1
|
Isaksson C, Ziegler AK, Powell D, Gudmundsson A, Andersson MN, Rissler J. Transcriptome analysis of avian livers reveals different molecular changes to three urban pollutants: Soot, artificial light at night and noise. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124461. [PMID: 38964643 DOI: 10.1016/j.envpol.2024.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Identifying key molecular pathways and genes involved in the response to urban pollutants is an important step in furthering our understanding of the impact of urbanisation on wildlife. The expansion of urban habitats and the associated human-introduced environmental changes are considered a global threat to the health and persistence of humans and wildlife. The present study experimentally investigates how short-term exposure to three urban-related pollutants -soot, artificial light at night (ALAN) and traffic noise-affects transcriptome-wide gene expression in livers from captive female zebra finches (Taeniopygia guttata). Compared to unexposed controls, 17, 52, and 28 genes were differentially expressed in soot, ALAN and noise-exposed birds, respectively. In soot-exposed birds, the enriched gene ontology (GO) terms were associated with a suppressed immune system such as interferon regulating genes (IRGs) and responses to external stimuli. For ALAN-exposed birds, enriched GO terms were instead based on downregulated genes associated with detoxification, redox, hormonal-, and metabolic processes. Noise exposure resulted in downregulation of genes associated with the GO terms: cellular responses to substances, catabolic and cytokine responses. Among the individually differentially expressed genes (DEGs), soot led to an increased expression of genes related to tumour progression. Likewise, ALAN revealed an upregulation of multiple genes linked to different cancer types. Both sensory pollutants (ALAN and noise) led to increased expression of genes linked to neuronal function. Interestingly, noise caused upregulation of genes associated with serotonin regulation and function (SLC6A4 and HTR7), which previous studies have shown to be under selection in urban birds. These outcomes indicate that short-term exposure to the three urban pollutants perturbate the liver transcriptome, but most often in different ways, which highlights future studies of multiple-stress exposure and their interactive effects, along with their long-term impacts for urban-dwelling wildlife.
Collapse
Affiliation(s)
- C Isaksson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden.
| | - A-K Ziegler
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - D Powell
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - A Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, SE-223 62, Lund, Sweden
| | - M N Andersson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - J Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, SE-223 62, Lund, Sweden
| |
Collapse
|
2
|
Papadimitriou K, Mousiolis AC, Mintziori G, Tarenidou C, Polyzos SA, Goulis DG. Hypogonadism and nonalcoholic fatty liver disease. Endocrine 2024; 86:28-47. [PMID: 38771482 DOI: 10.1007/s12020-024-03878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently proposed to be renamed to metabolic dysfunction-associated steatotic liver disease (MASLD), is a major global public health concern, affecting approximately 25-30% of the adult population and possibly leading to cirrhosis, hepatocellular carcinoma, and liver transplantation. The liver is involved in the actions of sex steroids via their hepatic metabolism and production of the sex hormone-binding globulin (SHBG). Liver disease, including NAFLD, is associated with reproductive dysfunction in men and women, and the prevalence of NAFLD in patients with hypogonadism is considerable. A wide spectrum of possible pathophysiological mechanisms linking NAFLD and male/female hypogonadism has been investigated. As therapies targeting NAFLD may impact hypogonadism in men and women, and vice versa, treatments of the latter may affect NAFLD, and an insight into their pathophysiological pathways is imperative. This paper aims to elucidate the complex association between NAFLD and hypogonadism in men and women and discuss the therapeutic options and their impact on both conditions.
Collapse
Affiliation(s)
- Kasiani Papadimitriou
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Athanasios C Mousiolis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gesthimani Mintziori
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Liu J, Sebastià C, Jové-Juncà T, Quintanilla R, González-Rodríguez O, Passols M, Castelló A, Sánchez A, Ballester M, Folch JM. Identification of genomic regions associated with fatty acid metabolism across blood, liver, backfat and muscle in pigs. Genet Sel Evol 2024; 56:66. [PMID: 39327557 PMCID: PMC11426007 DOI: 10.1186/s12711-024-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The composition and distribution of fatty acids (FA) are important factors determining the quality, flavor, and nutrient value of meat. In addition, FAs synthesized in the body participate in energy metabolism and are involved in different regulatory pathways in the form of signaling molecules or by acting as agonist or antagonist ligands of different nuclear receptors. Finally, synthesis and catabolism of FAs affect adaptive immunity by regulating lymphocyte metabolism. The present study performed genome-wide association studies using FA profiles of blood, liver, backfat and muscle from 432 commercial Duroc pigs. RESULTS Twenty-five genomic regions located on 15 Sus scrofa chromosomes (SSC) were detected. Annotation of the quantitative trait locus (QTL) regions identified 49 lipid metabolism-related candidate genes. Among these QTLs, four were identified in more than one tissue. The ratio of C20:4n-6/C20:3n-6 was associated with the region on SSC2 at 7.56-14.26 Mb for backfat, liver, and muscle. Members of the fatty acid desaturase gene cluster (FADS1, FADS2, and FADS3) are the most promising candidate genes in this region. Two QTL regions on SSC14 (103.81-115.64 Mb and 100.91-128.14 Mb) were identified for FA desaturation in backfat and muscle. In addition, two separate regions on SSC9 at 0 - 14.55 Mb and on SSC12 at 0-1.91 Mb were both associated with the same multiple FA traits for backfat, with candidate genes involved in de novo FA synthesis and triacylglycerol (TAG) metabolism, such as DGAT2 and FASN. The ratio C20:0/C18:0 was associated with the region on SSC5 at 64.84-78.32 Mb for backfat. Furthermore, the association of the C16:0 content with the region at 118.92-123.95 Mb on SSC4 was blood specific. Finally, candidate genes involved in de novo lipogenesis regulate T cell differentiation and promote the generation of palmitoleate, an adipokine that alleviates inflammation. CONCLUSIONS Several SNPs and candidate genes were associated with lipid metabolism in blood, liver, backfat, and muscle. These results contribute to elucidating the molecular mechanisms implicated in the determination of the FA profile in different pig tissues and can be useful in selection programs that aim to improve health and energy metabolism in pigs.
Collapse
Affiliation(s)
- Junhui Liu
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| | - Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Teodor Jové-Juncà
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Josep M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| |
Collapse
|
4
|
Fanalli SL, Gomes JD, de Novais FJ, Gervásio IC, Fukumasu H, Moreira GCM, Coutinho LL, Koltes J, Amaral AJ, Cesar ASM. Key co-expressed genes correlated with blood serum parameters of pigs fed with different fatty acid profile diets. Front Genet 2024; 15:1394971. [PMID: 39021677 PMCID: PMC11252010 DOI: 10.3389/fgene.2024.1394971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
This study investigated how gene expression is affected by dietary fatty acids (FA) by using pigs as a reliable model for studying human diseases that involve lipid metabolism. This includes changes in FA composition in the liver, blood serum parameters and overall metabolic pathways. RNA-Seq data from 32 pigs were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA). Our aim was to identify changes in blood serum parameters and gene expression between diets containing 3% soybean oil (SOY3.0) and a standard pig production diet containing 1.5% soybean oil (SOY1.5). Significantly, both the SOY1.5 and SOY3.0 groups showed significant modules, with a higher number of co-expressed modules identified in the SOY3.0 group. Correlated modules and specific features were identified, including enriched terms and pathways such as the histone acetyltransferase complex, type I diabetes mellitus pathway, cholesterol metabolism, and metabolic pathways in SOY1.5, and pathways related to neurodegeneration and Alzheimer's disease in SOY3.0. The variation in co-expression observed for HDL in the groups analyzed suggests different regulatory patterns in response to the higher concentration of soybean oil. Key genes co-expressed with metabolic processes indicative of diseases such as Alzheimer's was also identified, as well as genes related to lipid transport and energy metabolism, including CCL5, PNISR, DEGS1. These findings are important for understanding the genetic and metabolic responses to dietary variation and contribute to the development of more precise nutritional strategies.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, SãoPaulo, Brazil
| | - Júlia Dezen Gomes
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Francisco José de Novais
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB, Canada
| | - Izally Carvalho Gervásio
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, SãoPaulo, Brazil
| | | | - Luiz Lehmann Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - James Koltes
- Animal Science Department, Iowa State University, Ames, IA, United States
| | - Andreia J. Amaral
- Mediterranean Institute for Agriculture, Environment and Development (MED), Évora, Portugal
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinarian Medicine, University of Lisbon, Lisbon, Portugal
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, SãoPaulo, Brazil
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| |
Collapse
|
5
|
Dicks L, Schuh-von Graevenitz K, Prehn C, Sadri H, Ghaffari MH, Häussler S. Bile acid profiles and mRNA expression of bile acid-related genes in the liver of dairy cows with high versus normal body condition. J Dairy Sci 2024:S0022-0302(24)00922-6. [PMID: 38876220 DOI: 10.3168/jds.2024-24844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/12/2024] [Indexed: 06/16/2024]
Abstract
Bile acids (BA) play a crucial role not only in lipid digestion but also in the regulation of overall energy homeostasis, including glucose and lipid metabolism. The aim of this study was to investigate BA profiles and mRNA expression of BA-related genes in the liver of high versus normal body condition in dairy cows. We hypothesized that body condition and the transition from gestation to lactation affect hepatic BA concentrations as well as the mRNA abundance of BA-related receptors, regulatory enzymes, and transporters. Therefore, we analyzed BA in the liver as well as the mRNA abundance of BA-related synthesizing enzymes, transporters, and receptors in the liver during the transition period in cows with different body conditions around calving. In a previously established animal model, 38 German Holstein cows were divided into groups with high body condition score (BCS) (HBCS; n = 19) or normal BCS (NBCS; n = 19) based on BCS and backfat thickness (BFT). Cows were fed diets aimed at achieving the targeted differences in BCS and BFT (NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until they were dried off at wk 7 before parturition. Both groups were fed identical diets during the dry period and subsequent lactation. Liver biopsies were taken at wk -7, 1, 3, and 12 relative to parturition. For BA measurement, a targeted metabolomics approach with LC-ESI-MS/MS was used to analyze BA in the liver. The mRNA abundance of targeted genes related to BA-synthesizing enzymes, transporters, and receptors in the liver was analyzed using microfluidic quantitative PCR. In total, we could detect 14 BA in the liver: 6 primary and 8 secondary BA, with glycocholic acid (GCA) being the most abundant one. The increase of glycine-conjugated BA after parturition, in parallel to increasing serum glycine concentrations may originate from an enhanced mobilization of muscle protein to meet the high nutritional requirements in early lactating cows. Higher DMI in NBCS cows compared with HBCS cows was associated with higher liver BA concentrations such as GCA, deoxycholic acid (DCA), and cholic acid (CA). The mRNA abundance of BA-related enzymes measured herein suggests the dominance of the alternative signaling pathway in the liver of HBCS cows. Overall, BA profiles and BA metabolism in the liver depend on both, the body condition and lactation-induced effects in periparturient dairy cows.
Collapse
Affiliation(s)
- Lena Dicks
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh-von Graevenitz
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Metabolomics and Proteomics Core, 85764 Neuherberg, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
6
|
Shanbhag AP, Bhowmik P. Cancer to Cataracts: The Mechanistic Impact of Aldo-Keto Reductases in Chronic Diseases. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:179-204. [PMID: 38947111 PMCID: PMC11202113 DOI: 10.59249/vtbv6559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Aldo-keto reductases (AKRs) are a superfamily of promiscuous enzymes that have been chiseled by evolution to act as catalysts for numerous regulatory pathways in humans. However, they have not lost their promiscuity in the process, essentially making them a double-edged sword. The superfamily is involved in multiple metabolic pathways and are linked to chronic diseases such as cataracts, diabetes, and various cancers. Unlike other detoxifying enzymes such as cytochrome P450s (CYP450s), short-chain dehydrogenases (SDRs), and medium-chain dehydrogenases (MDRs), that participate in essential pathways, AKRs are more widely distributed and have members with interchangeable functions. Moreover, their promiscuity is ubiquitous across all species and participates in the resistance of pathogenic microbes. Moreover, the introduction of synthetic substrates, such as synthetic molecules and processed foods, results in unwanted "toxification" due to enzyme promiscuity, leading to chronic diseases.
Collapse
Affiliation(s)
- Anirudh P. Shanbhag
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Novartis Healthcare Pvt. Ltd., Hyderabad, Telangana,
India
| | - Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Centre for Cellular and Molecular Platforms (C-CAMP),
National Centre for Biological Sciences (NCBS), Bengaluru, Karnataka,
India
| |
Collapse
|
7
|
Polyzos SA, Targher G. Role of Glucocorticoids in Metabolic Dysfunction-Associated Steatotic Liver Disease. Curr Obes Rep 2024; 13:242-255. [PMID: 38459229 PMCID: PMC11150302 DOI: 10.1007/s13679-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
PURPOSE OF THE REVIEW To summarize published data on the association between glucocorticoids and metabolic dysfunction-associated steatotic liver disease (MASLD), focusing on the possible pathophysiological links and related treatment considerations. RECENT FINDINGS Glucocorticoids, commonly used for managing many inflammatory and autoimmune diseases, may contribute to the development and progression of MASLD. Glucocorticoids may induce hyperglycemia and hyperinsulinemia, thus increasing systemic and hepatic insulin resistance, a hallmark of MASLD pathogenesis. Furthermore, glucocorticoids increase adipose tissue lipolysis, and hepatic de novo lipogenesis and decrease hepatic fatty acid β-oxidation, thus promoting MASLD development. Preclinical evidence also suggests that glucocorticoids may adversely affect hepatic inflammation and fibrosis. 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and 5α-reductase are implicated in the link between glucocorticoids and MASLD, the former enzyme increasing and the latter reducing the glucocorticoid action on the liver. Treatment considerations exist due to the pathogenic link between glucocorticoids and MASLD. Since iatrogenic hypercortisolism is common, glucocorticoids should be used at the minimum daily dose to control the subjective disease. Furthermore, the pharmacologic inhibition of 11β-HSD1 has provided favorable results in MASLD, both in preclinical studies and early MASH clinical trials. Glucocorticoids are closely linked to MASLD pathophysiology, with specific clinical and therapeutic implications.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| |
Collapse
|
8
|
Miller H, Harman D, Aithal GP, Manousou P, Cobbold JF, Parker R, Sheridan D, Newsome PN, Karpe F, Neville M, Arlt W, Sitch AJ, Korbonits M, Biehl M, Alazawi W, Tomlinson JW. Translating the potential of the urine steroid metabolome to stage NAFLD (TrUSt-NAFLD): study protocol for a multicentre, prospective validation study. BMJ Open 2024; 14:e074918. [PMID: 38238179 PMCID: PMC10806741 DOI: 10.1136/bmjopen-2023-074918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) affects approximately one in four individuals and its prevalence continues to rise. The advanced stages of NAFLD with significant liver fibrosis are associated with adverse morbidity and mortality outcomes. Currently, liver biopsy remains the 'gold-standard' approach to stage NAFLD severity. Although generally well tolerated, liver biopsies are associated with significant complications, are resource intensive, costly, and sample only a very small area of the liver as well as requiring day case admission to a secondary care setting. As a result, there is a significant unmet need to develop non-invasive biomarkers that can accurately stage NAFLD and limit the need for liver biopsy. The aim of this study is to validate the use of the urine steroid metabolome as a strategy to stage NAFLD severity and to compare its performance against other non-invasive NAFLD biomarkers. METHODS AND ANALYSIS The TrUSt-NAFLD study is a multicentre prospective test validation study aiming to recruit 310 patients with biopsy-proven and staged NAFLD across eight centres within the UK. 150 appropriately matched control patients without liver disease will be recruited through the Oxford Biobank. Blood and urine samples, alongside clinical data, will be collected from all participants. Urine samples will be analysed by liquid chromatography-tandem mass spectroscopy to quantify a panel of predefined steroid metabolites. A machine learning-based classifier, for example, Generalized Matrix Relevance Learning Vector Quantization that was trained on retrospective samples, will be applied to the prospective steroid metabolite data to determine its ability to identify those patients with advanced, as opposed to mild-moderate, liver fibrosis as a consequence of NAFLD. ETHICS AND DISSEMINATION Research ethical approval was granted by West Midlands, Black Country Research Ethics Committee (REC reference: 21/WM/0177). A substantial amendment (TrUSt-NAFLD-SA1) was approved on 26 November 2021. TRIAL REGISTRATION NUMBER ISRCTN19370855.
Collapse
Affiliation(s)
- Hamish Miller
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Barts Liver Centre, Queen Mary University London and Barts Health NHS Trust, London, UK
| | - David Harman
- Royal Berkshire Hospital NHS Foundation Trust, Reading, UK
| | - Guruprasad Padur Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jeremy F Cobbold
- Oxford Liver Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University, Oxford, UK
| | - Richard Parker
- Leeds Liver Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - David Sheridan
- Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Philip N Newsome
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK
| | - Fredrik Karpe
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Matthew Neville
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, London, UK
| | - Alice J Sitch
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Biehl
- Faculty of Science and Engineering, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, Netherlands
- SMQB, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - William Alazawi
- Barts Liver Centre, Queen Mary University London and Barts Health NHS Trust, London, UK
| | - Jeremy W Tomlinson
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Yu W, Zhang F, Meng D, Zhang X, Feng Y, Yin G, Liang P, Chen S, Liu H. Mechanism of Action and Related Natural Regulators of Nrf2 in Nonalcoholic Fatty Liver Disease. Curr Drug Deliv 2024; 21:1300-1319. [PMID: 39034715 DOI: 10.2174/0115672018260113231023064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 07/23/2024]
Abstract
With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.
Collapse
Affiliation(s)
- Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Decheng Meng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Yanan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Guoliang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Pengpeng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Suwen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Hongshuai Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| |
Collapse
|
10
|
Sumińska M, Podgórski R, Fichna P, Mazur A, Fichna M. Assessment of steroid enzymes action in children and adolescents with obesity. Steroids 2023; 200:109325. [PMID: 37806604 DOI: 10.1016/j.steroids.2023.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Rising prevalence of obesity has become an important impulse to investigate basic mechanisms involved in regulating the energy balance. It is widely accepted that steroids are potent factors affecting glucose, fat, and protein metabolism. Our study was aimed to analyze differences in the total amount of selected enzymes implicated in steroid metabolism in a group of children suffering from obesity and those with normal weight, further subdivided according to sex and pubertal stage. Data were obtained from 187 Caucasian children and adolescents, including 113 patients (63 girls, 50 boys) with obesity and 74 (34 girls, 40 boys) normal weight volunteers. Standard clinical examinations were performed in both groups. To evaluate the impact of puberty, preadolescent children and those with advanced puberty were assessed separately. Urine steroid excretion profiles were analyzed using gas chromatography/mass spectrometry method. Children with obesity revealed several changes in in the total amount of steroid enzymes as assessed by the relevant metabolite proportions, compared to their norm weight peers. Girls showed a significant increase in the activity of 11βHSD1, while boys demonstrated a relevant elevation in 20αHSD action. Regardless of sex, children with obesity showed an increase in the activity of 5β-reductase + 3αHSD complex and a decrease in the involvement of 11βOH-lase. The effect is attenuated when consider pre- and pubertal subgroups. We hypothesize that changes in the activity levels of selected enzymes may be a compensatory mechanism to limit the glucocorticoid exposure of key target tissues as well as to improve metabolic control and reduce long-term complications of obesity.
Collapse
Affiliation(s)
- Marta Sumińska
- Department of Pediatric Diabetes, Auxology and Obesity, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| | - Rafał Podgórski
- Department of Biochemistry, Institute of Medical Sciences, Collegium of Medical Sciences, University of Rzeszow, Rzeszow, Poland
| | - Piotr Fichna
- Department of Pediatric Diabetes, Auxology and Obesity, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | - Artur Mazur
- Department of Pediatrics, Childhood Endocrinology and Diabetes, Collegium of Medical Sciences, University of Rzeszow, Rzeszow, Poland
| | - Marta Fichna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Zhao B, Wang Z, Liu D, Zhang S. Genetically predicted serum testosterone and risk of gynecological disorders: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1161356. [PMID: 38075074 PMCID: PMC10710168 DOI: 10.3389/fendo.2023.1161356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Background Testosterone plays a key role in women, but the associations of serum testosterone level with gynecological disorders risk are inconclusive in observational studies. Methods We leveraged public genome-wide association studies to analyze the effects of four testosterone related exposure factors on nine gynecological diseases. Causal estimates were calculated by inverse variance-weighted (IVW), MR-Egger and weighted median methods. The heterogeneity test was performed on the obtained data through Cochrane's Q value, and the horizontal pleiotropy test was performed on the data through MR-Egger intercept and MR-PRESSO methods. "mRnd" online analysis tool was used to evaluate the statistical power of MR estimates. Results The results showed that total testosterone and bioavailable testosterone were protective factors for ovarian cancer (odds ratio (OR) = 0.885, P = 0.012; OR = 0.871, P = 0.005) and endometriosis (OR = 0.805, P = 0.020; OR = 0.842, P = 0.028) but were risk factors for endometrial cancer (OR = 1.549, P < 0.001; OR = 1.499, P < 0.001) and polycystic ovary syndrome (PCOS) (OR = 1.606, P = 0.019; OR = 1.637, P = 0.017). dehydroepiandrosterone sulfate (DHEAS) is a protective factor against endometriosis (OR = 0.840, P = 0.016) and premature ovarian failure (POF) (OR = 0.461, P = 0.046) and a risk factor for endometrial cancer (OR= 1.788, P < 0.001) and PCOS (OR= 1.970, P = 0.014). sex hormone-binding globulin (SHBG) is a protective factor against endometrial cancer (OR = 0.823, P < 0.001) and PCOS (OR = 0.715, P = 0.031). Conclusion Our analysis suggested causal associations between serum testosterone level and ovarian cancer, endometrial cancer, endometriosis, PCOS, POF.
Collapse
Affiliation(s)
| | | | | | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Mezhibovsky E, Tveter KM, Villa-Rodriguez JA, Bacalia K, Kshatriya D, Desai N, Cabales A, Wu Y, Sui K, Duran RM, Bello NT, Roopchand DE. Grape Polyphenols May Prevent High-Fat Diet-Induced Dampening of the Hypothalamic-Pituitary-Adrenal Axis in Male Mice. J Endocr Soc 2023; 7:bvad095. [PMID: 37538101 PMCID: PMC10396072 DOI: 10.1210/jendso/bvad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 08/05/2023] Open
Abstract
Context Chronic high-fat diet (HFD) consumption causes obesity associated with retention of bile acids (BAs) that suppress important regulatory axes, such as the hypothalamic-pituitary-adrenal axis (HPAA). HFD impairs nutrient sensing and energy balance due to a dampening of the HPAA and reduced production and peripheral metabolism of corticosterone (CORT). Objective We assessed whether proanthocyanidin-rich grape polyphenol (GP) extract can prevent HFD-induced energy imbalance and HPAA dysregulation. Methods Male C57BL6/J mice were fed HFD or HFD supplemented with 0.5% w/w GPs (HFD-GP) for 17 weeks. Results GP supplementation reduced body weight gain and liver fat while increasing circadian rhythms of energy expenditure and HPAA-regulating hormones, CORT, leptin, and PYY. GP-induced improvements were accompanied by reduced mRNA levels of Il6, Il1b, and Tnfa in ileal or hepatic tissues and lower cecal abundance of Firmicutes, including known BA metabolizers. GP-supplemented mice had lower concentrations of circulating BAs, including hydrophobic and HPAA-inhibiting BAs, but higher cecal levels of taurine-conjugated BAs antagonistic to farnesoid X receptor (FXR). Compared with HFD-fed mice, GP-supplemented mice had increased mRNA levels of hepatic Cyp7a1 and Cyp27a1, suggesting reduced FXR activation and more BA synthesis. GP-supplemented mice also had reduced hepatic Abcc3 and ileal Ibabp and Ostβ, indicative of less BA transfer into enterocytes and circulation. Relative to HFD-fed mice, CORT and BA metabolizing enzymes (Akr1d1 and Srd5a1) were increased, and Hsd11b1 was decreased in GP supplemented mice. Conclusion GPs may attenuate HFD-induced weight gain by improving hormonal control of the HPAA and inducing a BA profile with less cytotoxicity and HPAA inhibition, but greater FXR antagonism.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kevin M Tveter
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jose A Villa-Rodriguez
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Karen Bacalia
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Dushyant Kshatriya
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nikhil Desai
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Alrick Cabales
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ke Sui
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Rocio M Duran
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Department of Food Science and NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research; Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
13
|
Kędzierski J, Allard JA, Odermatt A, Smieško M. Assessment of the inhibitory potential of anabolic steroids towards human AKR1D1 by computational methods and in vitro evaluation. Toxicol Lett 2023; 384:1-13. [PMID: 37451653 DOI: 10.1016/j.toxlet.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Exposure to xenobiotics can adversely affect biochemical reactions, including hepatic bile acid synthesis. Bile acids are essential for dissolving lipophilic compounds in the hydrophilic environment of the gastrointestinal tract. The critical micellar concentration of bile acids depends on the Δ4-reduction stereochemistry, with the 3-oxo-5β-steroid-Δ4-dehydrogenase (AKR1D1) introducing the cis ring A/B conformation. Loss-of-function mutations in AKR1D1 cause hepatic cholestasis, which, if left untreated can progress into steatosis and liver cirrhosis. Furthermore, AKR1D1 is involved in clearing steroids with an A-ring Δ4-double bond. Here, we tested whether anabolic-androgenic steroids (AAS), often taken off-label at high doses, might inhibit AKR1D1, thereby potentially causing hepatotoxicity. A computational molecular model was established and used for virtual screening of the DrugBank database consisting of 2740 molecules, yielding mainly steroidal hits. Fourteen AAS were selected for in vitro evaluation, as such compounds can reach high hepatic concentrations in an abuse situation. Nandrolone, clostebol, methasterone, drostanolone, and methenolone inhibited to various extent the AKR1D1-mediated reduction of testosterone. Molecular modeling suggests that 9 out of 14 investigated AAS are competitive inhibitors. Moreover quantum mechanical calculations show that nadrolone and clostebol are substrates of AKR1D1 with different activation energy barriers for the hydrogen transfer from cofactor to the C5 position affecting their turnover. In this multidisciplinary approach, we established a molecular model of AKR1D1, identified several AAS as inhibitors, and described their binding mode. This approach may be applied to study other classes of inhibitors including non-steroidal compounds.
Collapse
Affiliation(s)
- Jacek Kędzierski
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Human Applied Toxicology, University of Basel, Missionsstrasse 64, Basel 4055, Switzerland
| | - Julien A Allard
- Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Human Applied Toxicology, University of Basel, Missionsstrasse 64, Basel 4055, Switzerland
| | - Alex Odermatt
- Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Human Applied Toxicology, University of Basel, Missionsstrasse 64, Basel 4055, Switzerland
| | - Martin Smieško
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Human Applied Toxicology, University of Basel, Missionsstrasse 64, Basel 4055, Switzerland.
| |
Collapse
|
14
|
Asif M, Alvi SS, Azaz T, Khan AR, Tiwari B, Hafeez BB, Nasibullah M. Novel Functionalized Spiro [Indoline-3,5'-pyrroline]-2,2'dione Derivatives: Synthesis, Characterization, Drug-Likeness, ADME, and Anticancer Potential. Int J Mol Sci 2023; 24:ijms24087336. [PMID: 37108498 PMCID: PMC10139052 DOI: 10.3390/ijms24087336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A highly stereo-selective, one-pot, multicomponent method was chosen to synthesize the novel functionalized 1, 3-cycloaddition spirooxindoles (SOXs) (4a-4h). Synthesized SOXs were analyzed for their drug-likeness and ADME parameters and screened for their anticancer activity. Our molecular docking analysis revealed that among all derivatives of SOXs (4a-4h), 4a has a substantial binding affinity (∆G) -6.65, -6.55, -8.73, and -7.27 Kcal/mol with CD-44, EGFR, AKR1D1, and HER-2, respectively. A functional study demonstrated that SOX 4a has a substantial impact on human cancer cell phenotypes exhibiting abnormality in cytoplasmic and nuclear architecture as well as granule formation leading to cell death. SOX 4a treatment robustly induced reactive oxygen species (ROS) generation in cancer cells as observed by enhanced DCFH-DA signals. Overall, our results suggest that SOX (4a) targets CD-44, EGFR, AKR1D1, and HER-2 and induces ROS generation in cancer cells. We conclude that SOX (4a) could be explored as a potential chemotherapeutic molecule against various cancers in appropriate pre-clinical in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Mohd Asif
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sahir Sultan Alvi
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tazeen Azaz
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
15
|
Basit A, Amory JK, Mettu VS, Li CY, Heyward S, Jariwala PB, Redinbo MR, Prasad B. Relevance of Human Aldoketoreductases and Microbial β-Glucuronidases in Testosterone Disposition. Drug Metab Dispos 2023; 51:427-435. [PMID: 36623880 PMCID: PMC10043941 DOI: 10.1124/dmd.122.000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/06/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Testosterone exhibits high variability in pharmacokinetics and glucuronidation after oral administration. Although testosterone metabolism has been studied for decades, the impact of UGT2B17 gene deletion and the role of gut bacterial β-glucuronidases on its disposition are not well characterized. We first performed an exploratory study to investigate the effect of UGT2B17 gene deletion on the global liver proteome, which revealed significant increases in proteins from multiple biological pathways. The most upregulated liver proteins were aldoketoreductases [AKR1D1, AKR1C4, AKR7A3, AKR1A1, and 7-dehydrocholesterol reductase (DHCR7)] and alcohol or aldehyde dehydrogenases (ADH6, ADH1C, ALDH1A1, ALDH9A1, and ALDH5A). In vitro assays revealed that AKR1D1 and AKR1C4 inactivate testosterone to 5β-dihydrotestosterone (5β-DHT) and 3α,5β-tetrahydrotestosterone (3α,5β-THT), respectively. These metabolites also appeared in human hepatocytes treated with testosterone and in human serum collected after oral testosterone dosing in men. Our data also suggest that 5β-DHT and 3α, 5β-THT are then eliminated through glucuronidation by UGT2B7 in UGT2B17 deletion individuals. Second, we evaluated the potential reactivation of testosterone glucuronide (TG) after its secretion into the intestinal lumen. Incubation of TG with purified gut microbial β-glucuronidase enzymes and with human fecal extracts confirmed testosterone reactivation into testosterone by gut bacterial enzymes. Both testosterone metabolic switching and variable testosterone activation by gut microbial enzymes are important mechanisms for explaining the disposition of orally administered testosterone and appear essential to unraveling the molecular mechanisms underlying UGT2B17-associated pathophysiological conditions. SIGNIFICANCE STATEMENT: This study investigated the association of UGT2B17 gene deletion and gut bacterial β-glucuronidases with testosterone disposition in vitro. The experiments revealed upregulation of AKR1D1 and AKR1C4 in UGT2B17 deletion individuals, and the role of these enzymes to inactivate testosterone to 5β-dihydrotestosterone and 3α, 5β-tetrahydrotestosterone, respectively. Key gut bacterial species responsible for testosterone glucuronide activation were identified. These data are important for explaining the disposition of exogenously administered testosterone and appear essential to unraveling the molecular mechanisms underlying UGT2B17-associated pathophysiological conditions.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - John K Amory
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Cindy Yanfei Li
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Parth B Jariwala
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Matthew R Redinbo
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| |
Collapse
|
16
|
Quantitative Proteomic Analysis of Tibetan Pig Livers at Different Altitudes. Molecules 2023; 28:molecules28041694. [PMID: 36838681 PMCID: PMC9960092 DOI: 10.3390/molecules28041694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, the differences in protein profiles between the livers of Shannan Tibetan pigs (SNT), Linzhi Tibetan pigs (LZT) and Jiuzhaigou Tibetan pigs (JZT) were comparatively analyzed by tandem mass spectrometry-labeling quantitative proteomics. A total of 6804 proteins were identified: 6471 were quantified and 1095 were screened as differentially expressed proteins (DEPs). Bioinformatics analysis results show that, compared with JZT livers, up-regulated DEPs in SNT and LZT livers mainly promoted hepatic detoxification through steroid hormone biosynthesis and participated in lipid metabolism to maintain body energy homeostasis, immune response and immune regulation, while down-regulated DEPs were mainly involved in lipid metabolism and immune regulation. Three proteases closely related to hepatic fatty acid oxidation were down-regulated in enzymatic activity, indicating higher levels of lipid oxidation in SNT and LZT livers than in JZT livers. Down-regulation of the expression of ten immunoglobulins suggests that JZT are more susceptible to autoimmune diseases. It is highly likely that these differences in lipid metabolism and immune-related proteins are in response to the ecological environment at different altitudes, and the findings contribute to the understanding of the potential molecular link between Tibetan pig livers and the environment.
Collapse
|
17
|
Fibrosis-Related Gene Profiling in Liver Biopsies of PiZZ α1-Antitrypsin Children with Different Clinical Courses. Int J Mol Sci 2023; 24:ijms24032485. [PMID: 36768808 PMCID: PMC9916468 DOI: 10.3390/ijms24032485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
PiZZ (Glu342Lys) α1-antitrypsin deficiency (AATD) is characterized by intrahepatic AAT polymerization and is a risk factor for liver disease development in children. The majority of PiZZ children are disease free, hence this mutation alone is not sufficient to cause the disease. We investigated Z-AAT polymers and the expression of fibrosis-related genes in liver tissues of PiZZ children with different clinical courses. Liver biopsies obtained during 1979-2010 at the Department of Paediatrics, Karolinska University Hospital, Sweden, were subjected to histological re-evaluation, immunohistochemistry and NanoString-based transcriptome profiling using a panel of 760 fibrosis plus 8 bile acid-related genes. Subjects were divided into three groups based on clinical outcomes: NCH (neonatal cholestasis, favourable outcome, n = 5), NCC (neonatal cholestasis, early cirrhosis and liver transplantation, n = 4), and NNCH (no neonatal cholestasis, favourable outcome, n = 5, six biopsies). Hepatocytes containing Z-AAT polymers were abundant in all groups whereas NCC showed higher expression of genes related to liver fibrosis/cirrhosis and lower expression of genes related to lipid, aldehyde/ketone, and bile acid metabolism. Z-AAT accumulation per se cannot explain the clinical outcomes of PiZZ children; however, changes in the expression of specific genes and pathways involved in lipid, fatty acid, and steroid metabolism appear to reflect the degree of liver injury.
Collapse
|
18
|
Zhang W, Zhang Y, Wan Y, Liu Q, Zhu X. A bile acid-related prognostic signature in hepatocellular carcinoma. Sci Rep 2022; 12:22355. [PMID: 36572736 PMCID: PMC9792463 DOI: 10.1038/s41598-022-26795-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Due to the high mortality of hepatocellular carcinoma (HCC), its prognostic models are urgently needed. Bile acid (BA) metabolic disturbance participates in hepatocarcinogenesis. We aim to develop a BA-related gene signature for HCC patients. Research data of HCC were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) online databases. After least absolute shrinkage and selection operator (LASSO) regression analysis, we developed a BA-related prognostic signature in TCGA cohort based on differentially expressed prognostic BA-related genes. Then, the predictive performance of the signature was evaluated and verified in TCGA and ICGC cohort respectively. We obtained the risk score of each HCC patient according to the model. The differences of immune status and drug sensitivity were compared in patients that were stratified based on risk score. The protein and mRNA levels of the modeling genes were validated in the Human Protein Atlas database and our cell lines, respectively. In TCGA cohort, we selected 4 BA-related genes to construct the first BA-related prognostic signature. The risk signature exhibited good discrimination and predictive ability, which was verified in ICGC cohort. Patients were classified into high- and low-risk groups according to their median scores. The occurrence of death increased with increasing risk score. Low-risk patients owned favorable overall survival. High-risk patients possessed high immune checkpoint expression and low IC50 values for sorafenib, cisplatin and doxorubicin. Real-time quantitative PCR and immunohistochemical results validate expression of modeling genes in the signature. We constructed the first BA-related gene signature, which might help to identify HCC patients with poor prognosis and guide individualized treatment.
Collapse
Affiliation(s)
- Wang Zhang
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Zhang
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yipeng Wan
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Liu
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Zhu
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Ma J, You D, Chen S, Fang N, Yi X, Wang Y, Lu X, Li X, Zhu M, Xue M, Tang Y, Wei X, Huang J, Zhu Y. Epigenetic association study uncovered H3K27 acetylation enhancers and dysregulated genes in high-fat-diet-induced nonalcoholic fatty liver disease in rats. Epigenomics 2022; 14:1523-1540. [PMID: 36851897 DOI: 10.2217/epi-2022-0362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Aim: To evaluate the regulatory landscape underlying the active enhancer marked by H3K27ac in high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) in rats. Materials & methods: H3K27ac chromatin immunoprecipitation and high-throughput RNA sequencing to construct regulatory profiles and transcriptome of liver from NAFLD rat model induced by HFD. De novo motif analysis for differential H3K27ac peaks. Functional enrichment, Kyoto Encyclopedia of Genes and Genomes pathway and protein-protein interaction network were examined for differential peak-genes. The mechanism was further verified by western blot, chromatin immunoprecipitation-quantitative PCR and real-time PCR. Results: A total of 1831 differential H3K27ac peaks were identified significantly correlating with transcription factors and target genes (CYP8B1, PLA2G12B, SLC27A5, CYP7A1 and APOC3) involved in lipid and energy homeostasis. Conclusion: Altered acetylation induced by HFD leads to the dysregulation of gene expression, further elucidating the epigenetic mechanism in the etiology of NAFLD.
Collapse
Affiliation(s)
- Jinhu Ma
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Dandan You
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Shuwen Chen
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Nana Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Xinrui Yi
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Yi Wang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Xuejin Lu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Xinyu Li
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Meizi Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Min Xue
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Yunshu Tang
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Xiaohui Wei
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
| | - Jianzhen Huang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yaling Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
20
|
Wu W, Wu W, Ye Y, Li T, Wang B. mRNA and lncRNA expression profiles of liver tissues in children with biliary atresia. Exp Ther Med 2022; 24:634. [PMID: 36160912 PMCID: PMC9468840 DOI: 10.3892/etm.2022.11571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Progressive liver fibrosis is the most common phenotype in biliary atresia (BA). A number of pathways contribute to the fibrosis process so comprehensive understanding the mechanisms of liver fibrosis in BA will pave the way to improve patient's outcome after operation. In this study, the differentially expressed profiles of mRNAs and long non-coding RNAs from BA and choledochal cyst (CC) liver tissues were investigated and analyzed, which may provide potential clues to clarify hepatofibrosis mechanism in BA. A total of two BA and two CC liver tissue specimens were collected, the expression level of mRNAs and lncRNAs was detected by RNA sequencing. Differentially expressed mRNAs (DEmRNAs) were functionally annotated and protein-protein interaction networks (PPI) was established to predict the biological roles and interactive relationships. Differentially expressed lncRNAs (DElncRNAs) nearby targeted DEmRNA network and DElncRNA-DEmRNA co-expression network were constructed to further explore the roles of DElncRNAs in BA pathogenesis. The expression profiles of significant DEmRNAs were validated in Gene Expression Omnibus database. A total of 2,086 DEmRNAs and 184 DElncRNAs between BA and CC liver tissues were obtained. DEmRNAs were enriched in 521 Gene Ontology terms and 71 Kyoto Encyclopedia of Genes and Genomes terms which were mainly biological processes and metabolic pathways related to immune response and inflammatory response. A total of five hub proteins (TYRO protein tyrosine kinase binding protein, C-X-C motif chemokine ligand 8, pleckstrin, Toll-like receptor 8 and C-C motif chemokine receptor 5) were found in the PPI networks. A total of 31 DElncRNA-nearby-targeted DEmRNA pairs and 2,337 DElncRNA-DEmRNA co-expression pairs were obtained. The expression of DEmRNAs obtained from RNA sequencing were verified in GSE46960 dataset, generally. The present study identified key genes and lncRNAs participated in BA associated liver fibrosis, which may present a new avenue for understanding the patho-mechanism for hepatic fibrosis in BA.
Collapse
Affiliation(s)
- Wenyan Wu
- Medical Laboratory, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong 518001, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523000, P.R. China
| | - Weifang Wu
- Medical College, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
| | - Yongqin Ye
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, P.R. China
| | - Tao Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523000, P.R. China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
- Correspondence to: Professor Bin Wang, Department of General Surgery, Shenzhen Children's Hospital, 7019 Yitian Road, Futian, Shenzhen, Guangdong 518026, P.R. China
| |
Collapse
|
21
|
P17-26 Assessment of anabolic steroids impact on 5β-reductase by virtual screening and in vitro approaches. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Xiao J, Liu Z, Wang J, Zhang S, Zhang Y. Identification of cuprotosis-mediated subtypes, the development of a prognosis model, and influence immune microenvironment in hepatocellular carcinoma. Front Oncol 2022; 12:941211. [PMID: 36110946 PMCID: PMC9468823 DOI: 10.3389/fonc.2022.941211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Cuprotosis is a newly discovered form of non-apoptotic regulated cell death and is characterized by copper-dependent and associated with mitochondrial respiration. However, the prognostic significance and function of cuprotosis-related genes (CRGs) in hepatocellular carcinoma (HCC) are unknown. This study aims to develop cuprotosis-mediated patterns-related gene (CMPRG) prediction models for the prognosis of patients with HCC, exploring the functional underlying the CRGs on the influence of tumor microenvironment (TME) features. Experimental design This study obtained transcriptome profiling and the corresponding clinical information from the TCGA and GEO databases. Besides, the Cox regression model with LASSO was implemented to build a multi-gene signature, which was then validated in an internal validation set and two external validation sets through Kaplan-Meier, DCA, and ROC analyses. Results According to the LASSO analysis, we screened out a cuprotosis-mediated pattern 5-gene combination (including PBK; MMP1; GNAZ; GPC1 and AKR1D1). A nomogram was constructed for the presentation of the final model. The ROC curve assessed the model’s predictive ability, which resulted in an area under the curve (AUC) values ranging from 0.604 to 0.787 underwent internal and two external validation sets. Meanwhile, the risk score divided the patients into two groups of high and low risk, and the survival rate of high-risk patients was significantly lower than that of low-risk patients (P<0.01). The risk score could be an independent prognostic factor in the multifactorial Cox regression analysis (P<0.01). Functional analysis revealed that immune status, mutational loads, and drug sensitivity differed between the two risk groups. Conclusions In summary, we identified three cuprotosis-mediated patterns in HCC. And CMPRGs are a promising candidate biomarker for HCC early detection, owing to their strong performance in predicting HCC prognosis and therapy. Quantifying cuprotosis-mediated patterns in individual samples may help improve the understanding of multiomic characteristics and guide the development of targeted therapy for HCC.
Collapse
Affiliation(s)
- Jingjing Xiao
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhenhua Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jinlong Wang
- Department of Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shuaimin Zhang
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Yi Zhang,
| |
Collapse
|
23
|
Reed KM, Mendoza KM, Strasburg GM, Velleman SG. Transcriptome response of proliferating muscle satellite cells to thermal challenge in commercial turkey. Front Physiol 2022; 13:970243. [PMID: 36091406 PMCID: PMC9452691 DOI: 10.3389/fphys.2022.970243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Thermal stress poses a threat to agricultural systems through increased risk to animal growth, health, and production. Exposure of poultry, especially hatchlings, to extreme temperatures can seriously affect muscle development and thus compromise subsequent meat quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells (SCs) cultured from commercial birds under thermal challenge to determine the applicability of previous results obtained for select research lines. Satellite cells isolated from the pectoralis major muscle of 1-week old commercial fast-growing birds (Nicholas turkey, NCT) and from a slower-growing research line (RBC2) were proliferated in culture at 38°C or 43°C for 72 h. RNAseq analysis found statistically significant differences in gene expression among treatments and between turkey lines with a greater number of genes altered in the NCT SCs suggesting early myogenesis. Pathway analysis identified cell signaling and regulation of Ca2+ as important responses. Expression of the intercellular signaling Wnt genes, particularly Wnt5a and 7a was significantly altered by temperature with differential response between lines. The peripheral calcium channel RYR3 gene was among the genes most highly upregulated by heat stress. Increased expression of RYR3 would likely result in higher resting cytosolic calcium levels and increased overall gene transcription. Although responses in the calcium signaling pathway were similar among the RBC2 and NCT lines, the magnitude of expression changes was greater in the commercially selected birds. These results provide evidence into how SC activity, cellular fate, and ultimately muscle development are altered by heat stress and commercial selection.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Falcon Heights, MN, United States
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Falcon Heights, MN, United States
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH, United States
| |
Collapse
|
24
|
Sullivan KE, Kumar S, Liu X, Zhang Y, de Koning E, Li Y, Yuan J, Fan F. Uncovering the roles of dihydropyrimidine dehydrogenase in fatty-acid induced steatosis using human cellular models. Sci Rep 2022; 12:14109. [PMID: 35982095 PMCID: PMC9388600 DOI: 10.1038/s41598-022-17860-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrimidine catabolism is implicated in hepatic steatosis. Dihydropyrimidine dehydrogenase (DPYD) is an enzyme responsible for uracil and thymine catabolism, and DPYD human genetic variability affects clinically observed toxicity following 5-Fluorouracil administration. In an in vitro model of fatty acid-induced steatosis, the pharmacologic inhibition of DPYD resulted in protection from lipid accumulation. Additionally, a gain-of-function mutation of DPYD, created through clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) engineering, led to an increased lipid burden, which was associated with altered mitochondrial functionality in a hepatocarcionma cell line. The studies presented herein describe a novel role for DPYD in hepatocyte metabolic regulation as a modulator of hepatic steatosis.
Collapse
Affiliation(s)
- Kelly E Sullivan
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Sheetal Kumar
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Nimbus Therapeutics, Cambridge, MA, 02139, USA
| | - Xin Liu
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Ye Zhang
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Emily de Koning
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - Yanfei Li
- Amgen Inc., South San Francisco, CA, 90408, USA
| | - Jing Yuan
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA.,Pfizer Inc., Cambridge, MA, 02139, USA
| | - Fan Fan
- Translational Systems Biology Group, Amgen Inc., Cambridge, MA, 02141, USA. .,Janssen Pharmaceutical Companies of Johnson & Johnson, La Jolla, CA, 92037, USA.
| |
Collapse
|
25
|
Gathercole LL, Nikolaou N, Harris SE, Arvaniti A, Poolman TM, Hazlehurst JM, Kratschmar DV, Todorčević M, Moolla A, Dempster N, Pink RC, Saikali MF, Bentley L, Penning TM, Ohlsson C, Cummins CL, Poutanen M, Odermatt A, Cox RD, Tomlinson JW. AKR1D1 knockout mice develop a sex-dependent metabolic phenotype. J Endocrinol 2022; 253:97-113. [PMID: 35318963 PMCID: PMC9086936 DOI: 10.1530/joe-21-0280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Steroid 5β-reductase (AKR1D1) plays important role in hepatic bile acid synthesis and glucocorticoid clearance. Bile acids and glucocorticoids are potent metabolic regulators, but whether AKR1D1 controls metabolic phenotype in vivo is unknown. Akr1d1-/- mice were generated on a C57BL/6 background. Liquid chromatography/mass spectrometry, metabolomic and transcriptomic approaches were used to determine effects on glucocorticoid and bile acid homeostasis. Metabolic phenotypes including body weight and composition, lipid homeostasis, glucose tolerance and insulin tolerance were evaluated. Molecular changes were assessed by RNA-Seq and Western blotting. Male Akr1d1-/- mice were challenged with a high fat diet (60% kcal from fat) for 20 weeks. Akr1d1-/- mice had a sex-specific metabolic phenotype. At 30 weeks of age, male, but not female, Akr1d1-/- mice were more insulin tolerant and had reduced lipid accumulation in the liver and adipose tissue yet had hypertriglyceridemia and increased intramuscular triacylglycerol. This phenotype was associated with sexually dimorphic changes in bile acid metabolism and composition but without overt effects on circulating glucocorticoid levels or glucocorticoid-regulated gene expression in the liver. Male Akr1d1-/- mice were not protected against diet-induced obesity and insulin resistance. In conclusion, this study shows that AKR1D1 controls bile acid homeostasis in vivo and that altering its activity can affect insulin tolerance and lipid homeostasis in a sex-dependent manner.
Collapse
Affiliation(s)
- Laura L Gathercole
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Shelley E Harris
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Anastasia Arvaniti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Toryn M Poolman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jonathan M Hazlehurst
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Denise V Kratschmar
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Marijana Todorčević
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ahmad Moolla
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Niall Dempster
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ryan C Pink
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Liz Bentley
- Mammalian Genetics Unit, Medical Research Council Harwell, Oxford, UK
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Roger D Cox
- Mammalian Genetics Unit, Medical Research Council Harwell, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- Correspondence should be addressed to J W Tomlinson:
| |
Collapse
|
26
|
Iturrospe E, da Silva KM, Robeyns R, van de Lavoir M, Boeckmans J, Vanhaecke T, van Nuijs ALN, Covaci A. Metabolic Signature of Ethanol-Induced Hepatotoxicity in HepaRG Cells by Liquid Chromatography-Mass Spectrometry-Based Untargeted Metabolomics. J Proteome Res 2022; 21:1153-1166. [PMID: 35274962 DOI: 10.1021/acs.jproteome.2c00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease is highly prevalent but poorly identified and characterized, leading to knowledge gaps, which impairs early diagnosis. Excessive alcohol consumption is known to alter lipid metabolism, followed by progressive intracellular lipid accumulation, resulting in alcoholic fatty liver disease. In this study, HepaRG cells were exposed to ethanol at IC10 and 1/10 IC10 for 24 and 48 h. Metabolic alterations were investigated intra- and extracellularly with liquid chromatography-high-resolution mass spectrometry. Ion mobility was added as an extra separation dimension for untargeted lipidomics to improve annotation confidence. Distinctive patterns between exposed and control cells were consistently observed, with intracellular upregulation of di- and triglycerides, downregulation of phosphatidylcholines and phosphatidylethanolamines, sphingomyelins, and S-adenosylmethionine, among others. Several intracellular metabolic patterns could be related to changes in the extracellular environment, such as increased intracellular hydrolysis of sphingomyelins, leading to increased phosphorylcholine secretion. Carnitines showed alterations depending on the size of their carbon chain, which highlights the interplay between β-oxidation in mitochondria and peroxisomes. Potential new biomarkers of ethanol-induced hepatotoxicity have been observed, such as ceramides with a sphingadienine backbone, octanoylcarnitine, creatine, acetylcholine, and ethoxylated phosphorylcholine. The combination of the metabolic fingerprint and footprint enabled a comprehensive investigation of the pathophysiology behind ethanol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | | | - Rani Robeyns
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Maria van de Lavoir
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
27
|
Zhai R, Feng L, Zhang Y, Liu W, Li S, Hu Z. Combined Transcriptomic and Lipidomic Analysis Reveals Dysregulated Genes Expression and Lipid Metabolism Profiles in the Early Stage of Fatty Liver Disease in Rats. Front Nutr 2021; 8:733197. [PMID: 34604283 PMCID: PMC8484319 DOI: 10.3389/fnut.2021.733197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Non-alcoholic fatty liver disease develops from simple steatosis to non-alcoholic steatohepatitis (NASH), which then potentially develops into liver cirrhosis. It is a serious threat to human health. Therefore, investigating the formation and development mechanism of non-alcoholic fatty liver disease (NAFLD) is of great significance. Herein, an early model of NAFLD was successfully established by feeding rats with a high-fat and choline-deficient diet. Liver tissue samples were obtained from rats in the fatty liver model group (NAFL) and normal diet control group (CON). Afterward, transcriptome and lipidomic analysis was performed. Transcriptome results revealed that 178 differentially expressed genes were detected in NAFL and CON groups. Out of which, 105 genes were up-regulated, 73 genes were downregulated, and 8 pathways were significantly enriched. A total of 982 metabolites were detected in lipidomic analysis. Out of which 474 metabolites were significantly different, 273 were up-regulated, 201 were downregulated, and 7 pathways were significantly enriched. Based on the joint analysis, 3 common enrichment pathways were found, including cholesterol metabolism and fat digestion and absorption metabolic pathways. Overall, in the early stage of NAFLD, a small number of genetic changes caused a strong response to lipid components. The strongest reflection was glycerides and glycerophospholipids. A significant increase in fatty acid uptake accompanied by cholesterol metabolism is the most prominent metabolic feature of the liver in the early stage of NAFLD. In the early stage of fatty liver, the liver had shown the characteristics of NASH.
Collapse
Affiliation(s)
- Ruina Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Lei Feng
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yu Zhang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Wei Liu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyong Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
28
|
Gozalo-Marcilla M, Buntjer J, Johnsson M, Batista L, Diez F, Werner CR, Chen CY, Gorjanc G, Mellanby RJ, Hickey JM, Ros-Freixedes R. Genetic architecture and major genes for backfat thickness in pig lines of diverse genetic backgrounds. Genet Sel Evol 2021; 53:76. [PMID: 34551713 PMCID: PMC8459476 DOI: 10.1186/s12711-021-00671-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023] Open
Abstract
Background Backfat thickness is an important carcass composition trait for pork production and is commonly included in swine breeding programmes. In this paper, we report the results of a large genome-wide association study for backfat thickness using data from eight lines of diverse genetic backgrounds. Methods Data comprised 275,590 pigs from eight lines with diverse genetic backgrounds (breeds included Large White, Landrace, Pietrain, Hampshire, Duroc, and synthetic lines) genotyped and imputed for 71,324 single-nucleotide polymorphisms (SNPs). For each line, we estimated SNP associations using a univariate linear mixed model that accounted for genomic relationships. SNPs with significant associations were identified using a threshold of p < 10–6 and used to define genomic regions of interest. The proportion of genetic variance explained by a genomic region was estimated using a ridge regression model. Results We found significant associations with backfat thickness for 264 SNPs across 27 genomic regions. Six genomic regions were detected in three or more lines. The average estimate of the SNP-based heritability was 0.48, with estimates by line ranging from 0.30 to 0.58. The genomic regions jointly explained from 3.2 to 19.5% of the additive genetic variance of backfat thickness within a line. Individual genomic regions explained up to 8.0% of the additive genetic variance of backfat thickness within a line. Some of these 27 genomic regions also explained up to 1.6% of the additive genetic variance in lines for which the genomic region was not statistically significant. We identified 64 candidate genes with annotated functions that can be related to fat metabolism, including well-studied genes such as MC4R, IGF2, and LEPR, and more novel candidate genes such as DHCR7, FGF23, MEDAG, DGKI, and PTN. Conclusions Our results confirm the polygenic architecture of backfat thickness and the role of genes involved in energy homeostasis, adipogenesis, fatty acid metabolism, and insulin signalling pathways for fat deposition in pigs. The results also suggest that several less well-understood metabolic pathways contribute to backfat development, such as those of phosphate, calcium, and vitamin D homeostasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00671-w.
Collapse
Affiliation(s)
- Miguel Gozalo-Marcilla
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.,The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Jaap Buntjer
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Martin Johnsson
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lorena Batista
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Federico Diez
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.,The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | | | - Ching-Yi Chen
- The Pig Improvement Company, Genus plc, Hendersonville, TN, USA
| | - Gregor Gorjanc
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - John M Hickey
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Roger Ros-Freixedes
- The Roslin Institute, The University of Edinburgh, Midlothian, UK. .,Departament de Ciència Animal, Universitat de Lleida - Agrotecnio-CERCA Center, Lleida, Spain.
| |
Collapse
|
29
|
Chenodeoxycholic Acid Pharmacology in Biotechnology and Transplantable Pharmaceutical Applications for Tissue Delivery: An Acute Preclinical Study. Cells 2021; 10:cells10092437. [PMID: 34572086 PMCID: PMC8472107 DOI: 10.3390/cells10092437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Primary bile acids (PBAs) are produced and released into human gut as a result of cholesterol catabolism in the liver. A predominant PBA is chenodeoxycholic acid (CDCA), which in a recent study in our laboratory, showed significant excipient-stabilizing effects on microcapsules carrying insulinoma β-cells, in vitro, resulting in improved cell functions and insulin release, in the hyperglycemic state. Hence, this study aimed to investigate the applications of CDCA in bio-encapsulation and transplantation of primary healthy viable islets, preclinically, in type 1 diabetes. METHODS Healthy islets were harvested from balb/c mice, encapsulated in CDCA microcapsules, and transplanted into the epididymal tissues of 6 syngeneic diabetic mice, post diabetes confirmation. Pre-transplantation, the microcapsules' morphology, size, CDCA-deep layer distribution, and physical features such as swelling ratio and mechanical strength were analyzed. Post-transplantation, animals' weight, bile acids', and proinflammatory biomarkers' concentrations were analyzed. The control group was diabetic mice that were transplanted encapsulated islets (without PBA). RESULTS AND CONCLUSION Islet encapsulation by PBA microcapsules did not compromise the microcapsules' morphology or features. Furthermore, the PBA-graft performed better in terms of glycemic control and resulted in modulation of the bile acid profile in the brain. This is suggestive that the improved glycemic control was mediated via brain-related effects. However, the improvement in graft insulin delivery and glycemic control was short-term.
Collapse
|
30
|
Dai T, Ye L, Yu H, Li K, Li J, Liu R, Lu X, Deng M, Li R, Liu W, Yang Y, Wang G. Regulation Network and Prognostic Significance of Aldo-Keto Reductase (AKR) Superfamily Genes in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:997-1021. [PMID: 34513744 PMCID: PMC8417905 DOI: 10.2147/jhc.s323743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose The aldo-keto reductase (AKR) superfamily members have been proposed with multiple roles in various tumors. Here, a comprehensive analysis on the integral role of AKR genes was conducted to evaluate the expression profile, regulation network, and prognostic significance in hepatocellular carcinoma (HCC). Materials and Methods Transcriptome datasets of HCC were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus. Univariate and multivariate Cox regression analyses were used to build a novel risk score model, and then were further used to identify independent prognostic factors for overall survival (OS) of HCC. A prognostic nomogram was developed and validated. The expression of these critical AKR members was also evaluated by quantitative real-time polymerase chain reaction and immunohistochemistry in HCC specimens. Results Eight differentially expressed AKR genes were identified in HCC. The dysregulation of most AKR genes was negatively correlated with DNA methylation, and a regulation network with transcription factors (TFs) was also established. Then, three critical AKR genes (AKR1B10, AKR1D1, and AKR7A3) were screened out to build a novel risk score model. Worse OS was observed in high-risk patients. Besides, a prognostic nomogram based on the model was further established and validated in both the TCGA and GSE14520 cohorts, which showed superior performance in predicting the OS of HCC patients. Notably, close correlations were identified between the risk score and tumor immune microenvironment, somatic mutation profiles, and drug susceptibilities of HCC. Finally, the upregulated AKR1B10 and downregulated AKR1D1 and AKR7A3 were further verified in HCC tumor and adjacent tissues from our institution. Conclusion The dysregulated AKR genes could be mediated by DNA methylation and TFs in HCC. The risk model established with superior prognostic performance further suggested the significant role of AKR genes involved in the progression of HCC.
Collapse
Affiliation(s)
- Tianxing Dai
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Haoyuan Yu
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Kun Li
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Jing Li
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Rongqiang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Xu Lu
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Mingbin Deng
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Rong Li
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Wei Liu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Guoying Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| |
Collapse
|
31
|
Nawroth JC, Petropolis DB, Manatakis DV, Maulana TI, Burchett G, Schlünder K, Witt A, Shukla A, Kodella K, Ronxhi J, Kulkarni G, Hamilton G, Seki E, Lu S, Karalis KC. Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Rep 2021; 36:109393. [PMID: 34289365 PMCID: PMC8342038 DOI: 10.1016/j.celrep.2021.109393] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/03/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is a global health issue and leads to progressive liver injury, comorbidities, and increased mortality. Human-relevant preclinical models of ALD are urgently needed. Here, we leverage a triculture human Liver-Chip with biomimetic hepatic sinusoids and bile canaliculi to model ALD employing human-relevant blood alcohol concentrations (BACs) and multimodal profiling of clinically relevant endpoints. Our Liver-Chip recapitulates established ALD markers in response to 48 h of exposure to ethanol, including lipid accumulation and oxidative stress, in a concentration-dependent manner and supports the study of secondary insults, such as high blood endotoxin levels. We show that remodeling of the bile canalicular network can provide an in vitro quantitative readout of alcoholic liver toxicity. In summary, we report the development of a human ALD Liver-Chip as a powerful platform for modeling alcohol-induced liver injury with the potential for direct translation to clinical research and evaluation of patient-specific responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anke Witt
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | | | | | - Janey Ronxhi
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | | | | | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
32
|
Richter ML, Deligiannis IK, Yin K, Danese A, Lleshi E, Coupland P, Vallejos CA, Matchett KP, Henderson NC, Colome-Tatche M, Martinez-Jimenez CP. Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy. Nat Commun 2021; 12:4264. [PMID: 34253736 PMCID: PMC8275628 DOI: 10.1038/s41467-021-24543-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Single-cell RNA-seq reveals the role of pathogenic cell populations in development and progression of chronic diseases. In order to expand our knowledge on cellular heterogeneity, we have developed a single-nucleus RNA-seq2 method tailored for the comprehensive analysis of the nuclear transcriptome from frozen tissues, allowing the dissection of all cell types present in the liver, regardless of cell size or cellular fragility. We use this approach to characterize the transcriptional profile of individual hepatocytes with different levels of ploidy, and have discovered that ploidy states are associated with different metabolic potential, and gene expression in tetraploid mononucleated hepatocytes is conditioned by their position within the hepatic lobule. Our work reveals a remarkable crosstalk between gene dosage and spatial distribution of hepatocytes.
Collapse
Affiliation(s)
- M L Richter
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
| | - I K Deligiannis
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
| | - K Yin
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, United Kingdom
| | - A Danese
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - E Lleshi
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, United Kingdom
| | - P Coupland
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, United Kingdom
| | - C A Vallejos
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - K P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh, United Kingdom
| | - N C Henderson
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh, United Kingdom
| | - M Colome-Tatche
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - C P Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
33
|
DNA methylation profile of liver of mice conceived by in vitro fertilization. J Dev Orig Health Dis 2021; 13:358-366. [PMID: 34121654 DOI: 10.1017/s2040174421000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Offspring generated by in vitro fertilization (IVF) are believed to be healthy but display a possible predisposition to chronic diseases, like hypertension and glucose intolerance. Since epigenetic changes are believed to underlie such phenotype, this study aimed at describing global DNA methylation changes in the liver of adult mice generated by natural mating (FB group) or by IVF. Embryos were generated by IVF or natural mating. At 30 weeks of age, mice were sacrificed. The liver was removed, and global DNA methylation was assessed using whole-genome bisulfite sequencing (WGBS). Genomic Regions for Enrichment Analysis Tool (GREAT) and G:Profilerβ were used to identify differentially methylated regions (DMRs) and for functional enrichment analysis. Overrepresented gene ontology terms were summarized with REVIGO, while canonical pathways (CPs) were identified with Ingenuity® Pathway Analysis. Overall, 2692 DMRs (4.91%) were different between the groups. The majority of DMRs (84.92%) were hypomethylated in the IVF group. Surprisingly, only 0.16% of CpG islands were differentially methylated and only a few DMRs were located on known gene promoters (n = 283) or enhancers (n = 190). Notably, the long-interspersed element (LINE), short-interspersed element (SINE), and long terminal repeat (LTR1) transposable elements showed reduced methylation (P < 0.05) in IVF livers. Cellular metabolic process, hepatic fibrosis, and insulin receptor signaling were some of the principal biological processes and CPs modified by IVF. In summary, IVF modifies the DNA methylation signature in the adult liver, resulting in hypomethylation of genes involved in metabolism and gene transcription regulation. These findings may shed light on the mechanisms underlying the developmental origin of health and disease.
Collapse
|
34
|
Baier FA, Sánchez-Taltavull D, Yarahmadov T, Castellà CG, Jebbawi F, Keogh A, Tombolini R, Odriozola A, Dias MC, Deutsch U, Furuse M, Engelhardt B, Zuber B, Odermatt A, Candinas D, Stroka D. Loss of Claudin-3 Impairs Hepatic Metabolism, Biliary Barrier Function, and Cell Proliferation in the Murine Liver. Cell Mol Gastroenterol Hepatol 2021; 12:745-767. [PMID: 33866021 PMCID: PMC8273426 DOI: 10.1016/j.jcmgh.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Tight junctions in the liver are essential to maintain the blood-biliary barrier, however, the functional contribution of individual tight junction proteins to barrier and metabolic homeostasis remains largely unexplored. Here, we describe the cell type-specific expression of tight junction genes in the murine liver, and explore the regulation and functional importance of the transmembrane protein claudin-3 in liver metabolism, barrier function, and cell proliferation. METHODS The cell type-specific expression of hepatic tight junction genes is described using our mouse liver single-cell sequencing data set. Differential gene expression in Cldn3-/- and Cldn3+/+ livers was assessed in young and aged mice by RNA sequencing (RNA-seq), and hepatic tissue was analyzed for lipid content and bile acid composition. A surgical model of partial hepatectomy was used to induce liver cell proliferation. RESULTS Claudin-3 is a highly expressed tight junction protein found in the liver and is expressed predominantly in hepatocytes and cholangiocytes. The histology of Cldn3-/- livers showed no overt phenotype, and the canalicular tight junctions appeared intact. Nevertheless, by RNA-seq we detected a down-regulation of metabolic pathways in the livers of Cldn3-/- young and aged mice, as well as a decrease in lipid content and a weakened biliary barrier for primary bile acids, such as taurocholic acid, taurochenodeoxycholic acid, and taurine-conjugated muricholic acid. Coinciding with defects in the biliary barrier and lower lipid metabolism, there was a diminished hepatocyte proliferative response in Cldn3-/- mice after partial hepatectomy. CONCLUSIONS Our data show that, in the liver, claudin-3 is necessary to maintain metabolic homeostasis, retention of bile acids, and optimal hepatocyte proliferation during liver regeneration. The RNA-seq data set can be accessed at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159914.
Collapse
Affiliation(s)
- Felix Alexander Baier
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel Sánchez-Taltavull
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tural Yarahmadov
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Cristina Gómez Castellà
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fadi Jebbawi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Adrian Keogh
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Riccardo Tombolini
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | | | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Candinas
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
35
|
Mocan T, Kang DW, Molloy BJ, Jeon H, Spârchez ZA, Beyoğlu D, Idle JR. Plasma fetal bile acids 7α-hydroxy-3-oxochol-4-en-24-oic acid and 3-oxachola-4,6-dien-24-oic acid indicate severity of liver cirrhosis. Sci Rep 2021; 11:8298. [PMID: 33859329 PMCID: PMC8050265 DOI: 10.1038/s41598-021-87921-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Two 3-oxo-Δ4 fetal bile acids, 3-oxachola-4,6-dien-24-oic acid (1) and 7α-hydroxy-3-oxochol-4-en-24-oic acid (2), occur normally in the human fetus but remain elevated in neonates and children with severe cholestatic liver disease due to an autosomal recessive inborn error of metabolism affecting Δ4-3-oxo-steroid 5β-reductase (AKR1D1). Relatively little is known about 1 and 2 in adult patients with liver disease. The chemical synthesis of 1 and 2 is therefore described and their quantitation in plasma by ultrarapid chromatography-triple quadrupole mass spectrometry. Plasma concentrations of 1 and 2 were investigated in 25 adult patients with varying degrees of liver cirrhosis with and without hepatocellular carcinoma (HCC). Highly statistically significant correlations (P < 0.0001) were found between severity of liver cirrhosis, determined by the Child–Pugh and MELD scores, with plasma 1 and 2 concentrations, both alone and combined. The presence of HCC did not influence these correlations. Plasma cholic, chenodeoxycholic, deoxycholic, lithocholic or ursodeoxycholic acids, free and as their glycine or taurine conjugates, did not correlate with Child–Pugh or MELD score when corrected for multiple comparisons. These findings demonstrate that plasma levels of fetal bile acids 3-oxachola-4,6-dien-24-oic acid and 7α-hydroxy-3-oxochol-4-en-24-oic acid and likely deteriorating AKR1D1 activity indicate the severity of liver cirrhosis measured by the Child–Pugh and MELD scores.
Collapse
Affiliation(s)
- Tudor Mocan
- 3rd Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dong Wook Kang
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan-si, Gyeongsangbuk-do, 38430, Republic of Korea
| | | | - Hyeonho Jeon
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongsan-si, Gyeongsangbuk-do, 38430, Republic of Korea
| | - Zeno A Spârchez
- 3rd Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diren Beyoğlu
- Division of Systems Pharmacology and Pharmacogenomics, Samuel J. and Joan B. Williamson Institute, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, 11201, USA
| | - Jeffrey R Idle
- Division of Systems Pharmacology and Pharmacogenomics, Samuel J. and Joan B. Williamson Institute, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, 11201, USA. .,Department of BioMedical Research, University of Bern, 3008, Bern, Switzerland.
| |
Collapse
|
36
|
Espiard S, McQueen J, Sherlock M, Ragnarsson O, Bergthorsdottir R, Burman P, Dahlqvist P, Ekman B, Engström BE, Skrtic S, Wahlberg J, Stewart PM, Johannsson G. Improved Urinary Cortisol Metabolome in Addison Disease: A Prospective Trial of Dual-Release Hydrocortisone. J Clin Endocrinol Metab 2021; 106:814-825. [PMID: 33236103 PMCID: PMC7947853 DOI: 10.1210/clinem/dgaa862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Oral once-daily dual-release hydrocortisone (DR-HC) replacement therapy has demonstrated an improved metabolic profile compared to conventional 3-times-daily (TID-HC) therapy among patients with primary adrenal insufficiency. This effect might be related to a more physiological cortisol profile, but also to a modified pattern of cortisol metabolism. OBJECTIVE This work aimed to study cortisol metabolism during DR-HC and TID-HC. DESIGN A randomized, 12-week, crossover study was conducted. INTERVENTION AND PARTICIPANTS DC-HC and same daily dose of TID-HC were administered to patients with primary adrenal insufficiency (n = 50) vs healthy individuals (n = 124) as controls. MAIN OUTCOME MEASURES Urinary corticosteroid metabolites were measured by gas chromatography/mass spectrometry at 24-hour urinary collections. RESULTS Total cortisol metabolites decreased during DR-HC compared to TID-HC (P < .001) and reached control values (P = .089). During DR-HC, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity measured by tetrahydrocortisol + 5α-tetrahydrocortisol/tetrahydrocortisone ratio was reduced compared to TID-HC (P < .05), but remained increased vs controls (P < .001). 11β-HSD2 activity measured by urinary free cortisone/free cortisol ratio was decreased with TID-HC vs controls (P < .01) but normalized with DR-HC (P = .358). 5α- and 5β-reduced metabolites were decreased with DR-HC compared to TID-HC. Tetrahydrocortisol/5α-tetrahydrocortisol ratio was increased during both treatments, suggesting increased 5β-reductase activity. CONCLUSIONS The urinary cortisol metabolome shows striking abnormalities in patients receiving conventional TID-HC replacement therapy, with increased 11β-HSD1 activity that may account for the unfavorable metabolic phenotype in primary adrenal insufficiency. Its change toward normalization with DR-HC may mediate beneficial metabolic effects. The urinary cortisol metabolome may serve as a tool to assess optimal cortisol replacement therapy.
Collapse
Affiliation(s)
- Stéphanie Espiard
- Department of Endocrinology, Sahlgrenska University Hospital and Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Correspondence and Reprint Requests: Stéphanie Espiard, MD, Service d’endocrinologie, diabétologie et métabolisme, Hôpital Huriez, rue Michel Polonovski, CHRU Lille, 59037 Lille Cedex, France. E-mail:
| | - Johanna McQueen
- Department of Endocrinology, Sahlgrenska University Hospital and Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mark Sherlock
- Department of Endocrinology, Beaumont Hospital and Royal College of Surgeons in Ireland, Co. Dublin 9, Ireland
| | - Oskar Ragnarsson
- Department of Endocrinology, Sahlgrenska University Hospital and Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ragnhildur Bergthorsdottir
- Department of Endocrinology, Sahlgrenska University Hospital and Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pia Burman
- Department of Endocrinology, Skåne University Hospital Malmö, Malmö and University of Lund, Lund, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bertil Ekman
- Department of Endocrinology, Department of Medical and Health Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Britt Edén Engström
- Department of Medical Sciences, Endocrinology and Metabolism, Uppsala University Hospital, Uppsala, Sweden
| | - Stanko Skrtic
- Department of Endocrinology, Sahlgrenska University Hospital and Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- AstraZeneca R&D, Mölndal, Sweden
| | - Jeanette Wahlberg
- Department of Endocrinology, Department of Medical and Health Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Paul M Stewart
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital and Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Nikolaou N, Hodson L, Tomlinson JW. The role of 5-reduction in physiology and metabolic disease: evidence from cellular, pre-clinical and human studies. J Steroid Biochem Mol Biol 2021; 207:105808. [PMID: 33418075 DOI: 10.1016/j.jsbmb.2021.105808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 01/01/2023]
Abstract
The 5-reductases (5α-reductase types 1, 2 and 3 [5αR1-3], 5β-reductase [5βR]) are steroid hormone metabolising enzymes that hold fundamental roles in human physiology and pathology. They possess broad substrate specificity converting many steroid hormones to their 5α- and 5β-reduced metabolites, as well as catalysing crucial steps in bile acid synthesis. 5αRs are fundamentally important in urogenital development by converting testosterone to the more potent androgen 5α-dihydrotestosterone (5αDHT); inactivating mutations in 5αR2 lead to disorders of sexual development. Due to the ability of the 5αRs to generate 5αDHT, they are an established drug target, and 5αR inhibitors are widely used for the treatment of androgen-dependent benign or malignant prostatic diseases. There is an emerging body of evidence to suggest that the 5-reductases can impact upon aspects of health and disease (other than urogenital development); alterations in their expression and activity have been associated with metabolic disease, polycystic ovarian syndrome, inflammation and bone metabolism. This review will outline the evidence base for the extra-urogenital role of 5-reductases from in vitro cell systems, pre-clinical models and human studies, and highlight the potential adverse effects of 5αR inhibition in human health and disease.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.
| |
Collapse
|
38
|
Appanna N, Gibson H, Gangitano E, Dempster NJ, Morris K, George S, Arvaniti A, Gathercole LL, Keevil B, Penning TM, Storbeck KH, Tomlinson JW, Nikolaou N. Differential activity and expression of human 5β-reductase (AKR1D1) splice variants. J Mol Endocrinol 2021; 66:181-194. [PMID: 33502336 PMCID: PMC7965358 DOI: 10.1530/jme-20-0160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Steroid hormones, including glucocorticoids and androgens, exert a wide variety of effects in the body across almost all tissues. The steroid A-ring 5β-reductase (AKR1D1) is expressed in human liver and testes, and three splice variants have been identified (AKR1D1-001, AKR1D1-002, AKR1D1-006). Amongst these, AKR1D1-002 is the best described; it modulates steroid hormone availability and catalyses an important step in bile acid biosynthesis. However, specific activity and expression of AKR1D1-001 and AKR1D1-006 are unknown. Expression of AKR1D1 variants were measured in human liver biopsies and hepatoma cell lines by qPCR. Their three-dimensional (3D) structures were predicted using in silico approaches. AKR1D1 variants were overexpressed in HEK293 cells, and successful overexpression confirmed by qPCR and Western blotting. Cells were treated with either cortisol, dexamethasone, prednisolone, testosterone or androstenedione, and steroid hormone clearance was measured by mass spectrometry. Glucocorticoid and androgen receptor activation were determined by luciferase reporter assays. AKR1D1-002 and AKR1D1-001 are expressed in human liver, and only AKR1D1-006 is expressed in human testes. Following overexpression, AKR1D1-001 and AKR1D1-006 protein levels were lower than AKR1D1-002, but significantly increased following treatment with the proteasomal inhibitor, MG-132. AKR1D1-002 efficiently metabolised glucocorticoids and androgens and decreased receptor activation. AKR1D1-001 and AKR1D1-006 poorly metabolised dexamethasone, but neither protein metabolised cortisol, prednisolone, testosterone or androstenedione. We have demonstrated the differential expression and role of AKR1D1 variants in steroid hormone clearance and receptor activation in vitro. AKR1D1-002 is the predominant functional protein in steroidogenic and metabolic tissues. In addition, AKR1D1-001 and AKR1D1-006 may have a limited, steroid-specific role in the regulation of dexamethasone action.
Collapse
Affiliation(s)
- Nathan Appanna
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
| | - Hylton Gibson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Elena Gangitano
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Lazio, Italy
| | - Niall J Dempster
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
| | - Karen Morris
- Biochemistry Department, Manchester University NHS Trust, Manchester Academic Health Science Centre, Manchester, Greater Manchester, UK
| | - Sherly George
- Biochemistry Department, Manchester University NHS Trust, Manchester Academic Health Science Centre, Manchester, Greater Manchester, UK
| | - Anastasia Arvaniti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, Oxfordshire, UK
| | - Laura L Gathercole
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, Oxfordshire, UK
| | - Brian Keevil
- Biochemistry Department, Manchester University NHS Trust, Manchester Academic Health Science Centre, Manchester, Greater Manchester, UK
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
| | - Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
- Correspondence should be addressed to N Nikolaou:
| |
Collapse
|
39
|
Sinton MC, Meseguer-Ripolles J, Lucendo-Villarin B, Wernig-Zorc S, Thomson JP, Carter RN, Lyall MJ, Walker PD, Thakker A, Meehan RR, Lavery GG, Morton NM, Ludwig C, Tennant DA, Hay DC, Drake AJ. A human pluripotent stem cell model for the analysis of metabolic dysfunction in hepatic steatosis. iScience 2021; 24:101931. [PMID: 33409477 PMCID: PMC7773967 DOI: 10.1016/j.isci.2020.101931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of liver disease worldwide. This term encompasses a spectrum of pathologies, from benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date, been challenging to model in the laboratory setting. Here, we present a human pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which overcomes inherent challenges of current models and provides insights into the metabolic rewiring associated with steatosis. Following induction of macrovesicular steatosis in hepatocyte-like cells using lactate, pyruvate, and octanoate (LPO), respirometry and transcriptomic analyses revealed compromised electron transport chain activity. 13C isotopic tracing studies revealed enhanced TCA cycle anaplerosis, with concomitant development of a compensatory purine nucleotide cycle shunt leading to excess generation of fumarate. This model of hepatic steatosis is reproducible, scalable, and overcomes the challenges of studying mitochondrial metabolism in currently available models.
Collapse
Affiliation(s)
- Matthew C. Sinton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jose Meseguer-Ripolles
- Centre for Regenerative Medicine, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh BioQuarter, 5 Little France Crescent, Edinburgh, EH16 4UU, UK
| | - Baltasar Lucendo-Villarin
- Centre for Regenerative Medicine, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh BioQuarter, 5 Little France Crescent, Edinburgh, EH16 4UU, UK
| | - Sara Wernig-Zorc
- Department of Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - John P. Thomson
- Human Genetics Unit, University of Edinburgh, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4, 2XU, UK
| | - Roderick N. Carter
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Marcus J. Lyall
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Paul D. Walker
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Richard R. Meehan
- Human Genetics Unit, University of Edinburgh, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4, 2XU, UK
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Nicholas M. Morton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Daniel A. Tennant
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - David C. Hay
- Centre for Regenerative Medicine, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh BioQuarter, 5 Little France Crescent, Edinburgh, EH16 4UU, UK
| | - Amanda J. Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
40
|
Diagnostic and prognostic values of AKR1C3 and AKR1D1 in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:4138-4156. [PMID: 33493134 PMCID: PMC7906155 DOI: 10.18632/aging.202380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/31/2020] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common histological type of primary liver cancer and the majority of patients are diagnosed at an advanced stage and have a poor prognosis. AKR1C3 (Aldo-keto reductase family 1 member C3) and AKR1D1 (Aldo-keto reductase family 1 member D1) catalyze the conversion of aldehydes and ketones to alcohols and play crucial roles in multiple cancers. However, the functions of AKR1C3 and AKR1D1 in HCC remain unclear. In our study, data from the public databases were selected as training and validation sets, then 76 HCC patients in our center were chosen as a test set. Bioinformatics methods suggested AKR1C3 was overexpressed in HCC and AKR1D1 was down-regulated. The receiver operating characteristic curve (ROC) analysis was performed and the area under curve (AUC) values of AKR1C3 and AKR1D1 were above 0.7 (0.948, 0.836, respectively). Also, the high expression of AKR1C3 and low expression of AKR1D1 predicted poor prognosis and short median survival time. Then, the knockdown of AKR1C3 and overexpression of AKR1D1 in HCC cells were achieved with lentivirus. And both decreased cell proliferation, restrained cell viability, and inhibited tumorigenesis. Moreover, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted and the results showed that AKR1C3 and AKR1D1 might participate in the MAPK/ERK and androgen receptor (AR) signaling pathway. Furthermore, the AR and phosphorylated ERK1/2 were significantly reduced after the suppression of AKR1C3 or overexpression of AKR1D1. Collectively, AKR1C3 and AKR1D1 might serve as candidate diagnostic and prognostic biomarkers for HCC and provide potential targets for HCC treatment.
Collapse
|
41
|
Barnard L, Nikolaou N, Louw C, Schiffer L, Gibson H, Gilligan LC, Gangitano E, Snoep J, Arlt W, Tomlinson JW, Storbeck KH. The A-ring reduction of 11-ketotestosterone is efficiently catalysed by AKR1D1 and SRD5A2 but not SRD5A1. J Steroid Biochem Mol Biol 2020; 202:105724. [PMID: 32629108 DOI: 10.1016/j.jsbmb.2020.105724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/23/2022]
Abstract
Testosterone and its 5α-reduced form, 5α-dihydrotestosterone, were previously thought to represent the only active androgens in humans. However, recent studies have shown that the potent androgen, 11-ketotestosterone, derived from the adrenal androgen precursor, 11β-hydroxyandrostenedione, may in fact serve as the primary androgen in healthy women. Yet, despite recent renewed interest in these steroids, their downstream metabolism has remained undetermined. We therefore set out to investigate the metabolism of 11-ketotestosterone by characterising the 5α- or 5β-reduction commitment step. We show that inactivation of 11-ketotestosterone is predominantly driven by AKR1D1, which efficiently catalyses the 5β-reduction of 11-ketotestosterone, committing it to a metabolic pathway that terminates in 11-ketoetiocholanolone. We demonstrate that 5α-reduction of 11-ketotestosterone is catalysed by SRD5A2, but not SRD5A1, and terminates in 11-ketoandrosterone, but is only responsible for a minority of 11-ketotestosterone inactivation. However, as 11-ketoetiocholanolone is also generated by the metabolism of the glucocorticoid cortisone, 11-ketoandrosterone should be considered a more specific urinary marker of 11-ketotestosterone production.
Collapse
Affiliation(s)
- Lise Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Carla Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hylton Gibson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elena Gangitano
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Jacky Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa; Molecular Cell Physiology, VU, Amsterdam, the Netherlands
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK; NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 3GW, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
42
|
Nikolaou N, Arvaniti A, Appanna N, Sharp A, Hughes BA, Digweed D, Whitaker MJ, Ross R, Arlt W, Penning TM, Morris K, George S, Keevil BG, Hodson L, Gathercole LL, Tomlinson JW. Glucocorticoids regulate AKR1D1 activity in human liver in vitro and in vivo. J Endocrinol 2020; 245:207-218. [PMID: 32106090 PMCID: PMC7182088 DOI: 10.1530/joe-19-0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates endogenous glucocorticoids and catalyses an important step in bile acid synthesis. Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by qPCR and Western blotting. Genetic manipulation of AKR1D1 expression was conducted in HepG2 and Huh7 cells and metabolic assessments were made using qPCR. Urinary steroid metabolite profiling in healthy volunteers was performed pre- and post-dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less efficiently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and these changes were mirrored by genetic knockdown of AKR1D1 expression. The effects of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid clearance. In addition, AKR1D1 down-regulation alters the activation of multiple nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis gene expression profiles, which may exacerbate the adverse impact of exogenous glucocorticoids.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Anastasia Arvaniti
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Department of Biological and Medical
Sciences, Oxford Brookes University, Oxford,
UK
| | - Nathan Appanna
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Anna Sharp
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Beverly A Hughes
- Institute of Metabolism and Systems
Research, University of Birmingham, Edgbaston, Birmingham,
UK
| | | | | | - Richard Ross
- Department of Oncology and
Metabolism, Faculty of Medicine, Dentistry and Health,
University of Sheffield, Sheffield, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems
Research, University of Birmingham, Edgbaston, Birmingham,
UK
- NIHR Birmingham Biomedical Research
Centre, University Hospitals Birmingham NHS Foundation Trust
and University of Birmingham, Birmingham, UK
| | - Trevor M Penning
- Department of Systems Pharmacology &
Translational Therapeutics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karen Morris
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Sherly George
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Brian G Keevil
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Laura L Gathercole
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Department of Biological and Medical
Sciences, Oxford Brookes University, Oxford,
UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Correspondence should be addressed to J W Tomlinson:
| |
Collapse
|
43
|
Cai Z, Yu C, Fu D, Pan Y, Huang J, Rong Y, Deng L, Chen J, Chen M. Differential metabolic and hepatic transcriptome responses of two miniature pig breeds to high dietary cholesterol. Life Sci 2020; 250:117514. [PMID: 32145306 DOI: 10.1016/j.lfs.2020.117514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
AIMS Pigs are increasingly used as human metabolic disease models; however, there is insufficient research on breed-related genetic background differences. This study aimed to investigate the differential metabolic responses to high-fat and high-cholesterol (HFC) diet-induced non-alcoholic fatty liver disease (NAFLD) of two miniature pig breeds and explore the molecular mechanisms involved. MAIN METHODS Male Wuzhishan (WZSP) and Tibetan pigs (TP) were randomly fed either a standard or an HFC diet for 24 weeks. Weight, serum lipids, bile acid, insulin resistance, liver function, liver histology, and hepatic lipid deposition were determined. RNA-Seq was used to detect the hepatic gene expression profiles. Western blot, immunohistochemistry, and qRT-PCR were used to detect the lipid and glucose metabolism-related gene expressions. KEY FINDINGS The HFC diet caused obesity, hypertension, severe hypercholesterolemia, liver injury, increased hepatocellular steatosis and inflammation, and significantly increased serum insulin levels in both pig breeds. This diet led to higher serum and hepatic cholesterol level concentrations in WZSP and elevated fasting glucose levels in TP. Transcriptome analysis revealed that the genes controlling hepatic cholesterol metabolism and the inflammatory response were consistently regulated; lipid metabolism and insulin signaling related genes were uniquely regulated by the HFC diet in the WZSP and TP, respectively. SIGNIFICANCE Our study demonstrated that the genetic background affects profoundly pigs' metabolic and hepatic responses to an HFC diet. These results deepened our understanding of the molecular mechanisms of HFC diet-induced NAFLD and provided a foundation for selecting the appropriate pig breeds for metabolic studies in the future.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chen Yu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Danting Fu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongming Pan
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junjie Huang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yili Rong
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liqun Deng
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiaojiao Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Minli Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
44
|
Boutari C, Bouzoni E, Joshi A, Stefanakis K, Farr OM, Mantzoros CS. Metabolism updates: new directions, techniques, and exciting research that is broadening the horizons. Metabolism 2020; 102:154009. [PMID: 31715175 DOI: 10.1016/j.metabol.2019.154009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Chrysoula Boutari
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Eirini Bouzoni
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aditya Joshi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Olivia M Farr
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|
45
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
46
|
Raza S, Rajak S, Anjum B, Sinha RA. Molecular links between non-alcoholic fatty liver disease and hepatocellular carcinoma. ACTA ACUST UNITED AC 2019; 5:42. [PMID: 31867441 PMCID: PMC6924993 DOI: 10.20517/2394-5079.2019.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced complication, non-alcoholic steatohepatitis (NASH), have become leading causes of hepatocellular carcinoma (HCC) worldwide. In this review, we discuss the role of metabolic, gut microbial, immune and endocrine mediators which promote the progression of NAFLD to HCC. In particular, this progression involves multiple hits resulting from lipotoxicity, oxidative stress, inhibition of hepatic autophagy and inflammation. Furthermore, dysbiosis in the gut associated with obesity also promotes HCC via induction of proinflammatory cytokines and Toll like receptor signalling as well as altered bile metabolism. Additionally, compromised T-cell function and impaired hepatic hormonal action promote the development of NASH-associated HCC. Lastly, we discuss the current challenges involved in the diagnosis and treatment of NAFLD/NASH-associated HCC.
Collapse
Affiliation(s)
- Sana Raza
- Department of Bioscience, Integral University, Lucknow 226026, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Baby Anjum
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|