (R) reached values in the range of 80.9-98.0%. These new biofunctionalized polymeric nonwoven textile materials can find practical applications in the manufacture of filters for hospital air-conditioning systems and for the automotive industry, as well as in air purification devices. Moreover, similar antimicrobial modification of fabrics with the dip-coating or coating methods can be applied, for example, in the fabrication of fungi- and mold-resistant garden furniture.
Collapse
Affiliation(s)
- Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology, Brzezińska 5/15, 92-103 Łódź, Poland; (J.O.); (M.H.K.); (P.K.); (P.K.); (N.T.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Joanna Olczyk
- Łukasiewicz Research Network—Lodz Institute of Technology, Brzezińska 5/15, 92-103 Łódź, Poland; (J.O.); (M.H.K.); (P.K.); (P.K.); (N.T.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, Brzezińska 5/15, 92-103 Łódź, Poland; (J.O.); (M.H.K.); (P.K.); (P.K.); (N.T.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Piotr Kaczmarek
- Łukasiewicz Research Network—Lodz Institute of Technology, Brzezińska 5/15, 92-103 Łódź, Poland; (J.O.); (M.H.K.); (P.K.); (P.K.); (N.T.)
- Biodegradation and Microbiological Research Laboratory, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Paulina Król
- Łukasiewicz Research Network—Lodz Institute of Technology, Brzezińska 5/15, 92-103 Łódź, Poland; (J.O.); (M.H.K.); (P.K.); (P.K.); (N.T.)
- Biomedical Engineering Center, Marii Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland
| | - Nina Tarzyńska
- Łukasiewicz Research Network—Lodz Institute of Technology, Brzezińska 5/15, 92-103 Łódź, Poland; (J.O.); (M.H.K.); (P.K.); (P.K.); (N.T.)
- Biomedical Engineering Center, Marii Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland
| |
Collapse
|
17
|
Mogharbel GH, Badawi AS, Zaman AY, Abd Elmoniem MM, Abdel-Rahman IM, Alenazi ME, Shah FA, Aly MA, Imam SN, Alenazi NE, El Sayed SM. Therapeutic benefits of prophetic medicine remedies in treating hematological diseases (A review article). AMERICAN JOURNAL OF BLOOD RESEARCH 2023; 13:130-142. [PMID: 37736537 PMCID: PMC10509466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/08/2023] [Indexed: 09/23/2023]
Abstract
Hematological disorders are common medical ailments constituting an important cause of morbidity and mortality worldwide, which may be managed efficiently using different prophetic medicine remedies as adjuvants to current therapeutics. Prophetic medicine includes the body of knowledge about medicine that has been derived from the deeds, customs (sunnah), ahadith (sayings), actions, and agreements of Prophet Muhammad, peace be upon him. This review article aims at exploring the magnitude of therapeutic benefits of prophetic medicine remedies as adjuvant treatments to many different types of hematological disorders. Herein, we reviewed many published research studies throughout the literature to delineate the potential therapeutic benefits of prophetic remedies on hematological disorders. Several types of hematological disorders may benefit from prophetic medicine remedies that are rich in natural antioxidants that combat oxidative stress-induced harm e.g. nigella sativa, oral honey, camel milk and urine, Ajwa date fruits, olive oil, Zamzam water and figs. Many prophetic medicine remedies were reported to decrease the hematological cytotoxicity effects induced by different chemicals and are beneficial in treating anemias e.g. iron deficiency anemia, sickle cell anemia, thalassemia, coagulopathies and hematological malignancies as leukemia and myeloma. These remedies treat or alleviate the different hematological disorders using different mechanisms e.g. modulating the immune function, treating deficiencies of different substances, protecting against toxins-induced cytotoxicity, decreasing platelets aggregation, suppressing clotting factors activation, exerting antineoplastic effects (enhancing cancer cells cytotoxicity) and inhibiting angiogenesis. Prophetic medicine remedies exert clinically significant therapeutic benefits for treating COVID-19 pandemic, anemia, thrombosis, thalassemia and blood cancers without inducing toxicity or side effects.
Collapse
Affiliation(s)
- Ghazi H Mogharbel
- Prophetic Medicine Course & Research, Taibah College of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
- Undergraduate Program, Taibah College of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Ahmad S Badawi
- Prophetic Medicine Course & Research, Taibah College of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
- Undergraduate Program, Taibah College of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Amal Yaseen Zaman
- Department of Gynecology and Obstetrics, Taibah Faculty of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | | | | | - Mariam Eid Alenazi
- Consultant of Family Medicine and Diabetes, King Salman Bin Abdel-Aziz Medical City, Ministry of HealthAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Fareed Akbar Shah
- Department of Surgery, Taibah Faculty of Medicine, Taibah UniversityAl-Medinah Al-Munawwarah, Saudi Arabia
| | - Mohamed Abdelnaem Aly
- Department of Surgery, Taibah Faculty of Medicine, Taibah UniversityAl-Medinah Al-Munawwarah, Saudi Arabia
| | - Syed Nazar Imam
- Department of Anatomy, Taibah Faculty of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | | | - Salah Mohamed El Sayed
- Prophetic Medicine Course & Research, Taibah College of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
- Department of Clinical Biochemistry and Molecular Medicine, Taibah College of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Sohag UniversitySohag, Egypt
| |
Collapse
|
18
|
Luo H, Yan J, Zhang D, Zhou X. Identification of cuproptosis-related molecular subtypes and a novel predictive model of COVID-19 based on machine learning. Front Immunol 2023; 14:1152223. [PMID: 37533853 PMCID: PMC10393044 DOI: 10.3389/fimmu.2023.1152223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Background To explicate the pathogenic mechanisms of cuproptosis, a newly observed copper induced cell death pattern, in Coronavirus disease 2019 (COVID-19). Methods Cuproptosis-related subtypes were distinguished in COVID-19 patients and associations between subtypes and immune microenvironment were probed. Three machine algorithms, including LASSO, random forest, and support vector machine, were employed to identify differentially expressed genes between subtypes, which were subsequently used for constructing cuproptosis-related risk score model in the GSE157103 cohort to predict the occurrence of COVID-19. The predictive values of the cuproptosis-related risk score were verified in the GSE163151 cohort, GSE152418 cohort and GSE171110 cohort. A nomogram was created to facilitate the clinical use of this risk score, and its validity was validated through a calibration plot. Finally, the model genes were validated using lung proteomics data from COVID-19 cases and single-cell data. Results Patients with COVID-19 had higher significantly cuproptosis level in blood leukocytes compared to patients without COVID-19. Two cuproptosis clusters were identified by unsupervised clustering approach and cuproptosis cluster A characterized by T cell receptor signaling pathway had a better prognosis than cuproptosis cluster B. We constructed a cuproptosis-related risk score, based on PDHA1, PDHB, MTF1 and CDKN2A, and a nomogram was created, which both showed excellent predictive values for COVID-19. And the results of proteomics showed that the expression levels of PDHA1 and PDHB were significantly increased in COVID-19 patient samples. Conclusion Our study constructed and validated an cuproptosis-associated risk model and the risk score can be used as a powerful biomarker for predicting the existence of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| | - Jisong Yan
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| | - Dingyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
19
|
Zhou F, Peng J, Tao Y, Yang L, Yang D, Sacher E. The Enhanced Durability of AgCu Nanoparticle Coatings for Antibacterial Nonwoven Air Conditioner Filters. Molecules 2023; 28:5446. [PMID: 37513318 PMCID: PMC10384833 DOI: 10.3390/molecules28145446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Antibacterial nonwoven fabrics, incorporated with Ag, have been applied as masks and air conditioner filters to prevent the spread of disease from airborne respiratory pathogens. In this work, we present a comparison study of Ag ions: Ag and AgCu nanoparticles (NPs) coated onto nonwoven fabrics intended for use as air conditioner antibacterial filters. We illustrate their color changes and durability running in air conditioners using antibacterial activity testing and X-ray Photoelectron Spectroscopic (XPS) analysis. We found that AgCu NPs showed the best antibacterial efficacy and durability. XPS analysis indicated that the Ag concentration, on both the AgCu and Ag- NP-coated fibers, changed little. On the contrary, the Ag concentration on Ag ion-coated fibers decreased by ~30%, and the coated NPs aggregated over time. The color change in AgCu NP-coated fabric, from yellow to white, is caused by oxide shell formation over the NPs, with nearly 46% oxidized silver. Our results, both from antibacterial evaluation and wind blowing tests, indicate that AgCu NP-coated fibers have higher durability, while Ag ion-coated fibers have little durability in such applications. The enhanced durability of the AgCu NP-coated antibacterial fabrics can be attributed to stronger NP-fiber interactions and greater ion release.
Collapse
Affiliation(s)
- Fang Zhou
- NanoTeX Lab, Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd., Tian'an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
| | - Jiabing Peng
- NanoTeX Lab, Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd., Tian'an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
| | - Yujie Tao
- NanoTeX Lab, Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd., Tian'an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
| | - Longlai Yang
- NanoTeX Lab, Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd., Tian'an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
| | - Dequan Yang
- NanoTeX Lab, Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd., Tian'an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
- Engineering School, Dali University, 2 Hongsheng Rd., Dali 671003, China
| | - Edward Sacher
- Regroupement Québécois de Matériaux de Pointe, Département de Génie Physique, Polytechnique Montréal, Case Postale 6079, Succursale Centre-Ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
20
|
Singh P, Hernandez‐Rauda R, Peña‐Rodas O. Preventative and therapeutic potential of animal milk components against COVID-19: A comprehensive review. Food Sci Nutr 2023; 11:2547-2579. [PMID: 37324885 PMCID: PMC10261805 DOI: 10.1002/fsn3.3314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
The global pandemic of COVID-19 is considered one of the most catastrophic events on earth. During the pandemic, food ingredients may play crucial roles in preventing infectious diseases and sustaining people's general health and well-being. Animal milk acts as a super food since it has the capacity to minimize the occurrence of viral infections due to inherent antiviral properties of its ingredients. SARS-CoV-2 virus infection can be prevented by immune-enhancing and antiviral properties of caseins, α-lactalbumin, β-lactoglobulin, mucin, lactoferrin, lysozyme, lactoperoxidase, oligosaccharides, glycosaminoglycans, and glycerol monolaurate. Some of the milk proteins (i.e., lactoferrin) may work synergistically with antiviral medications (e.g., remdesivir), and enhance the effectiveness of treatment in this disease. Cytokine storm during COVID-19 can be managed by casein hydrolyzates, lactoferrin, lysozyme, and lactoperoxidase. Thrombus formation can be prevented by casoplatelins as these can inhibit human platelet aggregation. Milk vitamins (i.e., A, D, E, and B complexes) and minerals (i.e., Ca, P, Mg, Zn, and Se) can have significantly positive effects on boosting the immunity and health status of individuals. In addition, certain vitamins and minerals can also act as antioxidants, anti-inflammatory, and antivirals. Thus, the overall effect of milk might be a result of synergistic antiviral effects and host immunomodulator activities from multiple components. Due to multiple overlapping functions of milk ingredients, they can play vital and synergistic roles in prevention as well as supportive agents during principle therapy of COVID-19.
Collapse
Affiliation(s)
- Parminder Singh
- Department of Animal Husbandry AmritsarGovernment of PunjabAmritsarIndia
| | - Roberto Hernandez‐Rauda
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| | - Oscar Peña‐Rodas
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| |
Collapse
|
21
|
Tomar S, Musyuni P, Aggarwal G. An overview of regulation for nutraceuticals and concept of personalized nutraceuticals. JOURNAL OF GENERIC MEDICINES 2023; 19:66-74. [PMID: 38603246 PMCID: PMC9841207 DOI: 10.1177/17411343221150875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Nutraceuticals are essentially nutritional components that have a vital role in developing and maintaining the body's regular functions, which keeps people healthy. The nutraceutical sector is also primarily driven by the existing global population and trends. Examples of foods considered as nutraceuticals include prebiotics, fibre, polyunsaturated fatty acids, probiotics, antioxidants, and other natural or herbal foods. Some of the most serious health problems of the 20th century, like COVID-19 and diabetes mellitus, are managed with the help of the preceding nutraceuticals. As we move into a time of health and medicine, the food industry as a whole has become more focused on research.
Collapse
Affiliation(s)
- Saurav Tomar
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Pankaj Musyuni
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Geeta Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| |
Collapse
|
22
|
Toledano JM, Puche-Juarez M, Moreno-Fernandez J, Ochoa JJ, Diaz-Castro J. Antioxidant and Immune-Related Implications of Minerals in COVID-19: A Possibility for Disease Prevention and Management. Antioxidants (Basel) 2023; 12:antiox12051104. [PMID: 37237970 DOI: 10.3390/antiox12051104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Since the coronavirus disease 2019 (COVID-19) pandemic appeared, both governments and the scientific community have focused their efforts on the search for prophylactic and therapeutic alternatives in order to reduce its effects. Vaccines against SARS-CoV-2 have been approved and administered, playing a key role in the overcoming of this situation. However, they have not reached the whole world population, and several doses will be needed in the future in order to successfully protect individuals. The disease is still here, so other strategies should be explored with the aim of supporting the immune system before and during the infection. An adequate diet is certainly associated with an optimal inflammatory and oxidative stress status, as poor levels of different nutrients could be related to altered immune responses and, consequently, an augmented susceptibility to infections and severe outcomes derived from them. Minerals exert a wide range of immune-modulatory, anti-inflammatory, antimicrobial, and antioxidant activities, which may be useful for fighting this illness. Although they cannot be considered as a definitive therapeutic solution, the available evidence to date, obtained from studies on similar respiratory diseases, might reflect the rationality of deeper investigations of the use of minerals during this pandemic.
Collapse
Affiliation(s)
- Juan M Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - María Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Julio J Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| |
Collapse
|
23
|
Nathan J, Shameera R, Ramachandran A. Impact of nutraceuticals on immunomodulation against viral infections-A review during COVID-19 pandemic in Indian scenario. J Biochem Mol Toxicol 2023; 37:e23320. [PMID: 36799127 DOI: 10.1002/jbt.23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China, in early December 2019 is a censorious global emergency after World War II. Research on the coronavirus uncovered essential information that aided in the development of the vaccine, and specific coronavirus disease 2019 (COVID-19) vaccines were later developed and were approved for usage in humans. But then, mutations in the coronavirus gave rise to new variants and questioned the vaccine's efficacy against them. On the other hand, the investigation of traditional medicine was also on its path to find a novel outcome against COVID-19. On a comparative analysis between India and the United States, India had low death rate and high recovery rate than the latter. The dietary regulation of immunity may be the factor that makes the above difference. The immunity gained from the regular diet of Indian culture nourishes Indian people with essential phytochemicals that support immunity and metabolism. Dietary phytochemicals or nutraceuticals possess antioxidant, anti-inflammatory, and anticancer properties, out of which our concern will be on immune-boosting phytochemicals from our daily nutritional supplements. In several case studies, dietary substance like lemon, ginger, and spinach was reported in the recovery of COVID-19 patients. Thus in this review, we discuss coronavirus and its available variants, vaccines, and the effect of nutraceuticals against the coronavirus. Further, we denote that the immunity of the Indian population may be high because of their diet, which adds natural phytochemicals to boost their immunity and metabolism.
Collapse
Affiliation(s)
- Jhansi Nathan
- AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Rabiathul Shameera
- AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Arunkumar Ramachandran
- Multidisciplinary Research Unit (MRU), Madras Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
24
|
Equey A, Berger MM, Gonseth-Nusslé S, Augsburger M, Rezzi S, Hodgson ACC, Estoppey S, Pantaleo G, Pellaton C, Perrais M, Lenglet S, Rousson V, D'Acremont V, Bochud M. Association of plasma zinc levels with anti-SARS-CoV-2 IgG and IgA seropositivity in the general population: A case-control study. Clin Nutr 2023; 42:972-986. [PMID: 37130500 PMCID: PMC10110932 DOI: 10.1016/j.clnu.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Some micronutrients have key roles in immune defence, including mucosal defence mechanisms and immunoglobulin production. Altered micronutrient status has been linked with COVID-19 infection and disease severity. We assessed the associations of selected circulating micronutrients with anti-SARS-CoV-2 IgG and IgA seropositivity in the Swiss community using early pandemic data. METHODS Case-control study comparing the first PCR-confirmed COVID-19 symptomatic cases in the Vaud Canton (May to June 2020, n = 199) and controls (random population sample, n = 447), seronegative for IgG and IgA. The replication analysis included seropositive (n = 134) and seronegative (n = 152) close contacts from confirmed COVID-19 cases. Anti-SARS-CoV-2 IgG and IgA levels against the native trimeric spike protein were measured using the Luminex immunoassay. We measured plasma Zn, Se and Cu concentrations by ICP-MS, and 25-hydroxy-vitamin D3 (25(OH)D3) with LC-MS/MS and explored associations using multiple logistic regression. RESULTS The 932 participants (54.1% women) were aged 48.6 ± 20.2 years (±SD), BMI 25.0 ± 4.7 kg/m2 with median C-Reactive Protein 1 mg/l. In logistic regressions, log2(Zn) plasma levels were negatively associated with IgG seropositivity (OR [95% CI]: 0.196 [0.0831; 0.465], P < 0.001; replication analyses: 0.294 [0.0893; 0.968], P < 0.05). Results were similar for IgA. We found no association of Cu, Se, and 25(OH)D3 with anti-SARS-CoV-2 IgG or IgA seropositivity. CONCLUSION Low plasma Zn levels were associated with higher anti-SARS-CoV-2 IgG and IgA seropositivity in a Swiss population when the initial viral variant was circulating, and no vaccination available. These results suggest that adequate Zn status may play an important role in protecting the general population against SARS-CoV-2 infection. REGISTRY CORONA IMMUNITAS:: ISRCTN18181860.
Collapse
Affiliation(s)
- Antoine Equey
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Mette M Berger
- Service of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Semira Gonseth-Nusslé
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Marc Augsburger
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Épalinges, Switzerland
| | | | - Sandrine Estoppey
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Pellaton
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maïwenn Perrais
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Sébastien Lenglet
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Valentin Rousson
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Valérie D'Acremont
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| |
Collapse
|
25
|
Renata RBN, Arely GRA, Gabriela LMA, Esther MLM. Immunomodulatory Role of Microelements in COVID-19 Outcome: a Relationship with Nutritional Status. Biol Trace Elem Res 2023; 201:1596-1614. [PMID: 35668151 PMCID: PMC9170122 DOI: 10.1007/s12011-022-03290-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection can activate innate and adaptive immune responses and result in massive inflammatory responses in the disease. A comprehensive understanding of the participation of micronutrients in the immune response to COVID-19 will allow the creation of prevention and supplementation scenarios in malnutrition states. Microelement deficiency can be decisive in the progression of diseases and their optimal levels can act as protective factors, helping to maintain homeostasis. Vitamin A, B, D, selenium, zinc, and copper, through their complementary and synergistic effects, allow the components of innate and adaptive immunity to counteract infections like those occurring in the respiratory tract.Thus, alterations in nutritional status are related to metabolic diseases, systemic inflammation, and deterioration of the immune system that alter the response against viral infections, such as COVID-19. The aim of this review is to describe the micronutrients that play an important role as immunomodulators and its relationship between malnutrition and the development of respiratory infections with an emphasis on severe and critical COVID-19. We conclude that although an unbalanced diet is not the only risk factor that predisposes to COVID-19, a correct and balanced diet, which provides the optimal amount of micronutrients and favors an adequate nutritional status, could confer beneficial effects for prevention and improvement of clinical results. The potential usefulness of micronutrient supplementation in special cases is highlighted.
Collapse
Affiliation(s)
- Roldán-Bretón Nuria Renata
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México
| | - González-Rascón Anna Arely
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Leija-Montoya Ana Gabriela
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México
| | - Mejía-León María Esther
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México.
| |
Collapse
|
26
|
Xie Y, Xu J, Zhou D, Guo M, Zhang M, Gao Y, Liu M, Shi J, Yang K, Zheng Q, Zhao L, Qin Y, Hu R, Wei J, Zhang J, Tian J. Micronutrient perspective on COVID-19: Umbrella review and reanalysis of meta-analyses. Crit Rev Food Sci Nutr 2023; 64:6783-6801. [PMID: 36794398 DOI: 10.1080/10408398.2023.2174948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
INTRODUCTION Micronutrients are clinically important in managing COVID-19, and numerous studies have been conducted, but inconsistent findings exist. OBJECTIVE To explore the association between micronutrients and COVID-19. METHODS PubMed, Web of Science, Embase, Cochrane Library and Scopus for study search on July 30, 2022 and October 15, 2022. Literature selection, data extraction and quality assessment were performed in a double-blinded, group discussion format. Meta-analysis with overlapping associations were reconsolidated using random effects models, and narrative evidence was performed in tabular presentations. RESULTS 57 reviews and 57 latest original studies were included. 21 reviews and 53 original studies were of moderate to high quality. Vitamin D, vitamin B, zinc, selenium, and ferritin levels differed between patients and healthy people. Vitamin D and zinc deficiencies increased COVID-19 infection by 0.97-fold/0.39-fold and 1.53-fold. Vitamin D deficiency increased severity 0.86-fold, while low vitamin B and selenium levels reduced severity. Vitamin D and calcium deficiencies increased ICU admission by 1.09 and 4.09-fold. Vitamin D deficiency increased mechanical ventilation by 0.4-fold. Vitamin D, zinc, and calcium deficiencies increased COVID-19 mortality by 0.53-fold, 0.46-fold, and 5.99-fold, respectively. CONCLUSION The associations between vitamin D, zinc, and calcium deficiencies and adverse evolution of COVID-19 were positive, while the association between vitamin C and COVID-19 was insignificant.REGISTRATION: PROSPERO CRD42022353953.
Collapse
Affiliation(s)
- Yafei Xie
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, China
| | - Jianguo Xu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Mingyue Guo
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Mengxiang Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ya Gao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Ming Liu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Jiyuan Shi
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kelu Yang
- Department of Public Health and Primary Care, Academic Centre for Nursing and Midwifery, KU Leuven - University of Leuven, Leuven, Belgium
| | - Qingyong Zheng
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, China
| | - Liang Zhao
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, China
| | - Yu Qin
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Hu
- First Operating Room, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Wei
- The Second Clinical Medical School of Nanchang University, Jiangxi, China
| | - Junhua Zhang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
Panova EV, Voronina JK, Safin DA. Copper(II) Chelates of Schiff Bases Enriched with Aliphatic Fragments: Synthesis, Crystal Structure, In Silico Studies of ADMET Properties and a Potency against a Series of SARS-CoV-2 Proteins. Pharmaceuticals (Basel) 2023; 16:286. [PMID: 37259430 PMCID: PMC9960933 DOI: 10.3390/ph16020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 09/14/2024] Open
Abstract
We report two complexes [Cu(LI)2] (1) and [Cu(LII)2] (2) (HLI = N-cyclohexyl-3-methoxysalicylideneimine, HLII = N-cyclohexyl-3-ethoxysalicylideneimine). The ligands in both complexes are trans-1,5-N,O-coordinated, yielding a square planar CuN2O2 coordination core. The molecule of 1 is planar with two cyclohexyl groups oriented to the opposite sites of the planar part of a molecule, while the molecule of 2 is significantly bent with two cyclohexyl groups oriented to the same convex site of a molecule. It was established that both complexes in MeOH absorb in the UV region due to intraligand transitions and LMCT. Furthermore, the UV-vis spectra of both complexes revealed two low intense shoulders in the visible region at about 460 and 520 nm, which were attributed to d-d transitions. Both complexes were predicted to belong to a fourth class of toxicity with the negative BBB property and positive gastrointestinal absorption property. According to the molecular docking analysis results, both complexes are active against all the applied SARS-CoV-2 proteins with the best binding affinity with Nsp 14 (N7-MTase), PLpro and Mpro. The obtained docking scores of complexes are either comparable to or even higher than those of the initial ligands. Complex 1 was found to be more efficient upon interaction with the applied proteins in comparison to complex 2. Ligand efficiency scores for the initial ligands, 1 and 2 were also revealed.
Collapse
Affiliation(s)
- Elizaveta V. Panova
- Institute of Chemistry, University of Tyumen, Volodarskogo Str. 6, 625003 Tyumen, Russia
| | - Julia K. Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt 31, GSP-1, 119991 Moscow, Russia
| | - Damir A. Safin
- Institute of Chemistry, University of Tyumen, Volodarskogo Str. 6, 625003 Tyumen, Russia
- Scientific and Educational and Innovation Center for Chemical and Pharmaceutical Technologies, Ural Federal University named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| |
Collapse
|
28
|
Singh J, Anantharaj A, Panwar A, Rani C, Bhardwaj M, Kumar P, Chattopadhyay P, Devi P, Maurya R, Mishra P, Pandey AK, Pandey R, Medigeshi GR. BA.1, BA.2 and BA.2.75 variants show comparable replication kinetics, reduced impact on epithelial barrier and elicit cross-neutralizing antibodies. PLoS Pathog 2023; 19:e1011196. [PMID: 36827451 PMCID: PMC9994724 DOI: 10.1371/journal.ppat.1011196] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 is capable of infecting unvaccinated, vaccinated and previously-infected individuals due to its ability to evade neutralization by antibodies. With multiple sub-lineages of Omicron emerging in the last 12 months, there is inadequate information on the quantitative antibody response generated upon natural infection with Omicron variant and whether these antibodies offer cross-protection against other sub-lineages of Omicron variant. In this study, we characterized the growth kinetics of Kappa, Delta and Omicron variants of SARS-CoV-2 in Calu-3 cells. Relatively higher amounts infectious virus titers, cytopathic effect and disruption of epithelial barrier functions was observed with Delta variant whereas infection with Omicron sub-lineages led to a more robust induction of interferon pathway, lower level of virus replication and mild effect on epithelial barrier. The replication kinetics of BA.1, BA.2 and BA.2.75 sub-lineages of the Omicron variant were comparable in cell culture and natural infection in a subset of individuals led to a significant increase in binding and neutralizing antibodies to the Delta variant and all the three sub-lineages of Omicron but the level of neutralizing antibodies were lowest against the BA.2.75 variant. Finally, we show that Cu2+, Zn2+ and Fe2+ salts inhibited in vitro RdRp activity but only Cu2+ and Fe2+ inhibited both the Delta and Omicron variants in cell culture. Thus, our results suggest that high levels of interferons induced upon infection with Omicron variant may counter virus replication and spread. Waning neutralizing antibody titers rendered subjects susceptible to infection by Omicron variants and natural Omicron infection elicits neutralizing antibodies that can cross-react with other sub-lineages of Omicron and other variants of concern.
Collapse
Affiliation(s)
- Janmejay Singh
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anbalagan Anantharaj
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Aleksha Panwar
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Chitra Rani
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Monika Bhardwaj
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Parveen Kumar
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priti Devi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pallavi Mishra
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Anil Kumar Pandey
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Guruprasad R. Medigeshi
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
29
|
Tsai HY, Lin YH, Huang KC, Yang CC, Chou CH, Chao LC. Reduction of Viral and Bacterial Activity by Using a Self-Powered Variable-Frequency Electrical Stimulation Device. MICROMACHINES 2023; 14:282. [PMID: 36837982 PMCID: PMC9965244 DOI: 10.3390/mi14020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Viruses and bacteria, which can rapidly spread through droplets and saliva, can have serious effects on people's health. Viral activity is traditionally inhibited using chemical substances, such as alcohol or bleach, or physical methods, such as thermal energy or ultraviolet-light irradiation. However, such methods cannot be used in many applications because they have certain disadvantages, such as causing eye or skin injuries. Therefore, in the present study, the electrical stimulation method is used to stimulate a virus, namely, coronavirus 229E, and two types of bacteria, namely, Escherichia coli and Staphylococcus aureus, to efficiently reduce their infectivity of healthy cells (such as the Vero E6 cell in a viral activity-inhibition experiment). The infectivity effects of the aforementioned virus and bacteria were examined under varying values of different electrical stimulation parameters, such as the stimulation current, frequency, and total stimulation time. The experimental results indicate that the activity of coronavirus 229E is considerably inhibited through direct-current pulse stimulation with a current of 25 mA and a frequency of 2 or 20 Hz. In addition, E. coli activity was reduced by nearly 80% in 10 s through alternating-current pulse stimulation with a current of 50 mA and a frequency of 25 Hz. Moreover, a self-powered electrical stimulation device was constructed in this study. This device consists of a solar panel and battery to generate small currents with variable frequencies, which has advantages of self-powered and variable frequencies, and the device can be utilized on desks, chairs, or elevator buttons for the inhibition of viral and bacterial activities.
Collapse
|
30
|
Aprajita, Choudhary M. New Ni(II) and Cu(II) Schiff base coordination complexes derived from 5-Bromo-salicylaldehyde and 3-picoyl amine/ethylenediamine: Synthesis, structure, Hirshfeld surface and molecular docking study with SARS-CoV-2 7EFP-main protease. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Thomberg T, Bulgarin H, Lust A, Nerut J, Koppel M, Romann T, Palm R, Månsson M, Flores March NM, Junninen H, Külaviir M, Paiste P, Kirsimäe K, Punapart M, Viru L, Merits A, Lust E. The anti SARS-CoV-2 activity of nanofibrous filter materials activated with metal clusters. ATMOSPHERIC ENVIRONMENT: X 2023; 17:100212. [PMID: 36915669 PMCID: PMC9984305 DOI: 10.1016/j.aeaoa.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nanofibrous filter materials were prepared by electrospinning a solution of 28 wt% poly(vinylidene fluoride) in N,N-dimethylacetamide with and without the addition of 2 wt% AgNO3, Cu(NO3)2·2.5H2O or ZnCl2. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, inductively coupled plasma mass spectroscopy, thermogravimetric analysis, contact angle measurement, nitrogen sorption, and mercury intrusion porosimetry methods were used for the characterization of physical structure as well as the chemical composition of the electrospun materials. Particle filtration efficiency and antiviral activity against the SARS-CoV-2 alpha variant were tested in order to estimate the suitability of the prepared electrospun filter materials for application as indoor air filtration systems with virucidal properties. All filter materials prepared with salts demonstrated very high particle filtration efficiency (≥98.0%). The best antiviral activity was demonstrated by a material containing Cu(NO3)2·2.5H2O in the spinning solution, which displayed the decrease in the number of infectious virions by three orders of magnitude after a contact time of 12 h. Materials with the addition of AgNO3 and ZnCl2 decreased the number of infectious virions after the same contact time by only ∼8 and ∼11 times, respectively.
Collapse
Affiliation(s)
- T Thomberg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - H Bulgarin
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - A Lust
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - J Nerut
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - M Koppel
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - T Romann
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - R Palm
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - M Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - N M Flores March
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411, Tartu, Estonia
| | - H Junninen
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411, Tartu, Estonia
| | - M Külaviir
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - P Paiste
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - K Kirsimäe
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - M Punapart
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - L Viru
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - A Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - E Lust
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
32
|
汪 晓, 张 伶, 成 果. [Nutrition Plays a Vital Role in the Prevention and Treatment of COVID-19]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:108-113. [PMID: 36647652 PMCID: PMC10409020 DOI: 10.12182/20230160303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic of coronavirus disease 2019 (COVID-19). Proper nutritional support helps boost the immunity of the human body, strengthen the high-risk populations' defense against SARS-CoV-2, reduce the prevalence of COVID-19, prevent mild cases from developing into severe cases, and reduce the occurrence of adverse symptoms during recovery. Nutritional support is an important guarantee to provide protection against virus infection, promote patient recovery, and improve patient prognosis. Whole nutritional food formulas designed according to the characteristic clinical symptoms of COVID-19 provide patients with comprehensive nutritional support of appropriate nutritional content, which effectively improves the nutritional status of patients and provides strong technical support to improve their quality of survival. During the critical period of COVID-19 prevention and control, more emphasis should be placed on the essential role of nutritional support and the clinical efficacy of nutritional support should be given full play.
Collapse
Affiliation(s)
- 晓语 汪
- 四川大学华西第二医院 营养中心 (成都 610041)Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - 伶俐 张
- 四川大学华西第二医院 营养中心 (成都 610041)Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - 果 成
- 四川大学华西第二医院 营养中心 (成都 610041)Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Yakoubi A, Dhafer CEB. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. PLASMONICS (NORWELL, MASS.) 2022; 18:311-347. [PMID: 36588744 PMCID: PMC9786532 DOI: 10.1007/s11468-022-01754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Coronavirus disease 2019 known as COVID-19 is the worst pandemic since World War II. The outbreak of COVID-19 had a significant repercussion on the health, economy, politics, and environment, making coronavirus-related issues more complicated and becoming one of the most challenging pandemics of the last century with deadly outcomes and a high rate of the reproduction number. There are thousands of different types - or variants - of COVID circulating across the world. Viruses mutate all the time; it emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis, and effective antiviral and protective therapeutics. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis, and treatment of COVID-19. This review presents an outline of the platforms developed using plasmonic nanoparticles in the detection, treatment, and prevention of SARS-CoV-2. We select the best strategies in each of these approaches. The properties of metallic plasmon NPs and their relevance in the development of novel point-of-care diagnosis approaches for COVID-19 are highlighted. Also, we discuss the current challenges and the future perspectives looking towards the clinical translation and the commercial aspects of nanotechnology and plasmonic NP-based diagnostic tools and therapy to fight COVID-19 pandemic. The article could be of significance for researchers dedicated to developing suitable plasmonic detection tools and therapy approaches for COVID-19 viruses and future pandemics.
Collapse
Affiliation(s)
- Afef Yakoubi
- Laboratory of Hetero-organic Compounds and Nanostructured Materials, Chemistry Department, Faculty of Sciences Bizerte, University of Carthage, LR 18 ES11, 7021 Bizerte, Tunisia
| | - Cyrine El Baher Dhafer
- Chemistry Department College of Science, Jouf University, P.O Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
34
|
Bayraktar N, Bayraktar M, Ozturk A, Ibrahim B. Evaluation of the Relationship Between Aquaporin-1, Hepcidin, Zinc, Copper, and İron Levels and Oxidative Stress in the Serum of Critically Ill Patients with COVID-19. Biol Trace Elem Res 2022; 200:5013-5021. [PMID: 36001235 PMCID: PMC9399591 DOI: 10.1007/s12011-022-03400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Our study aims to determine the relationship between hepcidin, aquaporin (AQP-1), copper (Cu), zinc (Zn), iron (Fe) levels, and oxidative stress in the sera of seriously ill COVID-19 patients with invasive mechanical ventilation. Ninety persons with and without COVID-19 were taken up and separated into two groups. The first group included seriously COVID-19 inpatients having endotracheal intubation in the intensive care unit (n = 45). The second group included individuals who had negative PCR tests and had no chronic disease (the healthy control group n = 45). AQP-1, hepcidin, Zn, Cu, Fe, total antioxidant status (TAS), and total oxidant status (TOS) were studied in the sera of both groups, and the relations of these levels with oxidative stress were determined. When the COVID-19 patient and the control groups were compared, all studied parameters were found to be statistically significant (p < 0.01). Total oxidant status (TOS), oxidative stress index (OSI), and AQP-1, hepcidin, and Cu levels were increased in patients with COVID-19 compared to healthy people. Serum TAC, Zn, and Fe levels were found to be lower in the patient group than in the control group. Significant correlations were detected between the studied parameters in COVID-19 patients. Results indicated that oxidative stress may play an important role in viral infection due to SARS-CoV-2. We think that oxidative stress parameters as well as some trace elements at the onset of COVID-19 disease will provide a better triage in terms of disease severity.
Collapse
Affiliation(s)
- Nihayet Bayraktar
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Mustafa Bayraktar
- Department of Internal Medical, Faculty of Medicine, Yıdırım Beyazıt University, Ankara, Turkey
| | - Ali Ozturk
- Department of Medical Microbiology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Bashar Ibrahim
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
35
|
Chen Y, Ma ZF, Yu D, Jiang Z, Wang B, Yuan L. Geographical distribution of trace elements (selenium, zinc, iron, copper) and case fatality rate of COVID-19: a national analysis across conterminous USA. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4423-4436. [PMID: 35098416 PMCID: PMC8801196 DOI: 10.1007/s10653-022-01204-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/09/2022] [Indexed: 06/01/2023]
Abstract
Severe outcome particularly death is the largest burden of COVID-19. Clinical observations showed preliminary data that deficiency in certain trace elements, essential for the normal activity of immune system, may be associated with worse COVID-19 outcome. Relevant study of environmental epidemiology has yet to be explored. We investigated the geographical association between concentrations of Se, Zn, Fe and Cu in surface soils and case fatality rate of COVID-19 in USA. Two sets of database, including epidemiological data of COVID-19 (including case fatality rate, from the University of John Hopkinson) and geochemical concentration data of Se, Zn, Fe and Cu in surface soils (from the National Geochemical Survey), were mapped according to geographical location at the county level across conterminous USA. Characteristics of population, socio-demographics and residential environment by county were also collected. Seven cross-sectional sampling dates, with a 4-week interval between adjacent dates, constructed an observational investigation over 24 weeks from October 8, 2020, to March 25, 2021. Multivariable fractional (logit) outcome regression analyses were used to assess the association with adjustment for potential confounding factors. In USA counties with the lowest concentration of Zn, the case fatality rate of COVID-19 was the highest, after adjustment for other influencing factors. Associations of Se, Fe and Cu with case fatality rate of COVID-19 were either inconsistent over time or disappeared after adjustment for Zn. Our large study provides epidemiological evidence suggesting an association of Zn with COVID-19 severity, suggesting Zn deficiency should be avoided.
Collapse
Affiliation(s)
- Ying Chen
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Zheng Feei Ma
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Dahai Yu
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, ST5 5BG, UK
| | - Zifei Jiang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Bo Wang
- Suzhou Centre for Disease Control and Prevention, Suzhou, 215004, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
36
|
Application of Nanotechnology in COVID-19 Infection: Findings and Limitations. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an urgent need to address the global mortality of the COVID-19 pandemic, as it reached 6.3 million as of July 2022. As such, the experts recommended the mass diagnosis of SARS-CoV-2 infection at an early stage using nanotechnology-based sensitive diagnostic approaches. The development of nanobiosensors for Point-of-Care (POC) sampling of COVID-19 could ensure mass detection without the need for sophisticated laboratories or expert personnel. The use of Artificial Intelligence (AI) techniques for POC detection was also proposed. In addition, the utilization of various antiviral nanomaterials such as Silver Nanoparticles (AgNPs) for the development of masks for personal protection mitigates viral transmission. Nowadays, nano-assisted vaccines have been approved for emergency use, but their safety and effectiveness in the mutant strain of the SARS-CoV-2 virus remain challenging. Methodology: Updated literature was sourced from various research indexing databases such as PubMed, SCOPUS, Science Direct, Research Gate and Google Scholars. Result: We presented the concept of novel nanotechnology researched discovery, including nano-devices, electrochemical biosensing, nano-assisted vaccine, and nanomedicines, for use in recent times, which could be a formidable step for future management of COVID-19.
Collapse
|
37
|
Ahvanooei MRR, Norouzian MA, Vahmani P. Beneficial Effects of Vitamins, Minerals, and Bioactive Peptides on Strengthening the Immune System Against COVID-19 and the Role of Cow's Milk in the Supply of These Nutrients. Biol Trace Elem Res 2022; 200:4664-4677. [PMID: 34837602 PMCID: PMC8627168 DOI: 10.1007/s12011-021-03045-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic, which causes severe respiratory tract infections in humans, has become a global health concern and is spreading rapidly. At present, the most important issue associated with COVID-19 is the immune system and the factors that affect it. It is well known that cow's milk is highly rich in micronutrients that increase and strengthen the immune system. Research shows that the administration of these nutrients is very effective in fighting COVID-19, and a deficiency in any of them can be a weakness in the fight against the virus. On the other hand, cow's milk is accessible to the whole population, and drinking colostrum, raw, and micro-filtered milk from cows vaccinated against SARS-CoV-2 could provide individuals with short-term protection against the SARS-CoV-2 infection until vaccines become commercially available. This review aimed to discuss the effects of milk vitamins, minerals, and bioactive peptides on general health in humans to combat viral diseases, especially COVID-19, and to what extent cow's milk consumption plays a role in providing these metabolites. Cow's milk contains many bioactive compounds that include vitamins, minerals, biogenic amines, nucleotides, oligosaccharides, organic acids, and immunoglobulins. Humans can meet a significant portion of their requirements for vitamins and minerals through the consumption of cow's milk. Recent studies have shown that micronutrients such as vitamins D, E, B, C, and A as well as minerals Zn, Cu, Mg, I, and Se and bioactive peptides, each can have positive and significant effects on strengthening the immune system and general health in humans.
Collapse
Affiliation(s)
- M R Rezaei Ahvanooei
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Mohammad Ali Norouzian
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Payam Vahmani
- Department of Animal Science, University of California, 2251 Meyer Hall, Davis, CA, 95616, USA
| |
Collapse
|
38
|
Pisoschi AM, Iordache F, Stanca L, Gajaila I, Ghimpeteanu OM, Geicu OI, Bilteanu L, Serban AI. Antioxidant, Anti-inflammatory, and Immunomodulatory Roles of Nonvitamin Antioxidants in Anti-SARS-CoV-2 Therapy. J Med Chem 2022; 65:12562-12593. [PMID: 36136726 PMCID: PMC9514372 DOI: 10.1021/acs.jmedchem.2c01134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Viral pathologies encompass activation of pro-oxidative pathways and inflammatory burst. Alleviating overproduction of reactive oxygen species and cytokine storm in COVID-19 is essential to counteract the immunogenic damage in endothelium and alveolar membranes. Antioxidants alleviate oxidative stress, cytokine storm, hyperinflammation, and diminish the risk of organ failure. Direct antiviral roles imply: impact on viral spike protein, interference with the ACE2 receptor, inhibition of dipeptidyl peptidase 4, transmembrane protease serine 2 or furin, and impact on of helicase, papain-like protease, 3-chyomotrypsin like protease, and RNA-dependent RNA polymerase. Prooxidative environment favors conformational changes in the receptor binding domain, promoting the affinity of the spike protein for the host receptor. Viral pathologies imply a vicious cycle, oxidative stress promoting inflammatory responses, and vice versa. The same was noticed with respect to the relationship antioxidant impairment-viral replication. Timing, dosage, pro-oxidative activities, mutual influences, and interference with other antioxidants should be carefully regarded. Deficiency is linked to illness severity.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Loredana Stanca
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Iuliana Gajaila
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Oana Margarita Ghimpeteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Ovidiu Ionut Geicu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| | - Liviu Bilteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Molecular Nanotechnology Laboratory,
National Institute for Research and Development in
Microtechnologies, 126A Erou Iancu Nicolae Street, 077190Bucharest,
Romania
| | - Andreea Iren Serban
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| |
Collapse
|
39
|
Engin AB, Engin ED, Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103937. [PMID: 35882309 PMCID: PMC9307469 DOI: 10.1016/j.etap.2022.103937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 05/14/2023]
Abstract
In severe COVID-19, the levels of iron (Fe), copper (Cu), zinc (Zn) and selenium (Se), do not only regulate host immune responses, but modify the viral genome, as well. While low serum Fe concentration is an independent risk factor for the increased death rate, Zn controls oxidative stress, synthesis of inflammatory cytokines and viral replication. Therefore, Zn deficiency associates with a worse prognosis. Although Cu exposure inactivates the viral genome and exhibits spike protein dispersal, increase in Cu/Zn due to high serum Cu levels, are correlated with enhanced risk of infections. Se levels are significantly higher in surviving COVID-19 patients. Meanwhile, both Zn and Se suppress the replication of SARS-CoV-2. Since the balance between the deficiency and oversupply of these metals due to a reciprocal relationship, has decisive effect on the prognosis of the SARS-CoV-2 infection, monitoring their concentrations may facilitate improved outcomes for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
40
|
Yoon J, Kim J, Lee J, Hong SP, Park S, Jeong YW, Lee C, Oh SG. Fabrication of antiviral nanofibers containing various Cu salts and ZnO nanorods by electrospinning. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Li Y, Luo W, Liang B. Circulating trace elements status in COVID-19 disease: A meta-analysis. Front Nutr 2022; 9:982032. [PMID: 36034929 PMCID: PMC9411985 DOI: 10.3389/fnut.2022.982032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
Trace elements are a group of essential metals or metalloids, which are necessary for life, and present in minute amounts. Despite substantial researches highlighting the importance of trace elements in Coronavirus disease 2019 (COVID-19) diseases, a thorough evaluation of the levels of circulating trace elements is lacking. Therefore, we conducted a systematic review and meta-analysis to evaluate the trace element status (Zn, Fe, Cu, Mg, and Se) in COVID-19 disease. We also assessed the relationship between circulating trace elements and COVID-19 disease severity and survival status during follow-up. We searched comprehensively MEDLINE, Web of Science, CNKI, and WangFang databases without language restriction, between November 1, 2019 and April 1, 2022. The search identified 1,566 preliminary references. A total of 49 studies met the eligibility criteria and were included in the review, and 42 studies were included in the final meta-analysis. Meta-analysis showed that COVID-19 patients had significantly lower circulating Zn (SMD: -0.83, 95% CI: -1.19 to -0.46, P < 0.001), Fe (SMD: -1.56, 95% CI: -2.90 to -0.21, P = 0.023), and Se (SMD: -0.75, 95% CI: -0.94 to -0.56, P < 0.001) levels than healthy controls, and circulating Zn (SMD: -0.47, 95% CI: -0.75 to -0.18, P = 0.002), Fe (SMD: -0.45, 95% CI: -0.79 to -0.12, P = 0.008), and Se (SMD: -0.27, 95% CI: -0.49 to -0.04, P = 0.020) levels were associated with the presence of severity status in COVID-19 patients. Moreover, circulating Fe levels in non-survivors were significantly lower than survivors in COVID-19 (SMD: -0.28, 95% CI: -0.44 to -0.12, P = 0.001). However, there was no significant difference in Cu and Mg levels between COVID-19 patients and controls, severity and non-severity status, and survivors and non-survivors (all P > 0.05). Taken together, COVID-19 patients displayed lower circulating levels of Zn, Fe, and Se, and their levels were associated with severity status. Moreover, circulating Fe levels may provide part of the explanation for the unfavorable survival status. Therefore, we presumed optimistically that supplements of trace elements might provide an adjutant treatment in the early stages of COVID-19. Systematic review registration [https://www.crd.york.ac.uk/prospero], identifier [CRD42022348599].
Collapse
Affiliation(s)
- Yunhui Li
- Clinical Laboratory, PLA North Military Command Region General Hospital, Shenyang, China
| | - Weihe Luo
- Department of Medical Engineering, PLA North Military Command Region General Hospital, Shenyang, China
| | - Bin Liang
- Department of Bioinformatics, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
42
|
Germano C, Messina A, Tavella E, Vitale R, Avellis V, Barboni M, Attini R, Revelli A, Zola P, Manzoni P, Masturzo B. Fetal Brain Damage during Maternal COVID-19: Emerging Hypothesis, Mechanism, and Possible Mitigation through Maternal-Targeted Nutritional Supplementation. Nutrients 2022; 14:3303. [PMID: 36014809 PMCID: PMC9414753 DOI: 10.3390/nu14163303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
The recent outbreak of the novel Coronavirus (SARS-CoV-2 or CoV-2) pandemic in 2019 and the risk of CoV-2 infection during pregnancy led the scientific community to investigate the potential negative effects of Coronavirus infection on pregnancy outcomes and fetal development. In particular, as CoV-2 neurotropism has been demonstrated in adults, recent studies suggested a possible risk of fetal brain damage and fetal brain development impairment, with consequent psychiatric manifestations in offspring of mothers affected by COronaVIrus Disease (COVID) during pregnancy. Through the understanding of CoV-2's pathogenesis and the pathways responsible for cell damage, along with the available data about neurotropic virus attitudes, different strategies have been suggested to lower the risk of neurologic disease in newborns. In this regard, the role of nutrition in mitigating fetal damages related to oxidative stress and the inflammatory environment during viral infection has been investigated, and arginine, n3PUFA, vitamins B1 and B9, choline, and flavonoids were found to be promising in and out of pregnancy. The aim of this review is to provide an overview of the current knowledge on the mechanism of fetal brain damage and the impact of nutrition in reducing inflammation related to worse neurological outcomes in the context of CoV-2 infections during pregnancy.
Collapse
Affiliation(s)
- Chiara Germano
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Alessandro Messina
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Elena Tavella
- Sant’Anna Hospital, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Raffaele Vitale
- Sant’Anna Hospital, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Vincenzo Avellis
- Sant’Anna Hospital, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Martina Barboni
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Rossella Attini
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Alberto Revelli
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Paolo Zola
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Paolo Manzoni
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy
| | - Bianca Masturzo
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy
| |
Collapse
|
43
|
S FA, Madhu M, Udaya Kumar V, Dhingra S, Kumar N, Singh S, Ravichandiran V, Murti K. Nutritional Aspects of People Living with HIV (PLHIV) Amidst COVID-19 Pandemic: an Insight. CURRENT PHARMACOLOGY REPORTS 2022; 8:350-364. [PMID: 35966952 PMCID: PMC9362559 DOI: 10.1007/s40495-022-00301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 04/16/2023]
Abstract
Purpose of Review This review elaborates the role of malnutrition in PLHIV (people living with HIV) in the context of COVID-19 and emphasis the need of supplementation, dietary intervention, and nutritional counselling in the post-COVID era. One of the most critical challenges among HIV/AIDS patients is malnutrition since it weakens the immune system and increases risk to opportunistic infections. In HIV (human immunodeficiency virus) infection, weight loss is prevalent due to reduced nutritional consumption, malabsorption, abnormal metabolism, and antiretroviral therapy. Sufficient nutrition is required for optimal immune function, as a result, food therapy is now considered an important adjuvant in the treatment of HIV patients. Recent Findings Nutritional intervention, such as the use of dietary supplements, can help to prevent nutrient deficiency, lowering the death risk among malnourished HIV population. Immunocompromised individuals are at very high risk for COVID-19 and malnutrition increases the risk of infection by multiple folds. Interventions, such as nutrition education and counselling are important, to improve the condition of HIV Patients by optimising their nutritional status. Summary A balanced diet should be one of the most important priorities in preventing PLHIV against the potentially deadly consequences of COVID-19. It is to be ensured that HIV-positive persons continue to get enough and appropriate assistance, such as nutrition and psychological counselling, in the context of COVID-19 infection. The use of telemedicine to maintain nutritional intervention can be beneficial. To meet their nutritional needs and minimise future difficulties, PLHIV infected with COVID-19 should get specialised nutritional education and counselling. Graphical abstract
Collapse
Affiliation(s)
- Fathima A. S
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102 India
| | - Maxima Madhu
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102 India
| | - V Udaya Kumar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102 India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102 India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102 India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102 India
| | - V. Ravichandiran
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102 India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102 India
| |
Collapse
|
44
|
Mushtaq A, Iqbal MZ, Kong X. Antiviral effects of coinage metal-based nanomaterials to combat COVID-19 and its variants. J Mater Chem B 2022; 10:5323-5343. [PMID: 35775993 DOI: 10.1039/d2tb00849a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The world has been suffering from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and millions of people have been infected through human-to-human transmission and lost their lives within months. Although multidisciplinary scientific approaches have been employed to fight against this deadly pandemic, various mutations and diverse environments keep producing constraints in treating SARS-CoV-2. Indeed, the efficacy of the developed vaccines has been limited, and inoculation with the vaccines does not guarantee complete protection even though multiple doses are required, which is a frustrating process. Historically, coinage metals (Cu, Ag, and Au) have been well-known for their effectiveness in antiviral action as well as good biocompatibility, binding receptor inhibition, reactive oxygen species, and phototherapy properties. Thus, this review highlights the diagnostic and therapeutic mechanisms of SARS-CoV-2 using the antivirus ability and mode of action of coinage metals such as viral entry mechanisms into host cells and the NP-inhibition process, which are explained in detail. This article also draws attention to coinage metal nanomaterial-based approaches to treat other contagious viruses. In addition, coinage metal-based biosensors and an overview of some other biocompatible metal-based nanomaterials to fight against SARS-CoV-2 variants are discussed. Finally, the advantages, perspectives and challenges of coinage metal nanoparticles are given to fight against viral infections in the future.
Collapse
Affiliation(s)
- Asim Mushtaq
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| |
Collapse
|
45
|
Characterization and Toxicity Analysis of Lab-Created Respirable Coal Mine Dust from the Appalachians and Rocky Mountains Regions. MINERALS 2022. [DOI: 10.3390/min12070898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coal mine workers are continuously exposed to respirable coal mine dust (RCMD) in workplaces, causing severe lung diseases. RCMD characteristics and their relations with dust toxicity need further research to understand the adverse exposure effects to RCMD. The geographic clustering of coal workers’ pneumoconiosis (CWP) suggests that RCMD in the Appalachian region may exhibit more toxicity than other geographic regions such as the Rocky Mountains. This study investigates the RCMD characteristics and toxicity based on geographic location. Dissolution experiments in simulated lung fluids (SLFs) and in vitro responses were conducted to determine the toxicity level of samples collected from five mines in the Rocky Mountains and Appalachian regions. Dust characteristics were investigated using Fourier-transform infrared spectroscopy, scanning electron microscopy, the BET method, total microwave digestion, X-ray diffraction, and X-ray photoelectron spectroscopy. Inductively coupled plasma mass spectrometry was conducted to determine the concentration of metals dissolved in the SLFs. Finer particle sizes and higher mineral and elemental contents were found in samples from the Appalachian regions. Si, Al, Fe, Cu, Sr, and Pb were found in dissolution experiments, but no trends were found indicating higher dissolutions in the Appalachian region. In vitro studies indicated a proinflammatory response in epithelial and macrophage cells, suggesting their possible participation in pneumoconiosis and lung diseases development.
Collapse
|
46
|
Kocak OF, Ozgeris FB, Parlak E, Kadıoglu Y, Yuce N, Yaman ME, Bakan E. Evaluation of Serum Trace Element Levels and Biochemical Parameters of COVID-19 Patients According to Disease Severity. Biol Trace Elem Res 2022; 200:3138-3146. [PMID: 34608570 PMCID: PMC8489790 DOI: 10.1007/s12011-021-02946-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022]
Abstract
While the COVID-19 disease progresses mildly or asymptomatically in some people, its progression is severe and symptomatic in others, and it is an issue that requires a scientific response regarding the disease. The present study includes 60 people infected with COVID-19, and the cases were divided into the following groups: asymptomatic, mild, moderate, and severe. Serum Zn, Se, and Cu levels of these groups were analyzed by ICP-MS. All measurements in the patients were compared with those of 32 healthy individuals. When the patient group is compared with the control group, the serum Zn and Se concentrations were statistically low (p < 0.001) in the patient group. Serum Zn level decreased significantly in 4 different patient groups compared to the control group. Although the serum Se level decreased in all four patient groups compared to the control group, the change in Se level was statistically significant only in the severe and mild patient groups. This study examined serum Zn, Se concentrations, and biochemical parameters in patients with different severity of COVID-19, compared them with healthy individuals, and revealed new targets for diagnosis and treatment by revealing those data that may be important.
Collapse
Affiliation(s)
- Omer Faruk Kocak
- Department of Chemical Technology, Erzurum Vocational Training College, Ataturk University, Erzurum, Turkey, 25240.
| | - Fatma Betul Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey, 25240
| | - Emine Parlak
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey, 25240
| | - Yucel Kadıoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey, 25240
| | - Neslihan Yuce
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey, 25240
| | - Mehmet Emrah Yaman
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey, 25240
| | - Ebubekir Bakan
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey, 25240
| |
Collapse
|
47
|
Sumaily KM. The Roles and Pathogenesis Mechanisms of a Number of Micronutrients in the Prevention and/or Treatment of Chronic Hepatitis, COVID-19 and Type-2 Diabetes Mellitus. Nutrients 2022; 14:2632. [PMID: 35807813 PMCID: PMC9268086 DOI: 10.3390/nu14132632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
A trace element is a chemical element with a concentration (or other measures of an amount) that is very low. The essential TEs, such as copper (Cu), selenium (Se), zinc (Zn), iron (Fe) and the electrolyte magnesium (Mg) are among the most commonly studied micronutrients. Each element has been shown to play a distinctive role in human health, and TEs, such as iron (Fe), zinc (Zn) and copper (Cu), are among the essential elements required for the organisms' well-being as they play crucial roles in several metabolic pathways where they act as enzyme co-factors, anti-inflammatory and antioxidant agents. Epidemics of infectious diseases are becoming more frequent and spread at a faster pace around the world, which has resulted in major impacts on the economy and health systems. Different trace elements have been reported to have substantial roles in the pathogenesis of viral infections. Micronutrients have been proposed in various studies as determinants of liver disorders, COVID-19 and T2DM risks. This review article sheds light on the roles and mechanisms of micronutrients in the pathogenesis and prevention of chronic hepatitis B, C and E, as well as Coronavirus-19 infection and type-2 diabetes mellitus. An update on the status of the aforementioned micronutrients in pre-clinical and clinical settings is also briefly summarized.
Collapse
Affiliation(s)
- Khalid M Sumaily
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| |
Collapse
|
48
|
Abstract
The recent COVID-19 pandemic requires long-term and real-life applicable antimicrobial skin protection. However, there has been no practical solution to prevent cross-infection while preserving intrinsic skin naturalness. Conventional blocking-based approaches such as gloves cannot preserve the skin sterility and modify the morphology, temperature change rate, and humidity affecting our sensation and comfort. Here, we propose a skin-attachable protection platform copper nanomesh, which prevents cross-infection while maintaining skin naturalness. Copper nanomesh composed of copper coating and interconnected polymer nanofibers kills 99.99% of bacteria and viruses within 1 and 10 min and prevents bacterial cross-infection. The thin and porous structure of the nanomesh enables natural skin-environment interaction in terms of the morphology, temperature change rate, and humidity compared to films or gloves. The functional support and advancement of our body while preserving inherent naturalness is one of the ultimate goals of bioengineering. Skin protection against infectious pathogens is an application that requires common and long-term wear without discomfort or distortion of the skin functions. However, no antimicrobial method has been introduced to prevent cross-infection while preserving intrinsic skin conditions. Here, we propose an antimicrobial skin protection platform copper nanomesh, which prevents cross-infectionmorphology, temperature change rate, and skin humidity. Copper nanomesh exhibited an inactivation rate of 99.99% for Escherichia coli bacteria and influenza virus A within 1 and 10 min, respectively. The thin and porous nanomesh allows for conformal coating on the fingertips, without significant interference with the rate of skin temperature change and humidity. Efficient cross-infection prevention and thermal transfer of copper nanomesh were demonstrated using direct on-hand experiments.
Collapse
|
49
|
Batiha GES, Al-Gareeb AI, Qusti S, Alshammari EM, Kaushik D, Verma R, Al-Kuraishy HM. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43516-43531. [PMID: 35391642 PMCID: PMC8989262 DOI: 10.1007/s11356-022-20075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 04/16/2023]
Abstract
The immune system protects human health from the effects of pathogenic organisms; however, its activity is affected when individuals become infected. These activities require a series of molecules, substrates, and energy sources that are derived from diets. The consumed nutrients from diets help to enhance the immunity of infected individuals as it relates to COVID-19 patients. This study aims to review and highlight requirement and role of macro- and micronutrients of COVID-19 patients in enhancing their immune systems. Series of studies were found to have demonstrated the enhancing potentials of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins, copper, zinc, iron, calcium, magnesium, and selenium) in supporting the immune system's fight against respiratory infections. Each of these nutrients performs a vital role as an antiviral defense in COVID-19 patients. Appropriate consumption or intake of dietary sources that yield these nutrients will help provide the daily requirement to support the immune system in its fight against pathogenic viruses such as COVID-19.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| |
Collapse
|
50
|
Kumar S, Choudhary M. Copper(II) Schiff base complex derived from salen ligand: structural investigation, Hirshfeld surface analysis, anticancer and anti-SARS-CoV-2. J Biomol Struct Dyn 2022:1-24. [DOI: 10.1080/07391102.2022.2076155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar, India
| |
Collapse
|