1
|
Chen X, Jiang G, Zhao T, Sun N, Liu S, Guo H, Zeng C, Liu Y. Identification of potential drug targets for diabetic polyneuropathy through Mendelian randomization analysis. Cell Biosci 2024; 14:147. [PMID: 39639394 PMCID: PMC11619124 DOI: 10.1186/s13578-024-01323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Diabetic polyneuropathy (DPN) is a common diabetes complication with limited treatment options. We aimed to identify circulating plasma proteins as potential therapeutic targets for DPN using Mendelian Randomization (MR). METHODS The protein quantitative trait loci (pQTLs) utilized in this study were derived from seven previously published genome-wide association studies (GWASs) on plasma proteomics. The DPN data were obtained from the IEU OpenGWAS project. This study employed two-sample MR using MR-Egger and inverse-variance weighted methods to evaluate the causal relationship between plasma proteins and DPN risk, with Cochran's Q test, and I2 statistics, among other methods, used to validate the robustness of the results. RESULTS Using cis-pQTLs as genetic instruments, we identified 62 proteins associated with DPN, with 33 increasing the risk and 29 decreasing the risk of DPN. Using cis-pQTLs + trans-pQTLs, we identified 116 proteins associated with DPN, with 44 increasing the risk and 72 decreasing the risk of DPN. Steiger directionality tests indicated that the causal relationships between circulating plasma proteins and DPN were consistent with expected directions. CONCLUSION This study identified 96 circulating plasma proteins with genetically determined levels that affect the risk of DPN, providing new potential targets for DPN drug development, particularly ITM2B, CREG1, CD14, and PLXNA4.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai, China
| | - Guohua Jiang
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, China
| | - Tianjing Zhao
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, China
| | - Nian Sun
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, China
| | - Shanshan Liu
- Zhujiang Hospital of Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, China
| | - Hao Guo
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, China
| | - Canjun Zeng
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Orthopedic Hospital of Guangdong Province, Guangzhou, China.
| | - Yijun Liu
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Orthopedic Hospital of Guangdong Province, Guangzhou, China.
| |
Collapse
|
2
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Pantazopoulos D, Gouveri E, Rizzo M, Papanas N. Cilostazol for the treatment of distal symmetrical polyneuropathy in diabetes mellitus: Where do we stand? J Diabetes Complications 2024; 38:108905. [PMID: 39522391 DOI: 10.1016/j.jdiacomp.2024.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Diabetic Neuropathy (DN) is one of the most frequent chronic complications of diabetes mellitus. Its commonest form, distal symmetrical polyneuropathy (DSPN), is characterised by slowly progressing length-dependent nerve damage in the lower limbs, increasing the risk of foot ulcerations and leading to symptoms like tingling, pain, or numbness. AIM The aim of this review was to discuss the utility of cilostazol, a phosphodiesterase inhibitor with known antiplatelet, vasodilatory, anti-inflammation properties, in the treatment of DSPN. RESULTS Preclinical studies in animals have demonstrated the ability of cilostazol to improve nerve function and to protect from peripheral nerve disruption and central sensitisation. However, clinical trials in humans are very sparse and have so far not been encouraging. CONCLUSIONS Further research is needed to fully understand the mechanisms and potential efficacy of cilostazol in treating DSPN.
Collapse
Affiliation(s)
- Dimitrios Pantazopoulos
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Evanthia Gouveri
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Palermo, Italy
| | - Nikolaos Papanas
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece.
| |
Collapse
|
4
|
Song W, Zhao B, Wu Q, Gong Y, Jia Y, Zhang Y, Yang Y, Zhang B, Liang X, Zhang Q. Gastrodin alleviates diabetic peripheral neuropathy by regulating energy homeostasis via activating AMPK and inhibiting MMP9. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156033. [PMID: 39306880 DOI: 10.1016/j.phymed.2024.156033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/04/2024] [Accepted: 09/07/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a serious complication of diabetes that lacks effective treatment. Gastrodin, the primary bioactive compound derived from Rhizoma Gastrodiae, has a long history in treating epilepsy and various central nervous system disorders. However, its effect on DPN remains uncertain. PURPOSE This study aims to explore the therapeutic potential and underlying mechanisms of gastrodin in the treatment of DPN. METHOD DPN model rats were induced with streptozotocin (STZ) injection and divided into four groups receiving either gastrodin at two doses (30 and 60 mg kg-1 per day), α-lipoic acid (positive drug, 60 mg kg-1 per day), or placebo. Healthy rats were administrated with placebo. The administrations began eight weeks post-STZ injection and continued for six weeks. Following a comprehensive evaluation of the neuroprotective effects, a systematic pharmacology-based approach was subsequently employed to investigate the underlying mechanism of gastrodin in vivo and in vitro. RESULTS Gastrodin was demonstrated to effectively enhance peripheral nerve function and reduce pathological damages in DPN rats. Furthermore, gastrodin facilitated the expression of remyelination-related proteins and mitigated oxidative stress in DPN rats. Transcriptomic analysis indicated that the modulation of energy metabolism was pivotal in the neuroprotective effect of gastrodin, corroborated by targeted metabolomic analysis using high-performance ion chromatography coupled with mass spectrometry. Using network pharmacology analysis, 12 potential targets of gastrodin were identified. Among these, matrix metallopeptidase 9 (MMP9) was further validated as the primary target through molecular docking and cellular thermal shift assays. Functional Analysis of the potential targets underscored the pivotal role of AMPK signaling, and gastrodin demonstrated the capability to activate AMPK and inhibit MMP9 in vivo. In vitro studies further found that gastrodin enhanced antioxidant capacity and mitochondrial function of high glucose-cultured rat Schwann cells RSC96 in an AMPK-dependent manner. Inhibition of AMPK hindered the decrease of MMP9 induced by gastrodin in vitro. CONCLUSION This study revealed the new role of gastrodin in alleviating DPN by restoring the homeostasis of energy metabolism through activating AMPK and inhibiting MMP9. These findings highlight gastrodin's potential as a novel therapeutic candidate against DPN, and underscores an appealing strategy of regulating energy metabolism for DPN therapy.
Collapse
Affiliation(s)
- Wei Song
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bingjia Zhao
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yiyi Gong
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yifan Jia
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yamin Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yunshuang Yang
- Department of Preventive Medicine, Beijing Longfu Hospital, Beijing 100010, China
| | - Bo Zhang
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
5
|
Wang Q, Xie H, Wang Z, Huang R, Xu M, Li Y, Shan L, Zhang H, Liu X, Zhang H, Xu Y, Sun S. Comparative efficacy and safety of Chinese patent medicines as an adjunctive therapy for diabetic peripheral neuropathy: systematic review and network meta-analysis of randomized controlled trials. PHARMACEUTICAL BIOLOGY 2024; 62:833-852. [PMID: 39497372 PMCID: PMC11539401 DOI: 10.1080/13880209.2024.2422084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
CONTEXT Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus. Chinese patent medicines (CPMs) are widely used in clinical practice to treat DPN. OBJECTIVE This study aims to summarize the latest evidence on the harms and benefits of CPMs as adjunctive therapy for DPN. MATERIALS AND METHODS We conducted searches for randomized controlled trials (RCTs) evaluating CPMs in conjunction with mecobalamin (Mec) or alpha-lipoic acid (αLA) across eight databases up to July 2024. The surface under the cumulative ranking area (SUCRA) was utilized to assess the clinical efficacy rate (CER), the peroneal motor nerve conduction velocity (pMNCV), the peroneal sensory nerve conduction velocity (pSNCV), the median motor nerve conduction velocity (mMNCV), and the median sensory nerve conduction velocity (mSNCV). RESULTS The search yielded 128 eligible studies with 31 CPMs with Mec and 39 eligible studies with 17 CPMs with αLA. SUCRA rankings indicated that, when combined with Mec, Mailuoning liquid (lMLN) was the most effective regimen for CER, Honghua injection (iHH) for pMNCV, Maixuekang capsule (cMXK) for pSNCV, Dengzhanxixin injection (iDZXX) for mMNCV, and Tongxinluo capsule (cTXL) for mSNCV. Combined with αLA, Danhong injection (iDH) showed the highest efficacy for CER, pSNCV, and mSNCV, while Xueshuantong injection (iXShT) was the most effective for pMNCV and mMNCV. CONCLUSION This network meta-analysis confirms the efficacy and safety of 37 CPMs combined with Mec or αLA for treating DPN. However, given the potential risk of bias and the very low certainty of the evidence, these recommendations should be adopted with caution.
Collapse
Affiliation(s)
- Qun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Vertigo, Jinan Shizhong People’s Hospital, Jinan, Shandong, China
| | - Hui Xie
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zihong Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Runyun Huang
- Department of Pharmacy, Binzhou Youfu Hospital, Binzhou, Shandong, China
| | - Min Xu
- Department of Pharmacy, Jinan Hospital of Chinese Medicine, Guang’anmen Hospital of China Academy of Chinese Medical Sciences, Jinan, China
| | - Yongjun Li
- Department of Pharmacy, Second Affiliated Hospital, Shandong Provincial Hospital of Integrated Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lingling Shan
- Department of Pharmacy, Second Affiliated Hospital, Shandong Provincial Hospital of Integrated Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hongyan Zhang
- Department of Pharmacy, Second Affiliated Hospital, Shandong Provincial Hospital of Integrated Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xianghong Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongxing Zhang
- Department of Pharmacy, Jinan Hospital of Chinese Medicine, Guang’anmen Hospital of China Academy of Chinese Medical Sciences, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital, Shandong Provincial Hospital of Integrated Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shiguang Sun
- Department of Pharmacy, Second Affiliated Hospital, Shandong Provincial Hospital of Integrated Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Lazutka JR, Daniūnaitė K, Dedonytė V, Popandopula A, Žukaitė K, Visockienė Ž, Šiaulienė L. Effects of Short-Term Treatment with α-Lipoic Acid on Neuropathic Pain and Biomarkers of DNA Damage in Patients with Diabetes Mellitus. Pharmaceuticals (Basel) 2024; 17:1538. [PMID: 39598447 PMCID: PMC11597811 DOI: 10.3390/ph17111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Diabetes mellitus (DM) is a complex and heterogenous disease classified as a group of metabolic disorders characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action, or both. It leads to various complications, some of which are macrovascular or microvascular complications, like diabetic polyneuropathy (DPN), having a profound impact on patients' quality of life. Oxidative stress (OS) is one of the significant mechanisms in the development and progression of DPN. Thus, targeting OS pathways by antioxidants, such as α-lipoic acid (ALA), could represent a promising therapeutic strategy for alleviating neuropathic symptoms. The aim of our study was to evaluate whether short-term (from 4 to 9 days) intravenous administration of ALA could cause any measurable improvement in subjects with DM. METHODS Sixteen subjects with DM (six type 1 and ten type 2) and sixteen nondiabetic subjects matched by sex and age were recruited to this study. Only subjects with DM received treatment with ALA (600 mg daily). Pain intensity and biomarkers of DNA damage including plasma concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG), frequency of micronucleated lymphocytes (MN), and frequency of sister-chromatid exchanges (SCEs), were measured before and after the treatment with ALA. RESULTS Pain intensity and 8-OHdG levels were significantly lower in DM subjects after the ALA treatment than before the treatment. However, no changes in the frequency of SCEs and MN were observed. CONCLUSIONS Our results show some evidence that even a short-term intravenous treatment with ALA could be beneficial for diabetic subjects, reducing pain intensity and concentration of 8-OHdG in blood plasma.
Collapse
Affiliation(s)
- Juozas R. Lazutka
- Life Sciences Center, Vilnius University, Saulėtekio Al. 7, LT-10257 Vilnius, Lithuania; (K.D.); (V.D.); (A.P.); (K.Ž.)
| | - Kristina Daniūnaitė
- Life Sciences Center, Vilnius University, Saulėtekio Al. 7, LT-10257 Vilnius, Lithuania; (K.D.); (V.D.); (A.P.); (K.Ž.)
| | - Veronika Dedonytė
- Life Sciences Center, Vilnius University, Saulėtekio Al. 7, LT-10257 Vilnius, Lithuania; (K.D.); (V.D.); (A.P.); (K.Ž.)
| | - Aistė Popandopula
- Life Sciences Center, Vilnius University, Saulėtekio Al. 7, LT-10257 Vilnius, Lithuania; (K.D.); (V.D.); (A.P.); (K.Ž.)
| | - Karolina Žukaitė
- Life Sciences Center, Vilnius University, Saulėtekio Al. 7, LT-10257 Vilnius, Lithuania; (K.D.); (V.D.); (A.P.); (K.Ž.)
| | - Žydrūnė Visockienė
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio St. 21, LT-03101 Vilnius, Lithuania;
- Vilnius University Hospital Santaros Klinikos, Santariškių St. 2, LT-08661 Vilnius, Lithuania
| | - Laura Šiaulienė
- Life Sciences Center, Vilnius University, Saulėtekio Al. 7, LT-10257 Vilnius, Lithuania; (K.D.); (V.D.); (A.P.); (K.Ž.)
- Vilnius University Hospital Santaros Klinikos, Santariškių St. 2, LT-08661 Vilnius, Lithuania
| |
Collapse
|
7
|
Shen W, Hu T, Wang X, Zhang X, Lu J, Lu H, Hu Y, Liu F. Hydrogen sulfide alleviates neural degeneration probably by reducing oxidative stress and aldose reductase expression. J Cell Mol Med 2024; 28:e70192. [PMID: 39517099 PMCID: PMC11549026 DOI: 10.1111/jcmm.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
We investigated the potential role of hydrogen sulfide (H2S) as a novel therapy for diabetic peripheral neuropathy in diabetic rats. A single dose of streptozotocin (60 mg/kg) was applied to the rats for the diabetic rat models. Sodium bisulfide (50 μmol/kg/d) was injected intraperitoneally daily for 2 weeks as H2S treatment. Electromyogram, haematoxylin eosin staining, transmission electron microscopy, western blotting and enzyme-linked immunosorbent assay were then performed. H2S treatment did not affect body weights, blood glucose levels or liver function of diabetic rats, while the creatine levels of the H2S-treated diabetic rats decreased compared with the diabetic control rats. H2S treatment for 2 weeks did not affect the sciatic nerve conduction velocity of the diabetic rats. However, H2S treatment relieved neurons loss and cell atrophy of dorsal root ganglion, and axon degeneration of sciatic nerve in diabetic rats. Serum super oxide dismutase (SOD) levels and SOD2 levels in the sciatic nerve of diabetic rats were lower than the non-diabetic rats but were restored after H2S treatment. Serum and sciatic nerve homogenate malondialdehyde and aldose reductase expression were higher in diabetic rats but decreased significantly after H2S treatment. Our study revealed that H2S alleviates neural degeneration in diabetic rats probably by reducing oxidative stress and downregulating aldose reductase expression.
Collapse
Affiliation(s)
- Wenqi Shen
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Tingyu Hu
- Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Xin Wang
- Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Xiaoyan Zhang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Junxi Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Huijuan Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Yanyun Hu
- Department of Endocrinology and Metabolism, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s HospitalShanghai Jiaotong UniversityShanghaiChina
- Department of Endocrinology and Metabolism, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Zhong J, Lin X, Zheng X, Zhou Y, Huang H, Xu L. Diminished levels of insulin-like growth factor-1 may be a risk factor for peripheral neuropathy in type 2 diabetes patients. J Diabetes Investig 2024; 15:1259-1265. [PMID: 38923403 PMCID: PMC11363116 DOI: 10.1111/jdi.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS/INTRODUCTION To investigate risk factors for diabetic peripheral neuropathy (DPN) and to explore the connection between insulin-like growth factor-1 (IGF-1) and DPN in individuals with type 2 diabetes. MATERIALS AND METHODS A total of 790 patients with type 2 diabetes participated in a cross-sectional study, divided into two groups: those with DPN (DPN) and those without DPN (non-DPN). Blood samples were taken to measure IGF-1 levels and other biochemical markers. Participants underwent nerve conduction studies and quantitative sensory testing. RESULTS Patients with DPN exhibited significantly lower levels of IGF-1 compared with non-DPN patients (P < 0.001). IGF-1 was positively correlated with the average amplitude of both motor (P < 0.05) and sensory nerves (P < 0.05), but negatively correlated with the vibration perception threshold (P < 0.05). No significant difference was observed between IGF-1 and nerve conduction velocity (P > 0.05), or the temperature detection threshold (P > 0.05). Multivariate regression analysis identified diabetes duration, HbA1c, and the low levels of IGF-1 as independent risk factors (P < 0.001). Receiver operating characteristic analysis determined that at 8 years duration of diabetes, 8.5% (69.4 mmol/mol) HbA1c and 120 ng/mL IGF-1, the optimal cut-off points, indicated DPN (P < 0.001). CONCLUSIONS A reduction of IGF-1 in patients with DPN suggests a potential protective role against axon injury in large fiber nerves of type 2 diabetes patients.
Collapse
Affiliation(s)
- Jingyi Zhong
- Department of Endocrinology, Shenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaopu Lin
- Department of Huiqiao Medical Centre, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaobin Zheng
- Department of Endocrinology, Shenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yanting Zhou
- Department of Endocrinology, Shenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haishan Huang
- Department of Endocrinology, Shenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Lingling Xu
- Department of Endocrinology, Shenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
9
|
Yapislar H, Gurler EB. Management of Microcomplications of Diabetes Mellitus: Challenges, Current Trends, and Future Perspectives in Treatment. Biomedicines 2024; 12:1958. [PMID: 39335472 PMCID: PMC11429415 DOI: 10.3390/biomedicines12091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by high blood sugar levels, which can lead to severe health issues if not managed effectively. Recent statistics indicate a significant global impact, with 463 million adults diagnosed worldwide and this projected to rise to 700 million by 2045. Type 1 diabetes is an autoimmune disorder where the immune system attacks pancreatic beta cells, reducing insulin production. Type 2 diabetes is primarily due to insulin resistance. Both types of diabetes are linked to severe microvascular and macrovascular complications if unmanaged. Microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy, result from damage to small blood vessels and can lead to organ and tissue dysfunction. Chronic hyperglycemia plays a central role in the onset of these complications, with prolonged high blood sugar levels causing extensive vascular damage. The emerging treatments and current research focus on various aspects, from insulin resistance to the intricate cellular damage induced by glucose toxicity. Understanding and intervening in these pathways are critical for developing effective treatments and managing diabetes long term. Furthermore, ongoing health initiatives, such as increasing awareness, encouraging early detection, and improving treatments, are in place to manage diabetes globally and mitigate its impact on health and society. These initiatives are a testament to the collective effort to combat this global health challenge.
Collapse
Affiliation(s)
- Hande Yapislar
- Department of Physiology, Faculty of Medicine, Acibadem University, 34752 Istanbul, Türkiye
| | - Esra Bihter Gurler
- Department of Basic Sciences, Faculty of Dentistry, Istanbul Galata University, 34430 Istanbul, Türkiye
| |
Collapse
|
10
|
Tu Z, Du J, Ge X, Peng W, Shen L, Xia L, Jiang X, Hu F, Huang S. Triglyceride Glucose Index for the Detection of Diabetic Kidney Disease and Diabetic Peripheral Neuropathy in Hospitalized Patients with Type 2 Diabetes. Diabetes Ther 2024; 15:1799-1810. [PMID: 38907937 PMCID: PMC11263315 DOI: 10.1007/s13300-024-01609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024] Open
Abstract
INTRODUCTION The triglyceride-glucose index (TyG) has been identified as a dependable and simple indicator marker of insulin resistance (IR). Research has demonstrated a correlation between macrovascular complications and TyG. However, limited research exists regarding the relationship between TyG and diabetic microvascular complications. Consequently, the objective of this study is to investigate the association between TyG and diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN). METHODS This is a cross-sectional, observational study. A total of 2048 patients from Tongren Hospital, Shanghai Jiao Tong University School of Medicine were enrolled. The primary outcomes are DKD and DPN. Quantile regression analysis was employed to investigate the implicit factors of TyG quartiles. Subsequently, based on implicit factors, logistic regression models were constructed to further examine the relationship between TyG and DKD and DPN. RESULTS In the baseline, TyG exhibited higher values across patients with DKD, DPN, and co-existence of DKD and DPN (DKD + DPN) in type 2 diabetes (T2D). Univariate logistic regressions demonstrated a significant association between an elevated TyG and an increased risk of DKD (OR = 1.842, [95% CI] 1.317-2.578, P for trend < 0.01), DPN (OR = 1.516, [95% CI] 1.114-2.288, P for trend < 0.05), DKD + DPN (OR = 2.088, [95% CI] 1.429-3.052, P for trend < 0.05). Multivariable logistic regression models suggested a statistically significant increase in the risk of DKD (OR = 1.581, [95% CI] 1.031-2.424, p < 0.05), DKD + DPN (OR = 1.779, [95% CI] 1.091-2.903, p < 0.05) after adjusting the implicit factors of TyG quartiles. However, no significant relationship was observed between TyG and DPN in the multivariable regression analysis. CONCLUSIONS Elevated TyG was significantly associated with an increased risk of DKD in T2D, but no significant relationship was shown with DPN. This finding provided further evidence for the clinical significance of integrating TyG into the initial assessment of diabetic microvascular complications.
Collapse
Affiliation(s)
- Zhihui Tu
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, China
| | - Juan Du
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, China
| | - Xiaoxu Ge
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, China
| | - Wenfang Peng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, China
| | - Lisha Shen
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, China
| | - Lili Xia
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, China
| | - Xiaohong Jiang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, China.
| | - Fan Hu
- Shanghai Jiao Tong University School of Medicine, No. 227, Chongqing South Road, Huangpu District, Shanghai, China.
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, China.
| |
Collapse
|
11
|
Zhang X, Zhang X, Li X, Zhao X, Wei G, Shi J, Yang Y, Fan S, Zhao J, Zhu K, Du J, Guo J, Cao W. Association between serum uric acid levels and diabetic peripheral neuropathy in type 2 diabetes: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1416311. [PMID: 39072278 PMCID: PMC11272597 DOI: 10.3389/fendo.2024.1416311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Background The evidence supporting a connection between elevated serum uric acid (SUA) levels and diabetic peripheral neuropathy (DPN) is controversial. The present study performed a comprehensive evaluation of this correlation by conducting a systematic review and meta-analysis of relevant research. Method PubMed, Web of Science (WOS), Embase, and the Cochrane Library were searched for published literature from the establishment of each database to January 8, 2024. In total, 5 cohort studies and 15 cross-sectional studies were included, and 2 researchers independently screened and extracted relevant data. R 4.3.0 was used to evaluate the included literature. The present meta-analysis evaluated the relationship between SUA levels and the risk of DPN in type 2 diabetes (T2DM) by calculating the ratio of means (RoM) and 95% confidence intervals (CIs) using the method reported by JO Friedrich, and it also analyzed continuous outcome measures using standardized mean differences (SMDs) and 95% CIs to compare SUA levels between DPN and non-DPN groups. Funnel plot and Egger's test were used to assess publication bias. Sensitivity analysis was conducted by sequentially removing each study one-by-one. Results The meta-analysis included 20 studies, with 12,952 T2DM patients with DPN and 16,246 T2DM patients without DPN. There was a significant correlation between SUA levels and the risk of developing DPN [odds ratio (OR) = 1.23; 95% CI: 1.07-1.41; p = 0.001]. Additionally, individuals with DPN had higher levels of SUA compared to those without DPN (SMD = 0.4; 95% CI: -0.11-0.91; p < 0.01). Conclusion T2DM patients with DPN have significantly elevated SUA levels, which correlate with a heightened risk of peripheral neuropathy. Hyperuricemia (HUA) may be a risk indicator for assessing the risk of developing DPN in T2DM patients. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42024500373.
Collapse
Affiliation(s)
- Xieyu Zhang
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Xinwen Zhang
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Xiaoxu Li
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Xin Zhao
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Guangcheng Wei
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Jinjie Shi
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Yue Yang
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Su Fan
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Jiahe Zhao
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Ke Zhu
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Jieyang Du
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| | - Junyi Guo
- Robotics Movement Department, Amazon, Boston, MA, United States
| | - Wei Cao
- Department of Rheumatology, Wangjing Hospital, China Academy of Chinese Medicine Science, Beijing, China
| |
Collapse
|
12
|
Valenzuela-Fuenzalida JJ, López-Chaparro M, Barahona-Vásquez M, Campos-Valdes J, Cordero Gonzalez J, Nova-Baeza P, Orellana-Donoso M, Suazo-Santibañez A, Oyanedel-Amaro G, Gutiérrez Espinoza H. Effectiveness of Duloxetine versus Other Therapeutic Modalities in Patients with Diabetic Neuropathic Pain: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2024; 17:856. [PMID: 39065707 PMCID: PMC11280092 DOI: 10.3390/ph17070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Objectives: Diabetic peripheral neuropathy (DPN) is a chronic complication of diabetes mellitus (DM) with symptoms like intense pain and impaired quality of life. This condition has no treatment; instead, the pain is managed with various antidepressants, including duloxetine. The aim of this study is to analyze the evidence on the efficacy of duloxetine in the management of DPN. Methods: A systematic search in different databases was conducted using the keywords "diabetic neuropathy", "duloxetine therapy", "neuropathic pain", and "Diabetes Mellitus". Finally, eight studies were included in this meta-analysis. Results: All articles comparing duloxetine at different doses vs. a placebo reported significant differences in favor of duloxetine on pain scales like 24 h Average Pain Severity (standardized mean difference [SMD] = -1.06, confidence interval [CI] = -1.09 to -1.03, and p < 0.00001) and BPI Severity (SMD = -0.70, CI = -0.72 to -0.68, and p < 0.00001), among others. A total of 75% of the meta-analyses of studies comparing duloxetine at different doses showed a tendency in favor of the 120 mg/d dose. There were significant differences in favor of duloxetine when compared to routine care on the Euro Quality of Life (SMD = -0.04, CI = -0.04 to -0.03, and p < 0.00001) and SF-36 Survey (SMD = -5.86, CI = -6.28 to -5.44, and p < 0.00001) scales. There were no significant differences on the visual analog scale (VAS) when comparing duloxetine and gabapentin. Conclusions: Duloxetine appears to be effective in the management of DPN in different pain, symptom improvement, and quality of life scales.
Collapse
Affiliation(s)
- Juan José Valenzuela-Fuenzalida
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (M.L.-C.); (M.B.-V.); (J.C.-V.); (J.C.G.); (P.N.-B.); (M.O.-D.)
- Departamento de Ciencias Química y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Michelle López-Chaparro
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (M.L.-C.); (M.B.-V.); (J.C.-V.); (J.C.G.); (P.N.-B.); (M.O.-D.)
| | - Marisol Barahona-Vásquez
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (M.L.-C.); (M.B.-V.); (J.C.-V.); (J.C.G.); (P.N.-B.); (M.O.-D.)
| | - Javiera Campos-Valdes
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (M.L.-C.); (M.B.-V.); (J.C.-V.); (J.C.G.); (P.N.-B.); (M.O.-D.)
| | - Javiera Cordero Gonzalez
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (M.L.-C.); (M.B.-V.); (J.C.-V.); (J.C.G.); (P.N.-B.); (M.O.-D.)
| | - Pablo Nova-Baeza
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (M.L.-C.); (M.B.-V.); (J.C.-V.); (J.C.G.); (P.N.-B.); (M.O.-D.)
| | - Mathias Orellana-Donoso
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (M.L.-C.); (M.B.-V.); (J.C.-V.); (J.C.G.); (P.N.-B.); (M.O.-D.)
- Escuela de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
| | | | - Gustavo Oyanedel-Amaro
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7501019, Chile;
| | | |
Collapse
|
13
|
Atmaca A, Ketenci A, Sahin I, Sengun IS, Oner RI, Erdem Tilki H, Adas M, Soyleli H, Demir T. Expert opinion on screening, diagnosis and management of diabetic peripheral neuropathy: a multidisciplinary approach. Front Endocrinol (Lausanne) 2024; 15:1380929. [PMID: 38952393 PMCID: PMC11215140 DOI: 10.3389/fendo.2024.1380929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
The proposed expert opinion aimed to address the current knowledge on conceptual, clinical, and therapeutic aspects of diabetic peripheral neuropathy (DPN) and to provide a guidance document to assist clinicians for the best practice in DPN care. The participating experts consider the suspicion of the disease by clinicians as a key factor in early recognition and diagnosis, emphasizing an improved awareness of the disease by the first-admission or referring physicians. The proposed "screening and diagnostic" algorithm involves the consideration of DPN in a patient with prediabetes or diabetes who presents with neuropathic symptoms and/or signs of neuropathy in the presence of DPN risk factors, with careful consideration of laboratory testing to rule out other causes of distal symmetric peripheral neuropathy and referral for a detailed neurological work-up for a confirmative test of either small or large nerve fiber dysfunction in atypical cases. Although, the first-line interventions for DPN are currently represented by optimized glycemic control (mainly for type 1 diabetes) and multifactorial intervention (mainly for type 2 diabetes), there is a need for individualized pathogenesis-directed treatment approaches for DPN. Alpha-lipoic acid (ALA) seems to be an important first-line pathogenesis-directed agent, given that it is a direct and indirect antioxidant that works with a strategy targeted directly against reactive oxygen species and indirectly in favor of endogenous antioxidant capacity for improving DPN conditions. There is still a gap in existing research in the field, necessitating well-designed, robust, multicenter clinical trials with sensitive endpoints and standardized protocols to facilitate the diagnosis of DPN via a simple and effective algorithm and to track progression of disease and treatment response. Identification of biomarkers/predictors that would allow an individualized approach from a potentially disease-modifying perspective may provide opportunities for novel treatments that would be efficacious in early stages of DPN, and may modify the natural course of the disease. This expert opinion document is expected to increase awareness among physicians about conceptual, clinical, and therapeutic aspects of DPN and to assist them in timely recognition of DPN and translating this information into their clinical practice for best practice in the management of patients with DPN.
Collapse
Affiliation(s)
- Aysegul Atmaca
- Department of Endocrinology and Metabolism, Ondokuz Mayis University Faculty of Medicine, Samsun, Türkiye
| | - Aysegul Ketenci
- Department of Physical Medicine and Rehabilitation, Koc University Faculty of Medicine, Istanbul, Türkiye
| | - Ibrahim Sahin
- Department of Endocrinology and Metabolism, Inonu University Faculty of Medicine, Malatya, Türkiye
| | - Ihsan Sukru Sengun
- Department of Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Türkiye
| | - Ramazan Ilyas Oner
- Department of Internal Medicine, Adiyaman University Faculty of Medicine, Adiyaman, Türkiye
| | - Hacer Erdem Tilki
- Department of Neurology, Ondokuz Mayis University Faculty of Medicine, Samsun, Türkiye
| | - Mine Adas
- Department of Endocrinology, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Türkiye
| | - Hatice Soyleli
- Department of Medical Affairs, Abdi Ibrahim Pharmaceuticals, Istanbul, Türkiye
| | - Tevfik Demir
- Department of Endocrinology and Metabolism, Dokuz Eylul University Faculty of Medicine, Izmir, Türkiye
| |
Collapse
|
14
|
Cheng Y, Chen Y, Li K, Liu S, Pang C, Gao L, Xie J, Wenjing LV, Yu H, Deng B. How inflammation dictates diabetic peripheral neuropathy: An enlightening review. CNS Neurosci Ther 2024; 30:e14477. [PMID: 37795833 PMCID: PMC11017439 DOI: 10.1111/cns.14477] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) constitutes a debilitating complication associated with diabetes. Although, the past decade has seen rapid developments in understanding the complex etiology of DPN, there are no approved therapies that can halt the development of DPN, or target the damaged nerve. Therefore, clarifying the pathogenesis of DPN and finding effective treatment are the crucial issues for the clinical management of DPN. AIMS This review is aiming to summary the current knowledge on the pathogenesis of DPN, especially the mechanism and application of inflammatory response. METHODS We systematically summarized the latest studies on the pathogenesis and therapeutic strategies of diabetic neuropathy in PubMed. RESULTS In this seminal review, the underappreciated role of immune activation in the progression of DPN is scrutinized. Novel insights into the inflammatory regulatory mechanisms of DPN have been unearthed, illuminating potential therapeutic strategies of notable clinical significance. Additionally, a nuanced examination of DPN's complex etiology, including aberrations in glycemic control and insulin signaling pathways, is presented. Crucially, an emphasis has been placed on translating these novel understandings into tangible clinical interventions to ameliorate patient outcomes. CONCLUSIONS This review is distinguished by synthesizing cutting-edge mechanisms linking inflammation to DPN and identifying innovative, inflammation-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yifan Cheng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Yinuo Chen
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Kezheng Li
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Shuwei Liu
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Chunyang Pang
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Lingfei Gao
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jiali Xie
- Department of Neurology, Shanghai East HospitalTongji UniversityShanghaiP.R. China
| | - L. V. Wenjing
- Department of GeriatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandong ProvinceChina
| | - Huan Yu
- Department of PediatricsSecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Binbin Deng
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
15
|
Li Y, Dang Q, Shen Y, Guo L, Liu C, Wu D, Fang L, Leng Y, Min W. Therapeutic effects of a walnut-derived peptide on NLRP3 inflammasome activation, synaptic plasticity, and cognitive dysfunction in T2DM mice. Food Funct 2024; 15:2295-2313. [PMID: 38323487 DOI: 10.1039/d3fo05076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
NLRP3 inflammasome activation plays a key role in the development of diabetes-induced cognitive impairment. However, strategies to inhibit NLRP3 inflammasome activation remain elusive. Herein, we evaluated the impact of a walnut-derived peptide, TWLPLPR (TW-7), on cognitive impairment in high-fat diet/streptozotocin-induced type 2 diabetes mellitus (T2DM) mice and explored its underlying mechanisms in high glucose-induced HT-22 cells. In the Morris water maze test, TW-7 alleviated cognitive deficits in mice; this was confirmed at the level of synaptic structure and dendritic spine density in the mouse hippocampus using transmission electron microscopy and Golgi staining. TW-7 increased the expression of synaptic plasticity-related proteins and suppressed the NEK7/NLRP3 inflammatory pathway, as determined by western blotting and immunofluorescence analysis. The mechanism of action of TW-7 was verified in an HT-22 cell model of high glucose-induced insulin resistance. Collectively, TW-7 could regulate T2DM neuroinflammation and synaptic function-induced cognitive impairment by inhibiting NLRP3 inflammasome activation and improving synaptic plasticity.
Collapse
Affiliation(s)
- Yanru Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Yue Shen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Linxin Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Weihong Min
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, P.R. China.
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Hangzhou 311300, China
| |
Collapse
|
16
|
Ran GL, Li YP, Lu LC, Lan SH. Disease-modifying therapies for diabetic peripheral neuropathy: A systematic review and meta-analysis of randomized controlled trials. J Diabetes Complications 2024; 38:108691. [PMID: 38330524 DOI: 10.1016/j.jdiacomp.2024.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Alpha-lipoic acid, epalrestat, and mecobalamin are widely used as monotherapies for diabetic peripheral neuropathy. However, whether a triple-combination therapy with these three drugs is superior to monotherapy or dual therapy remains debatable. METHODS Nine randomized controlled trials were identified through a search on electronic databases such as PubMed, Web of Science, and Cochrane Library. The trial participants (N = 1153) were divided into the experimental group who received the triple-combination therapy and the control group who received conventional or dual therapy with the aforementioned drugs. RESULTS Therapeutic outcomes were better in the experimental group than in the control group (odds ratio: 3.74; 95 % confidence interval: 2.57-5.45; I2 = 0 %; p < 0.00001). No statistic difference was noted in adverse effects. Compared with the control group, the experimental group exhibited significant improvements in median motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), peroneal MNCV, peroneal SNCV, and vibration perception thresholds (VPT) in the left and right lower limbs. In the control group, a subgroup analysis by treatment strategy revealed similar improvements in total efficacy, MNCV, and SNCV. CONCLUSIONS For diabetic peripheral neuropathy, the triple-combination therapy may be more effective than monotherapy or dual therapy.
Collapse
Affiliation(s)
- Gui-Lin Ran
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan-Ping Li
- Affiliated Hospital of Putian University, Putian 351100, China
| | - Li-Chin Lu
- School of Management, Putian University, Putian 351100, China
| | - Shao-Huan Lan
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China; School of Pharmaceutical Sciences and Medical Technology, Putian University, Putian 351100, China.
| |
Collapse
|
17
|
Yang X, Xue C, Chen K, Gao D, Wang H, Tang C. Characteristics of elderly diabetes patients: focus on clinical manifestation, pathogenic mechanism, and the role of traditional Chinese medicine. Front Pharmacol 2024; 14:1339744. [PMID: 38273819 PMCID: PMC10808572 DOI: 10.3389/fphar.2023.1339744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Diabetes mellitus has become a major public health issue globally, putting an enormous burden on global health systems and people. Among all diseased groups, a considerable part of patients are elderly, while their clinical features, pathogenic processes, and medication regimens are different from patients of other ages. Despite the availability of multiple therapies and techniques, there are still numerous elderly diabetes patients suffering from poor blood glucose control, severe complications, and drug adverse effects, which negatively affect the quality of life in their golden years. Traditional Chinese Medicine (TCM) has been widely used in the treatment of diabetes for several decades, and its relevant clinical practice has confirmed that it has a satisfactory effect on alleviating clinical symptoms and mitigating the progression of complications. Chinese herbal medicine and its active components were used widely with obvious clinical advantages by multiple targets and signaling pathways. However, due to the particular features of elderly diabetes, few studies were conducted to explore Traditional Chinese Medicine intervention on elderly diabetic patients. This study reviews the research on clinical features, pathogenic processes, treatment principles, and TCM treatments, hoping to provide fresh perspectives on the prevention and management strategies for elderly diabetes.
Collapse
Affiliation(s)
- Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chongxiang Xue
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongyang Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 14:1265372. [PMID: 38264279 PMCID: PMC10803883 DOI: 10.3389/fendo.2023.1265372] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) refers to the development of peripheral nerve dysfunction in patients with diabetes when other causes are excluded. Diabetic distal symmetric polyneuropathy (DSPN) is the most representative form of DPN. As one of the most common complications of diabetes, its prevalence increases with the duration of diabetes. 10-15% of newly diagnosed T2DM patients have DSPN, and the prevalence can exceed 50% in patients with diabetes for more than 10 years. Bilateral limb pain, numbness, and paresthesia are the most common clinical manifestations in patients with DPN, and in severe cases, foot ulcers can occur, even leading to amputation. The etiology and pathogenesis of diabetic neuropathy are not yet completely clarified, but hyperglycemia, disorders of lipid metabolism, and abnormalities in insulin signaling pathways are currently considered to be the initiating factors for a range of pathophysiological changes in DPN. In the presence of abnormal metabolic factors, the normal structure and function of the entire peripheral nervous system are disrupted, including myelinated and unmyelinated nerve axons, perikaryon, neurovascular, and glial cells. In addition, abnormalities in the insulin signaling pathway will inhibit neural axon repair and promote apoptosis of damaged cells. Here, we will discuss recent advances in the study of DPN mechanisms, including oxidative stress pathways, mechanisms of microvascular damage, mechanisms of damage to insulin receptor signaling pathways, and other potential mechanisms associated with neuroinflammation, mitochondrial dysfunction, and cellular oxidative damage. Identifying the contributions from each pathway to neuropathy and the associations between them may help us to further explore more targeted screening and treatment interventions.
Collapse
Affiliation(s)
- Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
19
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
20
|
Yeung AM, Huang J, Nguyen KT, Xu NY, Hughes LT, Agrawal BK, Ejskjaer N, Klonoff DC. Painful Diabetic Neuropathy: The Need for New Approaches. J Diabetes Sci Technol 2024; 18:159-167. [PMID: 36305521 PMCID: PMC10899841 DOI: 10.1177/19322968221132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Painful diabetic neuropathy is a common vexing problem for people with diabetes and a costly problem for society. The pathophysiology is not well understood, and no safe and effective mechanistically-based treatment has been identified. Poor glycemic control is a risk factor for painful diabetic neuropathy. Excessive intraneuronal glucose in people with diabetes can be shunted away from physiological glycolysis into multiple pathological pathways associated with neuropathy and pain. The first three treatments that are traditionally offered consist of risk factor reduction, lifestyle modifications, and pharmacological therapy, which includes only three drugs that are approved for this indication by the United States Food and Drug Administration. All of these traditional treatments are often inadequate for relieving neuropathic pain, and thus, new approaches are needed. Modern devices based on neuromodulation technology, which act directly on the nervous system, have been recently cleared by the United States Food and Drug Administration for painful diabetic neuropathy and offer promise as next-in-line therapy when traditional therapies fail.
Collapse
Affiliation(s)
| | | | | | - Nicole Y. Xu
- Diabetes Technology Society, Burlingame, CA, USA
| | - Lorenzo T. Hughes
- Balance Health, San Francisco, CA, USA
- Mills-Peninsula Medical Center, Burlingame, CA, USA
| | | | - Niels Ejskjaer
- Steno Diabetes Center North Denmark and Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David C. Klonoff
- Diabetes Technology Society, Burlingame, CA, USA
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
21
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
22
|
Kaur M, Misra S, Swarnkar P, Patel P, Das Kurmi B, Das Gupta G, Singh A. Understanding the role of hyperglycemia and the molecular mechanism associated with diabetic neuropathy and possible therapeutic strategies. Biochem Pharmacol 2023; 215:115723. [PMID: 37536473 DOI: 10.1016/j.bcp.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Diabetic neuropathy is a neuro-degenerative disorder that encompasses numerous factors that impact peripheral nerves in the context of diabetes mellitus (DM). Diabetic peripheral neuropathy (DPN) is very prevalent and impacts 50% of diabetic patients. DPN is a length-dependent peripheral nerve lesion that primarily causes distal sensory loss, discomfort, and foot ulceration that may lead to amputation. The pathophysiology is yet to be fully understood, but current literature on the pathophysiology of DPN revolves around understanding various signaling cascades involving the polyol, hexosamine, protein-kinase C, AGE, oxidative stress, and poly (ADP ribose) polymerase pathways. The results of research have suggested that hyperglycemia target Schwann cells and in severe cases, demyelination resulting in central and peripheral sensitization is evident in diabetic patients. Various diagnostic approaches are available, but detection at an early stage remains a challenge. Traditional analgesics and opioids that can be used "as required" have not been the mainstay of treatment thus far. Instead, anticonvulsants and antidepressants that must be taken routinely over time have been the most common treatments. For now, prolonging life and preserving the quality of life are the ultimate goals of diabetes treatment. Furthermore, the rising prevalence of DPN has substantial consequences for occupational therapy because such therapy is necessary for supporting wellness, warding off other chronic-diseases, and avoiding the development of a disability; this is accomplished by engaging in fulfilling activities like yoga, meditation, and physical exercise. Therefore, occupational therapy, along with palliative therapy, may prove to be crucial in halting the onset of neuropathic-symptoms and in lessening those symptoms once they have occurred.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Sakshi Misra
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Priyanka Swarnkar
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India.
| |
Collapse
|
23
|
Kender Z, von Rauchhaupt E, Schwarz D, Tsilingiris D, Schimpfle L, Bartl H, Longo VD, Bendszus M, Kopf S, Herzig S, Heiland S, Szendroedi J, Sulaj A. Six-month periodic fasting does not affect somatosensory nerve function in type 2 diabetes patients. Front Endocrinol (Lausanne) 2023; 14:1143799. [PMID: 37251671 PMCID: PMC10213657 DOI: 10.3389/fendo.2023.1143799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Background and aim Current strategies for preventing diabetic sensorimotor polyneuropathy (DSPN) are limited mainly to glucose control but rapid decrease of glycemia can lead to acute onset or worsening of DSPN. The aim of this study was to examine the effects of periodic fasting on somatosensory nerve function in patients with type 2 diabetes (T2D). Study design and methods Somatosensory nerve function was assessed in thirty-one patients with T2D (HbA1c 7.8 ± 1.3% [61.4 ± 14.3 mmol/mol]) before and after a six-month fasting-mimicking diet (FMD; n=14) or a control Mediterranean diet (M-diet; n=17). Neuropathy disability score (NDS), neuropathy symptoms score (NSS), nerve conduction velocity and quantitative sensory testing (QST) were analyzed. 6 participants of the M-Diet group and 7 of the FMD group underwent diffusion-weighted high-resolution magnetic resonance neurography (MRN) of the right leg before and after the diet intervention. Results Clinical neuropathy scores did not differ between study groups at baseline (64% in the M-Diet group and 47% in the FMD group had DSPN) and no change was found after intervention. The differences in sensory NCV and sensory nerve action potential (SNAP) of sural nerve were comparable between study groups. Motor NCV of tibial nerve decreased by 12% in the M-Diet group (P=0.04), but did not change in the FMD group (P=0.39). Compound motor action potential (CMAP) of tibial nerve did not change in M-Diet group (P=0.8) and increased in the FMD group by 18% (P=0.02). Motor NCV and CMAP of peroneal nerve remained unchanged in both groups. In QST M-diet-group showed a decrease by 45% in heat pain threshold (P=0.02), FMD group showed no change (P=0.50). Changes in thermal detection, mechanical detection and mechanical pain did not differ between groups. MRN analysis showed stable fascicular nerve lesions irrespective of the degree of structural pathology. Fractional anisotropy and T2-time did not change in both study groups, while a correlation with the clinical degree of DSPN could be confirmed for both. Conclusions Our study shows that six-month periodic fasting was safe in preserving nerve function and had no detrimental effects on somatosensory nerve function in T2D patients. Clinical trial registration https://drks.de/search/en/trial/DRKS00014287, identifier DRKS00014287.
Collapse
Affiliation(s)
- Zoltan Kender
- Clinic for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Ekaterina von Rauchhaupt
- Clinic for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dimitrios Tsilingiris
- Clinic for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Lukas Schimpfle
- Clinic for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Hannelore Bartl
- Clinic for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Valter D. Longo
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- FIRC Institute of Molecular Oncology, Italian Foundation for Cancer Research Institute of Molecular Oncology, Milan, Italy
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Clinic for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Stephan Herzig
- German Center of Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Szendroedi
- Clinic for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Alba Sulaj
- Clinic for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
24
|
Nkonge KM, Nkonge DK, Nkonge TN. Screening for diabetic peripheral neuropathy in resource-limited settings. Diabetol Metab Syndr 2023; 15:55. [PMID: 36945043 PMCID: PMC10031885 DOI: 10.1186/s13098-023-01032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Diabetic neuropathy is the most common microvascular complication of diabetes mellitus and a major risk factor for diabetes-related lower-extremity complications. Diffuse neuropathy is the most frequently encountered pattern of neurological dysfunction and presents clinically as distal symmetrical sensorimotor polyneuropathy. Due to the increasing public health significance of diabetes mellitus and its complications, screening for diabetic peripheral neuropathy is essential. Consequently, a review of the principles that guide screening practices, especially in resource-limited clinical settings, is urgently needed. MAIN BODY Numerous evidence-based assessments are used to detect diabetic peripheral neuropathy. In accordance with current guideline recommendations from the American Diabetes Association, International Diabetes Federation, International Working Group on the Diabetic Foot, and National Institute for Health and Care Excellence, a screening algorithm for diabetic peripheral neuropathy based on multiphasic clinical assessment, stratification according to risk of developing diabetic foot syndrome, individualized treatment, and scheduled follow-up is suggested for use in resource-limited settings. CONCLUSIONS Screening for diabetic peripheral neuropathy in resource-limited settings requires a practical and comprehensive approach in order to promptly identify affected individuals. The principles of screening for diabetic peripheral neuropathy are: multiphasic approach, risk stratification, individualized treatment, and scheduled follow-up. Regular screening for diabetes-related foot disease using simple clinical assessments may improve patient outcomes.
Collapse
|
25
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
26
|
Zhao LM, Chen X, Zhang YM, Qu ML, Selvarajah D, Tesfaye S, Yang FX, Ou CY, Liao WH, Wu J. Changed cerebral function and morphology serve as neuroimaging evidence for subclinical type 2 diabetic polyneuropathy. Front Endocrinol (Lausanne) 2022; 13:1069437. [PMID: 36506054 PMCID: PMC9729333 DOI: 10.3389/fendo.2022.1069437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Central and peripheral nervous systems are all involved in type 2 diabetic polyneuropathy mechanisms, but such subclinical changes and associations remain unknown. This study aims to explore subclinical changes of the central and peripheral and unveil their association. Methods A total of 55 type-2 diabetes patients consisting of symptomatic (n = 23), subclinical (n = 12), and no polyneuropathy (n = 20) were enrolled in this study. Cerebral morphology, function, peripheral electrophysiology, and clinical information were collected and assessed using ANOVA and post-hoc analysis. Gaussian random field correction was used for multiple comparison corrections. Pearson/Spearman correlation analysis was used to evaluate the association of the cerebral with the peripheral. Results When comparing the subclinical group with no polyneuropathy groups, no statistical differences were shown in peripheral evaluations except amplitudes of tibial nerves. At the same time, functional connectivity from the orbitofrontal to bilateral postcentral and middle temporal cortex increased significantly. Gray matter volume of orbitofrontal and its functional connectivity show a transient elevation in the subclinical group compared with the symptomatic group. Besides, gray matter volume in the orbitofrontal cortex negatively correlated with the Neuropathy Symptom Score (r = -0.5871, p < 0.001), Neuropathy Disability Score (r = -0.3682, p = 0.009), and Douleur Neuropathique en 4 questions (r = -0.4403, p = 0.003), and also found correlated positively with bilateral peroneal amplitude (r > 0.4, p < 0.05) and conduction velocities of the right sensory sural nerve(r = 0.3181, p = 0.03). Similarly, functional connectivity from the orbitofrontal to the postcentral cortex was positively associated with cold detection threshold (r = 0.3842, p = 0.03) and negatively associated with Neuropathy Symptom Score (r = -0.3460, p = 0.01). Discussion Function and morphology of brain changes in subclinical type 2 diabetic polyneuropathy might serve as an earlier biomarker. Novel insights from subclinical stage to investigate the mechanism of type 2 diabetic polyneuropathy are warranted.
Collapse
Affiliation(s)
- Lin-Mei Zhao
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xin Chen
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - You-Ming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Min-Li Qu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dinesh Selvarajah
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Fang-Xue Yang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Chu-Ying Ou
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei-Hua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Fırat Oğuz E, Eren F, Neşelioğlu S, Akbıyık F, Erel Ö. Comparison of three different HbA1c measurement methods - the Atellica ®CH930, Capillary 3 Tera, and BioRad Variant Turbo II. Scandinavian Journal of Clinical and Laboratory Investigation 2022; 82:218-225. [PMID: 35341436 DOI: 10.1080/00365513.2022.2051070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM HbA1c measurement is very useful for the follow-up and detection of glycemic disorder, since it is easier and faster test and is independent of the patient's fasting status. In this study, we aimed to perform the comparative evaluation of 3 different methods for HbA1c measurement including capillary electrophoresis, immunoturbidimetric assay and high-performance liquid chromatography-HPLC. MATERIALS AND METHODS This study comprised 134 leftover whole blood samples obtained from the subjects submitted for routine HbA1c testing. All blood samples were collected in EDTA-containing vacutainer tubes. The HbA1c levels were measured simultaneously using three different methods. Bias estimation, method agreement and concordance between the pairwise methods comparisons were evaluated by Bland-Altman plot and Passing-Bablok regression test. RESULTS HbA1c levels ranged from 3.8% to 13.4% and measured by three different methods to make the comparison. The median values of samples based on immunoturbidimetric method (6.05%, IQR = 1.80) were higher than capillary electrophoresis method (5.90%, IQR = 1.80) and HPLC (5.85%, IQR = 1.80) method. The study group was classified into three subgroups based on the HbA1c levels measured with the HPLC method: Group 1 (n = 57) was composed of subjects with HbA1c levels less than 5.7%, Group 2 (n = 35) had HbA1c levels between 5.7% and 6.4%, Group 3 (n = 42) had HbA1c levels equal and more than 6.5%. CONCLUSION To our knowledge, there is no study evaluating the HbA1c measurement on the Atellica® CH 930 Analyzer. We compared the Atellica®CH930 Analyzer with both HPLC and capillary electrophoresis. The Atellica®CH930 Analyzer showed acceptable performance and a strong correlation with both mentioned methods.
Collapse
Affiliation(s)
- Esra Fırat Oğuz
- Clinical Biochemistry Laboratory, Ankara City Hospital, Ankara, Turkey
| | - Funda Eren
- Clinical Biochemistry Laboratory, Ankara City Hospital, Ankara, Turkey
| | - Salim Neşelioğlu
- Clinical Biochemistry Laboratory, Ankara City Hospital, Ankara, Turkey.,Department of Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| | - Filiz Akbıyık
- Siemens Healthineers, Ankara City Hospital Laboratory, Ankara, Turkey
| | - Özcan Erel
- Clinical Biochemistry Laboratory, Ankara City Hospital, Ankara, Turkey.,Department of Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
28
|
Wang Q, Chen FY, Ling ZM, Su WF, Zhao YY, Chen G, Wei ZY. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front Cell Neurosci 2022; 16:836931. [PMID: 35350167 PMCID: PMC8957843 DOI: 10.3389/fncel.2022.836931] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral neuropathy is a common neurological issue that leads to sensory and motor disorders. Over time, the treatment for peripheral neuropathy has primarily focused on medications for specific symptoms and surgical techniques. Despite the different advantages of these treatments, functional recovery remains less than ideal. Schwann cells, as the primary glial cells in the peripheral nervous system, play crucial roles in physiological and pathological conditions by maintaining nerve structure and functions and secreting various signaling molecules and neurotrophic factors to support both axonal growth and myelination. In addition, stem cells, including mesenchymal stromal cells, skin precursor cells and neural stem cells, have the potential to differentiate into Schwann-like cells to perform similar functions as Schwann cells. Therefore, accumulating evidence indicates that Schwann cell transplantation plays a crucial role in the resolution of peripheral neuropathy. In this review, we summarize the literature regarding the use of Schwann cell/Schwann cell-like cell transplantation for different peripheral neuropathies and the potential role of promoting nerve repair and functional recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann cell-like cell transplantation in future clinical applications. Together, these studies provide insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and uncover prospective therapeutic strategies for peripheral neuropathy.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang-Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Gang Chen,
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Zhong-Ya Wei,
| |
Collapse
|