1
|
Cho SKS, Darby JRT, Saini BS, Holman SL, Lock MC, Perumal SR, Williams GK, Macgowan CK, Seed M, Morrison JL. Late-gestation maternal undernutrition induces circulatory redistribution while preserving uteroplacental function independent of fetal glycaemic state. J Physiol 2024; 602:7065-7083. [PMID: 39549304 DOI: 10.1113/jp287171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024] Open
Abstract
Programming effects of maternal undernutrition on fetal metabolic and cardiovascular systems are well elucidated, yet a detailed characterization of maternal haemodynamics is not available. This study used comprehensive cardiovascular magnetic resonance (CMR) imaging to quantify maternal haemodynamics after 29 days (111-140 days) of late-gestation undernutrition (LGUN) in pregnant sheep. Control ewes received 100% of metabolizable energy requirements (MERs, n = 15), whereas LGUN ewes were globally nutrient restricted to 50% MER (n = 18), with a subset of fetuses undergoing continuous glucose infusion (LGUN + G, n = 6/18). Ewes underwent CMR (138-140 days' gestation), and placental tissue was collected the next day. Ewes in both LGUN groups had reduced body weight and mean blood glucose concentration across gestation. Ventricular dimensions were lower in both LGUN groups. Uterine artery blood flow (QUtA) was elevated in the LGUN group compared with controls, whereas peripheral blood flow was reduced and further diminished in LGUN + G. Maternal weight change correlated with all haemodynamic parameters across all groups. Uteroplacental oxygen and glucose delivery were increased in LGUN compared to control ewes, whereas uteroplacental oxygen consumption was preserved. LGUN did not impact placental or fetal weight, and markers of brain-sparing physiology were absent. Placental expression of insulin-like growth factors (IGF-1 and IGF-2) and their receptors, glucose, fatty acid (FA) or amino acid transporters and markers of angiogenesis was not impacted. FA transporter expression was positively correlated with QUtA, and FA binding protein correlated negatively with maternal weight change. Maternal cardiovascular adaptations in response to LGUN manifest as preservation of placental growth and function, thereby preserving fetal growth. KEY POINTS: Maternal undernutrition during pregnancy alters fetal metabolic and cardiovascular physiology, but little is known about alterations in maternal haemodynamics. Late-gestation undernutrition (LGUN) and LGUN + G redirected maternal blood flow from the periphery to the uteroplacental unit, concomitantly increasing the delivery of glucose and oxygen to the uteroplacental unit. Substrate transporter expression and uteroplacental oxygen consumption were preserved in LGUN and LGUN + G, suggesting prioritization of the placenta. This study is the first to report detailed maternal haemodynamics in the setting of maternal undernutrition, where placental growth and function were maintained, ultimately preserving fetal oxygen metabolism and growth.
Collapse
Affiliation(s)
- Steven K S Cho
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sunthara Rajan Perumal
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, South Australia, Australia
| | - Georgia K Williams
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Janna L Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Dimasi CG, Darby JRT, Cho SKS, Saini BS, Holman SL, Meakin AS, Wiese MD, Macgowan CK, Seed M, Morrison JL. Reduced in utero substrate supply decreases mitochondrial abundance and alters the expression of metabolic signalling molecules in the fetal sheep heart. J Physiol 2024; 602:5901-5922. [PMID: 37996982 DOI: 10.1113/jp285572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Babies born with fetal growth restriction (FGR) are at higher risk of developing cardiometabolic diseases across the life course. The reduction in substrate supply to the developing fetus that causes FGR not only alters cardiac growth and structure but may have deleterious effects on metabolism and function. Using a sheep model of placental restriction to induce FGR, we investigated key cardiac metabolic and functional markers that may be altered in FGR. We also employed phase-contrast magnetic resonance imaging MRI to assess left ventricular cardiac output (LVCO) as a measure of cardiac function. We hypothesized that signalling molecules involved in cardiac fatty acid utilisation and contractility would be impaired by FGR and that this would have a negative impact on LVCO in the late gestation fetus. Key glucose (GLUT4 protein) and fatty acid (FATP, CD36 gene expression) substrate transporters were significantly reduced in the hearts of FGR fetuses. We also found reduced mitochondrial numbers as well as abundance of electron transport chain complexes (complexes II and IV). These data suggest that FGR diminishes metabolic and mitochondrial capacity in the fetal heart; however, alterations were not correlated with fetal LVCO. Overall, these data show that FGR alters fetal cardiac metabolism in late gestation. If sustained ex utero, this altered metabolic profile may contribute to poor cardiac outcomes in FGR-born individuals after birth. KEY POINTS: Around the time of birth, substrate utilisation in the fetal heart switches from carbohydrates to fatty acids. However, the effect of fetal growth restriction (FGR) on this switch, and thus the ability of the fetal heart to effectively metabolise fatty acids, is not fully understood. Using a sheep model of early onset FGR, we observed significant downregulation in mRNA expression of fatty acid receptors CD36 and FABP in the fetal heart. FGR fetuses also had significantly lower cardiac mitochondrial abundance than controls. There was a reduction in abundance of complexes II and IV within the electron transport chain of the FGR fetal heart, suggesting altered ATP production. This indicates reduced fatty acid metabolism and mitochondrial function in the heart of the FGR fetus, which may have detrimental long-term implications and contribute to increased risk of cardiovascular disease later in life.
Collapse
Affiliation(s)
- Catherine G Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Steven K S Cho
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Brahmdeep S Saini
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Michael D Wiese
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Dimasi CG, Darby JR, Holman SL, Quinn M, Meakin AS, Seed M, Wiese MD, Morrison JL. Cardiac growth patterns and metabolism before and after birth in swine: Role of miR in proliferation, hypertrophy and metabolism. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100084. [DOI: 10.1016/j.jmccpl.2024.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Bertossa MR, Darby JR, Holman SL, Meakin AS, Li C, Huber HF, Wiese MD, Nathanielsz PW, Morrison JL. Maternal high fat-high energy diet alters metabolic factors in the non-human primate fetal heart. J Physiol 2024; 602:4251-4269. [PMID: 39087821 PMCID: PMC11366491 DOI: 10.1113/jp286861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
The consumption of high fat-high energy diets (HF-HEDs) continues to rise worldwide and parallels the rise in maternal obesity (MO) that predisposes offspring to cardiometabolic disorders. Although the underlying mechanisms are unclear, thyroid hormones (TH) modulate cardiac maturation in utero. Therefore, we aimed to determine the impact of a high fat-high energy diet (HF-HED) on the hormonal, metabolic and contractility profile of the non-human primate (NHP) fetal heart. At ∼9 months preconception, female baboons (Papio hamadryas) were randomly assigned to either a control diet or HF-HED. At 165 days gestational age (term = 184 days), fetuses were delivered by Caesarean section under anaesthesia, humanely killed, and left ventricular cardiac tissue (Control (n = 6 female, 6 male); HF-HED (n = 6 F, 6 M)) was collected. Maternal HF-HED decreased the concentration of active cardiac TH (i.e. triiodothyronine (T3)), and type 1 iodothyronine deiodinase (DIO1) mRNA expression. Maternal HF-HED decreased the abundance of cardiac markers of insulin-mediated glucose uptake phosphorylated insulin receptor substrate 1 (Ser789) and glucose transporter 4, and increased protein abundance of key oxidative phosphorylation complexes (I, III, IV) and mitochondrial abundance in both sexes. Maternal HF-HED alters cardiac TH status, which may induce early signs of cardiac insulin resistance. This may increase the risk of cardiometabolic disorders in later life in offspring born to these pregnancies. KEY POINTS: Babies born to mothers who consume a high fat-high energy diet (HF-HED) prior to and during pregnancy are predisposed to an increased risk of cardiometabolic disorders across the life course. Maternal HF-HED prior to and during pregnancy decreased thyroid hormone triiodothyronine (T3) concentrations and type 1 iodothyronine deiodinase DIO1 mRNA expression in the non-human primate fetal heart. Maternal HF-HED decreased markers of insulin-dependent glucose uptake, phosphorylated insulin receptor substrate 1 and glucose transporter 4 in the fetal heart. Maternal HF-HED increased mitochondrial abundance and mitochondrial OXPHOS complex I, III and IV in the fetal heart. Fetuses from HF-HED pregnancies are predisposed to cardiometabolic disorders that may be mediated by changes in T3, placing them on a poor lifetime cardiovascular health trajectory.
Collapse
Affiliation(s)
- Melanie R. Bertossa
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Jack R.T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | | | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation
| |
Collapse
|
5
|
Zhang S, Lock MC, Tie M, McMillen IC, Botting KJ, Morrison JL. Cardiac programming in the placentally restricted sheep fetus in early gestation. J Physiol 2024; 602:3815-3832. [PMID: 38975864 DOI: 10.1113/jp286702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Fetal growth restriction (FGR) occurs in 8% of human pregnancies, and the growth restricted newborn is at a greater risk of developing heart disease in later adult life. In sheep, experimental restriction of placental growth (PR) from conception results in FGR, a decrease in cardiomyocyte endowment and an upregulation of pathological hypertrophic signalling in the fetal heart in late gestation. However, there is no change in the expression of markers of cellular proliferation nor in the level of cardiomyocyte apoptosis in the heart of the PR fetus in late gestation. This suggests that FGR arises early in gestation and programs a decrease in cardiomyocyte endowment in early, rather than late, gestation. Here, control and PR fetal sheep were humanely killed at 55 days' gestation (term, 150 days). Fetal body and heart weight were lower in PR compared with control fetuses and there was evidence of sparing of fetal brain growth. While there was no change in the proportion of cardiomyocytes that were proliferating in the early gestation PR heart, there was an increase in measures of apoptosis, and markers of autophagy and pathological hypertrophy in the PR fetal heart. These changes in early gestation highlight that FGR is associated with evidence of early cell death and compensatory hypertrophic responses of cardiomyocytes in the fetal heart. The data suggest that early placental restriction results in a decrease in the pool of proliferative cardiomyocytes in early gestation, which would limit cardiomyocyte endowment in the heart of the PR fetus in late gestation. KEY POINTS: Placental restriction leading to fetal growth restriction (FGR) and chronic fetal hypoxaemia in sheep results in a decrease in cardiomyocyte endowment in late gestation. FGR did not change cardiomyocyte proliferation during early gestation but did result in increased apoptosis and markers of autophagy in the fetal heart, which may result in the decreased endowment of cardiomyocytes observed in late gestation. FGR in early gestation also results in increased hypoxia inducible factor signalling in the fetal heart, which in turn may result in the altered expression of epigenetic regulators, increased expression of insulin-like growth factor 2 and cardiomyocyte hypertrophy during late gestation and after birth.
Collapse
Affiliation(s)
- Song Zhang
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Michelle Tie
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
6
|
Chang EI, Stremming J, Knaub LA, Wesolowski SR, Rozance PJ, Sucharov CC, Reusch JE, Brown LD. Mitochondrial respiration is lower in the intrauterine growth-restricted fetal sheep heart. J Physiol 2024; 602:2697-2715. [PMID: 38743350 PMCID: PMC11325437 DOI: 10.1113/jp285496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Fetuses affected by intrauterine growth restriction have an increased risk of developing heart disease and failure in adulthood. Compared with controls, late gestation intrauterine growth-restricted (IUGR) fetal sheep have fewer binucleated cardiomyocytes, reflecting a more immature heart, which may reduce mitochondrial capacity to oxidize substrates. We hypothesized that the late gestation IUGR fetal heart has a lower capacity for mitochondrial oxidative phosphorylation. Left (LV) and right (RV) ventricles from IUGR and control (CON) fetal sheep at 90% gestation were harvested. Mitochondrial respiration (states 1-3, LeakOmy, and maximal respiration) in response to carbohydrates and lipids, citrate synthase (CS) activity, protein expression levels of mitochondrial oxidative phosphorylation complexes (CI-CV), and mRNA expression levels of mitochondrial biosynthesis regulators were measured. The carbohydrate and lipid state 3 respiration rates were lower in IUGR than CON, and CS activity was lower in IUGR LV than CON LV. However, relative CII and CV protein levels were higher in IUGR than CON; CV expression level was higher in IUGR than CON. Genes involved in lipid metabolism had lower expression in IUGR than CON. In addition, the LV and RV demonstrated distinct differences in oxygen flux and gene expression levels, which were independent from CON and IUGR status. Low mitochondrial respiration and CS activity in the IUGR heart compared with CON are consistent with delayed cardiomyocyte maturation, and CII and CV protein expression levels may be upregulated to support ATP production. These insights will provide a better understanding of fetal heart development in an adverse in utero environment. KEY POINTS: Growth-restricted fetuses have a higher risk of developing and dying from cardiovascular diseases in adulthood. Mitochondria are the main supplier of energy for the heart. As the heart matures, the substrate preference of the mitochondria switches from carbohydrates to lipids. We used a sheep model of intrauterine growth restriction to study the capacity of the mitochondria in the heart to produce energy using either carbohydrate or lipid substrates by measuring how much oxygen was consumed. Our data show that the mitochondria respiration levels in the growth-restricted fetal heart were lower than in the normally growing fetuses, and the expression levels of genes involved in lipid metabolism were also lower. Differences between the right and left ventricles that are independent of the fetal growth restriction condition were identified. These results indicate an impaired metabolic maturation of the growth-restricted fetal heart associated with a decreased capacity to oxidize lipids postnatally.
Collapse
Affiliation(s)
- Eileen I. Chang
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane Stremming
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leslie A. Knaub
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul J. Rozance
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Jane E.B. Reusch
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Laura D. Brown
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Visker JR, Leszczynski EC, Wellette-Hunsucker AG, McPeek AC, Quinn MA, Kim SH, Bazil JN, Ferguson DP. Postnatal growth restriction alters myocardial mitochondrial energetics in mice. Exp Physiol 2024; 109:562-575. [PMID: 38180279 PMCID: PMC10984791 DOI: 10.1113/ep091304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Postnatal growth restriction (PGR) can increase the risk of cardiovascular disease (CVD) potentially due to impairments in oxidative phosphorylation (OxPhos) within cardiomyocyte mitochondria. The purpose of this investigation was to determine if PGR impairs cardiac metabolism, specifically OxPhos. FVB (Friend Virus B-type) mice were fed a normal-protein (NP: 20% protein), or low-protein (LP: 8% protein) isocaloric diet 2 weeks before mating. LP dams produce ∼20% less milk, and pups nursed by LP dams experience reduced growth into adulthood as compared to pups nursed by NP dams. At birth (PN1), pups born to dams fed the NP diet were transferred to LP dams (PGR group) or a different NP dam (control group: CON). At weaning (PN21), all mice were fed the NP diet. At PN22 and PN80, mitochondria were isolated for respirometry (oxygen consumption rate,J O 2 ${J_{{{\mathrm{O}}_{\mathrm{2}}}}}$ ) and fluorimetry (reactive oxygen species emission,J H 2 O 2 ${J_{{{\mathrm{H}}_{\mathrm{2}}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) analysis measured as baseline respiration (LEAK) and with saturating ADP (OxPhos). Western blotting at PN22 and PN80 determined protein abundance of uncoupling protein 3, peroxiredoxin-6, voltage-dependent anion channel and adenine nucleotide translocator 1 to provide further insight into mitochondrial function. ANOVAs with the main effects of diet, sex and age with α-level of 0.05 was set a priori. Overall, PGR (7.8 ± 1.1) had significant (P = 0.01) reductions in respiratory control in complex I when compared to CON (8.9 ± 1.0). In general, our results show that PGR led to higher electron leakage in the form of free radical production and reactive oxygen species emission. No significant diet effects were found in protein abundance. The observed reduced respiratory control and increased ROS emission in PGR mice may increase risk for CVD in mice.
Collapse
Affiliation(s)
- Joseph R Visker
- The Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Eric C Leszczynski
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Austin G Wellette-Hunsucker
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley C McPeek
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Melissa A Quinn
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Seong Hyun Kim
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Meakin AS, Nathanielsz PW, Li C, Clifton VL, Wiese MD, Morrison JL. Maternal obesity impacts fetal liver androgen signalling in a sex-specific manner. Life Sci 2024; 337:122344. [PMID: 38081408 DOI: 10.1016/j.lfs.2023.122344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Maternal obesity (MO) increases fetal androgen concentrations, the prevalence of macrosomia, and predisposes offspring to metabolic dysfunction in later life, especially males. These risks may be, in part, the result of increased liver-specific androgen signalling pathway activity in utero. Androgen signalling activity can be suppressed by androgen metabolism via cytochrome P450 (CYP) isoenzymes (CYP2B6, CYP3A) or through inhibition of the full-length androgen receptor (AR-FL) via the antagonistic isoform, AR-45. We hypothesised MO impairs CYP enzyme activity and AR-45 expression in male fetal livers, thereby enhancing activity of androgen signalling pathways. METHODS Nine months prior to pregnancy, nulliparous female baboons were assigned to either ad libitum control or high fat diet. At 165 day (d) gestation (term, 180 d) fetal liver was collected (n = 6/sex/group). CYP activity was quantified using functional assays; subcellular AR expression was measured using Western blot. RESULTS CYP2B6 and CYP3A activity, and nuclear expression of AR-45, was reduced in MO males only. Nuclear AR-45 expression was inversely related with fetal body weight of MO males only. CONCLUSIONS Reduced CYP2B6 and CYP3A activity in conjunction with decreased nuclear AR-45 expression may enhance liver androgen signalling in males from MO pregnancies, thereby increasing the risk of macrosomia, as well as metabolic dysfunction in later life.
Collapse
Affiliation(s)
- Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia.
| | | | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Vicki L Clifton
- Mater Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
9
|
Kumagai Y, Kemp MW, Usuda H, Takahashi T, Takahashi Y, Hamada H, Schmidt AF, Hanita T, Watanabe S, Sato S, Ikeda H, Fee EL, Furfaro L, Newnham JP, Jobe AH, Yaegashi N, Saito M. A Reduction in Antenatal Steroid Dose Was Associated with Reduced Cardiac Dysfunction in a Sheep Model of Pregnancy. Reprod Sci 2023; 30:3222-3234. [PMID: 37264260 PMCID: PMC10643432 DOI: 10.1007/s43032-023-01264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Despite widespread use, dosing regimens for antenatal corticosteroid (ACS) therapy are poorly unoptimized. ACS therapy exerts a programming effect on fetal development, which may be associated with an increased risk of cardiovascular disease. Having demonstrated that low-dose steroid therapy is an efficacious means of maturing the preterm lung, we hypothesized that a low-dose steroid exposure would exert fewer adverse functional and transcriptional changes on the fetal heart. We tested this hypothesis using low-dose steroid therapy (10 mg delivered to the ewe over 36 h via constant infusion) and compared cardiac effects with those of a higher dose treatment (30 mg delivered to the ewe over 24 h by intramuscular injection; simulating currently employed clinical ACS regimens). Fetal cardiac function was assessed by ultrasound on the day of ACS treatment initiation. Transcriptomic analyses were performed on fetal myocardial tissue. Relative to saline control, fetuses in the higher-dose clinical treatment group had significantly lower ratios between early diastolic ventricular filling and ventricular filling during atrial systole, and showed the differential expression of myocardial hypertrophy-associated transcripts including βMHC, GADD45γ, and PPARγ. The long-term implications of these changes remain unstudied. Irrespective, optimizing ACS dosing regimens to maximize respiratory benefit while minimizing adverse effects on key organ systems, such as the heart, offers a means of improving the acute and long-term outcomes associated with this important obstetric therapy.
Collapse
Affiliation(s)
- Yusaku Kumagai
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Matthew W Kemp
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- College of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haruo Usuda
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - Tsukasa Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - Yuki Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - Hirotaka Hamada
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | | | - Takushi Hanita
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shimpei Watanabe
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shinichi Sato
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hideyuki Ikeda
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Erin L Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - Lucy Furfaro
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - Alan H Jobe
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Nobuo Yaegashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Masatoshi Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Darby JR, Zhang S, Holman SL, Muhlhausler BS, McMillen IC, Morrison JL. Cardiac growth and metabolism of the fetal sheep are not vulnerable to a 10 day increase in fetal glucose and insulin concentrations during late gestation. Heliyon 2023; 9:e18292. [PMID: 37519661 PMCID: PMC10372399 DOI: 10.1016/j.heliyon.2023.e18292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Aims To evaluate the effects of fetal glucose infusion in late gestation on the mRNA expression and protein abundance of molecules involved in the regulation of cardiac growth and metabolism. Main methods Either saline or glucose was infused into fetal sheep from 130 to 140 days (d) gestation (term, 150 d). At 140 d gestation, left ventricle tissue samples were collected. Quantitative real-time RT-PCR and Western blot were used to determine the mRNA expression and protein abundance of key signalling molecules within the left ventricle of the fetal heart. Key findings Although intra-fetal glucose infusion increased fetal plasma glucose and insulin concentrations, there was no change in the expression of molecules within the signalling pathways that regulate proliferation, hypertrophy, apoptosis or fibrosis in the fetal heart. Cardiac Solute carrier family 2 member 1 (SLC2A1) mRNA expression was decreased by glucose infusion. Glucose infusion increased cardiac mRNA expression of both Peroxisome proliferator activated receptor alpha (PPARA) and peroxisome proliferator activated receptor gamma (PPARG). However, there was no change in the mRNA expression of PPAR cofactors or molecules with PPAR response elements. Furthermore, glucose infusion did not impact the protein abundance of the 5 oxidative phosphorylation complexes of the electron transport chain. Significance Despite a 10-day doubling of fetal plasma glucose and insulin concentrations, the present study suggests that within the fetal left ventricle, the mRNA and protein expression of the signalling molecules involved in cardiac growth, development and metabolism are relatively unaffected.
Collapse
Affiliation(s)
| | | | | | | | | | - Janna L. Morrison
- Corresponding author. Australian Research Council Future Fellow, Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia,
| |
Collapse
|
11
|
Shen M, Zheng C, Chen L, Li M, Huang X, He M, Liu C, Lin H, Liao W, Bin J, Cao S, Liao Y. LCZ696 (sacubitril/valsartan) inhibits pulmonary hypertension induced right ventricular remodeling by targeting pyruvate dehydrogenase kinase 4. Biomed Pharmacother 2023; 162:114569. [PMID: 37001183 DOI: 10.1016/j.biopha.2023.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Right ventricular (RV) function is a major prognostic factor in patients with cardiopulmonary disease. Effective medical therapies are available for left heart failure, but they are usually less effective or even ineffective in right heart failure. Here, we tested the hypothesis that LCZ696 (sacubitril/valsartan) can attenuate pressure overload-induced RV remodeling by inhibiting pyruvate dehydrogenase kinase 4 (PDK4). METHODS Adult male C57 mice were subjected to transverse aortic constriction (TAC), pulmonary artery constriction (PAC), or sham surgery. Bioinformatics analysis was used to screen for common differentially expressed genes (DEGs) between TAC and PAC. Chemical compounds targeting DEGs were predicted by molecular docking analysis. Effects of LCZ696 on PAC-induced RV remodeling and the associated PDK4-related mechanisms were investigated. RESULTS We found 60 common DEGs between PAC and TAC, and Pdk4 was one of the downregulated DEGs. From 47 chemical compounds with potential cardiovascular activity and PDK4 protein binding ability, we selected LCZ696 to treat PAC-induced RV remodeling because of its high docking score for binding PDK4. Compared with vehicle-treated PAC mice, LCZ696-treated mice had significantly smaller RV wall thickness and RV diameters, less myocardial fibrosis, lower expression of PDK4 protein, and less phosphorylation of glycogen synthase kinase-3β (p-GSK3β). In PAC mice, overexpression of Pdk4 blocked the inhibitory effect of LCZ696 on RV remodeling, whereas conditional knockout of Pdk4 attenuated PAC-induced RV remodeling. CONCLUSIONS Pdk4 is a common therapeutic target for pressure overload-induced left ventricular and RV remodeling, and LCZ696 attenuates RV remodeling by downregulating Pdk4 and inhibiting PDK4/p-GSK3β signal.
Collapse
|
12
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
13
|
Amruta N, Kandikattu HK, Intapad S. Cardiovascular Dysfunction in Intrauterine Growth Restriction. Curr Hypertens Rep 2022; 24:693-708. [PMID: 36322299 DOI: 10.1007/s11906-022-01228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW We highlight important new findings on cardiovascular dysfunction in intrauterine growth restriction. RECENT FINDINGS Intrauterine growth restriction (IUGR) is a multifactorial condition which negatively impacts neonatal growth during pregnancy and is associated with health problems during the lifespan. It affects 5-15% of all pregnancies in the USA and Europe with varying percentages in developing countries. Epidemiological studies have reported that IUGR is associated with the pathogenesis of hypertension, activation of the renin-angiotensin system (RAS), disruption in placental-mTORC and TGFβ signaling cascades, and endothelial dysfunction in IUGR fetuses, children, adolescents, and adults resulting in the development of cardiovascular diseases (CVD). Experimental studies are needed to investigate therapeutic measures to treat increased blood pressure (BP) and long-term CVD problems in people affected by IUGR. We outline the mechanisms mediating fetal programming of hypertension in developing CVD. We have reviewed findings from different experimental models focusing on recent studies that demonstrate CVD in IUGR.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, #8683, New Orleans, LA, 70112-2699, USA
| | - Hemanth Kumar Kandikattu
- Department of Medicine, Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, #8683, New Orleans, LA, 70112-2699, USA.
| |
Collapse
|
14
|
King VJ, Bennet L, Stone PR, Clark A, Gunn AJ, Dhillon SK. Fetal growth restriction and stillbirth: Biomarkers for identifying at risk fetuses. Front Physiol 2022; 13:959750. [PMID: 36060697 PMCID: PMC9437293 DOI: 10.3389/fphys.2022.959750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a major cause of stillbirth, prematurity and impaired neurodevelopment. Its etiology is multifactorial, but many cases are related to impaired placental development and dysfunction, with reduced nutrient and oxygen supply. The fetus has a remarkable ability to respond to hypoxic challenges and mounts protective adaptations to match growth to reduced nutrient availability. However, with progressive placental dysfunction, chronic hypoxia may progress to a level where fetus can no longer adapt, or there may be superimposed acute hypoxic events. Improving detection and effective monitoring of progression is critical for the management of complicated pregnancies to balance the risk of worsening fetal oxygen deprivation in utero, against the consequences of iatrogenic preterm birth. Current surveillance modalities include frequent fetal Doppler ultrasound, and fetal heart rate monitoring. However, nearly half of FGR cases are not detected in utero, and conventional surveillance does not prevent a high proportion of stillbirths. We review diagnostic challenges and limitations in current screening and monitoring practices and discuss potential ways to better identify FGR, and, critically, to identify the “tipping point” when a chronically hypoxic fetus is at risk of progressive acidosis and stillbirth.
Collapse
Affiliation(s)
- Victoria J. King
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Peter R. Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alys Clark
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Auckland Biomedical Engineering Institute, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- *Correspondence: Simerdeep K. Dhillon,
| |
Collapse
|
15
|
Dimasi CG, Darby JRT. Does the growth restricted fetal heart burn less fat? J Physiol 2022; 600:1585-1586. [PMID: 35218562 DOI: 10.1113/jp282900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Catherine G Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Drake RR, Louey S, Thornburg KL. Intrauterine growth restriction elevates circulating acylcarnitines and suppresses fatty acid metabolism genes in the fetal sheep heart. J Physiol 2022; 600:655-670. [PMID: 34802149 PMCID: PMC9075772 DOI: 10.1113/jp281415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/17/2021] [Indexed: 02/03/2023] Open
Abstract
At birth, the mammalian myocardium switches from using carbohydrates as the primary energy substrate to free fatty acids as the primary fuel. Thus, a compromised switch could jeopardize normal heart function in the neonate. Placental embolization in sheep is a reliable model of intrauterine growth restriction (IUGR). It leads to suppression of both proliferation and terminal differentiation of cardiomyocytes. We hypothesized that the expression of genes regulating cardiac fatty acid metabolism would be similarly suppressed in IUGR, leading to compromised processing of lipids. Following 10 days of umbilicoplacental embolization in fetal sheep, IUGR fetuses had elevated circulating long-chain fatty acylcarnitines compared with controls (C14: CTRL 0.012 ± 0.005 nmol/ml vs. IUGR 0.018 ± 0.005 nmol/ml, P < 0.05; C18: CTRL 0.027 ± 0.009 nmol/mol vs. IUGR 0.043 ± 0.024 nmol/mol, P < 0.05, n = 12 control, n = 12 IUGR) indicative of impaired fatty acid metabolism. Uptake studies using fluorescently tagged BODIPY-C12-saturated free fatty acid in live, isolated cardiomyocytes showed lipid droplet area and number were not different between control and IUGR cells. mRNA levels of sarcolemmal fatty acid transporters (CD36, FATP6), acylation enzymes (ACSL1, ACSL3), mitochondrial transporter (CPT1), β-oxidation enzymes (LCAD, HADH, ACAT1), tricarboxylic acid cycle enzyme (IDH), esterification enzymes (PAP, DGAT) and regulator of the lipid droplet formation (BSCL2) gene were all suppressed in IUGR myocardium (P < 0.05). However, protein levels for these regulatory genes were not different between groups. This discordance between mRNA and protein levels in the stressed myocardium suggests an adaptive protection of key myocardial enzymes under conditions of placental insufficiency. KEY POINTS: The fetal heart relies on carbohydrates in utero and must be prepared to metabolize fatty acids after birth but the effects of compromised fetal growth on the maturation of this metabolic system are unknown. Plasma fatty acylcarnitines are elevated in intrauterine growth-restricted (IUGR) fetuses compared with control fetuses, indicative of impaired fatty acid metabolism in fetal organs. Fatty acid uptake and storage are not different in IUGR cardiomyocytes compared with controls. mRNA levels of genes regulating fatty acid transporter and metabolic enzymes are suppressed in the IUGR myocardium compared with controls, while protein levels remain unchanged. Mismatches in gene and protein expression, and increased circulating fatty acylcarnitines may have long-term implications for offspring heart metabolism and adult health in IUGR individuals. This requires further investigation.
Collapse
Affiliation(s)
- Rachel R Drake
- Center for Developmental Health, Knight Cardiovascular Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Samantha Louey
- Center for Developmental Health, Knight Cardiovascular Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
17
|
García-Padilla C, Domínguez JN, Lodde V, Munk R, Abdelmohsen K, Gorospe M, Jiménez-Sábado V, Ginel A, Hove-Madsen L, Aránega AE, Franco D. Identification of atrial-enriched lncRNA Walras linked to cardiomyocyte cytoarchitecture and atrial fibrillation. FASEB J 2022; 36:e22051. [PMID: 34861058 PMCID: PMC8684585 DOI: 10.1096/fj.202100844rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in humans. Genetic and genomic analyses have recently demonstrated that the homeobox transcription factor Pitx2 plays a fundamental role regulating expression of distinct growth factors, microRNAs and ion channels leading to morphological and molecular alterations that promote the onset of AF. Here we address the plausible contribution of long non-coding (lnc)RNAs within the Pitx2>Wnt>miRNA signaling pathway. In silico analyses of annotated lncRNAs in the vicinity of the Pitx2, Wnt8 and Wnt11 chromosomal loci identified five novel lncRNAs with differential expression during cardiac development. Importantly, three of them, Walaa, Walras, and Wallrd, are evolutionarily conserved in humans and displayed preferential atrial expression during embryogenesis. In addition, Walrad displayed moderate expression during embryogenesis but was more abundant in the right atrium. Walaa, Walras and Wallrd were distinctly regulated by Pitx2, Wnt8, and Wnt11, and Wallrd was severely elevated in conditional atrium-specific Pitx2-deficient mice. Furthermore, pro-arrhythmogenic and pro-hypertrophic substrate administration to primary cardiomyocyte cell cultures consistently modulate expression of these lncRNAs, supporting distinct modulatory roles of the AF cardiovascular risk factors in the regulation of these lncRNAs. Walras affinity pulldown assays revealed its association with distinct cytoplasmic and nuclear proteins previously involved in cardiac pathophysiology, while loss-of-function assays further support a pivotal role of this lncRNA in cytoskeletal organization. We propose that lncRNAs Walaa, Walras and Wallrd, distinctly regulated by Pitx2>Wnt>miRNA signaling and pro-arrhythmogenic and pro-hypertrophic factors, are implicated in atrial arrhythmogenesis, and Walras additionally in cardiomyocyte cytoarchitecture.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N. Domínguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Valeria Lodde
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | | | - Antonino Ginel
- Department Cardiac Surgery, Hospital de Sant Pau, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- CIBERCV, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain,Biomedical Research Institute Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Amelia E. Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
18
|
Lin CY, Shibu MA, Wen R, Day CH, Chen RJ, Kuo CH, Ho TJ, Viswanadha VP, Kuo WW, Huang CY. Leu 27 IGF-II-induced hypertrophy in H9c2 cardiomyoblasts is ameliorated by saffron by regulation of calcineurin/NFAT and CaMKIIδ signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:2475-2483. [PMID: 34495567 DOI: 10.1002/tox.23360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The insulin-like growth factor II receptor (IGF-IIR) induces myocardial hypertrophy under various pathological conditions like diabetes and hypertension via G protein receptors like Gαq or Gαs. Increased expression of the ligand IGF II and IGF-IIR induces pathological hypertrophy through downstream signaling mediators such as calcineurin, nuclear factor of activated T cells 3 and calcium-calmodulin (CaM)-dependent kinase II (CaMKII)-histone deacetylase 4 (HDAC4). The dried stigma of Crocus sativus L. (saffron) has a long repute as a traditional medicine against various disorders. In the present study, we have investigated whether C. sativus extract (CSE) canameliorate Leu27 IGF-II triggered hypertrophy and have elucidated the underlying mechanism of protection. Additionally, the effects of oleic acid (OA), an activator of calcineurin and CaMKII was investigated thereof. The results demonstrate that CSE can ameliorate Leu27 IGF-II-induced hypertrophy seemingly through regulation of calcineurin-NFAT3 and CaMKII-HDAC4 signaling cascade.
Collapse
Affiliation(s)
- Chin-Yi Lin
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Yuan Sheng Hospital, ChangHua, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Renee Wen
- Walnut High School, Walnut, California, USA
- Department of Dermatology, Taipei City Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Science, China Medical University, Taichung, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical sciences, China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
19
|
Ren J, Lock MC, Darby JRT, Orgeig S, Holman SL, Quinn M, Seed M, Muhlhausler BS, McMillen IC, Morrison JL. PPARγ activation in late gestation does not promote surfactant maturation in the fetal sheep lung. J Dev Orig Health Dis 2021; 12:963-974. [PMID: 33407953 DOI: 10.1017/s204017442000135x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Respiratory distress syndrome results from inadequate functional pulmonary surfactant and is a significant cause of mortality in preterm infants. Surfactant is essential for regulating alveolar interfacial surface tension, and its synthesis by Type II alveolar epithelial cells is stimulated by leptin produced by pulmonary lipofibroblasts upon activation by peroxisome proliferator-activated receptor γ (PPARγ). As it is unknown whether PPARγ stimulation or direct leptin administration can stimulate surfactant synthesis before birth, we examined the effect of continuous fetal administration of either the PPARγ agonist, rosiglitazone (RGZ; Study 1) or leptin (Study 2) on surfactant protein maturation in the late gestation fetal sheep lung. We measured mRNA expression of genes involved in surfactant maturation and showed that RGZ treatment reduced mRNA expression of LPCAT1 (surfactant phospholipid synthesis) and LAMP3 (marker for lamellar bodies), but did not alter mRNA expression of PPARγ, surfactant proteins (SFTP-A, -B, -C, and -D), PCYT1A (surfactant phospholipid synthesis), ABCA3 (phospholipid transportation), or the PPARγ target genes SPHK-1 and PAI-1. Leptin infusion significantly increased the expression of PPARγ and IGF2 and decreased the expression of SFTP-B. However, mRNA expression of the majority of genes involved in surfactant synthesis was not affected. These results suggest a potential decreased capacity for surfactant phospholipid and protein production in the fetal lung after RGZ and leptin administration, respectively. Therefore, targeting PPARγ may not be a feasible mechanistic approach to promote lung maturation.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Hospital for Sick Children, Toronto, ON, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Cancer Research Institute, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Megan Quinn
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Hospital for Sick Children, Toronto, ON, Canada
| | | | - I Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
20
|
Dimasi CG, Lazniewska J, Plush SE, Saini BS, Holman SL, Cho SKS, Wiese MD, Sorvina A, Macgowan CK, Seed M, Brooks DA, Morrison JL, Darby JRT. Redox ratio in the left ventricle of the growth restricted fetus is positively correlated with cardiac output. JOURNAL OF BIOPHOTONICS 2021; 14:e202100157. [PMID: 34499415 DOI: 10.1002/jbio.202100157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Intrauterine growth restriction (IUGR) is a result of limited substrate supply to the developing fetus in utero, and can be caused by either placental, genetic or environmental factors. Babies born IUGR can have poor long-term health outcomes, including being at higher risk of developing cardiovascular disease. Limited substrate supply in the IUGR fetus not only changes the structure of the heart but may also affect metabolism and function of the developing heart. We have utilised two imaging modalities, two-photon microscopy and phase-contrast MRI (PC-MRI), to assess alterations in cardiac metabolism and function using a sheep model of IUGR. Two-photon imaging revealed that the left ventricle of IUGR fetuses (at 140-141 d GA) had a reduced optical redox ratio, suggesting a reliance on glycolysis for ATP production. Concurrently, the use of PC-MRI to measure foetal left ventricular cardiac output (LVCO) revealed a positive correlation between LVCO and redox ratio in IUGR, but not control fetuses. These data suggest that altered heart metabolism in IUGR fetuses is indicative of reduced cardiac output, which may contribute to poor cardiac outcomes in adulthood.
Collapse
Affiliation(s)
- Catherine G Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Joanna Lazniewska
- Mechanisms in Cell Biology and Disease Research Group, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Sally E Plush
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Steven K S Cho
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Wiese
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mike Seed
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Ren J, Darby JRT, Lock MC, Holman SL, Saini BS, Bradshaw EL, Orgeig S, Perumal SR, Wiese MD, Macgowan CK, Seed M, Morrison JL. Impact of maternal late gestation undernutrition on surfactant maturation, pulmonary blood flow and oxygen delivery measured by magnetic resonance imaging in the sheep fetus. J Physiol 2021; 599:4705-4724. [PMID: 34487347 DOI: 10.1113/jp281292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022] Open
Abstract
Restriction of fetal substrate supply has an adverse effect on surfactant maturation in the lung and thus affects the transition from in utero placental oxygenation to pulmonary ventilation ex utero. The effects on surfactant maturation are mediated by alteration in mechanisms regulating surfactant protein and phospholipid synthesis. This study aimed to determine the effects of late gestation maternal undernutrition (LGUN) and LGUN plus fetal glucose infusion (LGUN+G) compared to Control on surfactant maturation and lung development, and the relationship with pulmonary blood flow and oxygen delivery ( D O 2 ) measured by magnetic resonance imaging (MRI) with molecules that regulate lung development. LGUN from 115 to 140 days' gestation significantly decreased fetal body weight, which was normalized by glucose infusion. LGUN and LGUN+G resulted in decreased fetal plasma glucose concentration, with no change in fetal arterial P O 2 compared to control. There was no effect of LGUN and LGUN+G on the mRNA expression of surfactant proteins (SFTP) and genes regulating surfactant maturation in the fetal lung. However, blood flow in the main pulmonary artery was significantly increased in LGUN, despite no change in blood flow in the left or right pulmonary artery and D O 2 to the fetal lung. There was a negative relationship between left pulmonary artery flow and D O 2 to the left lung with SFTP-B and GLUT1 mRNA expression, while their relationship with VEGFR2 was positive. These results suggest that increased pulmonary blood flow measured by MRI may have an adverse effect on surfactant maturation during fetal lung development. KEY POINTS: Maternal undernutrition during gestation alters fetal lung development by impacting surfactant maturation. However, the direction of change remains controversial. We examined the effects of maternal late gestation maternal undernutrition (LGUN) on maternal and fetal outcomes, signalling pathways involved in fetal lung development, pulmonary haemodynamics and oxygen delivery in sheep using a combination of molecular and magnetic resonance imaging (MRI) techniques. LGUN decreased fetal plasma glucose concentration without affecting arterial P O 2 . Surfactant maturation was not affected; however, main pulmonary artery blood flow was significantly increased in the LGUN fetuses. This is the first study to explore the relationship between in utero MRI measures of pulmonary haemodynamics and lung development. Across all treatment groups, left pulmonary artery blood flow and oxygen delivery were negatively correlated with surfactant protein B mRNA and protein expression in late gestation.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandra Orgeig
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sunthara R Perumal
- Preclinical Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Michael D Wiese
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Mike Seed
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Placental insufficiency induces a sexually dimorphic response in the expression of cardiac growth and metabolic signalling molecules upon exposure to a postnatal western diet in guinea pigs. J Dev Orig Health Dis 2021; 13:345-357. [PMID: 34308829 DOI: 10.1017/s204017442100043x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There is a strong relationship between low birth weight (LBW) and an increased risk of developing cardiovascular disease (CVD). In postnatal life, LBW offspring are becoming more commonly exposed to the additional independent CVD risk factors, such as an obesogenic diet. However, how an already detrimentally programmed LBW myocardium responds to a secondary insult, such as an obesogenic diet (western diet; WD), during postnatal life is ill defined. Herein, we aimed to determine in a pre-clinical guinea pig model of CVD, both the independent and interactive effects of LBW and a postnatal WD on the molecular pathways that regulate cardiac growth and metabolism. Uterine artery ablation was used to induce placental insufficiency (PI) in pregnant guinea pigs to generate LBW offspring. Normal birth weight (NBW) and LBW offspring were weaned onto either a Control diet or WD. At ˜145 days after birth (young adulthood), male and female offspring were humanely killed, the heart weighed and left ventricle tissue collected. The mRNA expression of signalling molecules involved in a pathological hypertrophic and fibrotic response was increased in the myocardium of LBW male, but not female offspring, fed a WD as was the mRNA expression of transcription factors involved in fatty acid oxidation. The mRNA expression of glucose transporters was downregulated by LBW and WD in male, but not female hearts. This study has highlighted a sexually dimorphic cardiac pathological hypertrophic and fibrotic response to the secondary insult of postnatal WD consumption in LBW offspring.
Collapse
|
23
|
Wu X, Lin X, Li Q, Wang Z, Zhang N, Tian M, Wang X, Deng H, Tan H. Identification of novel SNPs associated with coronary artery disease and birth weight using a pleiotropic cFDR method. Aging (Albany NY) 2020; 13:3618-3644. [PMID: 33411684 PMCID: PMC7906162 DOI: 10.18632/aging.202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022]
Abstract
Objectives: Clinical and epidemiological findings indicate an association between coronary artery disease (CAD) and low birth weight (BW). However, the mechanisms underlying this relationship are largely unknown. Here, we aimed to identify novel single-nucleotide polymorphisms (SNPs) associated with CAD, BW, and their shared pleiotropic loci, and to detect the potential causal relationship between CAD and BW. Methods: We first applied a genetic pleiotropic conditional false discovery rate (cFDR) method to two independent genome-wide association studies (GWAS) summary statistics of CAD and BW to estimate the pleiotropic enrichment between them. Then, bi-directional Mendelian randomization (MR) analyses were performed to clarify the causal association between these two traits. Results: By incorporating related traits into a conditional analysis framework, we observed the significant pleiotropic enrichment between CAD and BW. By applying the cFDR level of 0.05, 109 variants were detected for CAD, 203 for BW, and 26 pleiotropic variants for both traits. We identified 11 CAD- and/or BW-associated SNPs that showed more than three of the metabolic quantitative trait loci (metaQTL), protein QTL (pQTL), methylation QTL (meQTL), or expression QTL (eQTL) effects. The pleiotropic SNP rs10774625, located at ATXN2, showed metaQTL, pQTL, meQTL, and eQTL effects simultaneously. Using the bi-directional MR approach, we found a negative association from BW to CAD (odds ratio [OR] = 0.68, 95% confidence interval [CI]: 0.59 to 0.80, p = 1.57× 10-6). Conclusion: We identified several pleiotropic loci between CAD and BW by leveraging GWAS results of related phenotypes and identified a potential causal relationship from BW to CAD. Our findings provide novel insights into the shared biological mechanisms and overlapping genetic heritability between CAD and BW.
Collapse
Affiliation(s)
- Xinrui Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qi Li
- Xiangxi Center for Disease Prevention and Control, Jishou 416000, China
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Na Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mengyuan Tian
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiaolei Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Hongwen Deng
- School of Basic Medical Science, Central South University, Changsha 410013, China.,Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
24
|
Postnatal Growth Restriction in Mice Alters Cardiac Protein Composition and Leads to Functional Impairment in Adulthood. Int J Mol Sci 2020; 21:ijms21249459. [PMID: 33322681 PMCID: PMC7763900 DOI: 10.3390/ijms21249459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Postnatal growth restriction (PGR) increases the risk for cardiovascular disease (CVD) in adulthood, yet there is minimal mechanistic rationale for the observed pathology. The purpose of this study was to identify proteomic differences in hearts of growth-restricted and unrestricted mice, and propose mechanisms related to impairment in adulthood. Friend leukemia virus B (FVB) mouse dams were fed a control (CON: 20% protein), or low-protein (LP: 8% protein) isocaloric diet 2 weeks before mating. LP dams produce 20% less milk, inducing growth restriction. At birth (postnatal; PN1), pups born to dams fed the CON diet were switched to LP dams (PGR group) or a different CON dam. At PN21, a sub-cohort of CON (n = 3 males; n = 3 females) and PGR (n = 3 males; n = 3 females) were euthanized and their proteome analyzed by two-dimensional differential in-gel electrophoresis (2D DIGE) and mass spectroscopy. Western blotting and silver nitrate staining confirmed 2D DIGE results. Littermates (CON: n = 4 males and n = 4 females; PGR: n = 4 males and n = 4 females) were weaned to the CON diet. At PN77, echocardiography measured cardiac function. At PN80, hearts were removed for western blotting to determine if differences persisted into adulthood. 2D DIGE and western blot confirmation indicated PGR had reductions in p57kip2, Titin (Ttn), and Collagen (Col). At PN77, PGR had impaired cardiac function as measured by echocardiography. At PN80, western blots of p57kip2 showed protein abundance recovered from PN21. PN80 silver staining of large molecular weight proteins (Ttn and Col) was reduced in PGR. PGR reduces cell cycle activity at PN21, which is recovered in adulthood. However, collagen fiber networks are altered into adulthood.
Collapse
|
25
|
Impact of in vitro embryo culture and transfer on blood pressure regulation in the adolescent lamb. J Dev Orig Health Dis 2020; 12:731-737. [PMID: 33185521 DOI: 10.1017/s2040174420001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nutrition during the periconceptional period influences postnatal cardiovascular health. We determined whether in vitro embryo culture and transfer, which are manipulations of the nutritional environment during the periconceptional period, dysregulate postnatal blood pressure and blood pressure regulatory mechanisms. Embryos were either transferred to an intermediate recipient ewe (ET) or cultured in vitro in the absence (IVC) or presence of human serum (IVCHS) and a methyl donor (IVCHS+M) for 6 days. Basal blood pressure was recorded at 19-20 weeks after birth. Mean arterial pressure (MAP) and heart rate (HR) were measured before and after varying doses of phenylephrine (PE). mRNA expression of signaling molecules involved in blood pressure regulation was measured in the renal artery. Basal MAP did not differ between groups. Baroreflex sensitivity, set point, and upper plateau were also maintained in all groups after PE stimulation. Adrenergic receptors alpha-1A (αAR1A), alpha-1B (αAR1B), and angiotensin II receptor type 1 (AT1R) mRNA expression were not different from controls in the renal artery. These results suggest there is no programmed effect of ET or IVC on basal blood pressure or the baroreflex control mechanisms in adolescence, but future studies are required to determine the impact of ET and IVC on these mechanisms later in the life course when developmental programming effects may be unmasked by age.
Collapse
|
26
|
Darby JRT, Saini BS, Soo JY, Lock MC, Holman SL, Bradshaw EL, McInnes SJP, Voelcker NH, Macgowan CK, Seed M, Wiese MD, Morrison JL. Subcutaneous maternal resveratrol treatment increases uterine artery blood flow in the pregnant ewe and increases fetal but not cardiac growth. J Physiol 2019; 597:5063-5077. [PMID: 31483497 DOI: 10.1113/jp278110] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Substrate restriction during critical developmental windows of gestation programmes offspring for a predisposition towards cardiovascular disease in adult life. This study aimed to determine the effect of maternal resveratrol (RSV) treatment in an animal model in which chronic fetal catheterisation is possible and the timing of organ maturation reflects that of the human. Maternal RSV treatment increased uterine artery blood flow, fetal oxygenation and fetal weight. RSV was not detectable in the fetal circulation, indicating that it may not cross the sheep placenta. This study highlights RSV as a possible intervention to restore fetal substrate supply in pregnancies affected by placental insufficiency. ABSTRACT Suboptimal in utero environments with reduced substrate supply during critical developmental windows of gestation predispose offspring to non-communicable diseases such as cardiovascular disease (CVD). Improving fetal substrate supply in these pregnancies may ameliorate the predisposition these offspring have toward adult-onset CVD. This study aimed to determine the effect of maternal resveratrol (RSV) supplementation on uterine artery blood flow and the direct effects of RSV on the fetal heart in a chronically catheterised sheep model of human pregnancy. Maternal RSV treatment significantly increased uterine artery blood flow as measured by phase contrast magnetic resonance imaging, mean gestational fetal P a O 2 and S a O 2 as well as fetal weight. RSV was not detectable in the fetal circulation, and mRNA and protein expression of the histone/protein deacetylase SIRT1 did not differ between treatment groups. No effect of maternal RSV supplementation on AKT/mTOR or CAMKII signalling in the fetal left ventricle was observed. Maternal RSV supplementation is capable of increasing fetal oxygenation and growth in an animal model in which cardiac development parallels that of the human.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Brahmdeep S Saini
- Univeristy of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Steven J P McInnes
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia.,School of Engineering, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, Australia, 5095
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia.,Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | | | - Mike Seed
- Univeristy of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Wiese
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| |
Collapse
|
27
|
Lock MC, Darby JRT, Soo JY, Brooks DA, Perumal SR, Selvanayagam JB, Seed M, Macgowan CK, Porrello ER, Tellam RL, Morrison JL. Differential Response to Injury in Fetal and Adolescent Sheep Hearts in the Immediate Post-myocardial Infarction Period. Front Physiol 2019; 10:208. [PMID: 30890961 PMCID: PMC6412108 DOI: 10.3389/fphys.2019.00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aim: Characterizing the response to myocardial infarction (MI) in the regenerative sheep fetus heart compared to the post-natal non-regenerative adolescent heart may reveal key morphological and molecular differences that equate to the response to MI in humans. We hypothesized that the immediate response to injury in (a) infarct compared with sham, and (b) infarct, border, and remote tissue, in the fetal sheep heart would be fundamentally different to the adolescent, allowing for repair after damage. Methods: We used a sheep model of MI induced by ligating the left anterior descending coronary artery. Surgery was performed on fetuses (105 days) and adolescent sheep (6 months). Sheep were randomly separated into MI (n = 5) or Sham (n = 5) surgery groups at both ages. We used magnetic resonance imaging (MRI), histological/immunohistochemical staining, and qRT-PCR to assess the morphological and molecular differences between the different age groups in response to infarction. Results: Magnetic resonance imaging showed no difference in fetuses for key functional parameters; however there was a significant decrease in left ventricular ejection fraction and cardiac output in the adolescent sheep heart at 3 days post-infarction. There was no significant difference in functional parameters between MRI sessions at Day 0 and Day 3 after surgery. Expression of genes involved in glucose transport and fatty acid metabolism, inflammatory cytokines as well as growth factors and cell cycle regulators remained largely unchanged in the infarcted compared to sham ventricular tissue in the fetus, but were significantly dysregulated in the adolescent sheep. Different cardiac tissue region-specific gene expression profiles were observed between the fetal and adolescent sheep. Conclusion: Fetuses demonstrated a resistance to cardiac damage not observed in the adolescent animals. The manipulation of specific gene expression profiles to a fetal-like state may provide a therapeutic strategy to treat patients following an infarction.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Joseph B Selvanayagam
- Cardiac Imaging Research Group, Department of Heart Health, South Australian Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Mike Seed
- The Hospital for Sick Children, Division of Cardiology, Toronto, ON, Canada
| | | | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
28
|
Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford KL, Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC, McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TRH, Roberts CT, Soo JY, Tellam RL. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1123-R1153. [PMID: 30325659 DOI: 10.1152/ajpregu.00391.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Kimberley J Botting
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington , Seattle, Washington
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Clint L Gray
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash University , Clayton, Victoria , Australia
| | - Emilio A Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, University of Western Australia , Perth, Western Australia , Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy J Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University , Clayton, Victoria , Australia
| | - Gabrielle C Musk
- Animal Care Services, University of Western Australia , Perth, Western Australia , Australia
| | - Mark H Oliver
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology and Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute , London, Ontario , Canada
| | - Claire T Roberts
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
29
|
Trotta MC, Maisto R, Alessio N, Hermenean A, D'Amico M, Di Filippo C. The Melanocortin MC5R as a New Target for Treatment of High Glucose-Induced Hypertrophy of the Cardiac H9c2 Cells. Front Physiol 2018; 9:1475. [PMID: 30416452 PMCID: PMC6212602 DOI: 10.3389/fphys.2018.01475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
The study explored the anti-hypertrophic effect of the melanocortin MC5R stimulation in H9c2 cardiac myocytes exposed to high glucose. This has been done by using α-MSH and selective MC5R agonists and assessing the expression of GLUT4 and GLUT1 transporters, miR-133 and urotensin receptor levels as a marker of cardiac hypertrophy. The study shows for the first time an up-regulation of MC5R expression levels in H9c2 cardiomyocytes exposed to high glucose medium (33 mM D-glucose) for 48 h, compared to cells grown in normal glucose medium (5.5 mM D-glucose). Moreover, H9c2 cells exposed to high glucose showed a significant reduction in cell viability (-40%), a significant increase in total protein per cell number (+109%), and an increase of the urotensin receptor expression levels as an evidence of cells hypertrophy. The pharmacological stimulation of MC5R with α-MSH (90 pM)of the high glucose exposed H9c2 cells increased the cell survival (+50,8%) and reduced the total protein per cell number (-28,2%) with respect to high glucose alone, confirming a reduction of the hypertrophic state as per cell area measurement. Similarly, PG-901 (selective agonist, 10-10 M) significantly increased cell viability (+61,0 %) and reduced total protein per cell number (-40,2%), compared to cells exposed to high glucose alone. Interestingly, the MC5R agonist reduced the GLUT1/GLUT4 glucose transporters ratio on the cell membranes exhibited by the hypertrophic H9c2 cells and increased the intracellular PI3K activity, mediated by a decrease of the levels of the miRNA miR-133a. The beneficial effects of MC5R agonism on the cardiac hypertrophy caused by high glucose was also observed also by echocardiographic evaluations of rats made diabetics with streptozotocin (65 mg/kg i.p.). Therefore, the melanocortin MC5R could be a new target for the treatment of high glucose-induced hypertrophy of the cardiac H9c2 cells.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Maisto
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clara Di Filippo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
30
|
Camm EJ, Botting KJ, Sferruzzi-Perri AN. Near to One's Heart: The Intimate Relationship Between the Placenta and Fetal Heart. Front Physiol 2018; 9:629. [PMID: 29997513 PMCID: PMC6029139 DOI: 10.3389/fphys.2018.00629] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
The development of the fetal heart is exquisitely controlled by a multitude of factors, ranging from humoral to mechanical forces. The gatekeeper regulating many of these factors is the placenta, an external fetal organ. As such, resistance within the placental vascular bed has a direct influence on the fetal circulation and therefore, the developing heart. In addition, the placenta serves as the interface between the mother and fetus, controlling substrate exchange and release of hormones into both circulations. The intricate relationship between the placenta and fetal heart is appreciated in instances of clinical placental pathology. Abnormal umbilical cord insertion is associated with congenital heart defects. Likewise, twin-to-twin transfusion syndrome, where monochorionic twins have unequal sharing of their placenta due to inter-twin vascular anastomoses, can result in cardiac remodeling and dysfunction in both fetuses. Moreover, epidemiological studies have suggested a link between placental phenotypic traits and increased risk of cardiovascular disease in adult life. To date, the mechanistic basis of the relationships between the placenta, fetal heart development and later risk of cardiac dysfunction have not been fully elucidated. However, studies using environmental exposures and gene manipulations in experimental animals are providing insights into the pathways involved. Likewise, surgical instrumentation of the maternal and fetal circulations in large animal species has enabled the manipulation of specific humoral and mechanical factors to investigate their roles in fetal cardiac development. This review will focus on such studies and what is known to date about the link between the placenta and heart development.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Soo JY, Wiese MD, Berry MJ, McMillen IC, Morrison JL. Intrauterine growth restriction may reduce hepatic drug metabolism in the early neonatal period. Pharmacol Res 2018; 134:68-78. [PMID: 29890254 DOI: 10.1016/j.phrs.2018.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 11/26/2022]
Abstract
The effects of intrauterine growth restriction (IUGR) extend well into postnatal life. IUGR is associated with an increased risk of adverse health outcomes, which often leads to greater medication usage. Many medications require hepatic metabolism for activation or clearance, but hepatic function may be altered in IUGR fetuses. Using a sheep model of IUGR, we determined the impact of IUGR on hepatic drug metabolism and drug transporter expression, both important mediators of fetal drug exposure, in late gestation and in neonatal life. In the late gestation fetus, IUGR decreased the gene expression of uptake drug transporter OATPC and increased P-glycoprotein protein expression in the liver, but there was no change in the activity of the drug metabolising enzymes CYP3A4 or CYP2D6. In contrast, at 3 weeks of age, CYP3A4 activity was reduced in the livers of lambs born with low birth weight (LBW), indicating that LBW results in changes to drug metabolising capacity in neonatal life. Together, these results suggest that IUGR may reduce hepatic drug metabolism in fetal and neonatal life through different mechanisms.
Collapse
Affiliation(s)
- Jia Yin Soo
- Early Origins of Adult Health Research Group, Adelaide, SA, 5001, Australia; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Michael D Wiese
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Mary J Berry
- Centre for Translational Physiology, Wellington, New Zealand; Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | | | - Janna L Morrison
- Early Origins of Adult Health Research Group, Adelaide, SA, 5001, Australia; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
32
|
Darby JRT, McMillen IC, Morrison JL. Maternal undernutrition in late gestation increases IGF2 signalling molecules and collagen deposition in the right ventricle of the fetal sheep heart. J Physiol 2018; 596:2345-2358. [PMID: 29604078 DOI: 10.1113/jp275806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/26/2018] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS This study investigates the impact of decreased fetal plasma glucose concentrations on the developing heart in late gestation, by subjecting pregnant ewes to a 50% global nutrient restriction. Late gestation undernutrition (LGUN) decreased fetal plasma glucose concentrations whilst maintaining a normoxemic blood gas status. LGUN increased the mRNA expression of IGF2 and IGF2R. Fetal plasma glucose concentrations, but not fetal blood pressure, were significantly correlated with IGF2 expression and the activation of CAMKII in the fetal right ventricle. LGUN increased interstitial collagen deposition and altered the protein abundance of phospho-PLB and phospho-troponin I, regulators of cardiac contractility and relaxation. This study shows that a decrease in fetal plasma glucose concentrations may play a role in the development of detrimental changes in the right ventricle in early life, highlighting CAMKII as a potential target for the development of intervention strategies. ABSTRACT Exposure of the fetus to a range of environmental stressors, including maternal undernutrition, is associated with an increased risk of death from cardiovascular disease in adult life. This study aimed to determine the effect of maternal nutrient restriction in late gestation on the molecular mechanisms that regulate cardiac growth and development of the fetal heart. Maternal undernutrition resulted in a decrease in fetal glucose concentrations across late gestation, whilst fetal arterial PO2 remained unchanged between the control and late gestation undernutrition (LGUN) groups. There was evidence of an up-regulation of IGF2/IGF2R signalling through the CAMKII pathway in the fetal right ventricle in the LGUN group, suggesting an increase in hypertrophic signalling. LGUN also resulted in an increased mRNA expression of COL1A, TIMP1 and TIMP3 in the right ventricle of the fetal heart. In addition, there was an inverse relationship between fetal glucose concentrations and COL1A expression. The presence of interstitial fibrosis in the heart of the LGUN group was confirmed through the quantification of picrosirius red-stained sections of the right ventricle. We have therefore shown that maternal undernutrition in late gestation may drive the onset of myocardial remodelling in the fetal right ventricle and thus has negative implications for right ventricle function and cardiac health in later life.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| |
Collapse
|
33
|
Botting KJ, Loke XY, Zhang S, Andersen JB, Nyengaard JR, Morrison JL. IUGR decreases cardiomyocyte endowment and alters cardiac metabolism in a sex- and cause-of-IUGR-specific manner. Am J Physiol Regul Integr Comp Physiol 2018; 315:R48-R67. [PMID: 29561647 DOI: 10.1152/ajpregu.00180.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of ischemic heart disease in adulthood. Studies in rats suggest cardiac vulnerability is more pronounced in males and in offspring that were exposed to hypoxia in utero. Therefore, we aimed to test the hypotheses that 1) IUGR adolescent males, but not females, have fewer cardiomyocytes and altered expression of cardiometabolic genes compared with controls; and 2) IUGR due to hypoxia has a greater effect on these parameters compared with IUGR due to nutrient restriction. IUGR was induced in guinea pigs by maternal hypoxia (MH; 10% O2, n = 9) or maternal nutrient restriction (MNR; ~30% reduction in food intake, n = 9) in the second half of pregnancy and compared with control ( n = 11). At 120 days of age, postmortem was performed and the left ventricle perfusion fixed for stereological determination of cardiomyocyte number or snap frozen to determine the abundance of cardiometabolic genes and proteins by quantitative RT-PCR and Western blotting, respectively. MH reduced the number of cardiomyocytes in female ( P < 0.05), but not male or MNR, adolescent offspring. Furthermore, IUGR males had decreased expression of genes responsible for fatty acid activation in the sarcoplasm ( FACS) and transport into the mitochondria ( AMPK-a2 and ACC; P < 0.05) and females exposed to MH had increased activation/phosphorylation of AMP-activated protein kinase-α ( P < 0.05). We postulate that the changes in cardiomyocyte endowment and cardiac gene expression observed in the present study are a direct result of in utero programming, as offspring at this age did not suffer from obesity, hypertension, or left ventricular hypertrophy.
Collapse
Affiliation(s)
- K J Botting
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia , Adelaide, South Australia , Australia.,Discipline of Physiology, School of Medical Science, The University of Adelaide , Adelaide, South Australia , Australia
| | - X Y Loke
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia , Adelaide, South Australia , Australia
| | - S Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia , Adelaide, South Australia , Australia
| | - J B Andersen
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University , Aarhus , Denmark
| | - J R Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University , Aarhus , Denmark
| | - J L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia , Adelaide, South Australia , Australia.,Discipline of Physiology, School of Medical Science, The University of Adelaide , Adelaide, South Australia , Australia
| |
Collapse
|
34
|
Zhang S, Barker P, Botting KJ, Roberts CT, McMillan CM, McMillen IC, Morrison JL. Early restriction of placental growth results in placental structural and gene expression changes in late gestation independent of fetal hypoxemia. Physiol Rep 2018; 4:4/23/e13049. [PMID: 27923976 PMCID: PMC5357827 DOI: 10.14814/phy2.13049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/02/2016] [Accepted: 10/31/2016] [Indexed: 01/12/2023] Open
Abstract
Placental restriction and insufficiency are associated with altered patterns of placental growth, morphology, substrate transport capacity, growth factor expression, and glucocorticoid exposure. We have used a pregnant sheep model in which the intrauterine environment has been perturbed by uterine carunclectomy (Cx). This procedure results in early restriction of placental growth and either the development of chronic fetal hypoxemia (PaO2≤17 mmHg) in late gestation or in compensatory placental growth and the maintenance of fetal normoxemia (PaO2>17 mmHg). Based on fetal PaO2, Cx, and Control ewes were assigned to either a normoxemic fetal group (Nx) or a hypoxemic fetal group (Hx) in late gestation, resulting in 4 groups. Cx resulted in a decrease in the volumes of fetal and maternal connective tissues in the placenta and increased placental mRNA expression of IGF2, vascular endothelial growth factor (VEGF), VEGFR‐2,ANGPT2, and TIE2. There were reduced volumes of trophoblast, maternal epithelium, and maternal connective tissues in the placenta and a decrease in placental GLUT1 and 11βHSD2 mRNA expression in the Hx compared to Nx groups. Our data show that early restriction of placental growth has effects on morphological and functional characteristics of the placenta in late gestation, independent of whether the fetus becomes hypoxemic. Similarly, there is a distinct set of placental changes that are only present in fetuses that were hypoxemic in late gestation, independent of whether Cx occurred. Thus, we provide further understanding of the different placental cellular and molecular mechanisms that are present in early placental restriction and in the emergence of later placental insufficiency.
Collapse
Affiliation(s)
- Song Zhang
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Paige Barker
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Claire T Roberts
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christine M McMillan
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Isabella Caroline McMillen
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Zeng CP, Chen YC, Lin X, Greenbaum J, Chen YP, Peng C, Wang XF, Zhou R, Deng WM, Shen J, Deng HW. Increased identification of novel variants in type 2 diabetes, birth weight and their pleiotropic loci. J Diabetes 2017; 9:898-907. [PMID: 27896934 PMCID: PMC5841537 DOI: 10.1111/1753-0407.12510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/12/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clinical and epidemiological findings point to an association between type 2 diabetes (T2D) and low birth weight. However, the nature of the relationship is largely unknown. The aim of this study was to identify novel single nucleotide polymorphisms (SNPs) in T2D and birth weight, and their pleiotropic loci. METHODS A pleiotropy-informed conditional false discovery rate (cFDR) method was applied to two independent genome-wide association studies (GWAS) summary statistics of T2D (n = 149 821) and birth weight (n = 26 836). RESULTS A conditional Q-Q plot showed strong enrichment of genetic variants in T2D conditioned on different levels of association with birth weight. 133 T2D-associated SNPs, including 120 novel SNPs, were identified with a significance threshold of cFDR < 0.05; 13 significant birth weight-associated SNPs, including 12 novel SNPs (cFDR < 0.05) were identified. Conjunctional cFDR (ccFDR) analysis identified nine pleiotropic loci, including seven novel loci, shared by both T2D and birth weight (ccFDR < 0.05). Two novel SNPs located at the CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1; rs1012635; cFDR < 0.05) and adenylate cyclase 5 (ADCY5; rs4677887; cFDR < 0.05) genes are of note. These two genes increase the risk of T2D and low birth weight through the pathway of the "fetal insulin hypothesis." CONCLUSION Several pleiotropic loci were identified between T2D and birth weight by leveraging GWAS results. The results make it possible to explain a greater proportion of trait heritability and improve our understanding of the shared pathophysiology between T2D and birth weight.
Collapse
Affiliation(s)
- Chun-Ping Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Endocrinology and Metabolism, Affiliated Nanhai Hospital of Southern Medical University, Guangzhou, China
| | - Yuan-Cheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jonathan Greenbaum
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, Tulane University, New Orleans, Louisiana, USA
| | - You-Ping Chen
- Department of Endocrinology and Metabolism, Affiliated Nanhai Hospital of Southern Medical University, Guangzhou, China
| | - Cheng Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xia-Fang Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Rou Zhou
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wei-Min Deng
- Department of Rehabilitation, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
36
|
Soo JY, Orgeig S, McGillick EV, Zhang S, McMillen IC, Morrison JL. Normalisation of surfactant protein -A and -B expression in the lungs of low birth weight lambs by 21 days old. PLoS One 2017; 12:e0181185. [PMID: 28949968 PMCID: PMC5614422 DOI: 10.1371/journal.pone.0181185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/27/2017] [Indexed: 11/18/2022] Open
Abstract
Intrauterine growth restriction (IUGR) induced by placental restriction (PR) in the sheep negatively impacts lung and pulmonary surfactant development during fetal life. Using a sheep model of low birth weight (LBW), we found that there was an increase in mRNA expression of surfactant protein (SP)-A, -B and -C in the lung of LBW lambs but no difference in the protein expression of SP-A or -B. LBW also resulted in increased lysosome-associated membrane glycoprotein (LAMP)-3 mRNA expression, which may indicate an increase in either the density of type II Alveolar epithelial cells (AEC) or maturity of type II AECs. Although there was an increase in glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase (11βHSD)-1 mRNA expression in the lung of LBW lambs, we found no change in the protein expression of these factors, suggesting that the increase in SP mRNA expression is not mediated by increased GC signalling in the lung. The increase in SP mRNA expression may, in part, be mediated by persistent alterations in hypoxia signalling as there was an increase in lung HIF-2α mRNA expression in the LBW lamb. The changes in the hypoxia signalling pathway that persist within the lung after birth may be involved in maintaining SP production in the LBW lamb.
Collapse
Affiliation(s)
- Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Erin Victoria McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
37
|
Lock MC, McGillick EV, Orgeig S, McMillen IC, Mühlhäusler BS, Zhang S, Morrison JL. Differential effects of late gestation maternal overnutrition on the regulation of surfactant maturation in fetal and postnatal life. J Physiol 2017; 595:6635-6652. [PMID: 28759122 DOI: 10.1113/jp274528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Offspring of overweight and obese women are at greater risk for respiratory complications at birth. We determined the effect of late gestation maternal overnutrition (LGON) in sheep on surfactant maturation, glucose transport and fatty acid metabolism in the lung in fetal and postnatal life. There were significant decreases in surfactant components and numerical density of surfactant producing cells in the alveolar epithelium due to LGON in the fetal lung. However, there were no differences in the levels of these surfactant components between control and LGON lambs at 30 days of age. The reduced capacity for surfactant production in fetuses as a result of LGON may affect the transition to air breathing at birth. There was altered glucose transport and fatty acid metabolism in the lung as a result of LGON in postnatal life. However, there is a normalisation of surfactant components that suggests accelerated maturation in the lungs after birth. ABSTRACT With the increasing incidence of obesity worldwide, the proportion of women entering pregnancy overweight or obese has increased dramatically. The fetus of an overnourished mother experiences numerous metabolic changes that may modulate lung development and hence successful transition to air breathing at birth. We used a sheep model of maternal late gestation overnutrition (LGON; from 115 days' gestation, term 147 ± 3 days) to determine the effect of exposure to an increased plane of nutrition in late gestation on lung development in the fetus (at 141 days' gestation) and the lamb (30 days after birth). We found a decrease in the numerical density of surfactant protein positive cells, as well as a reduction in mRNA expression of surfactant proteins (SFTP-A, -B and -C), a rate limiting enzyme in surfactant phospholipid synthesis (phosphate cytidylyltransferase 1, choline, α; PCYT1A), and glucose transporters (SLC2A1 and SLC2A4) in the fetal lung. In lambs at 30 days after birth, there were no differences between Control and LGON groups in the surfactant components that were downregulated in the LGON fetuses. However, mRNA expression of SFTP-A, PCYT1A, peroxisome proliferator activated receptor-γ, fatty acid synthase and fatty acid transport protein were increased in LGON lambs compared to controls. These results indicate a reduced capacity for surfactant production in late gestation. While these deficits are normalised by 30 days after birth, the lungs of LGON lambs exhibited altered glucose transport and fatty acid metabolism, which is consistent with an enhanced capacity for surfactant synthesis and restoration of surfactant maturity in these animals.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001.,Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Beverly S Mühlhäusler
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| |
Collapse
|
38
|
Wang KCW, Botting KJ, Zhang S, McMillen IC, Brooks DA, Morrison JL. Akt signaling as a mediator of cardiac adaptation to low birth weight. J Endocrinol 2017; 233:R81-R94. [PMID: 28219933 DOI: 10.1530/joe-17-0039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Intrauterine insults, such as poor nutrition and placental insufficiency, can alter cardiomyocyte development, and this can have significant long-term implications for heart health. Consequently, epidemiological studies have shown that low-birth-weight babies have an increased risk of death from cardiovascular disease in adult life. In addition, intrauterine growth restriction can result in increased left ventricular hypertrophy, which is the strongest predictor for poor health outcomes in cardiac patients. The mechanisms responsible for these associations are not clear, but a suboptimal intrauterine environment can program alternative expression of genes such as cardiac IGF-2/H19, IGF-2R and AT1R through either an increase or decrease in DNA methylation or histone acetylation at specific loci. Furthermore, hypoxia and other intrauterine insults can also activate the IGF-1 receptor via IGF-1 and IGF-2, and the AT1 receptor via angiotensin signaling pathways; both of which can result in the phosphorylation of Akt and the activation of a range of downstream pathways. In turn, Akt activation can increase cardiac angiogenesis and cardiomyocyte apoptosis and promote a reversion of metabolism in postnatal life to a fetal phenotype, which involves increased reliance on glucose. Cardiac Akt can also be indirectly regulated by microRNAs and conversely can target microRNAs that will eventually affect other specific cardiac genes and proteins. This review aims to discuss our understanding of this complex network of interactions, which may help explain the link between low birth weight and the increased risk of cardiovascular disease in adult life.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
40
|
Clifton VL, Moss TJM, Wooldridge AL, Gatford KL, Liravi B, Kim D, Muhlhausler BS, Morrison JL, Davies A, De Matteo R, Wallace MJ, Bischof RJ. Development of an experimental model of maternal allergic asthma during pregnancy. J Physiol 2015; 594:1311-25. [PMID: 26235954 DOI: 10.1113/jp270752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/15/2015] [Indexed: 12/31/2022] Open
Abstract
Maternal asthma during pregnancy adversely affects pregnancy outcomes but identification of the cause/s, and the ability to evaluate interventions, is limited by the lack of an appropriate animal model. We therefore aimed to characterise maternal lung and cardiovascular responses and fetal-placental growth and lung surfactant levels in a sheep model of allergic asthma. Immune and airway functions were studied in singleton-bearing ewes, either sensitised before pregnancy to house dust mite (HDM, allergic, n = 7) or non-allergic (control, n = 5), and subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Maternal lung, fetal and placental phenotypes were characterised at 140 ± 1 days gestational age (term, ∼147 days). The eosinophil influx into lungs was greater after HDM challenge in allergic ewes than after saline challenge in control ewes before mating and in late gestation. Airway resistance increased throughout pregnancy in allergic but not control ewes, consistent with increased airway smooth muscle in allergic ewes. Maternal allergic asthma decreased relative fetal weight (-12%) and altered placental phenotype to a more mature form. Expression of surfactant protein B mRNA was 48% lower in fetuses from allergic ewes than controls, with a similar trend for surfactant protein D. Thus, allergic asthma in pregnant sheep modifies placental phenotype, and inhibits fetal growth and lung development consistent with observations from human pregnancies. Preconceptional allergen sensitisation and repeated airway challenges in pregnant sheep therefore provides an animal model to identify mechanisms of altered fetal development and adverse pregnancy outcomes caused by maternal asthma in pregnancy.
Collapse
Affiliation(s)
- Vicki L Clifton
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia.,Mater Medical Research Institute, University of Queensland, Brisbane, Qld, 4101, Australia
| | - Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Amy L Wooldridge
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kathryn L Gatford
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Bahar Liravi
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| | - Dasom Kim
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| | - Beverly S Muhlhausler
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Andrew Davies
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia.,School of Biomedical Sciences, Peninsula Campus, Monash University, Frankston, VIC, 3199, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Robert J Bischof
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
41
|
Morrison JL, Zhang S, Tellam RL, Brooks DA, McMillen IC, Porrello ER, Botting KJ. Regulation of microRNA during cardiomyocyte maturation in sheep. BMC Genomics 2015. [PMID: 26198574 PMCID: PMC4509559 DOI: 10.1186/s12864-015-1693-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background There is a limited capacity to repair damage in the mammalian heart after birth, which is primarily due to the inability of cardiomyocytes to proliferate after birth. This is in contrast to zebrafish and salamander, in which cardiomyocytes retain the ability to proliferate throughout life and can regenerate their heart after significant damage. Recent studies in zebrafish and rodents implicate microRNA (miRNA) in the regulation of genes responsible for cardiac cell cycle progression and regeneration, in particular, miR-133a, the miR-15 family, miR-199a and miR-590. However, the significance of these miRNA and miRNA in general in the regulation of cardiomyocyte proliferation in large mammals, including humans, where the timing of heart development relative to birth is very different than in rodents, is unclear. To determine the involvement of miRNA in the down-regulation of cardiomyocyte proliferation occurring before birth in large mammals, we investigated miRNA and target gene expression in sheep hearts before and after birth. The experimental approach included targeted transcriptional profiling of miRNA and target mRNA previously identified in rodent studies as well as genome-wide miRNA profiling using microarrays. Results The cardiac expression of miR-133a increased and its target gene IGF1R decreased with increasing age, reaching their respective maximum and minimum abundance when the majority of ovine cardiomyocytes were quiescent. The expression of the miR-15 family members was variable with age, however, four of their target genes decreased with age. These latter profiles are inconsistent with the direct involvement of this family of miRNA in cardiomyocyte quiescence in late gestation sheep. The expression patterns of ‘pro-proliferative’ miR-199a and miR-590 were also inconsistent with their involvement in cardiomyocyte quiescence. Consequently, miRNA microarray analysis was undertaken, which identified six discrete clusters of miRNA with characteristic developmental profiles. The functions of predicted target genes for the miRNA in four of the six clusters were enriched for aspects of cell division and regulation of cell proliferation suggesting a potential role of these miRNA in regulating cardiomyocyte proliferation. Conclusion The results of this study show that the expression of miR-133a and one of its target genes is consistent with it being involved in the suppression of cardiomyocyte proliferation, which occurs across the last third of gestation in sheep. The expression patterns of the miR-15 family, miR-199a and miR-590 were inconsistent with direct involvement in the regulation cardiomyocyte proliferation in sheep, despite studies in rodents demonstrating that their manipulation can influence the degree of cardiomyocyte proliferation. miRNA microarray analysis suggests a coordinated and potentially more complex role of multiple miRNA in the regulation of cardiomyocyte quiescence and highlights significant differences between species that may reflect their substantial differences in the timing of this developmental process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1693-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Song Zhang
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Ross L Tellam
- CSIRO Agriculture, CSIRO, Queensland Biosciences Precinct, St Lucia, QLD, Australia.
| | - Doug A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, University of South Australia, Adelaide, SA, Australia.
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Enzo R Porrello
- Laboratory for Cardiac Regeneration, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
42
|
Orgeig S, McGillick EV, Botting KJ, Zhang S, McMillen IC, Morrison JL. Increased lung prolyl hydroxylase and decreased glucocorticoid receptor are related to decreased surfactant protein in the growth-restricted sheep fetus. Am J Physiol Lung Cell Mol Physiol 2015; 309:L84-97. [PMID: 25934670 DOI: 10.1152/ajplung.00275.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/24/2015] [Indexed: 11/22/2022] Open
Abstract
Experimental placental restriction (PR) by carunclectomy in fetal sheep results in intrauterine growth restriction (IUGR), chronic hypoxemia, increased plasma cortisol, and decreased lung surfactant protein (SP) expression. The mechanisms responsible for decreased SP expression are unknown but may involve decreased glucocorticoid (GC) action or changes in hypoxia signaling. Endometrial caruncles were removed from nonpregnant ewes to induce PR. Lungs were collected from control and PR fetuses at 130-135 (n = 19) and 139-145 (n = 28) days of gestation. qRT-PCR and Western blotting were used to quantify lung mRNA and protein expression, respectively, of molecular regulators and downstream targets of the GC and hypoxia-signaling pathways. We confirmed a decrease in SP-A, -B, and -C, but not SP-D, mRNA expression in PR fetuses at both ages. There was a net downregulation of GC signaling with a reduction in GC receptor (GR)-α and -β protein expression and a decrease in the cofactor, GATA-6. GC-responsive genes including transforming growth factor-β1, IL-1β, and β2-adrenergic receptor were not stimulated. Prolyl hydroxylase domain (PHD)2 mRNA and protein and PHD3 mRNA expression increased with a concomitant increase in hypoxia-inducible factor-1α (HIF-1α) and HIF-1β mRNA expression. There was an increase in mRNA expression of several, but not all, hypoxia-responsive genes. Hence, both GC and hypoxia signaling may contribute to reduced SP expression. Although acute hypoxia normally inactivates PHDs, chronic hypoxemia in the PR fetus increased PHD abundance, which normally prevents HIF signaling. This may represent a mechanism by which chronic hypoxemia contributes to the decrease in SP production in the IUGR fetal lung.
Collapse
Affiliation(s)
- Sandra Orgeig
- Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia;
| |
Collapse
|
43
|
Wang KCW, Brooks DA, Summers-Pearce B, Bobrovskaya L, Tosh DN, Duffield JA, Botting KJ, Zhang S, Caroline McMillen I, Morrison JL. Low birth weight activates the renin-angiotensin system, but limits cardiac angiogenesis in early postnatal life. Physiol Rep 2015; 3:3/2/e12270. [PMID: 25649246 PMCID: PMC4393187 DOI: 10.14814/phy2.12270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Low birth weight (LBW) is associated with increased risk of adult cardiovascular disease and this association may be partly a consequence of early programming of the renin-angiotensin system (RAS). We investigated the effects of LBW on expression of molecules in the RAS and cardiac tissue remodeling. Left ventricular samples were collected from the hearts of 21 days old lambs that were born average birth weight (ABW) and LBW. Cardiac mRNA expression was quantified using real-time RT-PCR and protein expression was quantified using Western blotting. DNA methylation and histone acetylation were assessed by combined bisulfite restriction analysis and chromatin immunoprecipitation, respectively. There were increased plasma renin activity, angiotensin I (ANGI), and ANGII concentrations in LBW compared to ABW lambs at day 20. In LBW lambs, there was increased expression of cardiac ACE2 mRNA, decreased ANGII receptor type 1 (AT1R) protein, and acetylation of histone H3K9 of the AT1R promoter but no changes in AT1R mRNA expression and AT1R promoter DNA methylation. There was no difference in the abundance of proteins involved in autophagy or fibrosis. BIRC5 and VEGF mRNA expression was increased; however, the total length of the capillaries was decreased in the hearts of LBW lambs. Activation of the circulating and local cardiac RAS in neonatal LBW lambs may be expected to increase cardiac fibrosis, autophagy, and capillary length. However, we observed only a decrease in total capillary length, suggesting a dysregulation of the RAS in the heart of LBW lambs and this may have significant implications for heart health in later life.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Brooke Summers-Pearce
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Larisa Bobrovskaya
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Darran N Tosh
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Jaime A Duffield
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
44
|
Wang KCW, Tosh DN, Zhang S, McMillen IC, Duffield JA, Brooks DA, Morrison JL. IGF-2R-Gαq signaling and cardiac hypertrophy in the low-birth-weight lamb. Am J Physiol Regul Integr Comp Physiol 2015; 308:R627-35. [PMID: 25632020 DOI: 10.1152/ajpregu.00346.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/29/2014] [Indexed: 01/19/2023]
Abstract
The cardiac insulin-like growth factor 2 receptor (IGF-2R) can induce cardiomyocyte hypertrophy in a heterotrimeric G protein receptor-coupled manner involving αq (Gαq) or αs (Gαs). We have previously shown increased left ventricular weight and cardiac IGF-2 and IGF-2R gene expression in low-birth-weight (LBW) compared with average-birth-weight (ABW) lambs. Here, we have investigated the cardiac expression of IGF-2 gene variants, the degree of histone acetylation, and the abundance of proteins in the IGF-2R downstream signaling pathway in ABW and LBW lambs. Samples from the left ventricle of ABW and LBW lambs were collected at 21 days of age. There was increased phospho-CaMKII protein with decreased HDAC 4 abundance in the LBW compared with ABW lambs. There was increased GATA 4 and decreased phospho-troponin I abundance in LBW compared with ABW lambs, which are markers of pathological cardiac hypertrophy and impaired or reduced contractility, respectively. There was increased histone acetylation of H3K9 at IGF-2R promoter and IGF-2R intron 2 differentially methylated region in the LBW lamb. In conclusion, histone acetylation of IGF-2R may lead to increased IGF-2R mRNA expression and subsequently mediate Gαq signaling early in life via CaMKII, resulting in an increased risk of left ventricular hypertrophy and cardiovascular disease in adult life.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - Darran N Tosh
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - Jaime A Duffield
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| |
Collapse
|
45
|
Sertié RAL, Sertié AL, Giannocco G, Poyares LL, Nunes MT. Acute growth hormone administration increases myoglobin expression and Glut4 translocation in rat cardiac muscle cells. Metabolism 2014; 63:1499-502. [PMID: 25306099 DOI: 10.1016/j.metabol.2014.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/07/2014] [Accepted: 08/21/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Oxygen (O2) and glucose are important energy sources for the heart. This study sought to investigate the effects of acute growth hormone (GH) administration on the expression of myoglobin (Mb) and Glut4 glucose transporter, two important limiting factors for O2 and glucose utilization for energy production, in cardiac muscle cells of treated rats. METHODS Male Wistar rats were sacrificed at 30, 45, 90 and 120 min after a single dose of intraperitoneal (ip) rat GH (1.5 mg/kg) or vehicle administration, and total RNA and protein (from whole cell or subcellular fractions) were extracted from cardiomyocytes (left ventricles) of these animals. RESULTS Acute GH injection led to a significant increase in both Mb mRNA and protein levels, and stimulated Glut4 protein translocation to the plasma membrane of cardiac cells. CONCLUSIONS These results suggest that GH exerts some of its effects on cardiomyocytes shortly after the first administration inducing the expression of proteins potentially involved in cardiac performance.
Collapse
Affiliation(s)
- Rogério Antônio Laurato Sertié
- Laboratório de Fisiologia do Tecido Adiposo, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Andréa Laurato Sertié
- Centro de Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Leonice Lourenço Poyares
- Laboratório de Regulação Hormonal e Expressão Gênica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Tereza Nunes
- Laboratório de Regulação Hormonal e Expressão Gênica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|