1
|
Warren WG, Osborn M, Duffy P, Yates A, O'Sullivan SE. Potential safety implications of fatty acid-binding protein inhibition. Toxicol Appl Pharmacol 2024; 491:117079. [PMID: 39218163 DOI: 10.1016/j.taap.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Fatty acid-binding proteins (FABPs) are small intracellular proteins that regulate fatty acid metabolism, transport, and signalling. There are ten known human isoforms, many of which are upregulated and involved in clinical pathologies. As such, FABP inhibition may be beneficial in disease states such as cancer, and those involving the cardiovascular system, metabolism, immunity, and cognition. Recently, a potent, selective FABP5 inhibitor (ART26.12), with 90-fold selectivity to FABP3 and 20-fold selectivity to FABP7, was found to be remarkably benign, with a no-observed-adverse-effect level of 1000 mg/kg in rats and dogs, showing no genotoxicity, cardiovascular, central, or respiratory toxicity. To understand the potential implication of FABP inhibition more fully, this review systematically assessed literature investigating genetic knockout, knockdown, and pharmacological inhibition of FABP3, FABP4, FABP5, or FABP7. Analysis of the literature revealed that animals bred not to express FABPs showed the most biological effects, suggesting key roles of these proteins during development. FABP ablation sometimes exacerbated symptoms of disease models, particularly those linked to metabolism, inflammatory and immune responses, cardiac contractility, neurogenesis, and cognition. However, FABP inhibition (genetic silencing or pharmacological) had a positive effect in many more disease conditions. Several polymorphisms of each FABP gene have also been linked to pathological conditions, but it was unclear how several polymorphisms affected protein function. Overall, analysis of the literature to date suggests that pharmacological inhibition of FABPs in adults is of low risk.
Collapse
Affiliation(s)
- William G Warren
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom.
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Paul Duffy
- Apconix Ltd., Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | | |
Collapse
|
2
|
Wilson M, Al-Hamid A, Abbas I, Birkett J, Khan I, Harper M, Al-Jumeily Obe D, Assi S. Identification of diagnostic biomarkers used in the diagnosis of cardiovascular diseases and diabetes mellitus: A systematic review of quantitative studies. Diabetes Obes Metab 2024; 26:3009-3019. [PMID: 38637978 DOI: 10.1111/dom.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
AIMS To perform a systematic review of studies that sought to identify diagnostic biomarkers for the diagnosis of cardiovascular diseases (CVDs) and diabetes mellitus (DM), which could be used in low- and middle-income countries (LMICs) where there is a lack of diagnostic equipment, treatments and training. MATERIALS AND METHODS Papers were sourced from six databases: the British Nursing Index, Google Scholar, PubMed, Sage, Science Direct and Scopus. Articles published between January 2002 and January 2023 were systematically reviewed by three reviewers and appropriate search terms and inclusion/exclusion criteria were applied. RESULTS A total of 18 studies were yielded, as well as 234 diagnostic biomarkers (74 for CVD and 160 for DM). Primary biomarkers for the diagnosis of CVDs included growth differentiation factor 15 and neurogenic locus notch homologue protein 1 (Notch1). For the diagnosis of DM, alpha-2-macroglobulin, C-peptides, isoleucine, glucose, tyrosine, linoleic acid and valine were frequently reported across the included studies. Advanced analytical techniques, such as liquid chromatography mass spectrometry, enzyme-linked immunosorbent assays and vibrational spectroscopy, were also repeatedly reported in the included studies and were utilized in combination with traditional and alternative matrices such as fingernails, hair and saliva. CONCLUSIONS While advanced analytical techniques are expensive, laboratories in LMICs should carry out a cost-benefit analysis of their use. Alternatively, laboratories may want to explore emerging techniques such as infrared, Fourier transform-infrared and near-infrared spectroscopy, which allow sensitive noninvasive analysis.
Collapse
Affiliation(s)
- Megan Wilson
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Abdullah Al-Hamid
- Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, AlAhsa, Saudi Arabia
| | | | - Jason Birkett
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Iftikhar Khan
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Matthew Harper
- Faculty of Engineering and Technology, School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Dhiya Al-Jumeily Obe
- Faculty of Engineering and Technology, School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Sulaf Assi
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
3
|
Liu D, Zhan J, Wang S, Chen L, Zhu Q, Nie R, Zhou X, Zheng W, Luo X, Wang B, Nie J, Ye X. Chrysanthemum morifolium attenuates metabolic and alcohol-associated liver disease via gut microbiota and PPARα/γ activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155774. [PMID: 38820659 DOI: 10.1016/j.phymed.2024.155774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Metabolic and alcohol-associated liver disease (MetALD) shows a high prevalence rate in liver patients, but there is currently no effective treatment for MetALD. As a typical edible traditional Chinese medicinal herb, the anti-inflammatory, antioxidant, and hepatoprotective properties of water extract of Chrysanthemum morifolium Ramat. (WECM) has been demonstrated. However, its therapeutic effect on MetALD and the associated mechanisms remain unclear. PURPOSE To investigate the underlying mechanisms of WECM against MetALD. METHODS We constructed a MetALD rat model following a high-fat & high-sucrose plus alcohol diet (HFHSAD). MetALD rats were treated with WECM at 2.1, 4.2, and 8.4 g/kg/d for six weeks. Efficacy was determined, and pathways associated with WECM against MetALD were predicted through serum and hepatic biochemical marker measurement, histopathological section analysis, 16S rDNA sequencing of the gut microbiota and untargeted serum metabolomics analyses. Changes in genes and proteins in the peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ) signaling pathways were detected by RT‒PCR and Western blotting. RESULTS WECM treatment significantly attenuated hepatic steatosis, hyperlipidemia and markers of liver injury in MetALD rats. Moreover, WECM improved vascular endothelial function, hypertension, and systematic oxidative stress. Mechanistically, WECM treatment altered the overall structure of the gut microbiota through maintaining Firmicutes/Bacteroidota ratio and reducing harmful bacterial abundances such as Clostridium, Faecalibaculum, and Herminiimonas. Notably, WECM promoted 15-deoxy-△12, 14-prostaglandin J2 (15d-PGJ2) release and further activated the PPARγ to reduce serum TNF-α, IL-1β, and IL-6 levels. Additionally, WECM upregulated PPARα and downregulated the levels of CD36 and FABP4 to improve lipid metabolism. CONCLUSION Our findings provide the first evidence that WECM treatment significantly improved hepatic steatosis, oxidative stress and inflammation in MetALD rats by regulating the gut microbiota and activating the 15d-PGJ2/PPARγ and PPARα signaling pathway.
Collapse
Affiliation(s)
- Dan Liu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Jianting Zhan
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shiqin Wang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qianqian Zhu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ruili Nie
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xuxiang Zhou
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wuyinxiao Zheng
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xin Luo
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Bo Wang
- Key Laboratory of Chinese Medicine Quality Control of State Drug Administration, Hubei Institute for Drug Control, Wuhan 430075, China
| | - Jing Nie
- Hubei Center for ADR Monitoring, Wuhan 430071, China
| | - Xiaochuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
4
|
van der Ark-Vonk EM, Puijk MV, Pasterkamp G, van der Laan SW. The Effects of FABP4 on Cardiovascular Disease in the Aging Population. Curr Atheroscler Rep 2024; 26:163-175. [PMID: 38698167 PMCID: PMC11087245 DOI: 10.1007/s11883-024-01196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE OF REVIEW Fatty acid-binding protein 4 (FABP4) plays a role in lipid metabolism and cardiovascular health. In this paper, we cover FABP4 biology, its implications in atherosclerosis from observational studies, genetic factors affecting FABP4 serum levels, and ongoing drug development to target FABP4 and offer insights into future FABP4 research. RECENT FINDINGS FABP4 impacts cells through JAK2/STAT2 and c-kit pathways, increasing inflammatory and adhesion-related proteins. In addition, FABP4 induces angiogenesis and vascular smooth muscle cell proliferation and migration. FABP4 is established as a reliable predictive biomarker for cardiovascular disease in specific at-risk groups. Genetic studies robustly link PPARG and FABP4 variants to FABP4 serum levels. Considering the potential effects on atherosclerotic lesion development, drug discovery programs have been initiated in search for potent inhibitors of FABP4. Elevated FABP4 levels indicate an increased cardiovascular risk and is causally related to acceleration of atherosclerotic disease, However, clinical trials for FABP4 inhibition are lacking, possibly due to concerns about available compounds' side effects. Further research on FABP4 genetics and its putative causal role in cardiovascular disease is needed, particularly in aging subgroups.
Collapse
Affiliation(s)
- Ellen M van der Ark-Vonk
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Mike V Puijk
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Girona J, Soler O, Samino S, Junza A, Martínez-Micaelo N, García-Altares M, Ràfols P, Esteban Y, Yanes O, Correig X, Masana L, Rodríguez-Calvo R. Lipidomics Reveals Myocardial Lipid Composition in a Murine Model of Insulin Resistance Induced by a High-Fat Diet. Int J Mol Sci 2024; 25:2702. [PMID: 38473949 DOI: 10.3390/ijms25052702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Ectopic fat accumulation in non-adipose tissues is closely related to diabetes-related myocardial dysfunction. Nevertheless, the complete picture of the lipid metabolites involved in the metabolic-related myocardial alterations is not fully characterized. The aim of this study was to characterize the specific lipid profile in hearts in an animal model of obesity/insulin resistance induced by a high-fat diet (HFD). The cardiac lipidome profiles were assessed via liquid chromatography-mass spectrometry (LC-MS)/MS-MS and laser desorption/ionization-mass spectrometry (LDI-MS) tissue imaging in hearts from C57BL/6J mice fed with an HFD or standard-diet (STD) for 12 weeks. Targeted lipidome analysis identified a total of 63 lipids (i.e., 48 triacylglycerols (TG), 5 diacylglycerols (DG), 1 sphingomyelin (SM), 3 phosphatidylcholines (PC), 1 DihydroPC, and 5 carnitines) modified in hearts from HFD-fed mice compared to animals fed with STD. Whereas most of the TG were up-regulated in hearts from animals fed with an HFD, most of the carnitines were down-regulated, thereby suggesting a reduction in the mitochondrial β-oxidation. Roughly 30% of the identified metabolites were oxidated, pointing to an increase in lipid peroxidation. Cardiac lipidome was associated with a specific biochemical profile and a specific liver TG pattern. Overall, our study reveals a specific cardiac lipid fingerprint associated with metabolic alterations induced by HFD.
Collapse
Affiliation(s)
- Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Oria Soler
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Sara Samino
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Alexandra Junza
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Neus Martínez-Micaelo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - María García-Altares
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Pere Ràfols
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Yaiza Esteban
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Oscar Yanes
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Xavier Correig
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Lluís Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Ricardo Rodríguez-Calvo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Tan W, Wang Y, Cheng S, Liu Z, Xie M, Song L, Qiu Q, Wang X, Li Z, Liu T, Guo F, Wang J, Zhou X. AdipoRon ameliorates the progression of heart failure with preserved ejection fraction via mitigating lipid accumulation and fibrosis. J Adv Res 2024:S2090-1232(24)00077-8. [PMID: 38382593 DOI: 10.1016/j.jare.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION Obesity and imbalance in lipid homeostasis contribute greatly to heart failure with preserved ejection fraction (HFpEF), the dominant form of heart failure. Few effective therapies exist to control metabolic alterations and lipid homeostasis. OBJECTIVES We aimed to investigate the cardioprotective roles of AdipoRon, the adiponectin receptor agonist, in regulating lipid accumulation in the two-hit HFpEF model. METHODS HFpEF mouse model was induced using 60 % high-fat diet plus L-NAME drinking water. Then, AdipoRon (50 mg/kg) or vehicle were administered by gavage to the two-hit HFpEF mouse model once daily for 4 weeks. Cardiac function was evaluated using echocardiography, and Postmortem analysis included RNA-sequencing, untargeted metabolomics, transmission electron microscopy and molecular biology methods. RESULTS Our study presents the pioneering evidence that AdipoR was downregulated and impaired fatty acid oxidation in the myocardia of HFpEF mice, which was associated with lipid metabolism as indicated by untargeted metabolomics. AdipoRon, orally active synthetic adiponectin receptor agonist, could upregulate AdipoR1/2 (independently of adiponectin) and reduce lipid droplet accumulation, and alleviate fibrosis to restore HFpEF phenotypes. Finally, AdipoRon primarily exerted its effects through restoring the balance of myocardial fatty acid intake, transport, and oxidation via the downstream AMPKα or PPARα signaling pathways. The protective effects of AdipoRon in HFpEF mice were reversed by compound C and GW6471, inhibitors of AMPKα and PPARα, respectively. CONCLUSIONS AdipoRon ameliorated the HFpEF phenotype by promoting myocardial fatty acid oxidation, decreasing fatty acid transport, and inhibiting fibrosis via the upregulation of AdipoR and the activation of AdipoR1/AMPKα and AdipoR2/PPARα-related downstream pathways. These findings underscore the therapeutic potential of AdipoRon in HFpEF. Importantly, all these parameters get restored in the context of continued mechanical and metabolic stressors associated with HFpEF.
Collapse
Affiliation(s)
- Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Yijun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Siyi Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Mengjie Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Lingpeng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Qinfang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Xiaofei Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Zeyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Tianyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| | - Jun Wang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
7
|
Donjuán-Loredo G, Espinosa-Tanguma R, Guevara E, Rodríguez-Aranda MDC, León-Bejarano F, Hernández-Vidales K, Ramírez-Elías M. Fatty Acid-Binding Proteins Identification during the Evolution of Metabolic Syndrome: A Raman Spectroscopy-Based Approach. Molecules 2023; 28:7472. [PMID: 38005194 PMCID: PMC10672738 DOI: 10.3390/molecules28227472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 11/26/2023] Open
Abstract
Excess fat in abdominal deposits is a risk factor for multiple conditions, including metabolic syndrome (MetS); lipid metabolism plays an essential role in these pathologies; fatty acid-binding proteins (FABPs) are dedicated to the cytosolic transport of fat. FABP4, whose primary source is adipose tissue, is released into the circulation, acting as an adipokine, while FABP5 also accompanies the adverse effects of MetS. FABP4 and 5 are potential biomarkers of MetS, but their behavior during syndrome evolution has not been determined. Raman spectroscopy has been applied as an alternative method to disease biomarker detection. In this work, we detected spectral changes related to FABP4 and 5 in the serum at different points of time, using an animal model of a high-fat diet-induced MetS. FABP4 and 5 spectral changes show a contribution during the evolution of MetS, which indicates alteration to a molecular level that predisposes to established MetS. These findings place FABPs as potential biomarkers of MetS and Raman spectroscopy as an alternative method for MetS assessment.
Collapse
Affiliation(s)
- Guadalupe Donjuán-Loredo
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, Lomas los Filtros, San Luis Potosí 78210, Mexico
| | - Ricardo Espinosa-Tanguma
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, Lomas los Filtros, San Luis Potosí 78210, Mexico
| | - Edgar Guevara
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - María del Carmen Rodríguez-Aranda
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - Fabiola León-Bejarano
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
| | - Karen Hernández-Vidales
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
| | - Miguel Ramírez-Elías
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
| |
Collapse
|
8
|
Li B, Zamzam A, Syed MH, Djahanpour N, Jain S, Abdin R, Qadura M. Fatty acid binding protein 4 has prognostic value in peripheral artery disease. J Vasc Surg 2023; 78:719-726. [PMID: 37318430 DOI: 10.1016/j.jvs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Peripheral artery disease (PAD) remains undertreated, despite its association with major amputation and mortality. This is partly due to a lack of available disease biomarkers. The intracellular protein fatty acid binding protein 4 (FABP4) is implicated in diabetes, obesity, and metabolic syndrome. Given that these risk factors are strong contributors to vascular disease, we assessed the prognostic ability of FABP4 in predicting PAD-related adverse limb events. METHODS This was a prospective case-control study with 3 years of follow-up. Baseline serum FABP4 concentrations were measured in patients with PAD (n = 569) and without PAD (n = 279). The primary outcome was major adverse limb event (MALE; defined as a composite of vascular intervention or major amputation). The secondary outcome was worsening PAD status (drop in ankle-brachial index ≥0.15). Kaplan-Meier and Cox proportional hazards analyses adjusted for baseline characteristics were conducted to assess the ability of FABP4 to predict MALE and worsening PAD status. RESULTS Patients with PAD were older and more likely to have cardiovascular risk factors compared with those without PAD. Over the study period, MALE and worsening PAD status occurred in 162 (19%) and 92 (11%) patients, respectively. Higher FABP4 levels were significantly associated with 3-year MALE (unadjusted hazard ratio [HR], 1.19; 95% confidence interval [CI], 1.04-1.27; adjusted HR, 1.18; 95% CI, 1.03-1.27; P = .022) and worsening PAD status (unadjusted HR, 1.18; 95% CI, 1.13-1.31; adjusted HR, 1.17; 95% CI, 1.12-1.28; P < .001). Three-year Kaplan-Meier survival analysis demonstrated that patients with high FABP4 levels had a decreased freedom from MALE (75% vs 88%; log rank = 22.6; P < .001), vascular intervention (77% vs 89%; log rank = 20.8; P < .001), and worsening PAD status (87% vs 91%; log rank = 6.16; P = .013). CONCLUSIONS Individuals with higher serum concentrations of FABP4 are more likely to develop PAD-related adverse limb events. FABP4 has prognostic value in risk-stratifying patients for further vascular evaluation and management.
Collapse
Affiliation(s)
- Ben Li
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Muzammil H Syed
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Niousha Djahanpour
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Shubha Jain
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Chen D, Wirth KM, Kizy S, Muretta JM, Markowski TW, Yong P, Sheka A, Abdelwahab H, Hertzel AV, Ikramuddin S, Yamamoto M, Bernlohr DA. Desmoglein 2 Functions as a Receptor for Fatty Acid Binding Protein 4 in Breast Cancer Epithelial Cells. Mol Cancer Res 2023; 21:836-848. [PMID: 37115197 PMCID: PMC10524127 DOI: 10.1158/1541-7786.mcr-22-0763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth. When E0771 murine breast cancer cells were injected into mice, FABP4 null animals exhibited delayed tumor growth and enhanced survival compared with injections into control C57Bl/6J animals. eFABP4 treatment of MCF-7 cells resulted in a significant increase in phosphorylation of extracellular signal-regulated kinase 1/2 (pERK), transcriptional activation of nuclear factor E2-related factor 2 (NRF2) and corresponding gene targets ALDH1A1, CYP1A1, HMOX1, SOD1 and decreased oxidative stress, while R126Q treatment did not show any effects. Proximity-labeling employing an APEX2-FABP4 fusion protein revealed several proteins functioning in desmosomes as eFABP4 receptor candidates including desmoglein (DSG), desmocollin, junction plankoglobin, desomoplankin, and cytokeratins. AlphaFold modeling predicted an interaction between eFABP4, and the extracellular cadherin repeats of DSG2 and pull-down and immunoprecipitation assays confirmed complex formation that was potentiated by oleic acid. Silencing of DSG2 in MCF-7 cells attenuated eFABP4 effects on cellular proliferation, pERK levels, and ALDH1A1 expression compared with controls. IMPLICATIONS These results suggest desmosomal proteins, and in particular desmoglein 2, may function as receptors of eFABP4 and provide new insight into the development and progression of obesity-associated cancers.
Collapse
Affiliation(s)
- Dongmei Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Keith M. Wirth
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Scott Kizy
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Joseph M. Muretta
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Adam Sheka
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Hisham Abdelwahab
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Sayeed Ikramuddin
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Masato Yamamoto
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
- Department of Masonic Cancer Center, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| |
Collapse
|
10
|
O'Croinin C, Garcia Guerra A, Doschak MR, Löbenberg R, Davies NM. Therapeutic Potential and Predictive Pharmaceutical Modeling of Stilbenes in Cannabis sativa. Pharmaceutics 2023; 15:1941. [PMID: 37514127 PMCID: PMC10386382 DOI: 10.3390/pharmaceutics15071941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis sativa is a plant used for recreational and therapeutic purposes; however, many of the secondary metabolites in the plant have not been thoroughly investigated. Stilbenes are a class of compounds with demonstrated anti-inflammatory and antioxidant properties and are present in cannabis. Many stilbenes present in cannabis have been investigated for their therapeutic effects. Fourteen stilbenes have been identified to be present in cannabis, all of which are structurally dihydrostilbenoids, with half possessing a prenylated moiety. The stilbenes summarized in this analysis show varying degrees of therapeutic benefits ranging from anti-inflammatory, antiviral, and anti-cancer to antioxidant effects. Many of the identified stilbenes have been researched to a limited extent for potential health benefits. In addition, predictive in silico modeling was performed on the fourteen identified cannabis-derived stilbenes. This modeling provides prospective activity, pharmacokinetic, metabolism, and permeability data, setting the groundwork for further investigation into these poorly characterized compounds.
Collapse
Affiliation(s)
- Conor O'Croinin
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andres Garcia Guerra
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael R Doschak
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
11
|
Lv J, Hu Y, Li L, He Y, Wang J, Guo N, Fang Y, Chen Q, Cai C, Tong J, Tang L, Wang Z. Targeting FABP4 in elderly mice rejuvenates liver metabolism and ameliorates aging-associated metabolic disorders. Metabolism 2023; 142:155528. [PMID: 36842611 DOI: 10.1016/j.metabol.2023.155528] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
INTRODUCTION Aging is characterized by progressive metabolic dyshomeostasis that increases morbidity and mortality. Solutions for optimizing healthy aging are challenged by lacking appropriate biomarkers. Moreover, druggable targets to rejuvenate the aging-associated metabolic phenotypes remain unavailable. METHODS Proteomics analysis was performed in a cohort of young and elderly adults. Circulating levels of insulin-like growth factor 1 (IGF-1) and fatty acid binding protein 4 (FABP4) were evaluated by ELISA. FABP4 was silenced in elderly mice by adeno-associated virus. Metabolic activities were measured by metabolic cages. Cognitive function was evaluated by Morris water maze. Glucose and lipid metabolism were evaluated by biochemistry assays with blood samples. RNA-seq in mouse liver was performed for transcriptome analysis. RESULTS Among 9 aging-sensitive proteins shared by both male and female, FABP4 was identified as a reliable aging biomarker in both human and mouse. Silencing FABP4 in elderly mice significantly rejuvenated the aging-associated decline in metabolic activities. FABP4 knockdown reversed the aging-associated metabolic disorders by promoting degradation of cholesterol and fatty acids, while suppressing gluconeogenesis. Transcriptome analysis revealed a restoration of the pro-aging gene reprogramming towards inflammation and metabolic disorders in the liver after FABP4 knockdown. FABP4 overexpression promoted human LO2 cell senescence. Moreover, administration of an FABP4 inhibitor BMS309403 delivered metabolic benefits in elderly mice. CONCLUSION Our findings demonstrate FABP4 as a reliable aging biomarker as well as a practicable target to improve healthy aging in the elderly.
Collapse
Affiliation(s)
- Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yimeng Hu
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan He
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingjing Wang
- School of Martial Arts, Wuhan Sports University, Wuhan 430079, China
| | - Ningning Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Fang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Chen
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Lixu Tang
- School of Martial Arts, Wuhan Sports University, Wuhan 430079, China.
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Rodríguez-Calvo R, Granado-Casas M, Pérez-Montes de Oca A, Julian MT, Domingo M, Codina P, Santiago-Vacas E, Cediel G, Julve J, Rossell J, Masana L, Mauricio D, Lupón J, Bayes-Genis A, Alonso N. Fatty Acid Binding Proteins 3 and 4 Predict Both All-Cause and Cardiovascular Mortality in Subjects with Chronic Heart Failure and Type 2 Diabetes Mellitus. Antioxidants (Basel) 2023; 12:antiox12030645. [PMID: 36978893 PMCID: PMC10044995 DOI: 10.3390/antiox12030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Subjects with type 2 diabetes mellitus (T2D) are at increased risk for heart failure (HF). The cardiac-specific (FABP3) and adipose-tissue-specific (FABP4) types of the fatty acid binding proteins have been associated with both all-cause and cardiovascular (CV) mortality. The aim of this study was to explore the prognosis value of FABP3 and FABP4 in ambulatory subjects with chronic HF (CHF), with and without T2D. A prospective study involving 240 ambulatory CHF subjects was performed. Patients were followed-up for a mean of 5.78 ± 3.30 years and cause of death (if any) was recorded. Primary endpoints were defined as all-cause and CV death, and a composite endpoint that included CV death or hospitalization for HF was included as a secondary endpoint. Baseline serum samples were obtained and the serum FABP3 and FABP4 concentrations were assessed by sandwich enzyme-linked immunosorbent assay. Survival analysis was performed with multivariable Cox regressions, using Fine and Gray competing risks models when needed, to explore the prognostic value of FABP3 and FABP4 concentrations, adjusting for potential confounders. Type 2 diabetes mellitus was highly prevalent, accounting for 47.5% for total subjects with CHF. Subjects with T2D showed higher mortality rates (T2D: 69.30%; non-T2D: 50.79%, p = 0.004) and higher serum FABP3 (1829.3 (1104.9–3440.5) pg/mL vs. 1396.05 (820.3–2362.16) pg/mL, p = 0.007) and FABP4 (45.5 (27.6–79.8) ng/mL vs. 34.1 (24.09–55.3) ng/mL, p = 0.006) concentrations compared with non-T2D CHF subjects. In the whole study cohort, FABP3 was independently associated with all-cause death, and both FABP3 and FABP4 concentrations were associated with CV mortality. The predictive values of these two molecules for all-cause (FABP3: HR 1.25, 95% CI 1.09–1.44; p = 0.002. FABP4: HR 2.21, 95% CI 1.12–4.36; p = 0.023) and CV mortality (FABP3: HR 1.28, 95% CI 1.09–1.50; p = 0.002. FABP4: HR 4.19, 95% CI 2.21–7.95; p < 0.001) were only statistically significant in the subgroup of subjects with T2D. Notably, FABP4 (HR 2.07, 95% CI 1.11–3.87; p = 0.022), but not FABP3, also predicted the occurrence of the composite endpoint (death or hospitalization for HF) only in subjects with T2D. All these associations were not found in CHF subjects without T2D. Our findings support the usefulness of serum FABP3 and FABP4 concentrations as independent predictors for the occurrence of all-cause and CV mortality in ambulatory subjects with CHF with T2D.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- Vascular Medicine and Metabolism Unit, “Sant Joan” University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Minerva Granado-Casas
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nursing and Physiotherapy, Health Sciences Faculty, University of Lleida, IRBLleida, 25198 Lleida, Spain
- DAP-Cat Group, Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), 08041 Barcelona, Spain
| | | | - María Teresa Julian
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Mar Domingo
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Pau Codina
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Evelyn Santiago-Vacas
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Germán Cediel
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Josep Julve
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
| | - Joana Rossell
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lluís Masana
- Vascular Medicine and Metabolism Unit, “Sant Joan” University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Didac Mauricio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic & Central University of Catalonia, 08500 Vic, Spain
| | - Josep Lupón
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, 08023 Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antoni Bayes-Genis
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, 08023 Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (A.B.-G.); (N.A.)
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, 08023 Barcelona, Spain
- Correspondence: (A.B.-G.); (N.A.)
| |
Collapse
|
13
|
Sahu B, Bal NC. Adipokines from white adipose tissue in regulation of whole body energy homeostasis. Biochimie 2023; 204:92-107. [PMID: 36084909 DOI: 10.1016/j.biochi.2022.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.
Collapse
Affiliation(s)
- Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
14
|
Suffee N, Baptista E, Piquereau J, Ponnaiah M, Doisne N, Ichou F, Lhomme M, Pichard C, Galand V, Mougenot N, Dilanian G, Lucats L, Balse E, Mericskay M, Le Goff W, Hatem SN. Impacts of a high-fat diet on the metabolic profile and the phenotype of atrial myocardium in mice. Cardiovasc Res 2022; 118:3126-3139. [PMID: 34971360 DOI: 10.1093/cvr/cvab367] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Obesity, diabetes, and metabolic syndromes are risk factors of atrial fibrillation (AF). We tested the hypothesis that metabolic disorders have a direct impact on the atria favouring the formation of the substrate of AF. METHODS AND RESULTS Untargeted metabolomic and lipidomic analysis was used to investigate the consequences of a prolonged high-fat diet (HFD) on mouse atria. Atrial properties were characterized by measuring mitochondria respiration in saponin-permeabilized trabeculae, by recording action potential (AP) with glass microelectrodes in trabeculae and ionic currents in myocytes using the perforated configuration of patch clamp technique and by several immuno-histological and biochemical approaches. After 16 weeks of HFD, obesogenic mice showed a vulnerability to AF. The atrial myocardium acquired an adipogenic and inflammatory phenotypes. Metabolomic and lipidomic analysis revealed a profound transformation of atrial energy metabolism with a predominance of long-chain lipid accumulation and beta-oxidation activation in the obese mice. Mitochondria respiration showed an increased use of palmitoyl-CoA as energy substrate. APs were short duration and sensitive to the K-ATP-dependent channel inhibitor, whereas K-ATP current was enhanced in isolated atrial myocytes of obese mouse. CONCLUSION HFD transforms energy metabolism, causes fat accumulation, and induces electrical remodelling of the atrial myocardium of mice that become vulnerable to AF.
Collapse
Affiliation(s)
- Nadine Suffee
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Elodie Baptista
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Jérôme Piquereau
- ICANalytics, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Maharajah Ponnaiah
- ICANalytics, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Nicolas Doisne
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Farid Ichou
- ICANalytics, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Marie Lhomme
- Paris-Saclay University, Inserm UMRS 1180 Signaling and Cardiovascular Pathophysiology, Châtenay-Malabry, France
| | - Camille Pichard
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Vincent Galand
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Nathalie Mougenot
- INSERM UMR_S28, Faculté de médecine Sorbonne University, Paris, France
| | - Gilles Dilanian
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Laurence Lucats
- Sanofi-Aventis R&D, Cardiovascular and Metabolism Research, Chilly-Mazarin, France
| | - Elise Balse
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Mathias Mericskay
- Paris-Saclay University, Inserm UMRS 1180 Signaling and Cardiovascular Pathophysiology, Châtenay-Malabry, France
| | - Wilfried Le Goff
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Stéphane N Hatem
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
15
|
Xu Y, Zhu H, Li W, Chen D, Xu Y, Xu A, Ye D. Targeting adipokines in polycystic ovary syndrome and related metabolic disorders: from experimental insights to clinical studies. Pharmacol Ther 2022; 240:108284. [PMID: 36162728 DOI: 10.1016/j.pharmthera.2022.108284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects approximately 15% of women of reproductive age worldwide. It is the most prevalent endocrine disorder with marked risks for female infertility, type 2 diabetes mellitus (T2DM), psychiatric disorders and gynecological cancers. Although the pathophysiology of PCOS remains largely elusive, growing evidence suggests a close link with obesity and its related metabolic disorders. As a highly active endocrine cell population, hypertrophic adipocytes in obesity have disturbed production of a vast array of adipokines, biologically active peptides that exert pleiotropic effects on homeostatic regulation of glucose and lipid metabolism. In parallel with their crucial roles in the pathophysiology of obesity-induced metabolic diseases, adipokines have recently been identified as promising targets for novel therapeutic strategies for multiple diseases. Current treatments for PCOS are suboptimal with insufficient alleviation of all symptoms. Novel findings in adipokine-targeted agents may provide important insight into the development of new drugs for PCOS. This Review presents an overview of the current understanding of mechanisms that link PCOS to obesity and highlights emerging evidence of adipose-ovary crosstalk as a pivotal mediator of PCOS pathogenesis. We summarize recent findings of preclinical and clinical studies that reveal the therapeutic potential of adipokine-targeted novel approaches to PCOS and its related metabolic disorders. We also discuss the critical gaps in knowledge that need to be addressed to guide the development of adipokine-based novel therapies for PCOS.
Collapse
Affiliation(s)
- Yidan Xu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiqiu Zhu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiwei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Danxia Chen
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
16
|
Yang M, Gao X, Ma Y, Wang X, Lei Z, Wang S, Hu H, Tang L, Ma Y. Bta-miR-6517 promotes proliferation and inhibits differentiation of pre-adipocytes by targeting PFKL. J Anim Physiol Anim Nutr (Berl) 2022; 106:1197-1207. [PMID: 34791721 DOI: 10.1111/jpn.13662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/01/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022]
Abstract
The proliferation and differentiation of pre-adipocytes are regulated by microRNAs (miRNAs) and other factors. In this study, the potential functions of bta-miR-6517 in the regulation of pre-adipocyte proliferation and differentiation were explored. The qRT-PCR, oil red O staining and CCK-8 assay were used to evaluate the role of bta-miR-6517. Further, the target gene of bta-miR-6517 was identified using bioinformatics analysis, dual-luciferase reporter system and qRT-PCR system. The results found that the overexpression of bta-miR-6517 promoted the expression of proliferation marker genes and substantially increased the adipocyte proliferation vitality in the CCK-8 assay, whereas suppressing of bta-miR-6517 had the opposite effect. Overexpression bta-miR-6517 suppressed the expression of adipogenic genes, which inhibited lipid accumulation, whereas suppressing of bta-miR-6517 had the opposite effect. Furthermore, the dual-fluorescent reporter experiment results demonstrated that bta-miR-6517 directly targeted phosphofructokinase, liver type (PFKL). When bta-miR-6517 was either overexpressed or suppressed, it negatively regulated PFKL. In conclusion, we observed that bta-miR-6517 promoted adipocyte proliferation and inhibited differentiation by targeting PFKL.
Collapse
Affiliation(s)
- Mengli Yang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaoqian Gao
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yanfen Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xingping Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhaoxiong Lei
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Honghong Hu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Lin Tang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yun Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
17
|
Non-Histone Lysine Crotonylation Is Involved in the Regulation of White Fat Browning. Int J Mol Sci 2022; 23:ijms232112733. [PMID: 36361522 PMCID: PMC9658748 DOI: 10.3390/ijms232112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Lysine crotonylation modification is a novel acylation modification that is similar to acetylation modification. Studies have found that protein acetylation plays an important regulatory part in the occurrence and prevention of obesity and is involved in the regulation of glucose metabolism, tricarboxylic acid cycle, white fat browning and fatty acid metabolism. Therefore, we speculate that protein crotonylation may also play a more vital role in regulating the browning of white fat. To verify this conjecture, we identified 7254 crotonyl modification sites and 1629 modified proteins in iWAT of white fat browning model mice by affinity enrichment and liquid chromatography-mass spectrometry (LC-MS/MS). We selected five representative proteins in the metabolic process, namely glycerol-3-phosphate dehydrogenase 1 (GPD1), fatty acid binding protein 4 (FABP4), adenylate kinase 2 (AK2), triosephosphate isomerase 1 (TPI1) and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 8 (NDUFA8). Through qPCR, Western blotting, immunofluorescence staining, Oil Red O staining and HE staining, we demonstrated that GPD1 and FABP4 inhibited white fat browning, while AK2, TPI1 and NDUFA8 promoted white fat browning. GPD1 and FABP4 proteins were downregulated by crotonylation modification, while AK2, TPI1 and NDUFA8 proteins were upregulated by crotonylation modification. Further detection found that the crotonylation modification of GPD1, FABP4, AK2, TPI1 and NDUFA8 promoted white fat browning, which was consistent with the sequencing results. These results indicate that the protein crotonylation is involved in regulating white fat browning, which is of great significance for controlling obesity and treating obesity-related diseases.
Collapse
|
18
|
Ravera A, Santema BT, de Boer RA, Anker SD, Samani NJ, Lang CC, Ng L, Cleland JGF, Dickstein K, Lam CSP, Van Spall HGC, Filippatos G, van Veldhuisen DJ, Metra M, Voors AA, Sama IE. Distinct pathophysiological pathways in women and men with heart failure. Eur J Heart Fail 2022; 24:1532-1544. [PMID: 35596674 DOI: 10.1002/ejhf.2534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 11/07/2022] Open
Abstract
AIMS Clinical differences between women and men have been described in heart failure (HF). However, less is known about the underlying pathophysiological mechanisms. In this study, we compared multiple circulating biomarkers to gain better insights into differential HF pathophysiology between women and men. METHODS AND RESULTS In 537 women and 1485 men with HF, we compared differential expression of a panel of 363 biomarkers. Then, we performed a pathway over-representation analysis to identify differential biological pathways in women and men. Findings were validated in an independent HF cohort (575 women, 1123 men). In both cohorts, women were older and had higher left ventricular ejection fraction (LVEF). In the index and validation cohorts respectively, we found 14/363 and 12/363 biomarkers that were relatively up-regulated in women, while 21/363 and 14/363 were up-regulated in men. In both cohorts, the strongest up-regulated biomarkers in women were leptin and fatty acid binding protein-4, compared to matrix metalloproteinase-3 in men. Similar findings were replicated in a subset of patients from both cohorts matched by age and LVEF. Pathway over-representation analysis revealed increased activity of pathways associated with lipid metabolism in women, and neuro-inflammatory response in men (all p < 0.0001). CONCLUSION In two independent cohorts of HF patients, biomarkers associated with lipid metabolic pathways were observed in women, while biomarkers associated with neuro-inflammatory response were more active in men. Differences in inflammatory and metabolic pathways may contribute to sex differences in clinical phenotype observed in HF, and provide useful insights towards development of tailored HF therapies.
Collapse
Affiliation(s)
- Alice Ravera
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.,University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernadet T Santema
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudolf A de Boer
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stefan D Anker
- Division of Cardiology and Metabolism, Department of Cardiology (CVK) and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Leong Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - John G F Cleland
- National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK.,Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, UK
| | - Kenneth Dickstein
- University of Bergen, Stavanger University Hospital, Stavanger, Norway
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-National University of Singapore, Singapore, Singapore
| | - Harriette G C Van Spall
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Population Health Research Institute, Hamilton, Ontario, Canada
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - Dirk J van Veldhuisen
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Adriaan A Voors
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Iziah E Sama
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
19
|
A Proof-of-Concept Inhibitor of Endothelial Lipase Suppresses Triple-Negative Breast Cancer Cells by Hijacking the Mitochondrial Function. Cancers (Basel) 2022; 14:cancers14153763. [PMID: 35954428 PMCID: PMC9367514 DOI: 10.3390/cancers14153763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Endothelial lipase (EL/LIPG) is a key regulator of tumor cell metabolism. In triple-negative breast cancer (TNBC) cells, we find that the expression of LIPG is associated with long non-coding RNA DANCR and positively correlates with gene signatures of mitochondrial metabolism-oxidative phosphorylation (OXPHOS). DANCR binds to LIPG, which enables tumor cells to maintain the expression. Importantly, LIPG knockdown inhibits OXPHOS and TNBC tumor formation. Finally, our study identifies a natural compound, the LIPG inhibitor cynaroside, which provides a new therapeutic strategy against TNBC. Abstract Triple-negative breast cancer (TNBC) cells reprogram their metabolism to provide metabolic flexibility for tumor cell growth and survival in the tumor microenvironment. While our previous findings indicated that endothelial lipase (EL/LIPG) is a hallmark of TNBC, the precise mechanism through which LIPG instigates TNBC metabolism remains undefined. Here, we report that the expression of LIPG is associated with long non-coding RNA DANCR and positively correlates with gene signatures of mitochondrial metabolism-oxidative phosphorylation (OXPHOS). DANCR binds to LIPG, enabling tumor cells to maintain LIPG protein stability and OXPHOS. As one mechanism of LIPG in the regulation of tumor cell oxidative metabolism, LIPG mediates histone deacetylase 6 (HDAC6) and histone acetylation, which contribute to changes in IL-6 and fatty acid synthesis gene expression. Finally, aided by a relaxed docking approach, we discovered a new LIPG inhibitor, cynaroside, that effectively suppressed the enzyme activity and DANCR in TNBC cells. Treatment with cynaroside inhibited the OXPHOS phenotype of TNBC cells, which severely impaired tumor formation. Taken together, our study provides mechanistic insights into the LIPG modulation of mitochondrial metabolism in TNBC and a proof-of-concept that targeting LIPG is a promising new therapeutic strategy for the treatment of TNBC.
Collapse
|
20
|
Navarro-Ruiz MDC, López-Alcalá J, Díaz-Ruiz A, Moral SDD, Tercero-Alcázar C, Nieto-Calonge A, López-Miranda J, Tinahones FJ, Malagón MM, Guzmán-Ruiz R. Understanding the adipose tissue acetylome in obesity and insulin resistance. Transl Res 2022; 246:15-32. [PMID: 35259527 DOI: 10.1016/j.trsl.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 12/29/2022]
Abstract
Obesity is a widely prevalent pathology with a high exponential growth worldwide. Altered lipid accumulation by adipose tissue is one of the main causes of obesity and exploring lipid homeostasis in this tissue may represent a source for the identification of possible therapeutic targets. The study of the proteome and the post-translational modifications of proteins, specifically acetylation due to its involvement in energy metabolism, may be of great interest to understand the molecular mechanisms involved in adipose tissue dysfunction in obesity. The objective of this study was to characterize the subcutaneous and omental adipose tissue acetylome in conditions of obesity and insulin resistance and to describe the importance of acetylation of key molecules in adipose tissue to use them as therapeutic targets. The results describe for the first time the acetylome of subcutaneous and omental adipose tissue under physiological and physiopathological conditions such as obesity and insulin resistance. New evidence showed different acetylation patterns between two main depots and highlight the molecular complexity of adipose tissue. Results showed changes in FABP4 acetylation in subcutaneous fat in relation to insulin resistance, thus unveiling a potential marker of depot-specific dysfunctional expansion in obesity-associated metabolic disease. Furthermore, it is shown that the acetylation of FABP4 affects its function, modulating the capacity of differentiation in adipocytes. In conclusion, this study demonstrates a profound, depot-specific alteration of adipose tissue acetylome, wherein the acetylation of FABP4 may play a key role in adipocyte differentiation and lipid accumulation.
Collapse
Affiliation(s)
- Maria Del Carmen Navarro-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain
| | - Jaime López-Alcalá
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain
| | - Alberto Díaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Sandra Díaz Del Moral
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain
| | - Andrea Nieto-Calonge
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain; Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain; Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), University of Málaga, Málaga, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain.
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
21
|
Comprehensive Analysis of Differentially Expressed mRNAs, lncRNAs and circRNAs Related to Intramuscular Fat Deposition in Laiwu Pigs. Genes (Basel) 2022; 13:genes13081349. [PMID: 36011260 PMCID: PMC9407282 DOI: 10.3390/genes13081349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are important classes of small noncoding RNAs that can regulate numerous biological processes. To understand the role of message RNA (mRNAs, lncRNAs and circRNAs) in the regulation of intramuscular fat (IMF) deposition, in this study the expression profiles of longissimus dorsi (LD) muscle from six Laiwu pigs (three with extremely high and three with extremely low IMF content) were sequenced based on rRNA-depleted library construction. In total, 323 differentially expressed protein-coding genes (DEGs), 180 lncRNAs (DELs) and 105 circRNAs (DECs) were detected between the high IMF and low IMF groups. Functional analysis indicated that most DEGs, and some target genes of DELs, were enriched into GO terms and pathways related to adipogenesis, suggesting their important roles in regulating IMF deposition. In addition, 12 DELs were observed to exhibit a positive relationship with stearoyl-CoA desaturase (SCD), phosphoenolpyruvate carboxykinase 1 (PCK1), and adiponectin (ADIPOQ), suggesting they are highly likely to be the target genes of DELs. Finally, we constructed a source gene-circRNA-miRNA connective network, and some of miRNA of the network have been reported to affect lipid metabolism or adipogenesis. Overall, this work provides a valuable resource for further research and helps to understand the potential functions of lncRNAs and circRNAs in IMF deposition.
Collapse
|
22
|
Li X, Wang X, Zhang C, Wang J, Wang S, Hu L. Dysfunction of metabolic activity of bone marrow mesenchymal stem cells in aged mice. Cell Prolif 2022; 55:e13191. [PMID: 35088483 PMCID: PMC8891618 DOI: 10.1111/cpr.13191] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives Evidences have suggested that the metabolic function is the key regulator to the fate of MSCs, but its function in senescence of MSC and the underlying mechanism is unclear. Therefore, the purpose of this study was to investigate the metabolic activity of MSCs and its possible mechanism during aging. Materials and Methods We used the Seahorse XF24 Analyzer to understand OCR and ECAR in BMSCs and used RT‐PCR to analyze the gene expression of mitochondrial biogenesis and key enzymes in glycolysis. We analyzed BMSC mitochondrial activity by MitoTracker Deep Red and JC‐1 staining, and detected NAD+/NADH ratio and ATP levels in BMSCs. Microarray and proteomic analyses were performed to detect differentially expressed genes and proteins in BMSCs. The impact of aging on BMSCs through mitochondrial electron transport chain (ETC) was evaluated by Rotenone and Coenzyme Q10. Results Our results demonstrated that the oxidative phosphorylation and glycolytic activity of BMSCs in aged mice were significantly decreased when compared with young mice. BMSCs in aged mice had lower mitochondrial membrane potential, NAD+/NADH ratio, and ATP production than young mice. FABP4 may play a key role in BMSC senescence caused by fatty acid metabolism disorders. Conclusions Taken together, our results indicated the dysfunction of the metabolic activity of BMSCs in aged mice, which would play the important role in the impaired biological properties. Therefore, the regulation of metabolic activity may be a potential therapeutic target for enhancing the regenerative functions of BMSCs.
Collapse
Affiliation(s)
- Xiaoyu Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Xue Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Prosthodontics, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
23
|
Unveiling the Role of the Fatty Acid Binding Protein 4 in the Metabolic-Associated Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10010197. [PMID: 35052876 PMCID: PMC8773613 DOI: 10.3390/biomedicines10010197] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), the main cause of chronic liver disease worldwide, is a progressive disease ranging from fatty liver to steatohepatitis (metabolic-associated steatohepatitis; MASH). Nevertheless, it remains underdiagnosed due to the lack of effective non-invasive methods for its diagnosis and staging. Although MAFLD has been found in lean individuals, it is closely associated with obesity-related conditions. Adipose tissue is the main source of liver triglycerides and adipocytes act as endocrine organs releasing a large number of adipokines and pro-inflammatory mediators involved in MAFLD progression into bloodstream. Among the adipocyte-derived molecules, fatty acid binding protein 4 (FABP4) has been recently associated with fatty liver and additional features of advanced stages of MAFLD. Additionally, emerging data from preclinical studies propose FABP4 as a causal actor involved in the disease progression, rather than a mere biomarker for the disease. Therefore, the FABP4 regulation could be considered as a potential therapeutic strategy to MAFLD. Here, we review the current knowledge of FABP4 in MAFLD, as well as its potential role as a therapeutic target for this disease.
Collapse
|
24
|
Rodríguez-Calvo R, Moreno-Vedia J, Girona J, Ibarretxe D, Martínez-Micaelo N, Merino J, Plana N, Masana L. Relationship Between Fatty Acid Binding Protein 4 and Liver Fat in Individuals at Increased Cardiometabolic Risk. Front Physiol 2021; 12:781789. [PMID: 34966292 PMCID: PMC8711782 DOI: 10.3389/fphys.2021.781789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Liver steatosis is considered the onset of the non-alcoholic fatty liver disease (NAFLD), a major public health challenge. Nevertheless, NAFLD detection and diagnosis remain a difficult task. Fatty acid binding protein 4 (FABP4) has been proposed as potential biomarker for the ectopic fat accumulation in non-adipose tissues, although its role reflecting liver steatosis in metabolic patients is not fully explored. The aim of this study was to assess the relationship between FABP4 and the fatty liver index (FLI) in metabolic patients and to evaluate its potential role in the fatty liver disease. Methods: A cross-sectional study involving 389 participants at increased cardiometabolic risk was performed. FLI was calculated in order to assess liver fatty disease and a FLI ≥ 60 was considered to define liver steatosis. The serum FABP4 levels were assessed by using a sandwich enzyme-linked immunosorbent assay. Multivariable regression models were used to examine the associations of FABP4 with fatty liver after adjusting for demographic and clinical characteristics. Results: Both, FLI and serum FABP4 levels were upregulated in diabetic, obese, and metabolic syndrome patients. Serum FABP4 levels were higher in individuals with liver steatosis. Serum FABP4 were robustly associated with FLI in metabolic patients in both linear and logistic regression analyses. Conclusion: Our findings show that the serum FABP4 is associated to liver steatosis in metabolic patients.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Juan Moreno-Vedia
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Neus Martínez-Micaelo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Jordi Merino
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Nuria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Lluis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Pere Virgili Health Research Institute (IISPV), Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Yang Z, Yang D, Tan F, Wong CW, Yang JY, Zhou D, Cai Z, Lin SH. Multi-Omics Comparison of the Spontaneous Diabetes Mellitus and Diet-Induced Prediabetic Macaque Models. Front Pharmacol 2021; 12:784231. [PMID: 34880765 PMCID: PMC8645867 DOI: 10.3389/fphar.2021.784231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence of diabetes mellitus has been increasing for decades worldwide. To develop safe and potent therapeutics, animal models contribute a lot to the studies of the mechanisms underlying its pathogenesis. Dietary induction using is a well-accepted protocol in generating insulin resistance and diabetes models. In the present study, we reported the multi-omics profiling of the liver and sera from both peripheral blood and hepatic portal vein blood from Macaca fascicularis that spontaneously developed Type-2 diabetes mellitus with a chow diet (sDM). The other two groups of the monkeys fed with chow diet and high-fat high-sugar (HFHS) diet, respectively, were included for comparison. Analyses of various omics datasets revealed the alterations of high consistency. Between the sDM and HFHS monkeys, both the similar and unique alterations in the lipid metabolism have been demonstrated from metabolomic, transcriptomic, and proteomic data repeatedly. The comparison of the proteome and transcriptome confirmed the involvement of fatty acid binding protein 4 (FABP4) in the diet-induced pathogenesis of diabetes in macaques. Furthermore, the commonly changed genes between spontaneous diabetes and HFHS diet-induced prediabetes suggested that the alterations in the intra- and extracellular structural proteins and cell migration in the liver might mediate the HFHS diet induction of diabetes mellitus.
Collapse
Affiliation(s)
- Zhu Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Dianqiang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Fancheng Tan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chi Wai Wong
- Guangzhou Huazhen Biosciences Co., Ltd., Guangzhou, China
| | - James Y. Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Zhou S, Wang X, Shi J, Han Q, He L, Tang W, Zhang A. Serum fatty acid binding protein 4 levels are associated with abdominal aortic calcification in peritoneal dialysis patients. Ren Fail 2021; 43:1539-1548. [PMID: 34789046 PMCID: PMC8604498 DOI: 10.1080/0886022x.2021.2003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Fatty acid binding protein 4 (FABP4) is an adipokine that was mainly derived from adipocytes and macrophages. Vascular calcification (VC) is highly prevalent in peritoneal dialysis (PD) patients and could predict their cardiovascular mortality. The pathogenesis of VC is complex, and adipokines may play an important role in it. This study aimed to examine the relationship between serum FABP4 and VC in PD patients. Methods Serum FABP4 was measured by enzyme-linked immunosorbent assay. According to the median value of serum FABP4, the participants were divided into the low FABP4 group and the high FABP4 group. Lateral plain X-ray films of abdomen were used to evaluate the abdominal aortic calcification (AAC) score. The participants were divided into the high AAC score group (AAC score ≥4, indicating moderate or heavy VC) and the low AAC score group (AAC score <4, indicating no or mild VC). Results 116 PD patients were involved in the study. The AAC score and the proportion of patients with an AAC score ≥4 of the high FABP4 group were significantly higher than those of the low FABP4 group. Serum FABP4 of the high AAC score group was significantly higher than that of the low AAC score group [164.5 (138.4, 362.8) ng/mL versus 144.7 (123.8, 170.1) ng/mL, p = 0.002]. Serum FABP4 was positively associated with the AAC score according to the multivariate linear regression analysis. In the multivariate logistic regression analysis, serum FABP4 was the independent influencer of an AAC score ≥4. Conclusions Serum FABP4 is positively associated with the AAC score and is an independent marker of AAC in PD patients.
Collapse
Affiliation(s)
- Sijia Zhou
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Xiaoxiao Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Junbao Shi
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Qingfeng Han
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Lian He
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Wen Tang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Xiao C, Wei T, Liu LX, Liu JQ, Wang CX, Yuan ZY, Ma HH, Jin HG, Zhang LC, Cao Y. Whole-Transcriptome Analysis of Preadipocyte and Adipocyte and Construction of Regulatory Networks to Investigate Lipid Metabolism in Sheep. Front Genet 2021; 12:662143. [PMID: 34394181 PMCID: PMC8358208 DOI: 10.3389/fgene.2021.662143] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/09/2021] [Indexed: 01/20/2023] Open
Abstract
Many local sheep breeds in China have poor meat quality. Increasing intramuscular fat (IMF) content can significantly improve the quality of mutton. However, the molecular mechanisms of intramuscular adipocyte formation and differentiation remain unclear. This study compared differences between preadipocytes and mature adipocytes by whole-transcriptome sequencing and constructed systematically regulatory networks according to the relationship predicted among the differentially expressed RNAs (DERs). Sequencing results showed that in this process, there were 1,196, 754, 100, and 17 differentially expressed messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), respectively. Gene Ontology analysis showed that most DERs enriched in Cell Part, Cellular Process, Biological Regulation, and Binding terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the DERs primarily focused on Focal adhesion, phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK), peroxisome proliferator-activated receptor (PPAR) signaling pathways. Forty (40) DERs were randomly selected from the core regulatory network to verify the accuracy of the sequence data. The results of qPCR showed that the DER expression trend was consistent with sequence data. Four novel promising candidate miRNAs (miR-336, miR-422, miR-578, and miR-722) played crucial roles in adipocyte differentiation, and they also participated in multiple and important regulatory networks. We verified the expression pattern of the miRNAs and related pathways’ members at five time points in the adipocyte differentiation process (0, 2, 4, 6, 8, 10 days) by qPCR, including miR-336/ACSL4/LncRNA-MSTRG71379/circRNA0002331, miR-422/FOXO4/LncRNA-MSTRG54995/circRNA0000520, miR-578/IGF1/LncRNA-MSTRG102235/circRNA0002971, and miR-722/PDK4/LncRNA-MSTRG107440/circ RNA0002909. In this study, our data provided plenty of valuable candidate DERs and regulatory networks for researching the molecular mechanisms of sheep adipocyte differentiation and will assist studies in improving the IMF.
Collapse
Affiliation(s)
- Cheng Xiao
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Tian Wei
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Li Xiang Liu
- Jilin Academy of Agricultural Sciences, Gongzhuling, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jian Qiang Liu
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chun Xin Wang
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhi Yu Yuan
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Hui Hai Ma
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Hai Guo Jin
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Li Chun Zhang
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yang Cao
- Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|
28
|
Rodríguez-Calvo R, Guardiola M, Oliva I, Arrando H, Arranz I, Ferré A, Pellicer P, Parra S, Ribalta J, Castro A. Low-density lipoprotein from active SLE patients is more atherogenic to endothelial cells than low-density lipoprotein from the same patients during remission. Rheumatology (Oxford) 2021; 60:866-871. [PMID: 32844232 DOI: 10.1093/rheumatology/keaa380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES SLE patients have an enhanced risk of atherosclerosis and cardiovascular disease. However, the increased prevalence of cardiovascular disease is not fully explained by traditional Framingham cardiovascular risk factors. Specific features of low-density lipoprotein (LDL) particles, other than plasma concentration, may induce accelerated atherosclerosis at early stages in these patients. Thus, we aimed to explore the impact of LDL from both active and inactive SLE patients on human aortic endothelial cells. METHODS Human aortic endothelial cells were stimulated with the same concentration of LDL particles isolated from pooled serum that was collected from 13 SLE patients during both active and inactive states. Gene expression and cell migration assays were performed. RESULTS Circulating LDL particles obtained from healthy volunteers and SLE patients in both remission and flare states were comparable in terms of number, cholesterol and triglyceride content, and net electric charge. Stimulation of cells with LDL from active SLE patients induced the expression of vascular cell adhesion molecule 1 (∼2.0-fold, P < 0.05), monocyte chemoattractant protein 1 (∼2.0-fold, P < 0.05) and matrix metallopeptidase 2 (∼1.6-fold, P < 0.01) compared with cells stimulated with LDL from inactive SLE patients. Additionally, LDL extracted from active patients increased cell migration in a wound-healing assay (1.4-fold, P < 0.05). CONCLUSION Our data show that, at the same LDL concentration, LDL from active SLE patients had increased proatherogenic effects on endothelial cells compared with LDL from the same patients when in an inactive or remission state.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Reus, Spain
| | - Montse Guardiola
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Reus, Spain
| | - Iris Oliva
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Reus, Spain
| | - Hugo Arrando
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Idoia Arranz
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Ferré
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Paula Pellicer
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Sandra Parra
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Unitat de Malalties Autoinmunes, Medicina Interna, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Ribalta
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Reus, Spain
| | - Antoni Castro
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Unitat de Malalties Autoinmunes, Medicina Interna, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
29
|
Elevated circulating FABP4 concentration predicts cardiovascular death in a general population: a 12-year prospective study. Sci Rep 2021; 11:4008. [PMID: 33597568 PMCID: PMC7889640 DOI: 10.1038/s41598-021-83494-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acid-binding protein 4 (FABP4) is secreted from adipose tissue and acts as an adipokine, and an elevated circulating FABP4 level is associated with metabolic disorders and atherosclerosis. However, little is known about the causal link between circulating FABP4 level and mortality in a general population. We investigated the relationship between FABP4 concentration and mortality including cardiovascular death during a 12-year period in subjects of the Tanno-Sobetsu Study, a population-based cohort (n = 721, male/female: 302/419). FABP4 concentration at baseline was significantly higher in female subjects than in male subjects. All-cause death occurred in 123 (male/female: 74/49) subjects, and 34 (male/female: 20/14) and 42 (male/female: 26/16) subjects died of cardiovascular events and cancer, respectively. When divided into 3 groups according to tertiles of FABP4 level at baseline by sex (T1–T3), Kaplan–Meier survival curves showed that there were significant differences in rates of all-cause death and cardiovascular death, but not cancer death, among the groups. Multivariable Cox proportional hazard model analysis with a restricted cubic spline showed that hazard ratio (HR) for cardiovascular death, but not that for all-cause death, significantly increased with a higher FABP4 level at baseline after adjustment of age and sex. The risk of cardiovascular death after adjustment of age, sex, body mass index and levels of brain natriuretic peptide and high-sensitivity C-reactive protein in the 3rd tertile (T3) group (HR: 4.96, 95% confidence interval: 1.20–22.3) was significantly higher than that in the 1st tertile (T1) group as the reference. In conclusion, elevated circulating FABP4 concentration predicts cardiovascular death in a general population.
Collapse
|
30
|
Wu MZ, Lee CH, Chen Y, Yu SY, Yu YJ, Ren QW, Fong HYC, Wong PF, Tse HF, Lam SLK, Yiu KH. Association between adipocyte fatty acid-binding protein with left ventricular remodelling and diastolic function in type 2 diabetes: a prospective echocardiography study. Cardiovasc Diabetol 2020; 19:197. [PMID: 33234149 PMCID: PMC7687743 DOI: 10.1186/s12933-020-01167-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/31/2020] [Indexed: 12/25/2022] Open
Abstract
Background The relationship between adipocyte fatty acid-binding protein (AFABP) and cardiac remodelling has been reported in cross-sectional studies, although with conflicting results. Type 2 diabetes mellitus (T2DM) is associated with left ventricular (LV) hypertrophy and diastolic dysfunction, as well as elevated circulating AFABP levels. Here we investigated prospectively the association between AFABP with the longitudinal changes of cardiac remodelling and diastolic dysfunction in T2DM. Methods Circulating AFABP levels were measured in 176 T2DM patients without cardiovascular diseases (CVD) at baseline. All participants received detailed transthoracic echocardiography both at baseline and after 1 year. Multivariable linear and Cox regression analyses were used to evaluate the associations of circulating AFABP levels with changes in echocardiography parameters and incident major adverse cardiovascular events (MACE), respectively. Results The median duration between baseline and follow-up echocardiography assessments was 28 months. Higher sex-specific AFABP quartiles at baseline were associated with increase in LV mass and worsening of average E/e′ (all P < 0.01). Multivariable linear regression demonstrated that AFABP in the highest quartile was independently associated with both increase in LV mass (β = 0.89, P < 0.01) and worsening of average E/e′ (β = 0.57, P < 0.05). Moreover, multivariable Cox regression analysis showed that elevated baseline circulating AFABP level independently predicted incident MACE (HR 2.65, 95% CI 1.16–6.05, P < 0.05) after adjustments for age, sex, body mass index, glycated haemoglobin, hypertension, dyslipidemia and presence of chronic kidney disease. Conclusion Circulating AFABP level at baseline predicted the development of LV hypertrophy, diastolic dysfunction and MACE in T2DM patients without CVD.
Collapse
Affiliation(s)
- Mei-Zhen Wu
- Division of Cardiology, Department of Medicine, the University of Hong Kong Shenzhen Hospital, Shen Zhen, China.,Division of Cardiology, Department of Medicine, the University of Hong Kong, Room 1929C, Block K, Queen Mary Hospital, Hong Kong, China
| | - Chi-Ho Lee
- Division of Endocrinology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yan Chen
- Department of Ultrasound, Shenzhen Hospital, Southern Medical University, Shen Zhen, China
| | - Shuk-Yin Yu
- Division of Cardiology, Department of Medicine, the University of Hong Kong, Room 1929C, Block K, Queen Mary Hospital, Hong Kong, China
| | - Yu-Juan Yu
- Division of Cardiology, Department of Medicine, the University of Hong Kong Shenzhen Hospital, Shen Zhen, China.,Division of Cardiology, Department of Medicine, the University of Hong Kong, Room 1929C, Block K, Queen Mary Hospital, Hong Kong, China
| | - Qing-Wen Ren
- Division of Cardiology, Department of Medicine, the University of Hong Kong Shenzhen Hospital, Shen Zhen, China.,Division of Cardiology, Department of Medicine, the University of Hong Kong, Room 1929C, Block K, Queen Mary Hospital, Hong Kong, China
| | - Ho-Yi Carol Fong
- Division of Endocrinology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Pui-Fai Wong
- Division of Cardiology, Department of Medicine, the University of Hong Kong, Room 1929C, Block K, Queen Mary Hospital, Hong Kong, China
| | - Hung-Fat Tse
- Division of Cardiology, Department of Medicine, the University of Hong Kong Shenzhen Hospital, Shen Zhen, China.,Division of Cardiology, Department of Medicine, the University of Hong Kong, Room 1929C, Block K, Queen Mary Hospital, Hong Kong, China
| | - Siu-Ling Karen Lam
- Division of Endocrinology, Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, the University of Hong Kong Shenzhen Hospital, Shen Zhen, China. .,Division of Cardiology, Department of Medicine, the University of Hong Kong, Room 1929C, Block K, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
31
|
Harada T, Sunaga H, Sorimachi H, Yoshida K, Kato T, Kurosawa K, Nagasaka T, Koitabashi N, Iso T, Kurabayashi M, Obokata M. Pathophysiological role of fatty acid-binding protein 4 in Asian patients with heart failure and preserved ejection fraction. ESC Heart Fail 2020; 7:4256-4266. [PMID: 33140584 PMCID: PMC7754991 DOI: 10.1002/ehf2.13071] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Aims Systemic metabolic impairment is the key pathophysiology of heart failure (HF) with preserved ejection fraction (HFpEF). Fatty acid‐binding protein 4 (FABP4) is highly expressed in adipocytes and secreted in response to lipolytic signals. We hypothesized that circulating FABP4 levels would be elevated in patients with HFpEF, would correlate with cardiac structural and functional abnormalities, and could predict clinical outcomes. Methods and results Serum FABP4 measurements and echocardiography were performed in patients with HFpEF (n = 92) and those with coronary artery disease free of HF (n = 20). Patients were prospectively followed‐up for a composite endpoint of all‐cause mortality or HF hospitalization. Compared with patients with coronary artery disease, those with HFpEF had higher FABP4 levels [12.5 (9.1–21.0) vs. 43.5 (24.6–77.4) ng/mL, P < 0.0001]. FABP4 levels were associated with cardiac remodelling (left ventricular mass index: r = 0.29, P = 0.002; left atrial volume index: r = 0.40, P < 0.0001), left ventricular systolic and diastolic dysfunction (global longitudinal strain: r = −0.24, P = 0.01; E/e′ ratio: r = 0.29, P = 0.002; and N‐terminal pro‐B‐type natriuretic peptide: r = 0.62, P < 0.0001), and right ventricular dysfunction (tricuspid annular plane systolic excursion: r = −0.43, P < 0.0001). During a median follow‐up of 9.1 months, there were 28 primary endpoints in the HFpEF cohort. Event‐free survival was significantly decreased in patients with FABP4 levels ≥43.5 ng/mL than in those with FABP4 levels <43.5 ng/mL (P = 0.003). Conclusions Serum FABP4 levels were increased in HFpEF and were associated with cardiac remodelling and dysfunction, and poor outcomes. Thus, FABP4 could be a potential biomarker in the complex pathophysiology of HFpEF.
Collapse
Affiliation(s)
- Tomonari Harada
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Centre for Liberal Arts and Sciences, Ashikaga University, Ashikaga, Tochigi, Japan
| | - Hidemi Sorimachi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kuniko Yoshida
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Toshimitsu Kato
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Koji Kurosawa
- Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | - Takashi Nagasaka
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Norimichi Koitabashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
32
|
Hepatic Lipidomics and Molecular Imaging in a Murine Non-Alcoholic Fatty Liver Disease Model: Insights into Molecular Mechanisms. Biomolecules 2020; 10:biom10091275. [PMID: 32899418 PMCID: PMC7563600 DOI: 10.3390/biom10091275] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
An imbalance between hepatic fatty acid uptake and removal results in ectopic fat accumulation, which leads to non-alcoholic fatty liver disease (NAFLD). The amount and type of accumulated triglycerides seem to play roles in NAFLD progression; however, a complete understanding of how triglycerides contribute to NAFLD evolution is lacking. Our aim was to evaluate triglyceride accumulation in NAFLD in a murine model and its associations with molecular mechanisms involved in liver damage and adipose tissue-liver cross talk by employing lipidomic and molecular imaging techniques. C57BL/6J mice fed a high-fat diet (HFD) for 12 weeks were used as a NAFLD model. Standard-diet (STD)-fed animals were used as controls. Standard liver pathology was assessed using conventional techniques. The liver lipidome was analyzed by liquid chromatography–mass spectrometry (LC–MS) and laser desorption/ionization–mass spectrometry (LDI–MS) tissue imaging. Liver triglycerides were identified by MS/MS. The transcriptome of genes involved in intracellular lipid metabolism and inflammation was assessed by RT-PCR. Plasma leptin, resistin, adiponectin, and FABP4 levels were determined using commercial kits. HFD-fed mice displayed increased liver lipid content. LC–MS analyses identified 14 triglyceride types that were upregulated in livers from HFD-fed animals. Among these 14 types, 10 were identified in liver cross sections by LDI–MS tissue imaging. The accumulation of these triglycerides was associated with the upregulation of lipogenesis and inflammatory genes and the downregulation of β-oxidation genes. Interestingly, the levels of plasma FABP4, but not of other adipokines, were positively associated with 8 of these triglycerides in HFD-fed mice but not in STD-fed mice. Our findings suggest a putative role of FABP4 in the liver-adipose tissue cross talk in NAFLD.
Collapse
|
33
|
von Jeinsen B, Ritzen L, Vietheer J, Unbehaun C, Weferling M, Liebetrau C, Hamm CW, Rolf A, Keller T. The adipokine fatty-acid binding protein 4 and cardiac remodeling. Cardiovasc Diabetol 2020; 19:117. [PMID: 32727561 PMCID: PMC7392717 DOI: 10.1186/s12933-020-01080-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous publications about the association between fatty-acid binding protein 4 (FABP4) and cardiac remodeling have reported different, both beneficial and harmful, associations. Aim of the present investigation was to evaluate the association of FABP4 with parameters of myocardial remodeling defined by cardiac magnetic resonance imaging (CMR). METHODS We investigated plasma FABP4 levels in 331 patients (71% men, mean age 63±13 years) with preserved left ventricular ejection fraction (LVEF ≥ 55%) who underwent a CMR examination. We used linear cox regression to investigate associations between FABP4 and left ventricular end-diastolic diameter (LVEDD), right ventricular end-diastolic diameter (RVEDD), relative wall thickness (RWT), left ventricular mass index (LVMI), and LVEF (unadjusted and adjusted for age, sex, body mass index, cardiac biomarkers, and comorbidities). RESULTS FABP4 levels were associated with lower LVMI and higher NT-proBNP levels in an adjusted model. The inverse association between FABP4 and LVMI was more pronounced in lower FABP4 levels, whereas the positive association between FABP4 and NT-proBNP was more pronounced in relatively high NT-proBNP levels. CONCLUSIONS Possible beneficial and harmful associations between FABP4 and left ventricular size have been reported. Our results suggest a beneficial association with LVMI (more pronounced in lower FABP4 levels) but a harmful association with NT-proBNP (more pronounced in higher FABP4 levels). Therefore, our results might indicate a potential dose-dependent association of FABP4, but this observation needs further investigation in larger study samples.
Collapse
Affiliation(s)
- Beatrice von Jeinsen
- Department of Cardiology, Kerckhoff Heart Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Center Rhein-Main, Berlin, Germany
| | - Lisa Ritzen
- Department of Internal Medicine I, Cardiology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany
| | - Julia Vietheer
- Department of Cardiology, Kerckhoff Heart Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Claudia Unbehaun
- Department of Cardiology, Kerckhoff Heart Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Maren Weferling
- Department of Cardiology, Kerckhoff Heart Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Christoph Liebetrau
- Department of Cardiology, Kerckhoff Heart Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.,Department of Internal Medicine I, Cardiology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,German Centre for Cardiovascular Research (DZHK), Center Rhein-Main, Berlin, Germany
| | - Christian W Hamm
- Department of Cardiology, Kerckhoff Heart Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.,Department of Internal Medicine I, Cardiology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,German Centre for Cardiovascular Research (DZHK), Center Rhein-Main, Berlin, Germany
| | - Andreas Rolf
- Department of Cardiology, Kerckhoff Heart Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.,Department of Internal Medicine I, Cardiology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,German Centre for Cardiovascular Research (DZHK), Center Rhein-Main, Berlin, Germany
| | - Till Keller
- Department of Cardiology, Kerckhoff Heart Center, Benekestrasse 2-8, 61231, Bad Nauheim, Germany. .,Department of Internal Medicine I, Cardiology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany. .,German Centre for Cardiovascular Research (DZHK), Center Rhein-Main, Berlin, Germany.
| |
Collapse
|
34
|
Mishra JS, Zhao H, Hattis S, Kumar S. Elevated Glucose and Insulin Levels Decrease DHA Transfer across Human Trophoblasts via SIRT1-Dependent Mechanism. Nutrients 2020; 12:nu12051271. [PMID: 32365792 PMCID: PMC7284516 DOI: 10.3390/nu12051271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) results in reduced docosahexaenoic acid (DHA) transfer to the fetus, likely due to placental dysfunction. Sirtuin-1 (SIRT1) is a nutrient sensor and regulator of lipid metabolism. This study investigated whether the high glucose and insulin condition of GDM regulates DHA transfer and expression of fatty acid transporters and if this effect is related to SIRT1 expression and function. Syncytialized primary human trophoblasts were treated with and without glucose (25 mmol/L) and insulin (10-7 mol/L) for 72 h to mimic the insulin-resistance conditions of GDM pregnancies. In control conditions, DHA transfer across trophoblasts increased in a time- and dose-dependent manner. Exposure to GDM conditions significantly decreased DHA transfer, but increased triglyceride accumulation and fatty acid transporter expression (CD36, FABP3, and FABP4). GDM conditions significantly suppressed SIRT1 mRNA and protein expression. The SIRT1 inhibitor decreased DHA transfer across control trophoblasts, and recombinant SIRT1 and SIRT1 activators restored the decreased DHA transport induced by GDM conditions. The results demonstrate a novel role of SIRT1 in the regulation of DHA transfer across trophoblasts. The suppressed SIRT1 expression and the resultant decrease in placental DHA transfer caused by high glucose and insulin levels suggest new insights of molecular mechanisms linking GDM to fetal DHA deficiency.
Collapse
Affiliation(s)
- Jay S. Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Hanjie Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Sari Hattis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
- Correspondence: ; Tel.: +1-608-265-1046
| |
Collapse
|
35
|
Dou HX, Wang T, Su HX, Gao DD, Xu YC, Li YX, Wang HY. Exogenous FABP4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes. Endocrine 2020; 67:587-596. [PMID: 31845180 DOI: 10.1007/s12020-019-02157-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Fatty acid binding protein 4 (FABP4) has been demonstrated to be secreted from adipocytes in an unconventional pathway associated with lipolysis. Circulating FABP4 is elevated in metabolic disorders and has been shown to affect various peripheral cells such as pancreatic β-cells, hepatocytes and macrophages, but its effects on adipocytes remains unclear. The aim of this study was to investigate the effects of exogenous FABP4 (eFABP4) on adipocyte differentiation and function. METHODS 3T3-L1 pre-adipocytes or mature adipocytes were treated with recombinant FABP4 in the absence or presence of FABP4 inhibitor I-9/p38 MAPK inhibitor SB203580; Meanwhile male C57BL/6J mice were subcutaneously injected twice a day with recombinant FABP4 (0.35 mg/kg) with or without I-9 (50 mg/kg) for 2 weeks. The effects of eFABP4 on differentiation, lipolysis and inflammation were determined by triglyceride measurement or lipolysis assay, western blotting, or RT-qPCR analysis. RESULTS eFABP4 treatment significantly reduced intracellular triglyceride content and decreased expression of adipogenic markers peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein alpha (C/EBPα), intracellular FABP4, and adiponectin in 3T3-L1 cells. Besides, eFABP4 promoted lipolysis and inflammation in differentiated 3T3-L1 adipocytes as well as in adipose tissue of eFABP4-treated C57BL/6J mice, with elevated gene expression of monocyte chemoattractant protein (MCP)-1, tumor necrosis factor (TNF)-α, and elevated protein expression of adipose triglyceride lipase (ATGL), phosphorylation of hormone-sensitive lipase (HSL) (Ser-660), p38, and nuclear factor-kappa B (NF-κB). The pro-inflammatory and pro-lipolytic effects of eFABP4 could be reversed by SB203580/I-9. CONCLUSIONS These findings indicate that eFABP4 interferes with adipocyte differentiation, induces p38/HSL mediated lipolysis and p38/NF-κB mediated inflammation in adipocytes in vitro and in vivo.
Collapse
Affiliation(s)
- Hui-Xia Dou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hai-Xia Su
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ding-Ding Gao
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ye-Chun Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying-Xia Li
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - He-Yao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
36
|
Boutari C, Bouzoni E, Joshi A, Stefanakis K, Farr OM, Mantzoros CS. Metabolism updates: new directions, techniques, and exciting research that is broadening the horizons. Metabolism 2020; 102:154009. [PMID: 31715175 DOI: 10.1016/j.metabol.2019.154009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Chrysoula Boutari
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Eirini Bouzoni
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aditya Joshi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Olivia M Farr
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|