1
|
Yi K, Chen W, Zhou X, Xie C, Zhong C, Zhu J. Bisphenol S exposure promotes stemness of triple-negative breast cancer cells via regulating Gli1-mediated Sonic hedgehog pathway. ENVIRONMENTAL RESEARCH 2025; 264:120293. [PMID: 39505130 DOI: 10.1016/j.envres.2024.120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bisphenol S (BPS), one of the most common alternatives for bisphenol A (BPA), has been implied to increase the risk of breast cancer. Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer with a poor prognosis. However, the association between BPS and TNBC remains unclear. Cancer stem cells (CSCs) have a crucial role in breast cancer initiation, metastasis, and recurrence. Here, we proposed that BPS, equivalent to the human internal exposure and the environmental concentrations, enhanced CSC-like properties by upregulating sphere formation, self-renewal, the percentage of CD44+/CD24- cells, and the expression of CSC markers. Moreover, BPS promoted the migration, invasion, and epithelial-mesenchymal transition (EMT) in TNBC cells. Mechanistically, BPS activated the Sonic Hedgehog (SHH) signaling pathway in TNBC cells. Molecular docking analysis further showed that BPS upregulated SHH signaling pathway via directly binding Gli1 protein. Furthermore, inhibitor of SHH pathway or Gli1 siRNA attenuated the promoting effects of BPS on stemness, invasion, and migration of TNBC cells. In summary, our data firstly provide evidence that environmentally relevant BPS concentration treatment significantly enhanced TNBC malignant phenotype by activating the Sonic Hedgehog/Gli1 signaling pathway, raising high concerns about the potential population biology hazards of BPS.
Collapse
Affiliation(s)
- Kefan Yi
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiyi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Adhikary K, Kumari S, Chatterjee P, Dey R, Maiti R, Chakrabortty S, Ahuja D, Karak P. Unveiling bisphenol A toxicity: human health impacts and sustainable treatment strategies. Horm Mol Biol Clin Investig 2024; 45:171-185. [PMID: 39311088 DOI: 10.1515/hmbci-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 12/12/2024]
Abstract
INTRODUCTION The widespread presence of bisphenol-A (BPA) in consumer goods like water bottles and eyeglass frames raises serious concerns about the chemical's ability to accumulate in human tissues. Molecular filtration and activated carbon adsorption are two of the many BPA treatment technologies that have emerged in response to these issues; both are essential in the removal or degradation of BPA from water sources and industrial effluents. CONTENT To secure the long-term health and environmental advantages of BPA treatment approaches, sustainable development is essential. Both the efficient elimination or destruction of BPA and the reduction of the treatment operations' impact on the environment are important components of a sustainable approach. Different search engines like Pub-Med, MEDLINE, Google Scholar and Scopus are used for these systematic reviews and analyzed accordingly. This can be accomplished by making treatment facilities more energy efficient and using environmentally friendly materials. Greener ways to deal with BPA pollution are on the horizon, thanks to innovative techniques like bioremediation and improved oxidation processes. Reducing dependence on conventional, resource-intensive procedures can be achieved by investigating the use of bio-based materials and natural adsorbents in treatment processes. SUMMARY AND OUTLOOK This review article tackling the health and environmental concerns raised by BPA calls for an integrated strategy that incorporates sustainable development principles and technology progress. We can reduce the negative impacts of BPA contamination, improve environmental stewardship in the long run, and ensure human health by combining cutting-edge treatment technologies with sustainable behaviours.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Shweta Kumari
- Department of Biotechnology, Paramedical College Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, West Bengal, India
| | - Riya Dey
- Department of Biotechnology, Paramedical College Durgapur, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| | - Sankha Chakrabortty
- School of Chemical Technology, KIIT Deemed to be University, Bhubaneswar, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Prithviraj Karak
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
3
|
Tian S, Ding T, Li H. Oral microbiome in human health and diseases. MLIFE 2024; 3:367-383. [PMID: 39359681 PMCID: PMC11442140 DOI: 10.1002/mlf2.12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 10/04/2024]
Abstract
The oral cavity contains the second-largest microbiota in the human body. The cavity's anatomically and physiologically diverse niches facilitate a wide range of symbiotic bacteria living at distinct oral sites. Consequently, the oral microbiota exhibits site specificity, with diverse species, compositions, and structures influenced by specific aspects of their placement. Variations in oral microbiota structure caused by changes in these influencing factors can impact overall health and lead to the development of diseases-not only in the oral cavity but also in organs distal to the mouth-such as cancer, cardiovascular disease, and respiratory disease. Conversely, diseases can exacerbate the imbalance of the oral microbiota, creating a vicious cycle. Understanding the heterogeneity of both the oral microbiome and individual humans is important for investigating the causal links between the oral microbiome and diseases. Additionally, understanding the intricacies of the oral microbiome's composition and regulatory factors will help identify the potential causes of related diseases and develop interventions to prevent and treat illnesses in this domain. Therefore, turning to the extant research in this field, we systematically review the relationship between oral microbiome dynamics and human diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University) Ministry of Education, China Guangzhou China
| | - Hui Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| |
Collapse
|
4
|
Dalamaga M, Kounatidis D, Tsilingiris D, Vallianou NG, Karampela I, Psallida S, Papavassiliou AG. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int J Mol Sci 2024; 25:675. [PMID: 38203845 PMCID: PMC10779569 DOI: 10.3390/ijms25010675] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Kounatidis
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Irene Karampela
- Second Department of Critical Care, ‘Attikon’ General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, ‘KAT’ General Hospital of Attica, 14561 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Silva GKD, de Arruda JAA, Almeida TFA, Oliveira SR, Rocha PADS, Mesquita RA, Cardeal ZDL, Menezes HC, Diniz IMA, Macari S, Leopoldino AM, Silva TA. Effects of bisphenol A on murine salivary glands and human tumor cell lines. Exp Mol Pathol 2023; 134:104870. [PMID: 37690528 DOI: 10.1016/j.yexmp.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical with a potential role in endocrine cancers. However, the effects of BPA on the salivary glands have been barely explored. We investigated the impact of in vivo sub-chronic exposure to BPA and its in vitro effects on human salivary gland mucoepidermoid carcinoma cell lines. Male and female mice were exposed to BPA (30 mg/kg/day). Sublingual and submandibular salivary glands from an estrogen-deficiency model were also analyzed. BPA concentration in salivary glands was evaluated by gas chromatography coupled to ion trap mass spectrometry. Immunohistochemical analysis using anti-p63 and anti-α-SMA antibodies was performed on mouse salivary gland tissues. Gene expression of estrogen receptors alpha and beta, P63 and α-SMA was quantified in mouse salivary gland and/or mucoepidermoid (UM-HMC-1 and UM-HMC-3A) cell lines. Cell viability, p63 and Ki-67 immunostaining were evaluated in vitro. BPA disrupted the tissue architecture of the submandibular and sublingual glands, particularly in female mice, and increased the expression of estrogen receptors and p63, effects that were accompanied by significant BPA accumulation in these tissues. Conversely, ovariectomy slightly impacted BPA-induced morphological changes. In vitro, BPA did not affect the proliferation of neoplastic cells, but augmented the expression of p63 and estrogen receptors. The present data highlight a potential harmful effect of BPA on salivary gland tissues, particularly in female mice, and salivary gland tumor cells. Our findings suggest that estrogen-dependent pathways may orchestrate the effects of BPA in salivary glands.
Collapse
Affiliation(s)
- Gabriela Kelly da Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiana Fernandes Araújo Almeida
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sicília Rezende Oliveira
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Alves da Silva Rocha
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zenilda de Lourdes Cardeal
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Helvécio Costa Menezes
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Yu Y, Ren Z, Wang H, Sang J, Chen Y, Zhang M, Zhu Y, Wang Y, Ge RS. Benzene ring bisphenol A substitutes potently inhibit human, rat, and mouse gonadal 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115461. [PMID: 37703809 DOI: 10.1016/j.ecoenv.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Bisphenol A (BPA) is a chemical used in the production of certain plastics and resins. Recent research has found that BPA can inhibit the activity of 3β-hydroxysteroid dehydrogenase/Δ5,4-isomerases (3β-HSDs). Whether benzene ring BPA substitutes can inhibit human, rat, and mouse gonadal 3β-HSDs, the structure-activity relationship and the underlying mechanism remain unclear. In this study, we compared 6 benzene ring BPA substitutes to BPA in the inhibition of human, rat, and mouse gonadal 3β-HSDs and conducted structure-activity relationship and in silico docking analysis. The inhibitory activity (IC50) of human 3β-HSD2 in KGN cells ranged from about 0.02 μM for bisphenol H to 8.75 μM for BPA, that of rat 3β-HSD1 in testicular microsomes ranged from 0.099 μM for bisphenol H to 31.32 μM for BPA, and that of mouse 3β-HSD6 ranged from 0.021 μM for BPH to ineffectiveness for 100 μM BPA. These compounds acted as mixed inhibitors with LogP inversely correlated with IC50 and ΔG positively correlated with IC50 value. Docking analysis showed that these compounds bind to the steroid active site of the 3β-HSD enzymes. In conclusion, some benzene ring BPA substitutes potently inhibit gonadal 3β-HSD in various species, and lipophilicity and binding affinity determine their inhibitory strength.
Collapse
Affiliation(s)
- Yang Yu
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zheyuan Ren
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hong Wang
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianmin Sang
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ya Chen
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minjie Zhang
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anaesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
7
|
Vallianou NG, Evangelopoulos A, Kounatidis D, Panagopoulos F, Geladari E, Karampela I, Stratigou T, Dalamaga M. Immunotherapy in Head and Neck Cancer: Where Do We Stand? Curr Oncol Rep 2023; 25:897-912. [PMID: 37213060 DOI: 10.1007/s11912-023-01425-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
PURPOSEOF REVIEW Head and neck cancer (HNC) comprises a group of malignancies, amongst which squamous cell carcinoma accounts for more than 90% of the cases. HNC has been related to tobacco use, alcohol consumption, human papillomavirus, Epstein-Barr virus, air pollution, and previous local radiotherapy. HNC has been associated with substantial morbidity and mortality. This review aims to summarize the recent findings regarding immunotherapy in HNC. RECENT FINDINGS The recent introduction of immunotherapy, with the use of programmed death 1 (PD-1) inhibitors pembrolizumab and nivolumab, which have been FDA approved for the treatment of metastatic or recurrent head and neck squamous cell carcinoma, has changed the field in metastatic or recurrent disease. There are many ongoing trials regarding the use of novel immunotherapeutic agents, such as durvalumab, atezolizumab, avelumab, tremelimumab, and monalizumab. In this review, we focus on the therapeutic potential of novel immunotherapy treatment modalities, such as combinations of newer immune-checkpoint inhibitors; the use of tumor vaccines such as human papillomavirus-targeted vaccines; the potential use of oncolytic viruses; as well as the latest advances regarding adoptive cellular immunotherapy. As novel treatment options are still emerging, a more personalized approach to metastatic or recurrent HNC therapy should be followed. Moreover, the role of the microbiome in immunotherapy, the limitations of immunotherapy, and the various diagnostic, prognostic, and predictive biomarkers based on genetics and the tumor microenvironment are synopsized.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece.
| | - Angelos Evangelopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Irene Karampela
- 2Nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462, Athens, Chaidari, Greece
| | - Theodora Stratigou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece
| |
Collapse
|
8
|
Nokovitch L, Maquet C, Crampon F, Taihi I, Roussel LM, Obongo R, Virard F, Fervers B, Deneuve S. Oral Cavity Squamous Cell Carcinoma Risk Factors: State of the Art. J Clin Med 2023; 12:jcm12093264. [PMID: 37176704 PMCID: PMC10179259 DOI: 10.3390/jcm12093264] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Head and neck (HN) squamous cell carcinomas (SCCs) originate from the epithelial cells of the mucosal linings of the upper aerodigestive tract, which includes the oral cavity, the pharynx, the larynx, and the sinonasal cavities. There are many associated risk factors, including alcohol drinking coupled with tobacco use, which accounts for 70% to 80% of HNSCCs. Human papilloma virus (HPV) is another independent risk factor for oropharyngeal SCC, but it is only a minor contributor to oral cavity SCC (OSCC). Betel quid chewing is also an established risk factor in southeast Asian countries. However, OSCC, and especially oral tongue cancer, incidence has been reported to be increasing in several countries, suggesting risk factors that have not been identified yet. This review summarizes the established risk factors for oral cavity squamous cell carcinomas and examines other undemonstrated risk factors for HNSCC.
Collapse
Affiliation(s)
- Lara Nokovitch
- Department of Otolaryngology-Head and Neck Surgery, CHU Rouen, 76000 Rouen, France
| | - Charles Maquet
- Department of Otolaryngology-Head and Neck Surgery, CHU Rouen, 76000 Rouen, France
| | - Frédéric Crampon
- Department of Otolaryngology-Head and Neck Surgery, CHU Rouen, 76000 Rouen, France
| | - Ihsène Taihi
- Oral Surgery Department, Rothschild Hospital, 75012 Paris, France
- URP 2496, Laboratory of Orofacial Pathologies, Imaging and Biotherapies, UFR Odontology, Health Department, Université Paris Cité, 92120 Montrouge, France
| | - Lise-Marie Roussel
- Department of Head and Neck Cancer and ENT Surgery, Centre Henri Becquerel, 76038 Rouen, France
- Rouen Cancer Federation, 76000 Rouen, France
| | - Rais Obongo
- Department of Head and Neck Cancer and ENT Surgery, Centre Henri Becquerel, 76038 Rouen, France
- Rouen Cancer Federation, 76000 Rouen, France
| | - François Virard
- INSERM U1052-CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, University Claude Bernard Lyon 1, 69008 Lyon, France
- Faculté d'Odontologie, Hospices Civils de Lyon, University of Lyon, 69002 Lyon, France
| | - Béatrice Fervers
- Département Prévention Cancer Environnement, Centre Léon Bérard, 69008 Lyon, France
- INSERM UMR 1296, "Radiations: Défense, Santé, Environnement", Centre Léon Bérard, 69008 Lyon, France
| | - Sophie Deneuve
- Department of Otolaryngology-Head and Neck Surgery, CHU Rouen, 76000 Rouen, France
- Rouen Cancer Federation, 76000 Rouen, France
- Quantification en Imagerie Fonctionnelle-Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes Equipe d'Accueil 4108 (QuantIF-LITIS EA4108), University of Rouen, 76000 Rouen, France
| |
Collapse
|
9
|
Della Rocca Y, Traini EM, Diomede F, Fonticoli L, Trubiani O, Paganelli A, Pizzicannella J, Marconi GD. Current Evidence on Bisphenol A Exposure and the Molecular Mechanism Involved in Related Pathological Conditions. Pharmaceutics 2023; 15:pharmaceutics15030908. [PMID: 36986769 PMCID: PMC10053246 DOI: 10.3390/pharmaceutics15030908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Bisphenol A (BPA) is one of the so-called endocrine disrupting chemicals (EDCs) and is thought to be involved in the pathogenesis of different morbid conditions: immune-mediated disorders, type-2 diabetes mellitus, cardiovascular diseases, and cancer. The purpose of this review is to analyze the mechanism of action of bisphenol A, with a special focus on mesenchymal stromal/stem cells (MSCs) and adipogenesis. Its uses will be assessed in various fields: dental, orthopedic, and industrial. The different pathological or physiological conditions altered by BPA and the related molecular pathways will be taken into consideration.
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Enrico Matteo Traini
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (O.T.); (A.P.)
| | - Alessia Paganelli
- PhD Course in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy
- Correspondence: (O.T.); (A.P.)
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
10
|
Obesity and main urologic cancers: Current systematic evidence, novel biological mechanisms, perspectives and challenges. Semin Cancer Biol 2023; 91:70-98. [PMID: 36893965 DOI: 10.1016/j.semcancer.2023.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Urologic cancers (UC) account for 13.1% of all new cancer cases and 7.9% of all cancer-related deaths. A growing body of evidence has indicated a potential causal link between obesity and UC. The aim of the present review is to appraise in a critical and integrative manner evidence from meta-analyses and mechanistic studies on the role of obesity in four prevalent UC (kidney-KC, prostate-PC, urinary bladder-UBC, and testicular cancer-TC). Special emphasis is given on Mendelian Randomization Studies (MRS) corroborating a genetic causal association between obesity and UC, as well as on the role of classical and novel adipocytokines. Furthermore, the molecular pathways that link obesity to the development and progression of these cancers are reviewed. Available evidence indicates that obesity confers increased risk for KC, UBC, and advanced PC (20-82%, 10-19%, and 6-14%, respectively), whereas for TC adult height (5-cm increase) may increase the risk by 13%. Obese females tend to be more susceptible to UBC and KC than obese males. MRS have shown that a higher genetic-predicted BMI may be causally linked to KC and UBC but not PC and TC. Biological mechanisms that are involved in the association between excess body weight and UC include the Insulin-like Growth Factor axis, altered availability of sex hormones, chronic inflammation and oxidative stress, abnormal secretion of adipocytokines, ectopic fat deposition, dysbiosis of the gastrointestinal and urinary tract microbiomes and circadian rhythm dysregulation. Anti-hyperglycemic and non-steroidal anti-inflammatory drugs, statins, and adipokine receptor agonists/antagonists show potential as adjuvant cancer therapies. Identifying obesity as a modifiable risk factor for UC may have significant public health implications, allowing clinicians to tailor individualized prevention strategies for patients with excess body weight.
Collapse
|
11
|
Kliemann N, Rauber F, Bertazzi Levy R, Viallon V, Vamos EP, Cordova R, Freisling H, Casagrande C, Nicolas G, Aune D, Tsilidis KK, Heath A, Schulze MB, Jannasch F, Srour B, Kaaks R, Rodriguez-Barranco M, Tagliabue G, Agudo A, Panico S, Ardanaz E, Chirlaque MD, Vineis P, Tumino R, Perez-Cornago A, Andersen JLM, Tjønneland A, Skeie G, Weiderpass E, Monteiro CA, Gunter MJ, Millett C, Huybrechts I. Food processing and cancer risk in Europe: results from the prospective EPIC cohort study. Lancet Planet Health 2023; 7:e219-e232. [PMID: 36889863 PMCID: PMC10009757 DOI: 10.1016/s2542-5196(23)00021-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 06/09/2022] [Accepted: 01/25/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Food processing has been hypothesised to play a role in cancer development; however, data from large-scale epidemiological studies are scarce. This study investigated the association between dietary intake according to amount of food processing and risk of cancer at 25 anatomical sites using data from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. METHODS This study used data from the prospective EPIC cohort study, which recruited participants between March 18, 1991, and July 2, 2001, from 23 centres in ten European countries. Participant eligibility within each cohort was based on geographical or administrative boundaries. Participants were excluded if they had a cancer diagnosis before recruitment, had missing information for the NOVA food processing classification, or were within the top and bottom 1% for ratio of energy intake to energy requirement. Validated dietary questionnaires were used to obtain information on food and drink consumption. Participants with cancer were identified using cancer registries or during follow-up from a combination of sources, including cancer and pathology centres, health insurance records, and active follow-up of participants. We performed a substitution analysis to assess the effect of replacing 10% of processed foods and ultra-processed foods with 10% of minimally processed foods on cancer risk at 25 anatomical sites using Cox proportional hazard models. FINDINGS 521 324 participants were recruited into EPIC, and 450 111 were included in this analysis (318 686 [70·8%] participants were female individuals and 131 425 [29·2%] were male individuals). In a multivariate model adjusted for sex, smoking, education, physical activity, height, and diabetes, a substitution of 10% of processed foods with an equal amount of minimally processed foods was associated with reduced risk of overall cancer (hazard ratio 0·96, 95% CI 0·95-0·97), head and neck cancers (0·80, 0·75-0·85), oesophageal squamous cell carcinoma (0·57, 0·51-0·64), colon cancer (0·88, 0·85-0·92), rectal cancer (0·90, 0·85-0·94), hepatocellular carcinoma (0·77, 0·68-0·87), and postmenopausal breast cancer (0·93, 0·90-0·97). The substitution of 10% of ultra-processed foods with 10% of minimally processed foods was associated with a reduced risk of head and neck cancers (0·80, 0·74-0·88), colon cancer (0·93, 0·89-0·97), and hepatocellular carcinoma (0·73, 0·62-0·86). Most of these associations remained significant when models were additionally adjusted for BMI, alcohol and dietary intake, and quality. INTERPRETATION This study suggests that the replacement of processed and ultra-processed foods and drinks with an equal amount of minimally processed foods might reduce the risk of various cancer types. FUNDING Cancer Research UK, l'Institut National du Cancer, and World Cancer Research Fund International.
Collapse
Affiliation(s)
- Nathalie Kliemann
- International Agency for Research on Cancer, World Heath Organization, Lyon, France
| | - Fernanda Rauber
- Preventive Medicine Department of the Medical School, University of São Paulo, São Paulo, Brazil
| | - Renata Bertazzi Levy
- Preventive Medicine Department of the Medical School, University of São Paulo, São Paulo, Brazil
| | - Vivian Viallon
- International Agency for Research on Cancer, World Heath Organization, Lyon, France
| | - Eszter P Vamos
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, St Mary's Campus, London, UK
| | - Reynalda Cordova
- International Agency for Research on Cancer, World Heath Organization, Lyon, France
| | - Heinz Freisling
- International Agency for Research on Cancer, World Heath Organization, Lyon, France
| | - Corinne Casagrande
- International Agency for Research on Cancer, World Heath Organization, Lyon, France
| | - Genevieve Nicolas
- International Agency for Research on Cancer, World Heath Organization, Lyon, France
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, UK; Department of Nutrition, Oslo New University College, Oslo, Norway; Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, UK; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Alicia Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, UK
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Franziska Jannasch
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Bernard Srour
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain; Instituto de Investigación Biosanitaria, Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Giovanna Tagliabue
- Cancer Registry Unit Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO), Nutrition and Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Eva Ardanaz
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, London, UK
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP) Ragusa, Italy
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Anne Tjønneland
- Danish Cancer Society Research Center, Unit of Diet, Genes and Environment, Copenhagen, Denmark
| | - Guri Skeie
- Department of Community Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Heath Organization, Lyon, France
| | - Carlos Augusto Monteiro
- Department of Nutrition of the Faculty of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marc J Gunter
- International Agency for Research on Cancer, World Heath Organization, Lyon, France
| | - Christopher Millett
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, St Mary's Campus, London, UK; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Centre (CHRC), NOVA University Lisbon, Lisbon, Portugal
| | - Inge Huybrechts
- International Agency for Research on Cancer, World Heath Organization, Lyon, France.
| |
Collapse
|
12
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Çetin YS, Altındağ F, Berköz M. Protective role of resveratrol and apigenin against toxic effects of bisphenol a in rat salivary gland. Drug Chem Toxicol 2023; 46:88-96. [PMID: 34875952 DOI: 10.1080/01480545.2021.2011310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the cellular changes caused by Bisphenol A (BPA) exposure in salivary gland cells and to examine the protective role of resveratrol (RSV) and apigenin (APG) molecules against the negative effects of BPA. MATERIALS AND METHODS Forty-two rats were randomly divided into 6 groups as; (i) control, (ii) BPA (130 mg/kg), (iii) BPA + RSV100 (100 mg/kg), (iv) BPA + RSV200 (200 mg/kg), (v) BPA + APG100 (100 mg/kg), and (vi) BPA + APG200 (200 mg/kg). In all experimental groups, the chemicals were given by gavage every day for a total of 28 days. RESULTS The BPA administration caused a significant increase in tissue oxidative stress parameters as opposed to a significant decrease in tissue antioxidant levels (p < 0.05). On the other hand, it was observed that RSV and APG treatment reversed this situation (p < 0.05). The BPA administration did not cause a significant change in tissue prostaglandin E2 (PGE2) and nitric oxide levels, whereas low-dose RSV significantly reduced the tissue PGE2 levels compared to BPA (p < 0.05). BPA caused cytopathological changes and apoptosis in salivary gland cells. In the BPA group, edema, nuclear pleomorphism, and pyknotic nuclei were observed. Moreover, both RSV and APG were found to provide protection against BPA-induced cellular damage, while RSV provided better cellular protection than APG. The control group had a normal histological structure. CONCLUSION BPA caused cytopathological changes and apoptosis in salivary gland cells. As a result, it was observed that these phytochemicals probably have cytoprotective effects in BPA intoxication.
Collapse
Affiliation(s)
- Yaser Said Çetin
- Faculty of Medicine, Department of Otorhinolaryngology, Van Yüzüncü Yıl University, Tuşba, Turkey
| | - Fikret Altındağ
- Faculty of Medicine, Department of Histology and Embryology, Van Yüzüncü Yıl University, Tuşba, Turkey
| | - Mehmet Berköz
- Faculty of Pharmacy, Department of Biochemistry, Van Yüzüncü Yıl University, Tuşba, Turkey
| |
Collapse
|
14
|
Kliemann N, Al Nahas A, Vamos EP, Touvier M, Kesse-Guyot E, Gunter MJ, Millett C, Huybrechts I. Ultra-processed foods and cancer risk: from global food systems to individual exposures and mechanisms. Br J Cancer 2022; 127:14-20. [PMID: 35236935 PMCID: PMC9276654 DOI: 10.1038/s41416-022-01749-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
Ultra-processed foods (UPFs) have become increasingly dominant globally, contributing to as much as 60% of total daily energy intake in some settings. Epidemiological evidence suggests this worldwide shift in food processing may partly be responsible for the global obesity epidemic and chronic disease burden. However, prospective studies examining the association between UPF consumption and cancer outcomes are limited. Available evidence suggests that UPFs may increase cancer risk via their obesogenic properties as well as through exposure to potentially carcinogenic compounds such as certain food additives and neoformed processing contaminants. We identify priority areas for future research and policy implications, including improved understanding of the potential dual harms of UPFs on the environment and cancer risk. The prevention of cancers related to the consumption of UPFs could be tackled using different strategies, including behaviour change interventions among consumers as well as bolder public health policies needed to improve food environments.
Collapse
Affiliation(s)
- Nathalie Kliemann
- Nutrition and Metabolism Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Aline Al Nahas
- Nutrition and Metabolism Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Eszter P Vamos
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, UK
| | - Mathilde Touvier
- Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, University of Paris (CRESS), Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, University of Paris (CRESS), Bobigny, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Christopher Millett
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, UK
- National School of Public Health, NOVA University, Lisbon, Portugal
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France.
| |
Collapse
|
15
|
Jones BM, Villavisanis DF, Lehrer EJ, Dickstein DR, Sindhu KK, Misiukiewicz KJ, Posner M, Liu JT, Gupta V, Sharma S, Roof SA, Teng M, Genden EM, Bakst RL. High Failure Rates in Young Nonsmoker Nondrinkers With Squamous Cell Carcinoma of the Oral Tongue. Laryngoscope 2022; 133:1110-1121. [PMID: 35716359 DOI: 10.1002/lary.30253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE(S) There has been a disproportionate increase in the incidence of young patients with squamous cell carcinoma of the oral tongue (SCCOT). The purpose of this study was to compare young patients to older patients with SCCOT without prior drinking or smoking history as this population is poorly characterized in the literature. METHODS A retrospective review of patients presenting to our institution with SCCOT was performed. The clinical and pathologic characteristics, as well as, outcomes were compared between younger patients (age ≤45) and older patients (age >45). Outcome analysis was performed using Kaplan Meier method. Multivariable Cox proportional hazard models were performed for age and stage. RESULTS Eighty-two patients (38 young, 44 old) were included in this study. Median follow-up was 29.4 months. When compared to the older cohort (age >45), the younger cohort (age ≤45) demonstrated lower rates of 5-year locoregional control (LC) (79.6% vs. 52.5%, p = 0.043) and distant metastasis-free survival (88.1% vs. 61.8%, p = 0.006). Both cohorts demonstrated similar overall survival rates (55.5% vs. 58.1%) and disease-specific survival (66.2% vs. 58.1%). Of patients experiencing locoregional failure with available radiation therapy plans and PET scans in younger cohorts (n = 7), 100% demonstrated in-field failures. Multivariable Cox proportional hazards demonstrated age was an independent predictor of DMFS (p = 0.004) and the advanced stage was a predictor of DSS (p = 0.03). CONCLUSIONS Young, nondrinker, nonsmokers with SCCOT demonstrate high rates of locoregional recurrence, distant metastasis, and in-field failures. Future studies are warranted to determine underlying mechanisms driving pathogenesis in this unique cohort. LEVEL OF EVIDENCE 3 Laryngoscope, 2022.
Collapse
Affiliation(s)
- Brianna M Jones
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dillan F Villavisanis
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Otolaryngology - Head & Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel R Dickstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kunal K Sindhu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Krzysztof J Misiukiewicz
- Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marshall Posner
- Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jerry T Liu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vishal Gupta
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sonam Sharma
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott A Roof
- Department of Otolaryngology - Head & Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marita Teng
- Department of Otolaryngology - Head & Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric M Genden
- Department of Otolaryngology - Head & Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Richard L Bakst
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
Deneuve S, Pérol O, Dantony E, Guizard AV, Bossard N, Virard F, Fervers B. Diverging incidence trends of oral tongue cancer compared to other head and neck cancers in young adults in France. Int J Cancer 2021; 150:1301-1309. [PMID: 34889463 DOI: 10.1002/ijc.33896] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/02/2023]
Abstract
While head and neck cancer incidence decreased worldwide due to reduced tobacco and alcohol consumption, oral tongue cancer (OTC) incidence has been reported to be increasing in several countries. Our study examines the incidence trends of OTC in France from 1990 to 2018, globally and by age; and compares the incidence trends with the evolution of the incidence of other human papilloma virus-unrelated head and neck squamous cell carcinoma, that is, cancers of the remaining subsites of the oral cavity (RSOCC) and laryngeal cancers for the period 1990 to 2018. World age-standardized incidence rates of oral tongue cancers (C02), cancers of the remaining subsites of the oral cavity (RSOCC, C03-06) and laryngeal cancers (C32) were estimated using the French National Network of Cancer Registries for the period 1990 to 2018. Trends in national incidence rates were estimated from a mixed-effect Poisson model including age and year effects using penalized splines and a district-random effect. In women aged 30 and 40, a significant increase in OTC incidence was observed, while ROSCC showed a nonsignificant incidence decrease. In young men aged 25, a marginally significant increase of OTC incidence years was observed, while incidence rates of RSOCC significantly declined. The results suggest a tendency towards diverging incidence trends for OTC compared to RSOCC and laryngeal cancer in young adults. The observed trends may reflect changes in underlying exposures or emerging exposures not yet identified, and stress the need to further investigate the etiology of oral tongue cancers.
Collapse
Affiliation(s)
- Sophie Deneuve
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France.,INSERM 1296 Unit, Radiations: Defense, Health and Environment, Centre Léon Bérard, Lyon, France
| | - Olivia Pérol
- INSERM 1296 Unit, Radiations: Defense, Health and Environment, Centre Léon Bérard, Lyon, France.,Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
| | - Emmanuelle Dantony
- Service de Biostatistique-Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France.,Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Anne-Valérie Guizard
- Calvados General Tumor Registry, Centre Francois Baclesse, Caen, France.,U1086 INSERM-UCN "ANTICIPE", Centre Francois Baclesse, Caen, France
| | - Nadine Bossard
- Service de Biostatistique-Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France.,Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - François Virard
- Cancer Research Center of Lyon, INSERM 1052, Claude Bernard University, Lyon, France.,Faculté d'Odontologie, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Béatrice Fervers
- INSERM 1296 Unit, Radiations: Defense, Health and Environment, Centre Léon Bérard, Lyon, France.,Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
| | | |
Collapse
|
17
|
Almeida TFA, Oliveira SR, Mayra da Silva J, Fernandes de Oliveira AL, de Lourdes Cardeal Z, Menezes HC, Gomes JM, Campolina-Silva GH, Oliveira CA, Macari S, Garlet GP, Alves Diniz IM, Leopoldino AM, Aparecida Silva T. Effects of high-dose bisphenol A on the mouse oral mucosa: A possible link with oral cancers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117296. [PMID: 33971473 DOI: 10.1016/j.envpol.2021.117296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical able to promote hormone-responsive tumors. The major route of BPA contamination being oral, the aim of the present study was to investigate BPA effects on oral cells. Here, we evaluated the impact of sub-chronic in vivo exposure to BPA and its in vitro effects on neoplastic and non-neoplastic oral cells. We evaluated the oral mucosa of mice chronically exposed to BPA (200 mg/L). The response of keratinocytes (NOK-SI) and Head and Neck (HN) Squamous Cell Carcinoma (SCC), HN12 and HN13 cell lines to BPA was examined. In vivo, BPA accumulated in oral tissues and caused an increase in epithelial proliferative activity. BPA disrupted the function of keratinocytes by altering pro-survival and proliferative pathways and the secretion of cytokines and growth factors. In tumor cells, BPA induced proliferative, invasive, pro-angiogenic, and epigenetic paths. Our data highlight the harmful effects of BPA on oral mucosa and, tumorigenic and non-tumorigenic cells. Additionally, BPA may be a modifier of oral cancer cell behavior by prompting a functional shift to a more aggressive phenotype.
Collapse
Affiliation(s)
| | - Sicília Rezende Oliveira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Janine Mayra da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Zenilda de Lourdes Cardeal
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helvécio Costa Menezes
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Messias Gomes
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleida Aparecida Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
18
|
Vallianou N, Kounatidis D, Christodoulatos GS, Panagopoulos F, Karampela I, Dalamaga M. Mycobiome and Cancer: What Is the Evidence? Cancers (Basel) 2021; 13:cancers13133149. [PMID: 34202433 PMCID: PMC8269322 DOI: 10.3390/cancers13133149] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Although comprising a much smaller proportion of the human microbiome, the fungal community has gained much more attention lately due to its multiple and yet undiscovered interactions with the human bacteriome and the host. Head and neck cancer carcinoma, colorectal carcinoma, and pancreatic ductal adenocarcinoma have been associated with dissimilarities in the composition of the mycobiome between cases with cancer and non-cancer subjects. In particular, an abundance of Malassezia has been associated with the onset and progression of colorectal carcinoma and pancreatic adenocarcinoma, while the genera Schizophyllum, a member of the oral mycobiome, is suggested to exhibit anti-cancer potential. The use of multi-omics will further assist in establishing whether alterations in the human mycobiome are causal or a consequence of specific types of cancers. Abstract Background: To date, most researchhas focused on the bacterial composition of the human microbiota. In this review, we synopsize recent data on the human mycobiome and cancer, highlighting specific cancer types based on current available evidence, presenting interesting perspectives and limitations of studies and laboratory methodologies. Recent findings: Head and neck cancer carcinoma (HNCC), colorectal carcinoma (CRC) and pancreatic ductal adenocarcinoma (PDA) have been associated with dissimilarities in the composition of mycobiota between cancer cases and non-cancer participants. Overall, fungal dysbiosis with decreased fungal richness and diversity was common in cancer patients; however, a specific mycobiotic signature in HNSCC or CRC has not emerged. Different strains of Candida albicans have been identified among cases with HNCC, whilst Lichtheimia corymbifera, a member of the Mucoraceae family, has been shown to predominate among patients with oral tongue cancer. Virulence factors of Candida spp. include the formation of biofilm and filamentation, and the secretion of toxins and metabolites. CRC patients present a dysregulated ratio of Basidiomycota/Ascomycota. Abundance of Malassezia has been linked to the occurrence and progression of CRC and PDA, particularly in animal models of PDA. Interestingly, Schizophyllum, a component of the oral mycobiome, may exhibit anti-cancer potential. Conclusion: The human mycobiome, per se, along with its interactions with the human bacteriome and the host, may be implicated in the promotion and progression of carcinogenesis. Fungi may be used as diagnostic and prognostic/predictive tools or treatment targets for cancer in the coming years. More large-scale, prospective, multicentric and longitudinal studies with an integrative multi-omics methodology are required to examine the precise contribution of the mycobiome in the etiopathogenesis of cancer, and to delineate whether changes that occur in the mycobiome are causal or consequent of cancer.
Collapse
Affiliation(s)
- Natalia Vallianou
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
- Correspondence: (N.V.); (M.D.)
| | - Dimitris Kounatidis
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527 Athens, Greece;
| | - Fotis Panagopoulos
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527 Athens, Greece;
- Correspondence: (N.V.); (M.D.)
| |
Collapse
|
19
|
Ferrante M, Cristaldi A, Oliveri Conti G. Oncogenic Role of miRNA in Environmental Exposure to Plasticizers: A Systematic Review. J Pers Med 2021; 11:jpm11060500. [PMID: 34199666 PMCID: PMC8229109 DOI: 10.3390/jpm11060500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
The daily environmental exposure of humans to plasticizers may adversely affect human health, representing a global issue. The altered expression of microRNAs (miRNAs) plays an important pathogenic role in exposure to plasticizers. This systematic review summarizes recent findings showing the modified expression of miRNAs in cancer due to exposure to plasticizers. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we performed a systematic review of the literature published in the past 10 years, focusing on the relationship between plasticizer exposure and the expression of miRNAs related to cancer. Starting with 535 records, 17 articles were included. The results support the hypothesis that exposure to plasticizers causes changes in or the deregulation of a number of oncogenic miRNAs and show that the interaction of plasticizers with several redundant miRNAs, such as let-7f, let-7g, miR-125b, miR-134, miR-146a, miR-22, miR-192, miR-222, miR-26a, miR-26b, miR-27b, miR-296, miR-324, miR-335, miR-122, miR-23b, miR-200, miR-29a, and miR-21, might induce deep alterations. These genotoxic and oncogenic responses can eventually lead to abnormal cell signaling pathways and metabolic changes that participate in many overlapping cellular processes, and the evaluation of miRNA-level changes can be a useful target for the toxicological assessment of environmental pollutants, including plastic additives and plasticizers.
Collapse
Affiliation(s)
- Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
- Catania, Messina, Enna Cancer Registry, Via S. Sofia 87, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-378-2181; Fax: +39-095-378-2177
| | - Antonio Cristaldi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
| |
Collapse
|
20
|
Pellerin E, Caneparo C, Chabaud S, Bolduc S, Pelletier M. Endocrine-disrupting effects of bisphenols on urological cancers. ENVIRONMENTAL RESEARCH 2021; 195:110485. [PMID: 33212129 DOI: 10.1016/j.envres.2020.110485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenols are endocrine-disrupting chemicals found in a broad range of products that can modulate hormonal signalling pathways and various other biological functions. These compounds can bind steroid receptors, e.g. estrogen and androgen receptors, expressed by numerous cells and tissues, including the prostate and the bladder, with the potential to alter their homeostasis and normal physiological functions. In the past years, exposure to bisphenols was linked to cancer progression and metastasis. As such, recent pieces of evidence suggest that endocrine-disrupting chemicals can lead to the development of prostate cancer. Moreover, bisphenols are found in the urine of the wide majority of the population. They could potentially affect the bladder's normal physiology and cancer development, even if the bladder is not recognized as a hormone-sensitive tissue. This review will focus on prostate and bladder malignancies, two urological cancers that share standard carcinogenic processes. The description of the underlying mechanisms involved in cell toxicity, and the possible roles of bisphenols in the development of prostate and bladder cancer, could help establish the putative roles of bisphenols on public health.
Collapse
Affiliation(s)
- Eve Pellerin
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada.
| | - Martin Pelletier
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; Infectious and Immune Disease Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada.
| |
Collapse
|
21
|
Liau CS, Mogan P, Thomas W. Oestrogen actions contribute to female gender-specific risks in the development of lung carcinoma. J Steroid Biochem Mol Biol 2021; 208:105786. [PMID: 33189851 DOI: 10.1016/j.jsbmb.2020.105786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
Lung cancer is increasing in incidence particularly among women, associated with a global change in smoking habits. Steroid hormones, particularly oestrogen exert an influence on tumour progression in tissues where their target receptor is expressed. Oestrogen receptor, particularly ERβ is highly expressed in the lung and becomes more highly expressed in lung carcinogenesis. Genes involved in the process of lung carcinoma progression and signalling cascades linked to invasion and angiogenesis are modulated by oestrogen receptors. This review intends to collate recently published evidence identifying a role for oestrogen in the initiation and progression of lung carcinoma and how these two processes are differentially affected by circulating oestrogens both in women and in men. Circulating oestrogens may be a significant risk factor in women's susceptibility to lung carcinoma and also provide an additional approach for more targeted therapy.
Collapse
Affiliation(s)
- Chi Sun Liau
- Perdana University - Royal College of Surgeons in Ireland School of Medicine, Perdana University, Bukit Damansara, Kuala Lumpur, Malaysia
| | - Praveena Mogan
- Perdana University - Royal College of Surgeons in Ireland School of Medicine, Perdana University, Bukit Damansara, Kuala Lumpur, Malaysia
| | - Warren Thomas
- Perdana University - Royal College of Surgeons in Ireland School of Medicine, Perdana University, Bukit Damansara, Kuala Lumpur, Malaysia; Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
22
|
Xue W, Yao X, Ting G, Ling J, Huimin L, Yuan Q, Chun Z, Ming Z, Yuanzhen Z. BPA modulates the WDR5/TET2 complex to regulate ERβ expression in eutopic endometrium and drives the development of endometriosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115748. [PMID: 33022573 DOI: 10.1016/j.envpol.2020.115748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Overexpression of estrogen receptor β (ERβ) in endometrium contributes to endometriosis (EM) pathogenesis. Trimethylation of the H3 lysine (K) 4 (H3K4me3) in promoters is strongly correlated with gene expression. This study aimed to explore the effects of bisphenol A (BPA) exposure on EM development from the perspective of the regulation of ERβ expression in eutopic endometrium via the H3K4me3-related epigenetic pathway. A mouse EM model was established to investigate the effects of BPA. Immortalized human normal endometrial stromal cells (iESCs) were cultured and treated with BPA to explore the underlying mechanism. Eutopic endometria from patients with or without EM were collected and analyzed. Results showed that BPA elevated ERβ expression in mouse eutopic endometrium and promoted lesion growth. BPA also promoted WD repeat domain 5 (WDR5) expression and upregulated H3K4me3 levels in the ERβ promoter and Exon 1. Further research indicated that WDR5 interacted with tet methylcytosine dioxygenase 2 (TET2), while BPA exposure enhanced the interaction between these two proteins, promoted the recruitment of the WDR5/TET2 complex to the ERβ promoter and Exon 1, and inhibited DNA methylation of CpG islands. The WDR5/TET2 interaction was essential for BPA-induced ERβ overexpression. Enhanced WDR5/TET2 interaction was also observed in eutopic endometria from EM patients. Further results showed that BPA upregulated WDR5 expression through the G protein-coupled estrogen receptor (GPER)-mediated PI3K/mTOR signaling pathway. In conclusion, our study suggests that BPA exposure promotes EM development by upregulating ERβ expression in eutopic endometrium via the WDR5/TET2-mediated epigenetic pathway.
Collapse
Affiliation(s)
- Wen Xue
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Xiong Yao
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Geng Ting
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Jin Ling
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Liu Huimin
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Qiao Yuan
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Zhou Chun
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
| | - Zhang Ming
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China.
| | - Zhang Yuanzhen
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
23
|
Güzel KGU, Nazıroğlu M, Ceyhan D. Bisphenol A-Induced Cell Proliferation and Mitochondrial Oxidative Stress Are Diminished via Modulation of TRPV1 Channel in Estrogen Positive Breast Cancer Cell by Selenium Treatment. Biol Trace Elem Res 2020; 198:118-130. [PMID: 32040846 DOI: 10.1007/s12011-020-02057-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Cancer cell proliferation and apoptosis are induced by overload Ca2+ entry. Transient receptor potential vanilloid 1 (TRPV1) as a Ca2+ permeable cation channel is activated by capsaicin and reactive oxygen species (ROS), although it is blocked by capsazepine and sodium selenite (Na-Se). Bisphenol A (BPA) induces estrogenic action and further stimulates the proliferation of estrogen receptor positive MCF-7 cell through excessive production ROS and Ca2+ influx. However, whether or not Na-Se can influence BPA-induced oxidative stress and apoptosis through modulation of TRPV1 in breast cancer cells has not drawn much attention. The MCF-7 and MDA-MB-231 breast cancer cells were divided into four treatment groups as control, Na-Se (1 μM for 2 h), and BPA (0.1 mM for 24 h) and BPA + Na-Se. The Na-Se reduced BPA-induced increase of cell number, mitochondria oxidative stress, and TRPV1 channel activity modulation of MCF-7 cells, which was proved by the suppression of cell viability, excessive ROS production, mitochondrial membrane depolarization, lipid peroxidation, early apoptosis (Annexin-V), late apoptosis (propidium iodide) and upregulation of reduced glutathione, glutathione peroxidase, and cell death (propidium iodide/Hoechst rate). The similar effects of Na-Se were observed in the MCF-7 cells by capsazepine treatment. However, the effects of BPA were not observed in the MDA-MB-231 breast cancer cells. In conclusion, cell proliferative and oxidant effects of BPA were increased by activation of TRPV1, but its action on the values was decreased by the Na-Se treatment. The results may be a good set of preliminary data for designing animal studies on estrogenic effect of bisphenol A and antiestrogenic of selenium.
Collapse
Affiliation(s)
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, 32260, Isparta, Turkey.
- Drug Discovery and Development Research Group, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Goller Bolgesi Teknokenti, Isparta, Turkey.
| | - Derya Ceyhan
- Department of Pedodontics, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
24
|
Karampela I, Chrysanthopoulou E, Christodoulatos GS, Dalamaga M. Is There an Obesity Paradox in Critical Illness? Epidemiologic and Metabolic Considerations. Curr Obes Rep 2020; 9:231-244. [PMID: 32564203 DOI: 10.1007/s13679-020-00394-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Obesity represents a global epidemic with serious implications in public health due to its increasing prevalence and its known association with a high morbidity and mortality burden. However, a growing number of data support a survival benefit of obesity in critical illness. This review summarizes current evidence regarding the obesity paradox in critical illness, discusses methodological issues and metabolic implications, and presents potential pathophysiologic mechanisms. RECENT FINDINGS Data from meta-analyses and recent studies corroborate the obesity-related survival benefit in critically ill patients as well as in selected populations such as patients with sepsis and acute respiratory distress syndrome, but not trauma. However, this finding warrants a cautious interpretation due to certain methodological limitations of these studies, such as the retrospective design, possible selection bias, the use of BMI as an obesity index, and inadequate adjustment for confounding variables. Main pathophysiologic mechanisms related to obesity that could explain this phenomenon include higher energy reserves, inflammatory preconditioning, anti-inflammatory immune profile, endotoxin neutralization, adrenal steroid synthesis, renin-angiotensin system activation, cardioprotective metabolic effects, and prevention of muscle wasting. The survival benefit of obesity in critical illness is supported from large meta-analyses and recent studies. Due to important methodological limitations, more prospective studies are needed to further elucidate this finding, while future research should focus on the pathophysiologic role of adipose tissue in critical illness.
Collapse
Affiliation(s)
- Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| | - Evangelia Chrysanthopoulou
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| |
Collapse
|
25
|
Gomes JM, Almeida TFA, da Silva TA, de Lourdes Cardeal Z, Menezes HC. Saliva biomonitoring using LPME-GC/MS method to assess dentistry exposure to plasticizers. Anal Bioanal Chem 2020; 412:7799-7810. [DOI: 10.1007/s00216-020-02908-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
|