1
|
Li Y, Chen Y, Kuang J, Deng S, Wang Y. Intermittent hypoxia induces hepatic senescence through promoting oxidative stress in a mouse model. Sleep Breath 2024; 28:183-191. [PMID: 37453998 DOI: 10.1007/s11325-023-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Metabolic-associated fatty liver disease (MAFLD) is an aging-related disease. Obstructive sleep apnea (OSA) may cause MAFLD. This study aimed to explore whether or not intermittent hypoxia (IH), the hallmark of OSA, induces liver aging through oxidative stress. METHODS C57BL/6J male mice were administered normal air (control), IH, or antioxidant tempol + IH daily for 6 weeks before the collection of serum and liver tissue samples. A histological examination was conducted to assess liver aging. ELISA was performed to measure liver function indicator levels in the serum and oxidative stress indicator activities in the liver. Western blot analysis was carried out to determine the protein expression of the markers related to oxidative stress, inflammation, and senescence. RESULTS Compared with control, IH resulted in significant increases in serum ALT, AST, and TG levels in mice (all P < 0.001), along with lobular inflammation and accumulation of collagen and fat in the liver. The protein levels of inflammatory factors and senescent markers were significantly increased in the IH mouse liver compared with those in the control mouse liver. Meanwhile, IH significantly reduced SOD and CAT activities while enhancing p22phox and Nrf2 protein expression in mouse liver compared with control. Importantly, antioxidant therapy with tempol effectively abrogated the effects of IH on oxidative stress response and aging-related liver injury. CONCLUSIONS Our findings suggest that IH induces liver inflammation and aging through oxidative stress. OSA may exacerbate target organ aging and participate in target organ damage. Strategies targeting oxidative stress may prevent and treat OSA-related MAFLD.
Collapse
Affiliation(s)
- Yayong Li
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuanguo Chen
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingjie Kuang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Silei Deng
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Jackson CD, Badran M, Gozal D, Brown CR, Khalyfa A. Sleep fragmentation disrupts Lyme arthritis resolution in mice. Sleep Med 2024; 114:196-202. [PMID: 38219655 DOI: 10.1016/j.sleep.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
STUDY OBJECTIVES Lyme arthritis is a common late-stage complication of infection by Borrelia burgdorferi, the agent of Lyme disease. Patients with Lyme arthritis report increased levels of sleep disturbance associated with pain. Using a mouse model of experimental Lyme arthritis, we investigated the effect of disrupted sleep on the development and resolution of joint inflammation. METHODS Lyme arthritis-susceptible C3H/HeJ mice (n = 10/group) were infected with B. burgdorferi and were left either alone (control) or subjected to sleep fragmentation (SF). Arthritis development or resolution were monitored. The impact of SF on immune and inflammatory parameters such as arthritis severity scores, anti-borrelia antibody production, and bacterial clearance was measured. We also determined the effect of SF on arthritis resolution in C3H mice deficient in leukotriene (LT) B4 signaling (BLT1/2-/-) who display delayed Lyme arthritis resolution. RESULTS SF had no significant impact on Lyme arthritis development or inflammatory parameters regardless of whether SF treatment began 1 week prior to or congruent with infection. However, initiation of SF at the peak of arthritis resulted in a significant delay in arthritis resolution as measured by joint edema, arthritis severity scores, and decreased bacterial clearance from the joint. This was accompanied by significant changes in joint cytokine transcription levels (e.g., increased TNFα and decreased IL-4). SF has no significant impact on Lyme arthritis resolution in the BLT1/2-/- mice. CONCLUSIONS Poor sleep, especially near the peak of arthritis inflammation, may delay initiation of resolution programs possibly through altering cytokine production and host immune responses, leading to defects in spirochete clearance and prolonged disease.
Collapse
Affiliation(s)
- Christa D Jackson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Mohammad Badran
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA.
| | - Charles R Brown
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Koritala BSC, Lee YY, Gaspar LS, Bhadri SS, Su W, Wu G, Francey LJ, Ruben MD, Gong MC, Hogenesch JB, Smith DF. Obstructive sleep apnea in a mouse model is associated with tissue-specific transcriptomic changes in circadian rhythmicity and mean 24-hour gene expression. PLoS Biol 2023; 21:e3002139. [PMID: 37252926 PMCID: PMC10228805 DOI: 10.1371/journal.pbio.3002139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Intermittent hypoxia (IH) is a major clinical feature of obstructive sleep apnea (OSA). The mechanisms that become dysregulated after periods of exposure to IH are unclear, particularly in the early stages of disease. The circadian clock governs a wide array of biological functions and is intimately associated with stabilization of hypoxia-inducible factors (HIFs) under hypoxic conditions. In patients, IH occurs during the sleep phase of the 24-hour sleep-wake cycle, potentially affecting their circadian rhythms. Alterations in the circadian clock have the potential to accelerate pathological processes, including other comorbid conditions that can be associated with chronic, untreated OSA. We hypothesized that changes in the circadian clock would manifest differently in those organs and systems known to be impacted by OSA. Using an IH model to represent OSA, we evaluated circadian rhythmicity and mean 24-hour expression of the transcriptome in 6 different mouse tissues, including the liver, lung, kidney, muscle, heart, and cerebellum, after a 7-day exposure to IH. We found that transcriptomic changes within cardiopulmonary tissues were more affected by IH than other tissues. Also, IH exposure resulted in an overall increase in core body temperature. Our findings demonstrate a relationship between early exposure to IH and changes in specific physiological outcomes. This study provides insight into the early pathophysiological mechanisms associated with IH.
Collapse
Affiliation(s)
- Bala S. C. Koritala
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yin Yeng Lee
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Laetitia S. Gaspar
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Shweta S. Bhadri
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Wen Su
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Gang Wu
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Lauren J. Francey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Marc D. Ruben
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ming C. Gong
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - John B. Hogenesch
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - David F. Smith
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- The Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- The Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
4
|
Veler H. Sleep and Inflammation. Sleep Med Clin 2023; 18:213-218. [PMID: 37120163 DOI: 10.1016/j.jsmc.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Sleep and inflammatory cytokines have a bidirectional relationship where circadian rhythms influence increase in levels of certain cytokines, and in return, some cytokines induce sleep, as we frequently experience during illnesses. The most commonly studied cytokines, in the context of inflammation and sleep, are interleukin 6 (IL-6), tumor necrosis factor (TNF), and (IL-1). In this article, the author follows the effect of circadian rhythms on blood levels of these cytokines and explores the changes in their levels in conditions that affect sleep, such as obstructive sleep apnea and insomnia.
Collapse
Affiliation(s)
- Haviva Veler
- Pediatric Pulmonology and Sleep Medicine, University of Connecticut School of Medicine, Connecticut Children Medical Center, 85 Seymour Street, Suite 500, Hartford, CT 06106, USA.
| |
Collapse
|
5
|
Sánchez-de-la-Torre M, Cubillos C, Veatch OJ, Garcia-Rio F, Gozal D, Martinez-Garcia MA. Potential Pathophysiological Pathways in the Complex Relationships between OSA and Cancer. Cancers (Basel) 2023; 15:1061. [PMID: 36831404 PMCID: PMC9953831 DOI: 10.3390/cancers15041061] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Several epidemiological and clinical studies have suggested a relationship between obstructive sleep apnea (OSA) and a higher incidence or severity of cancer. This relationship appears to be dependent on a myriad of factors. These include non-modifiable factors, such as age and gender; and modifiable or preventable factors, such as specific comorbidities (especially obesity), the use of particular treatments, and, above all, the histological type or location of the cancer. Heterogeneity in the relationship between OSA and cancer is also related to the influences of intermittent hypoxemia (a hallmark feature of OSA), among others, on metabolism and the microenvironment of different types of tumoral cells. The hypoxia inducible transcription factor (HIF-1α), a molecule activated and expressed in situations of hypoxemia, seems to be key to enabling a variety of pathophysiological mechanisms that are becoming increasingly better recognized. These mechanisms appear to be operationally involved via alterations in different cellular functions (mainly involving the immune system) and molecular functions, and by inducing modifications in the microbiome. This, in turn, may individually or collectively increase the risk of cancer, which is then, further modulated by the genetic susceptibility of the individual. Here, we provide an updated and brief review of the different pathophysiological pathways that have been identified and could explain the relationship between OSA and cancer. We also identify future challenges that need to be overcome in this intriguing field of research.
Collapse
Affiliation(s)
- Manuel Sánchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, IRBLleida, University of Lleida, 25003 Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carolina Cubillos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Francisco Garcia-Rio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Miguel Angel Martinez-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Respiratory Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46012 Valencia, Spain
| |
Collapse
|
6
|
Badran M, Khalyfa A, Ericsson AC, Puech C, McAdams Z, Bender SB, Gozal D. Gut microbiota mediate vascular dysfunction in a murine model of sleep apnoea: effect of probiotics. Eur Respir J 2023; 61:2200002. [PMID: 36028255 DOI: 10.1183/13993003.00002-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/10/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is a chronic prevalent condition characterised by intermittent hypoxia (IH), and is associated with endothelial dysfunction and coronary artery disease (CAD). OSA can induce major changes in gut microbiome diversity and composition, which in turn may induce the emergence of OSA-associated morbidities. However, the causal effects of IH-induced gut microbiome changes on the vasculature remain unexplored. Our objective was to assess if vascular dysfunction induced by IH is mediated through gut microbiome changes. METHODS Faecal microbiota transplantation (FMT) was conducted on C57BL/6J naïve mice for 6 weeks to receive either IH or room air (RA) faecal slurry with or without probiotics (VSL#3). In addition to 16S rRNA amplicon sequencing of their gut microbiome, FMT recipients underwent arterial blood pressure and coronary artery and aorta function testing, and their trimethylamine N-oxide (TMAO) and plasma acetate levels were determined. Finally, C57BL/6J mice were exposed to IH, IH treated with VSL#3 or RA for 6 weeks, and arterial blood pressure and coronary artery function assessed. RESULTS Gut microbiome taxonomic profiles correctly segregated IH from RA in FMT mice and the normalising effect of probiotics emerged. Furthermore, IH-FMT mice exhibited increased arterial blood pressure and TMAO levels, and impairments in aortic and coronary artery function (p<0.05) that were abrogated by probiotic administration. Lastly, treatment with VSL#3 under IH conditions did not attenuate elevations in arterial blood pressure or CAD. CONCLUSIONS Gut microbiome alterations induced by chronic IH underlie, at least partially, the typical cardiovascular disturbances of sleep apnoea and can be mitigated by concurrent administration of probiotics.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
- University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, USA
| | - Clementine Puech
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Zachary McAdams
- Department of Molecular Microbiology and Immunology, Molecular Pathogenesis and Therapeutics Program, University of Missouri, Columbia, MO, USA
| | - Shawn B Bender
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Liu Q, Hao T, Li L, Huang D, Lin Z, Fang Y, Wang D, Zhang X. Construction of a mitochondrial dysfunction related signature of diagnosed model to obstructive sleep apnea. Front Genet 2022; 13. [PMID: 36468038 PMCID: PMC9714559 DOI: 10.3389/fgene.2022.1056691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Background: The molecular mechanisms underlying obstructive sleep apnea (OSA) and its comorbidities may involve mitochondrial dysfunction. However, very little is known about the relationships between mitochondrial dysfunction-related genes and OSA. Methods: Mitochondrial dysfunction-related differentially expressed genes (DEGs) between OSA and control adipose tissue samples were identified using data from the Gene Expression Omnibus database and information on mitochondrial dysfunction-related genes from the GeneCards database. A mitochondrial dysfunction-related signature of diagnostic model was established using least absolute shrinkage and selection operator Cox regression and then verified. Additionally, consensus clustering algorithms were used to conduct an unsupervised cluster analysis. A protein-protein interaction network of the DEGs between the mitochondrial dysfunction-related clusters was constructed using STRING database and the hub genes were identified. Functional analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA), were conducted to explore the mechanisms involved in mitochondrial dysfunction in OSA. Immune cell infiltration analyses were conducted using CIBERSORT and single-sample GSEA (ssGSEA). Results: we established mitochondrial dysfunction related four-gene signature of diagnostic model consisted of NPR3, PDIA3, SLPI, ERAP2, and which could easily distinguish between OSA patients and controls. In addition, based on mitochondrial dysfunction-related gene expression, we identified two clusters among all the samples and three clusters among the OSA samples. A total of 10 hub genes were selected from the PPI network of DEGs between the two mitochondrial dysfunction-related clusters. There were correlations between the 10 hub genes and the 4 diagnostic genes. Enrichment analyses suggested that autophagy, inflammation pathways, and immune pathways are crucial in mitochondrial dysfunction in OSA. Plasma cells and M0 and M1 macrophages were significantly different between the OSA and control samples, while several immune cell types, especially T cells (γ/δ T cells, natural killer T cells, regulatory T cells, and type 17 T helper cells), were significantly different among mitochondrial dysfunction-related clusters of OSA samples. Conclusion: A novel mitochondrial dysfunction-related four-gen signature of diagnostic model was built. The genes are potential biomarkers for OSA and may play important roles in the development of OSA complications.
Collapse
Affiliation(s)
- Qian Liu
- Shantou University Medical College, Shantou, China
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Tao Hao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lei Li
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Daqi Huang
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Ze Lin
- Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yipeng Fang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dong Wang
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Xin Zhang
- Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Badran M, Bender SB, Khalyfa A, Padilla J, Martinez-Lemus LA, Gozal D. Temporal changes in coronary artery function and flow velocity reserve in mice exposed to chronic intermittent hypoxia. Sleep 2022; 45:6602135. [DOI: 10.1093/sleep/zsac131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Study Objectives
Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH) that is implicated in an increased risk of cardiovascular disease (i.e., coronary heart disease, CHD) and associated with increased overall and cardiac-specific mortality. Accordingly, we tested the hypothesis that experimental IH progressively impairs coronary vascular function and in vivo coronary flow reserve.
Methods
Male C57BL/6J mice (8-week-old) were exposed to IH (FiO2 21% 90 s–6% 90 s) or room air (RA; 21%) 12 h/day during the light cycle for 2, 6, 16, and 28 weeks. Coronary artery flow velocity reserve (CFVR) was measured at each time point using a Doppler system. After euthanasia, coronary arteries were micro-dissected and mounted on wire myograph to assess reactivity to acetylcholine (ACh) and sodium nitroprusside (SNP).
Results
Endothelium-dependent coronary relaxation to ACh was preserved after 2 weeks of IH (80.6 ± 7.8%) compared to RA (87.8 ± 7.8%, p = 0.23), but was significantly impaired after 6 weeks of IH (58.7 ± 16.2%, p = 0.02). Compared to ACh responses at 6 weeks, endothelial dysfunction was more pronounced in mice exposed to 16 weeks (48.2 ± 5.3%) but did not worsen following 28 weeks of IH (44.8 ± 11.6%). A 2-week normoxic recovery after a 6-week IH exposure reversed the ACh abnormalities. CFVR was significantly reduced after 6 (p = 0.0006) and 28 weeks (p < 0.0001) of IH when compared to controls.
Conclusion
Chronic IH emulating the hypoxia-re-oxygenation cycles of moderate-to-severe OSA promotes coronary artery endothelial dysfunction and CFVR reductions in mice, which progressively worsen until reaching asymptote between 16 and 28 weeks. Normoxic recovery after 6 weeks exposure reverses the vascular abnormalities.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Shawn B Bender
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, MO , USA
- Department of Biomedical Sciences, University of Missouri , Columbia, MO , USA
- Research Service, Harry S. Truman Memorial Veterans Hospital , Columbia, MO , USA
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, MO , USA
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, MO , USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, MO , USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri , Columbia, MO , USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri , Columbia, MO , USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri , Columbia, MO , USA
| |
Collapse
|
9
|
Badran M, Gozal D. PAI-1: A Major Player in the Vascular Dysfunction in Obstructive Sleep Apnea? Int J Mol Sci 2022; 23:5516. [PMID: 35628326 PMCID: PMC9141273 DOI: 10.3390/ijms23105516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Obstructive sleep apnea is a chronic and prevalent condition that is associated with endothelial dysfunction, atherosclerosis, and imposes excess overall cardiovascular risk and mortality. Despite its high prevalence and the susceptibility of CVD patients to OSA-mediated stressors, OSA is still under-recognized and untreated in cardiovascular practice. Moreover, conventional OSA treatments have yielded either controversial or disappointing results in terms of protection against CVD, prompting the need for the identification of additional mechanisms and associated adjuvant therapies. Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of tissue-type plasminogen activator (tPA) and urinary-type plasminogen activator (uPA), is a key regulator of fibrinolysis and cell migration. Indeed, elevated PAI-1 expression is associated with major cardiovascular adverse events that have been attributed to its antifibrinolytic activity. However, extensive evidence indicates that PAI-1 can induce endothelial dysfunction and atherosclerosis through complex interactions within the vasculature in an antifibrinolytic-independent matter. Elevated PAI-1 levels have been reported in OSA patients. However, the impact of PAI-1 on OSA-induced CVD has not been addressed to date. Here, we provide a comprehensive review on the mechanisms by which OSA and its most detrimental perturbation, intermittent hypoxia (IH), can enhance the transcription of PAI-1. We also propose causal pathways by which PAI-1 can promote atherosclerosis in OSA, thereby identifying PAI-1 as a potential therapeutic target in OSA-induced CVD.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, 400 N Keene St, Suite 010, Columbia, MO 65201, USA;
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, 400 N Keene St, Suite 010, Columbia, MO 65201, USA;
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
10
|
Abstract
Obstructive sleep apnea (OSA) is characterized by upper airway collapse during sleep. Chronic intermittent hypoxia, sleep fragmentation, and inflammatory activation are the main pathophysiological mechanisms of OSA. OSA is highly prevalent in obese patients and may contribute to cardiometabolic risk by exerting detrimental effects on adipose tissue metabolism and potentiating the adipose tissue dysfunction typically found in obesity. This chapter will provide an update on: (a) the epidemiological studies linking obesity and OSA; (b) the studies exploring the effects of intermittent hypoxia and sleep fragmentation on the adipose tissue; (c) the effects of OSA treatment with continuous positive airway pressure (CPAP) on metabolic derangements; and (d) current research on new anti-diabetic drugs that could be useful in the treatment of obese OSA patients.
Collapse
Affiliation(s)
- Maria R Bonsignore
- Sleep Disordered Breathing and Chronic Respiratory Failure Clinic, PROMISE Department, University of Palermo, Palermo, Italy.
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
11
|
Al-Mughales J, Wali SO, Manzar MD, Alhejaili F, Gozal D. Pro-inflammatory markers in patients with obstructive sleep apnea and the effect of Continuous Positive Airway Pressure therapy. Sleep Sci 2022; 15:20-27. [PMID: 35273744 PMCID: PMC8889979 DOI: 10.5935/1984-0063.20200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Objectives To evaluate the association of obstructive sleep apnea (OSA) with high-sensitivity C-reactive protein (CRP) and fibrinogen levels and to assess the effect of short-term therapy using continuous positive airway pressure (CPAP). Material and Methods A prospective, open-label, controlled trial was conducted among clinically referred patients at risk for OSA undergoing diagnostic polysomnography (PSG). After PSG, the patients were divided into 3 groups: OSA treatment group (TG) (n=21), untreated OSA group (UOG) (n=19), and non-OSA healthy control group (HCG) (n=24). CRP and fibrinogen levels were measured at baseline and one month after treatment. Repeated-measures (RM) ANOVA and ANCOVA were used to compare changes in CRP and fibrinogen levels among the three groups by analyzing between-subject and within-subject effects as functions of time and adjusting for significant covariates. Results At baseline, OSA subjects had significantly higher CRP [t(52.37)=-2.46, p=0.02)] and fibrinogen levels [t(57)=-2.00, p=0.05)] than HCG subjects. No significant differences in CRP levels [(F(2,58)=2.29, p=0.11)] or fibrinogen levels [(F(2, 58)=1.28, p=0.29)] emerged between TG and HCG subjects after adjusting for the pretest levels. Conclusion CPAP therapy for one month does not affect CRP and fibrinogen levels among moderate-to-severe OSA patients. However, OSA is associated with elevated levels of these inflammatory biomarkers.
Collapse
Affiliation(s)
- Jamil Al-Mughales
- King Abdulaziz University Hospital, Diagnostic Immunology Division, Department of Clinical Laboratory Medicine - Jeddah - Jeddah - Saudi Arabia
- Faculty of Medicine, King Abdulaziz University, Department of Medical Microbiology and Parasitology Immunology Division - Jeddah - Jeddah - Saudi Arabia
| | - Siraj Omar Wali
- King Abdulaziz University, Sleep Medicine and Research Center, Sleep Medicine Research Group, Internal Medicine Department, Faculty of Medicine - Jeddah - Jeddah - Saudi Arabia
| | - Md. Dilshad Manzar
- Majmaah University, Department of Nursing, College of Applied Medical Sciences - Majmaah - Majmaah - Saudi Arabia
| | - Faris Alhejaili
- King Abdulaziz University, Sleep Medicine and Research Center, Sleep Medicine Research Group, Internal Medicine Department, Faculty of Medicine - Jeddah - Jeddah - Saudi Arabia
| | - David Gozal
- The University of Missouri School of Medicine, Department of Child Health and the Child Health Research Institute - Columbia - Columbia - United States
| |
Collapse
|
12
|
Guo S, Dong L, Li J, Chen Y, Yao Y, Zeng R, Shushakova N, Haller H, Xu G, Rong S. C-X3-C motif chemokine ligand 1/receptor 1 regulates the M1 polarization and chemotaxis of macrophages after hypoxia/reoxygenation injury. Chronic Dis Transl Med 2021; 7:254-265. [PMID: 34786544 PMCID: PMC8579018 DOI: 10.1016/j.cdtm.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/29/2022] Open
Abstract
Background Macrophages play an important role in renal ischemia reperfusion injury, but the functional changes of macrophages under hypoxia/reoxygenation and the related mechanism are unclear and need to be further clarified. Methods The effects of hypoxia/reoxygenation on functional characteristics of RAW264.7 macrophages were analyzed through the protein expression detection of pro-inflammatory factors TNF-α and CD80, anti-inflammatory factors ARG-1 and CD206. The functional implications of C-X3-C motif chemokine receptor 1(CX3CR1) down-regulation in hypoxic macrophages were explored using small interfering RNA technology. Significance was assessed by the parametric t-test or nonparametric Mann-Whitney test for two group comparisons, and a one-way ANOVA or the Kruskal-Wallis test for multiple group comparisons. Results Hypoxia/reoxygenation significantly increased the protein expression of M1-related pro-inflammatory factors TNF-α, CD80 and chemokine C-X3-C motif chemokine ligand 1 (CX3CL1)/CX3CR1 and inhibited the protein expression of M2-related anti-inflammatory factors ARG-1 and CD206 in a time-dependent manner in RAW264.7 cells. However, the silencing of CX3CR1 in RAW264.7 cells using specific CX3CR1-siRNA, significantly attenuated the increase in protein expression of TNF-α (P < 0.05) and CD80 (P < 0.01) and the inhibition of ARG-1 (P < 0.01) and CD206 (P < 0.01) induced by hypoxia/reoxygenation. In addition, we also found that hypoxia/reoxygenation could significantly enhance the migration (2.2-fold, P < 0.01) and adhesion capacity (1.5-fold, P < 0.01) of RAW264.7 macrophages compared with the control group, and CX3CR1-siRNA had an inhibitory role (40% and 20% reduction, respectively). For elucidating the mechanism, we showed that the phosphorylation levels of ERK (P < 0.01) and the p65 subunit of NF-κB (P < 0.01) of the RAW264.7 cells in the hypoxic/reoxygenation group were significantly increased, which could be attenuated by down-regulation of CX3CR1 expression (P < 0.01, both). ERK inhibitors also significantly blocked the effects of hypoxic/reoxygenation on the protein expression of M1-related pro-inflammatory factors TNF-α, CD80 and M2-related anti-inflammatory factors ARG-1 and CD206. Moreover, we found that conditioned medium from polarized M1 macrophages induced by hypoxia/reoxygenation, notably increased the degree of apoptosis of hypoxia/reoxygenation-induced TCMK-1 cells, and promoted the protein expression of pro-apoptotic proteins bax (P < 0.01) and cleaved-caspase 3 (P < 0.01) and inhibited the expression of anti-apoptotic protein bcl-2 (P < 0.01), but silencing CX3CR1 in macrophages had a protective role. Finally, we also found that the secretion of soluble CX3CL1 in RAW264.7 macrophages under hypoxia/reoxygenation was significantly increased. Conclusions The findings suggest that hypoxia/reoxygenation could promote M1 polarization, cell migration, and adhesion of macrophages, and that polarized macrophages induce further apoptosis of hypoxic renal tubular epithelial cells by regulating of CX3CL1/CX3CR1 signaling pathway.
Collapse
Affiliation(s)
- Shuiming Guo
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lei Dong
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junhua Li
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuetao Chen
- Department of Respiratory, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ying Yao
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Zeng
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Nelli Shushakova
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany
| | - Gang Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
13
|
Bartolucci ML, Berteotti C, Alvente S, Bastianini S, Guidi S, Lo Martire V, Matteoli G, Silvani A, Stagni F, Bosi M, Alessandri-Bonetti G, Bartesaghi R, Zoccoli G. Obstructive sleep apneas naturally occur in mice during REM sleep and are highly prevalent in a mouse model of Down syndrome. Neurobiol Dis 2021; 159:105508. [PMID: 34509609 DOI: 10.1016/j.nbd.2021.105508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
STUDY OBJECTIVES The use of mouse models in sleep apnea study is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. We aimed to develop a protocol to investigate the presence of OSAs in wild-type mice and, then, to apply it to a validated model of Down syndrome (Ts65Dn), a human pathology characterized by a high incidence of OSAs. METHODS In a pilot study, nine C57BL/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), and diaphragmatic activity (DIA), and then placed in a whole-body-plethysmographic (WBP) chamber for 8 h during the rest (light) phase to simultaneously record sleep and breathing activity. CSA and OSA were discriminated on the basis of WBP and DIA signals recorded simultaneously. The same protocol was then applied to 12 Ts65Dn mice and 14 euploid controls. RESULTS OSAs represented about half of the apneic events recorded during rapid-eye-movement-sleep (REMS) in each experimental group, while the majority of CSAs were found during non-rapid eye movement sleep. Compared with euploid controls, Ts65Dn mice had a similar total occurrence rate of apneic events during sleep, but a significantly higher occurrence rate of OSAs during REMS, and a significantly lower occurrence rate of CSAs during NREMS. CONCLUSIONS Mice physiologically exhibit both CSAs and OSAs. The latter appear almost exclusively during REMS, and are highly prevalent in Ts65Dn. Mice may, thus, represent a useful model to accelerate the understanding of the pathophysiology and genetics of sleep-disordered breathing and to help the development of new therapies.
Collapse
Affiliation(s)
- Maria Lavinia Bartolucci
- Section of Orthodontics, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy; PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Gabriele Matteoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Marcello Bosi
- Sleep Disorder Center, Villa Igea-Ospedali Privati Forlì, Forlì, Italy
| | - Giulio Alessandri-Bonetti
- Section of Orthodontics, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| |
Collapse
|
14
|
Fernandes Fagundes NC, d'Apuzzo F, Perillo L, Puigdollers A, Gozal D, Graf D, Heo G, Flores-Mir C. Potential impact of pediatric obstructive sleep apnea on mandibular cortical width dimensions. J Clin Sleep Med 2021; 17:1627-1634. [PMID: 33745506 DOI: 10.5664/jcsm.9262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
STUDY OBJECTIVES To analyze differences in mandibular cortical width (MCW) among children diagnosed with obstructive sleep apnea (OSA) or at high- or low-risk for OSA. METHODS A total of 161 children were assessed: 60 children with polysomnographically diagnosed OSA, 56 children presenting symptoms suggestive of high-risk for OSA, and 45 children at low risk for OSA. Children at high- and low-risk for OSA were evaluated through the Pediatric Sleep Questionnaire. MCW was calculated using ImageJ software from panoramic radiograph images available from all participants. Differences between MCW measurements in the 3 groups were evaluated using analysis of covariance and Bonferroni post-hoc tests, with age as a covariate. The association between MCW and specific cephalometric variables was assessed through regression analysis. RESULTS The participants' mean age was 9.6 ± 3.1 years (59% male and 41% female). The mean body mass index z-score was 0.62 ± 1.3. The polysomnographically diagnosed OSA group presented smaller MCW than the group at low-risk for OSA (mean difference = -0.385 mm, P = .001), but no difference with the group at high-risk for OSA (polysomnographically diagnosed OSA vs high-risk OSA: P = .085). In addition, the MCW in the group at high-risk for the OSA was significantly smaller than the group at low-risk for the OSA (mean difference = -0.301 mm, P = .014). The cephalometric variables (Sella-Nasion-A point angle (SNA) and Frankfort - Mandibular Plane angle (FMA)) explained only 8% of the variance in MCW. CONCLUSIONS Reductions in MCW appear to be present among children with OSA or those at high-risk for OSA, suggesting potential interactions between mandibular bone development and/or homeostasis and pediatric OSA. CITATION Fernandes Fagundes NC, d'Apuzzo F, Perillo L, et al. Potential impact of pediatric obstructive sleep apnea on mandibular cortical width dimensions. J Clin Sleep Med. 2021;17(8):1627-1634.
Collapse
Affiliation(s)
| | - Fabrizia d'Apuzzo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Orthodontic Program, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Letizia Perillo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Orthodontic Program, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Andreu Puigdollers
- Department of Orthodontics and Craniofacial Orthopedics, Universitat Internacional de Catalunya, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Giseon Heo
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Carlos Flores-Mir
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
15
|
Li Y, Wang Y. Obstructive Sleep Apnea-hypopnea Syndrome as a Novel Potential Risk for Aging. Aging Dis 2021; 12:586-596. [PMID: 33815884 PMCID: PMC7990365 DOI: 10.14336/ad.2020.0723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder, negatively influencing individuals' quality of life and socioeconomic burden. In recent years, OSAHS has been reported in not only constituting an aging-associated disease, but also in accelerating and/or potentiating aging mechanisms. However, the negative impacts of OSAHS on aging are underestimated because of low level of public awareness about this disease and high rates of undiagnosed cases, which are more critical in developing countries or economically disadvantaged regions. Hence, reviewing previously reported observations may assist scholars to better indicate that OSAHS is likely a novel potential risk for aging. Further understanding of the pathophysiological mechanism of OSAHS and its role in procession of aging may markedly highlight the importance of this common sleep disorder.
Collapse
Affiliation(s)
- Yayong Li
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
16
|
Wu G, Lee YY, Gulla EM, Potter A, Kitzmiller J, Ruben MD, Salomonis N, Whitsett JA, Francey LJ, Hogenesch JB, Smith DF. Short-term exposure to intermittent hypoxia leads to changes in gene expression seen in chronic pulmonary disease. eLife 2021; 10:63003. [PMID: 33599610 PMCID: PMC7909952 DOI: 10.7554/elife.63003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Obstructive sleep apnea (OSA) results from episodes of airway collapse and intermittent hypoxia (IH) and is associated with a host of health complications. Although the lung is the first organ to sense changes in oxygen levels, little is known about the consequences of IH to the lung hypoxia-inducible factor-responsive pathways. We hypothesized that exposure to IH would lead to cell-specific up- and downregulation of diverse expression pathways. We identified changes in circadian and immune pathways in lungs from mice exposed to IH. Among all cell types, endothelial cells showed the most prominent transcriptional changes. Upregulated genes in myofibroblast cells were enriched for genes associated with pulmonary hypertension and included targets of several drugs currently used to treat chronic pulmonary diseases. A better understanding of the pathophysiologic mechanisms underlying diseases associated with OSA could improve our therapeutic approaches, directing therapies to the most relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Gang Wu
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Evelyn M Gulla
- Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Joseph Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Nathan Salomonis
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jeffery A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - David F Smith
- Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,The Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
17
|
Umeda A, Miyagawa K, Mochida A, Takeda H, Takeda K, Okada Y, Gozal D. Effects of Normoxic Recovery on Intima-Media Thickness of Aorta and Pulmonary Artery Following Intermittent Hypoxia in Mice. Front Physiol 2020; 11:583735. [PMID: 33192596 PMCID: PMC7645053 DOI: 10.3389/fphys.2020.583735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Obstructive sleep apnea (OSA) patients are at risk for increased blood pressure and carotid intima-media thickness (IMT), with pulmonary hypertension and right-sided heart failure potentially developing as well. Chronic intermittent hypoxia (IH) has been used as an OSA model in animals, but its effects on vascular beds have not been evaluated using objective unbiased tools. Previously published and current experimental data in mice exposed to IH were evaluated for IMT in aorta and pulmonary artery (PA) after IH with or without normoxic recovery using software for meta-analysis, Review Manager 5. Because IMT data reports on PA were extremely scarce, atherosclerotic area percentage from lumen data was also evaluated. IH significantly increased IMT parameters in both aorta and PA as illustrated by Forest plots (P < 0.01), which also confirmed that IMT values after normoxic recovery were within the normal range in both vascular beds. One-sided scarce lower areas in Funnel Plots were seen for both aorta and PA indicating the likelihood of significant publication bias. Forest and Funnel plots, which provide unbiased assessments of published and current data, suggest that IH exposures may induce IMT thickening that may be reversed by normoxic recovery in both aorta and PA. In light of the potential likelihood of publication bias, future studies are needed to confirm or refute the findings. In conclusion, OSA may induce IMT thickening (e.g., aorta and/or PA), but the treatment (e.g., nasal continuous positive airway pressure) will likely lead to improvements in such findings.
Collapse
Affiliation(s)
- Akira Umeda
- Department of Respiratory Medicine, International University of Health and Welfare Shioya Hospital, Yaita, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Atsumi Mochida
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Yasumasa Okada
- Department of Internal Medicine, National Hospital Organization Murayama Medical Center, Musashimurayama, Japan
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, MU Women's and Children's Hospital, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Guo S, Zhang F, Chen Y, Chen Y, Shushakova N, Yao Y, Zeng R, Li J, Lu X, Chen R, Haller H, Gueler F, Xu G, Rong S. Pre-ischemic renal lavage protects against renal ischemia-reperfusion injury by attenuation of local and systemic inflammatory responses. FASEB J 2020; 34:16307-16318. [PMID: 33089923 DOI: 10.1096/fj.201902943r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023]
Abstract
Postischemic acute kidney injury (AKI) is a common clinical complication and often fatal, with no effective treatment available. Little is known about the role of leukocytes trapped in renal vessels during ischemia-reperfusion injury (IRI) in the postischemic AKI. We designed a new animal model in rats with preforming renal artery lavage prior to IRI to investigate the effect of diminishing the residual circulating leukocytes on kidney damage and inflammation. Moreover, the functional changes of macrophages in hypoxia reoxygenation condition were also analyzed. We found pre-ischemic renal lavage significantly decreased the serum creatinine and blood urea nitrogen levels, and downregulated the mRNA and protein expressions in kidneys and urinary secretion of kidney injury molecule-1 of rats after IRI. The renal pathological damage caused by IRI was also ameliorated by pre-ischemic renal lavage, as evidenced by fewer cast formation, diminished morphological signs of AKI in the tissue at 24 hours after IRI. Pre-ischemic renal lavage reduced the numbers of infiltrating CD68+ macrophages and MPO+ neutrophils. The mRNA expression of pro-inflammatory mediator in IRI kidneys and the levels of pro-inflammatory cytokines in circulatory system and urine were also reduced due to pre-ischemic lavage. Compared with nontreated rats with IRI, pre-ischemic renal lavage significantly reduced the phosphorylation levels of ERK and p65 subunit of NF-κB in the kidney after IRI. In addition, we found hypoxia/reoxygenation could promote the expression of pro-inflammatory mediators and inhibit the expression of anti-inflammatory factors by regulating ERK/NF-κB signaling pathway. Thus, pre-ischemic renal lavage could clearly reduce the renal damage after IRI by attenuating inflammation, and macrophages trapped in renal vessels during IRI could be important pathogenic factors driving tissue injury.
Collapse
Affiliation(s)
- Shuiming Guo
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuxiang Zhang
- ICU, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Ying Chen
- Department of Nephrology, The First People's Hospital of Yichang, Yichang, China
| | - Yuetao Chen
- Department of Respiratory, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nelli Shushakova
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Ying Yao
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjun Chen
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Gang Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Santos I, Rocha I, Gozal D, Meira e Cruz M. Obstructive sleep apnea, shift work and cardiometabolic risk. Sleep Med 2020; 74:132-140. [DOI: 10.1016/j.sleep.2020.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/12/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022]
|
20
|
Jansen EC, Dolinoy DC, O'Brien LM, Peterson KE, Chervin RD, Banker M, Téllez-Rojo MM, Cantoral A, Mercado-Garcia A, Sanchez B, Goodrich JM. Sleep duration and fragmentation in relation to leukocyte DNA methylation in adolescents. Sleep 2020; 42:5513437. [PMID: 31181146 PMCID: PMC7255500 DOI: 10.1093/sleep/zsz121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES Sleep deprivation and low sleep quality are widespread among adolescents, and associate with obesity risk. Plausible mediators include diet and physical activity. Another potential interrelated pathway, as yet unexplored in adolescents, could involve epigenetic modification of metabolism genes. METHODS In a cohort of 351 Mexico City adolescents (47% male; mean [SD] age = 14 [2] years), 7-day actigraphy was used to assess average sleep duration, sleep fragmentation, and movement index. DNA isolated from blood leukocytes was bisulfite-converted, amplified, and pyrosequenced at four candidate regions. Linear mixed models evaluated sex-stratified associations between sleep characteristics (split into quartiles [Q]) and DNA methylation of each region, adjusted for potential confounders. RESULTS Mean sleep duration was 8.5 [0.8] hours for boys and 8.7 [1] hours for girls. There were sex-specific associations between sleep duration and LINE-1 (long interspersed nuclear element) methylation. Boys with longer sleep duration (Q4) had lower LINE-1 methylation than boys in the 3rd quartile reference category, while girls with both longer and shorter sleep duration had higher LINE-1 methylation compared to Q3. Longer sleep duration was associated with higher H19 methylation among girls (comparing highest to third quartile, -0.9% [-2.2, 0.5]; p, trend = 0.047). Sleep fragmentation was inversely associated with peroxisome proliferator-activated receptor alpha (PPARA) methylation among girls (comparing highest to lowest fragmentation quartile, 0.9% [0.1 to 1.8]). Girls also showed an inverse association between sleep fragmentation and hydroxysteroid (11-beta) dehydrogenase 2 (HSD11B2; Q4 to Q1, 0.6% [-1.2%, 0%]). CONCLUSIONS Sleep duration and fragmentation in adolescents show sex-specific associations with leukocyte DNA methylation patterns of metabolism genes.
Collapse
Affiliation(s)
- Erica C Jansen
- Sleep Disorders Center and Department of Neurology, University of Michigan, Ann Arbor, MI.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI.,Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Louise M O'Brien
- Sleep Disorders Center and Department of Neurology, University of Michigan, Ann Arbor, MI.,Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Ronald D Chervin
- Sleep Disorders Center and Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Margaret Banker
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Martha María Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | | | - Adriana Mercado-Garcia
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Brisa Sanchez
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| |
Collapse
|
21
|
Maity K, Nagarathna R, Anand A, Patil SS, Singh A, Rajesh SK, Ramesh L, Sridhar P, Thakur UK, Nagendra HR. Sleep Disorders in Individuals With High Risk for Diabetes in Indian Population. Ann Neurosci 2020; 27:183-189. [PMID: 34556958 PMCID: PMC8455005 DOI: 10.1177/0972753121998470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Sleep restores physiology and neurochemical components of our body and is essential for physical and mental health. Sleep disorders (SDs) are associated with insulin resistance and metabolic disorders. The association between SDs and diabetes needs to be understood in the Indian population. Purpose: The purpose was to investigate the association between SD and diabetes in the Indian population. Methods: As a part of nationwide Niyantrita Madhumeha Bharata Abhiyaan-2017 (NMB-2017), a cross-sectional study was conducted and data was collected from seven zones of India, after screening through the Indian Diabetes Risk Score (IDRS). The sleep quality was assessed on a scale of 1 to 4 (very good = 1, very bad = 4). The time taken to fall asleep (sleep latency) was assessed on a scale of 0 to 5 (“0” = nil and “5” = >1.5 h). Stress was assessed by the perceived stress scale. Results: Bad sleep quality was positively (odds ratio 1.055, CI [1.001, 1.113], and P < .01) associated with self-reported known diabetes. Increased time taken to fall in sleep (sleep latency) was associated significantly with IDRS high risk (odds ratio 1.085, CI [1.008, 1.168], and P = .01), with an average sleep latency /time takes to fall in sleep (maximum range 5 [>1.5 h], mode 2 [10 to 30 min]) minutes. Moderate stress was significantly associated with bad sleep quality (odds ratio 1.659). Conclusion: A positive association of bad sleep quality and stress with diabetes, and an increased sleep latency in the IDRS high-risk population point to the role of modifiable risk factors. Behavioral modification and stress reduction by using yoga may be beneficial in the better management of diabetes.
Collapse
Affiliation(s)
- Kalyan Maity
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India.,Department of Neurology, Neuroscience Research Lab, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Raghuram Nagarathna
- Arogyadhama, Vivekananda Yoga Anusandhana Samsthana (VYASA), Bengaluru, Karnataka, India
| | - Akshay Anand
- Department of Neurology, Neuroscience Research Lab, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Centre for Mind Body Medicine, PGIMER, Chandigarh, India.,Centre of Phenomenology and Cognitive Sciences, Panjab University, Chandigarh, India
| | - Suchitra S Patil
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India
| | - Amit Singh
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India
| | - S K Rajesh
- Division of Yoga and Physical Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India
| | - Latha Ramesh
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India
| | - P Sridhar
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India
| | - Uttam Kumar Thakur
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | |
Collapse
|
22
|
Khalyfa A, Castro-Grattoni AL, Gozal D. Cardiovascular morbidities of obstructive sleep apnea and the role of circulating extracellular vesicles. Ther Adv Respir Dis 2020; 13:1753466619895229. [PMID: 31852426 PMCID: PMC6923690 DOI: 10.1177/1753466619895229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway collapse
during sleep resulting in impaired blood gas exchange, namely intermittent
hypoxia (IH) and hypercapnia, fragmented sleep (SF), increased oxidative stress
and systemic inflammation. Among a myriad of potential associated morbidities,
OSA has been particularly implicated as mechanistically contributing to the
prevalence and severity of cardiovascular diseases (CVD). However, the benefits
of continuous positive airway pressure (CPAP), which is generally employed in
OSA treatment, to either prevent or improve CVD outcomes remain unconvincing,
suggesting that the pathophysiological mechanisms underlying the incremental CVD
risk associated with OSA are not clearly understood. One of the challenges in
development of non-invasive diagnostic assays is the ability to identify
clinically and mechanistically relevant biomarkers. Circulating extracellular
vesicles (EVs) and their cargos reflect underlying changes in cellular
homeostasis and can provide insights into how cells and systems cope with
physiological perturbations by virtue of the identity and abundance of miRNAs,
mRNAs, proteins, and lipids that are packaged in the EVs under normal as well as
diseased states, such as OSA. EVs can not only provide unique insights into
coordinated cellular responses at the organ or systemic level, but can also
serve as reporters of the effects of OSA in CVD, either by their properties
enabling regeneration and repair of injured vascular cells or by damaging them.
Here, we highlight recent progress in the pathological CVD consequences of OSA,
and explore the putative roles of EVs in OSA-associated CVD, along with emerging
diagnostic and therapeutic opportunities. The reviews of this paper are available via the supplemental material
section.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Anabel L Castro-Grattoni
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - David Gozal
- Department of Child Health and MU Women's and Children's Hospital, University of Missouri School of Medicine, 400 N. Keene Street, Suite 010, Columbia, MO 65201, USA
| |
Collapse
|
23
|
Cabrera-Aguilera I, Benito B, Tajes M, Farré R, Gozal D, Almendros I, Farré N. Chronic Sleep Fragmentation Mimicking Sleep Apnea Does Not Worsen Left-Ventricular Function in Healthy and Heart Failure Mice. Front Neurol 2020; 10:1364. [PMID: 31993015 PMCID: PMC6962346 DOI: 10.3389/fneur.2019.01364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
Aims: Obstructive sleep apnea (OSA) has been associated with heart failure (HF). Sleep fragmentation (SF), one of the main hallmarks of OSA, induces systemic inflammation, oxidative stress and sympathetic activation, hence potentially participating in OSA-induced cardiovascular consequences. However, whether SF per se is deleterious to heart function is unknown. The aim of this study was to non-invasively evaluate the effect of SF mimicking OSA on heart function in healthy mice and in mice with HF. Methods and Results: Forty C57BL/6J male mice were randomized into 4 groups: control sleep (C), sleep fragmentation (SF), isoproterenol-induced heart failure (HF), and mice subjected to both SF+HF. Echocardiography was performed at baseline and after 30 days to evaluate left ventricular end-diastolic (LVEDD) and end-systolic (LVESD) diameters, left ventricular ejection fraction (LVEF) and fraction shortening (FS). The effects of SF and HF on these parameters were assessed by two-way ANOVA. Mice with isoproterenol-induced HF had significant increases in LVEDD and LVESD, as well as a decreases in LVEF and FS (p = 0.013, p = 0.006, p = 0.027, and p = 0.047, respectively). However, no significant effects emerged with SF (p = 0.480, p = 0.542, p = 0.188, and p = 0.289, respectively). Conclusion: Chronic SF mimicking OSA did not induce echocardiographic changes in cardiac structure and function in both healthy and HF mice. Thus, the deleterious cardiac consequences of OSA are likely induced by other perturbations associated with this prevalent condition, or result from interactions with underlying comorbidities in OSA patients.
Collapse
Affiliation(s)
- Ignacio Cabrera-Aguilera
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Departament of Human Movement Sciences, Faculty of Health Sciences, School of Kinesiology, Universidad de Talca, Talca, Chile
| | - Begoña Benito
- Department of Cardiology, Hospital del Mar, Barcelona, Spain
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Tajes
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, The University of Missouri School of Medicine, Columbia, MO, United States
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Nuria Farré
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
24
|
Umeda A, Miyagawa K, Mochida A, Takeda H, Takeda K, Okada Y, Gozal D. Intermittent hypoxia, energy expenditure, and visceral adipocyte recovery. Respir Physiol Neurobiol 2019; 273:103332. [PMID: 31628989 DOI: 10.1016/j.resp.2019.103332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Body weight of patients with obstructive sleep apnea after initiation of nasal continuous positive airway pressure appears to increase. We hypothesized that intermittent hypoxia (IH) will decrease energy expenditure (EE), and that normoxic recovery will lead to body weight gains. METHODS C57BL/6 J male mice were exposed to either 12 h/day of mild IH (alternating FIO2-10-11% and 21%; 640 s cycle), or severe IH (FIO2-6-7%-21%; 180 s cycle) or sham IH daily for 4 or 8 weeks. After exposures, EE was evaluated while mice were kept under normoxia for 5 weeks and organ histology was evaluated. RESULTS EE was not decreased by IH. However, visceral white adipocyte size after normoxic recovery was significantly increased in severe IH in an intensity-dependent manner. CONCLUSION Our hypothesis that IH would decrease EE was not corroborated. However, IH and normoxic recovery seem to promote severity-dependent enlargement of visceral adipocytes, likely reflecting altered energy preservation mechanisms induced by IH.
Collapse
Affiliation(s)
- Akira Umeda
- Department of Respiratory Medicine, International University of Health and Welfare (IUHW) Shioya Hospital, Japan.
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Japan
| | - Atsumi Mochida
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Japan
| | - Yasumasa Okada
- Department of Internal Medicine, National Hospital Organization Murayama Medical Center, Japan
| | - David Gozal
- Department of Child Health, MU Women's and Children's Hospital, University of Missouri, USA
| |
Collapse
|
25
|
Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int J Mol Sci 2019; 20:ijms20030459. [PMID: 30678164 PMCID: PMC6387387 DOI: 10.3390/ijms20030459] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a markedly prevalent condition across the lifespan, particularly in overweight and obese individuals, which has been associated with an independent risk for neurocognitive, behavioral, and mood problems as well as cardiovascular and metabolic morbidities, ultimately fostering increases in overall mortality rates. In adult patients, excessive daytime sleepiness (EDS) is the most frequent symptom leading to clinical referral for evaluation and treatment, but classic EDS features are less likely to be reported in children, particularly among those with normal body-mass index. The cumulative evidence collected over the last two decades supports a conceptual framework, whereby sleep-disordered breathing in general and more particularly OSAS should be viewed as low-grade chronic inflammatory diseases. Accordingly, it is assumed that a proportion of the morbid phenotypic signature in OSAS is causally explained by underlying inflammatory processes inducing end-organ dysfunction. Here, the published links between OSAS and systemic inflammation will be critically reviewed, with special focus on the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), since these constitute classical prototypes of the large spectrum of inflammatory molecules that have been explored in OSAS patients.
Collapse
|
26
|
Perakakis N, Yazdani A, Karniadakis GE, Mantzoros C. Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. Metabolism 2018; 87:A1-A9. [PMID: 30098323 PMCID: PMC6325641 DOI: 10.1016/j.metabol.2018.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Nikolaos Perakakis
- Department of Endocrinology, VA Boston Healthcare System, Jamaica Plain, Boston, MA 02130, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02906, USA
| | | | - Christos Mantzoros
- Department of Endocrinology, VA Boston Healthcare System, Jamaica Plain, Boston, MA 02130, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|