1
|
Frye C, Cunningham CL, Mihailescu MR. Characterization of the SARS-CoV-2 Genome 3'-Untranslated Region Interactions with Host MicroRNAs. ACS OMEGA 2024; 9:36148-36164. [PMID: 39220490 PMCID: PMC11360049 DOI: 10.1021/acsomega.4c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has marked the spread of a novel human coronavirus. SARS-CoV-2 has exhibited increased disease severity and immune evasion across its variants, and the molecular mechanisms behind these phenomena remain largely unknown. Conserved elements of the viral genome, such as secondary structures within the 3'-untranslated region (UTR), could prove crucial in furthering our understanding of the host-virus interface. Analysis of the SARS-CoV-2 viral genome 3'-UTR revealed the potential for host microRNA (miR) binding sites, allowing for sequence-specific interactions. In this study, we demonstrate that the SARS-CoV-2 genome 3'-UTR binds the host cellular miRs miR-34a-5p, miR-34b-5p, and miR-760-3p in vitro. Native gel electrophoresis and steady-state fluorescence spectroscopy were utilized to biophysically characterize the binding of these miRs to their predicted sites within the SARS-CoV-2 genome 3'-UTR. Additionally, we investigated 2'-fluoro-d-arabinonucleic acid (FANA) analogs as competitive binding inhibitors for these interactions. These miRs modulate the translation of granulin (GRN), interleukin-6 (IL-6), and the IL-6 receptor (IL-6R), all of which are key modulators and activators of JAK/STAT3 signaling and are implicated in regulation of the immune response. Thus, we propose that hijacking of these miRs by SARS-CoV-2 could identify a mechanism of host immune modulation by the virus. The mechanisms detailed in this study have the potential to drive the development of antiviral treatments for SARS-CoV-2, through direct targeting of the virus-host interface.
Collapse
Affiliation(s)
- Caleb
J. Frye
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Caylee L. Cunningham
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Mihaela Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
2
|
Wicik Z, Eyileten C, Nowak A, Keshwani D, Simões SN, Martins DC, Klos K, Wlodarczyk W, Assinger A, Soldacki D, Chcialowski A, Siller-Matula JM, Postula M. Alteration of circulating ACE2-network related microRNAs in patients with COVID-19. Sci Rep 2024; 14:13573. [PMID: 38866792 PMCID: PMC11169442 DOI: 10.1038/s41598-024-58037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 06/14/2024] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) serves as the primary receptor for the SARS-CoV-2 virus and has implications for the functioning of the cardiovascular system. Based on our previously published bioinformatic analysis, in this study we aimed to analyze the diagnostic and predictive utility of miRNAs (miR-10b-5p, miR-124-3p, miR-200b-3p, miR-26b-5p, miR-302c-5p) identified as top regulators of ACE2 network with potential to affect cardiomyocytes and cardiovascular system in patients with COVID-19. The expression of miRNAs was determined through qRT-PCR in a cohort of 79 hospitalized COVID-19 patients as well as 32 healthy volunteers. Blood samples and clinical data of COVID-19 patients were collected at admission, 7-days and 21-days after admission. We also performed SHAP analysis of clinical data and miRNAs target predictions and advanced enrichment analyses. Low expression of miR-200b-3p at the seventh day of admission is indicative of predictive value in determining the length of hospital stay and/or the likelihood of mortality, as shown in ROC curve analysis with an AUC of 0.730 and a p-value of 0.002. MiR-26b-5p expression levels in COVID-19 patients were lower at the baseline, 7 and 21-days of admission compared to the healthy controls (P < 0.0001). Similarly, miR-10b-5p expression levels were lower at the baseline and 21-days post admission (P = 0.001). The opposite situation was observed in miR-124-3p and miR-302c-5p. Enrichment analysis showed influence of analyzed miRNAs on IL-2 signaling pathway and multiple cardiovascular diseases through COVID-19-related targets. Moreover, the COVID-19-related genes regulated by miR-200b-3p were linked to T cell protein tyrosine phosphatase and the HIF-1 transcriptional activity in hypoxia. Analysis focused on COVID-19 associated genes showed that all analyzed miRNAs are strongly affecting disease pathways related to CVDs which could be explained by their strong interaction with the ACE2 network.
Collapse
Affiliation(s)
- Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, 02-097, Warsaw, Poland
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, 02-097, Warsaw, Poland
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, 02-097, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091, Warsaw, Poland
- Department of Diabetology and Internal Medicine, University Clinical Centre, Medical University of Warsaw, Warsaw, Poland
| | - Disha Keshwani
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Sérgio N Simões
- Federal Institute of Education, Science and Technology of Espírito Santo, Serra, Espírito Santo, 29056-264, Brazil
| | - David C Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo Andre, 09606-045, Brazil
| | - Krzysztof Klos
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Wojciech Wlodarczyk
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dariusz Soldacki
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Chcialowski
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Jolanta M Siller-Matula
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, 02-097, Warsaw, Poland.
| |
Collapse
|
3
|
Aboulela A, Taha M, Ghazal A, Baess A, Elsheredy A. Alternations in miR-155 and miR-200 serum levels can serve as biomarkers for COVID-19 in the post-mass vaccination era. Mol Biol Rep 2024; 51:689. [PMID: 38796651 DOI: 10.1007/s11033-024-09630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Mass vaccination and natural immunity reduced the severity of COVID-19 cases. SARS-CoV-2 ongoing genome variations imply the use of confirmatory serologic biomarkers besides PCR for reliable diagnosis. MicroRNA molecules are intrinsic components of the innate immune system. The expression of miR155-5p and miR200c-3p was previously correlated with SARS-CoV-2 pathogenesis. This case-control study was conducted during the third peak of the COVID-19 pandemic in Egypt and aimed to calculate the accuracy of miR155-5p and miR200c-3p as biomarkers for COVID-19. METHODS AND RESULTS Thirty out of 400 COVID-19 patients at a main University hospital in Alexandria were included in the study along with 20 age-matched healthy controls. Plasma samples were collected for total and differential CBC. Relative quantitation of miR155-5p and miR200c-3p expression from WBCs was done by RT-qPCR. The expression of miR155-5p and miR200c-3p was positively correlated and was significantly downregulated in COVID-19 patients compared to the healthy control group (p ˂ 0.005). Both miR155-5p and miR200c-3p were of 76% and 74% accuracy as diagnostic biomarkers of COVID-19, respectively. Regarding the differentiation between mild and moderate cases, their accuracy was 80% and 70%, respectively. CONCLUSIONS miR155-5p and miR200c-3p expression can be used to confirm the diagnosis of COVID-19 and discriminate between mild and moderate cases, with a moderate degree of accuracy.
Collapse
Affiliation(s)
- Aliaa Aboulela
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Mona Taha
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Abeer Ghazal
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Ayman Baess
- Faculty of Medicine, Chest Diseases Department, Alexandria University, Alexandria, Egypt
| | - Amel Elsheredy
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
4
|
Ayeldeen G, Shaker OG, Amer E, Zaafan MA, Herzalla MR, Keshk MA, Abdelhamid AM. The Impact of lncRNA-GAS5/miRNA-200/ACE2 Molecular Pathway on the Severity of COVID-19. Curr Med Chem 2024; 31:1142-1151. [PMID: 37190816 DOI: 10.2174/0929867330666230515144133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2), which is responsible for coronavirus disease (COVID-19), potentially has severe adverse effects, leading to public health crises worldwide. In COVID-19, deficiency of ACE-2 is linked to increased inflammation and cytokine storms via increased angiotensin II levels and decreased ACE-2/Mas receptor axis activity. MiRNAs are small sequences of noncoding RNAs that regulate gene expression by binding to the targeted mRNAs. MiR-200 dysfunction has been linked to the development of ARDS following acute lung injury and has been proposed as a key regulator of ACE2 expression. LncRNA growth arrest-specific transcript 5 (GAS5) has been recently studied for its modulatory effect on the miRNA-200/ACE2 axis. OBJECTIVE The current study aims to investigate the role of lncRNA GAS5, miRNA-200, and ACE2 as new COVID-19 diagnostic markers capable of predicting the severity of SARS-CoV-2 complications. METHODS A total of 280 subjects were classified into three groups: COVID-19-negative controls (n = 80), and COVID-19 patients (n=200) who required hospitalization were classified into two groups: group (2) moderate cases (n = 112) and group (3) severe cases (n = 88). RESULTS The results showed that the serum GAS5 expression was significantly down-expressed in COVID-19 patients; as a consequence, the expression of miR-200 was reported to be overexpressed and its targeted ACE2 was down-regulated. The ROC curve was drawn to examine the diagnostic abilities of GAS5, miR-200, and ACE2, yielding high diagnostic accuracy with high sensitivity and specificity. CONCLUSION lncRNA-GAS5, miRNA-200, and ACE2 panels presented great diagnostic potential as they demonstrated the highest diagnostic accuracy for discriminating moderate COVID-19 and severe COVID-19 cases.
Collapse
Affiliation(s)
- Ghada Ayeldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Amer
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Mai A Zaafan
- Pharmacology & Toxicology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Mohamed R Herzalla
- Internal Medicine Department, Endocrinology & Diabetes Unit, Zagazig University, 6th of October City, Egypt
| | - Mofida A Keshk
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), El-Sadat City, Egypt
| | - Amr M Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| |
Collapse
|
5
|
Wang Y, Zou M, Zhao Y, Kabir MA, Peng X. Exosomal microRNA/miRNA Dysregulation in Respiratory Diseases: From Mycoplasma-Induced Respiratory Disease to COVID-19 and Beyond. Cells 2023; 12:2421. [PMID: 37830635 PMCID: PMC10571955 DOI: 10.3390/cells12192421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Respiratory diseases represent a significant economic and health burden worldwide, affecting millions of individuals each year in both human and animal populations. MicroRNAs (miRNAs) play crucial roles in gene expression regulation and are involved in various physiological and pathological processes. Exosomal miRNAs and cellular miRNAs have been identified as key regulators of several immune respiratory diseases, such as chronic respiratory diseases (CRD) caused by Mycoplasma gallisepticum (MG), Mycoplasma pneumoniae pneumonia (MMP) caused by the bacterium Mycoplasma pneumoniae, coronavirus disease 2019 (COVID-19), chronic obstructive pulmonary disease (COPD), asthma, and acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Consequently, miRNAs seem to have the potential to serve as diagnostic biomarkers and therapeutic targets in respiratory diseases. In this review, we summarize the current understanding of the functional roles of miRNAs in the above several respiratory diseases and discuss the potential use of miRNAs as stable diagnostic biomarkers and therapeutic targets for several immune respiratory diseases, focusing on the identification of differentially expressed miRNAs and their targeting of various signaling pathways implicated in disease pathogenesis. Despite the progress made, unanswered questions and future research directions are discussed to facilitate personalized and targeted therapies for patients with these debilitating conditions.
Collapse
Affiliation(s)
| | | | | | | | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (M.Z.); (Y.Z.); (M.A.K.)
| |
Collapse
|
6
|
Omer A. MicroRNAs as powerful tool against COVID-19: Computational perspective. WIREs Mech Dis 2023; 15:e1621. [PMID: 37345625 DOI: 10.1002/wsbm.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 is the virus that is responsible for the current pandemic, COVID-19 (SARS-CoV-2). MiRNAs, a component of RNAi technology, belong to the family of short, noncoding ssRNAs, and may be crucial in the battle against this global threat since they are involved in regulating complex biochemical pathways and may prevent viral proliferation, translation, and host expression. The complicated metabolic pathways are modulated by the activity of many proteins, mRNAs, and miRNAs working together in miRNA-mediated genetic control. The amount of omics data has increased dramatically in recent years. This massive, linked, yet complex metabolic regulatory network data offers a wealth of opportunity for iterative analysis; hence, extensive, in-depth, but time-efficient screening is necessary to acquire fresh discoveries; this is readily performed with the use of bioinformatics. We have reviewed the literature on microRNAs, bioinformatics, and COVID-19 infection to summarize (1) the function of miRNAs in combating COVID-19, and (2) the use of computational methods in combating COVID-19 in certain noteworthy studies, and (3) computational tools used by these studies against COVID-19 in several purposes. This article is categorized under: Infectious Diseases > Computational Models.
Collapse
Affiliation(s)
- Ankur Omer
- Government College Silodi, MPHED, Katni, Madhya Pradesh, India
| |
Collapse
|
7
|
Mahmoudi A, Hoda Alavizadeh S, Atefeh Hosseini S, Meidany P, Doagooyan M, Abolhasani Y, Saadat Z, Amani F, Kesharwani P, Gheybi F, Sahebkar A. Harnessing aptamers against COVID-19: a therapeutic strategy. Drug Discov Today 2023:103663. [PMID: 37315763 PMCID: PMC10266562 DOI: 10.1016/j.drudis.2023.103663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
The novel coronavirus crisis caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was a global pandemic. Although various therapeutic approaches were developed over the past 2 years, novel strategies with more efficient applicability are required to target new variants. Aptamers are single-stranded (ss)RNA or DNA oligonucleotides capable of folding into unique 3D structures with robust binding affinity to a wide variety of targets following structural recognition. Aptamer-based theranostics have proven excellent capability for diagnosing and treating various viral infections. Herein, we review the current status and future perspective of the potential of aptamers as COVID-19 therapies.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Atefeh Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Pouria Meidany
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maham Doagooyan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Yasaman Abolhasani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Zakieh Saadat
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Fatemeh Amani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Frye CJ, Cunningham CL, Mihailescu MR. Host microRNA interactions with the SARS-CoV-2 viral genome 3'-untranslated region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541401. [PMID: 37292986 PMCID: PMC10245713 DOI: 10.1101/2023.05.18.541401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has marked the spread of a novel human coronavirus. While the viral life cycle is well understood, most of the interactions at the virus-host interface remain elusive. Furthermore, the molecular mechanisms behind disease severity and immune evasion are still largely unknown. Conserved elements of the viral genome such as secondary structures within the 5'- and 3'-untranslated regions (UTRs) serve as attractive targets of interest and could prove crucial in furthering our understanding of virus-host interactions. It has been proposed that microRNA (miR) interactions with viral components could be used by both the virus and host for their own benefit. Analysis of the SARS-CoV-2 viral genome 3'-UTR has revealed the potential for host cellular miR binding sites, providing sites for specific interactions with the virus. In this study, we demonstrate that the SARS-CoV-2 genome 3'-UTR binds the host cellular miRNAs miR-760-3p, miR-34a-5p, and miR-34b-5p, which have been shown to influence translation of interleukin-6 (IL-6), the IL-6 receptor (IL-6R), as well as progranulin (PGRN), respectively, proteins that have roles in the host immune response and inflammatory pathways. Furthermore, recent work suggests the potential of miR-34a-5p and miR-34b-5p to target and inhibit translation of viral proteins. Native gel electrophoresis and steady-state fluorescence spectroscopy were utilized to characterize the binding of these miRs to their predicted sites within the SARS-CoV-2 genome 3'-UTR. Additionally, we investigated 2'-fluoro-D-arabinonucleic acid (FANA) analogs of these miRNAs as competitive binding inhibitors for these miR binding interactions. The mechanisms detailed in this study have the potential to drive the development of antiviral treatments for SARS-CoV-2 infection, and provide a potential molecular basis for cytokine release syndrome and immune evasion which could implicate the host-virus interface.
Collapse
Affiliation(s)
- Caleb J Frye
- Department of Chemistry & Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - Caylee L Cunningham
- Department of Chemistry & Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | | |
Collapse
|
9
|
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 2023; 861:147232. [PMID: 36736508 PMCID: PMC9892334 DOI: 10.1016/j.gene.2023.147232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which is commonly known as COVID-19 (COronaVIrus Disease 2019) has creeped into the human population taking tolls of life and causing tremendous economic crisis. It is indeed crucial to gain knowledge about their characteristics and interactions with human host cells. It has been shown that the majority of our genome consists of non-coding RNAs. Non-coding RNAs including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) display significant roles in regulating gene expression in almost all cancers and viral diseases. It is intriguing that miRNAs and lncRNAs remarkably regulate the function and expression of major immune components of SARS-CoV-2. MiRNAs act via RNA interference mechanism in which they bind to the complementary sequences of the viral RNA strand, inducing the formation of silencing complex that eventually degrades or inhibits the viral RNA and viral protein expression. LncRNAs have been extensively shown to regulate gene expression in cytokine storm and thus emerges as a critical target for COVID-19 treatment. These lncRNAs also act as competing endogenous RNAs (ceRNAs) by sponging miRNAs and thus affecting the expression of downstream targets during SARS-CoV-2 infection. In this review, we extensively discuss the role of miRNAs and lncRNAs, describe their mechanism of action and their different interacting human targets cells during SARS-CoV-2 infection. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Zeinab Dalloul
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
10
|
Khatami A, Taghizadieh M, Sadri Nahand J, Karimzadeh M, Kiani SJ, Khanaliha K, Kalantari S, Chavoshpour S, Mirzaei H, Donyavi T, Bokharaei-Salim F. Evaluation of MicroRNA Expression Pattern (miR-28, miR-181a, miR-34a, and miR-31) in Patients with COVID-19 Admitted to ICU and Diabetic COVID-19 Patients. Intervirology 2023; 66:63-76. [PMID: 36882006 PMCID: PMC10308556 DOI: 10.1159/000529985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION MicroRNAs, or miRNAs, with regulatory performance in inflammatory responses and infection are the prevalent manifestations of severe coronavirus disease (COVID-19). This study aimed to evaluate whether PBMC miRNAs are diagnostic biomarkers to screen the ICU COVID-19 and diabetic COVID-19 subjects. METHODS Candidate miRNAs were selected through previous studies, and then the PBMC levels of selected miRNAs (miR-28, miR-31, miR-34a, and miR-181a) were measured via quantitative reverse transcription PCR. The diagnostic value of miRNAs was determined by the receiver operating characteristic (ROC) curve. The bioinformatics analysis was utilized to predict the DEM genes and relevant bio-functions. RESULTS The COVID-19 patients admitted to ICU had significantly greater levels of selected miRNAs compared to non-hospitalized COVID-19 and healthy people. Besides, the mean miR-28 and miR-34a expression levels in the diabetic COVID-19 group were significantly upregulated when compared with the non-diabetic COVID-19 group. ROC analyses demonstrated the role of miR-28, miR-34a, and miR-181a as new biomarkers to discriminate the non-hospitalized COVID-19 group from the COVID-19 patients admitted to ICU samples, and also miR-34a can probably act as a useful biomarker for screening diabetic COVID-19 patients. Using bioinformatics analyses, we found the performance of target transcripts in many bioprocesses and diverse metabolic routes such as the regulation of multiple inflammatory parameters. DISCUSSION The difference in miRNA expression patterns between the studied groups suggested that miR-28, miR-34a, and miR-181a could be helpful as potent biomarkers for diagnosing and controlling COVID-19.
Collapse
Affiliation(s)
- AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,
| | - Mohammad Karimzadeh
- Core Research Facilities (CRF), Isfahan University of Medical Science, Isfahan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Kalantari
- Departments of Infectious Diseases and Tropical Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Chavoshpour
- Department of Virology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Donyavi
- Medical Biotechnology Department, School of Allied Medical Sciences, Iran University of Medical Sciences, Kermanshah, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Mortazavi F, Soltanshahi M, Tamaddon G. Evaluation of the Relationship Between Serum miR-200b-3p and miR-214-3p Expression Levels with Soluble ACE2 and TMPRSS2 in COVID-19 Patients. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e137832. [PMID: 38444707 PMCID: PMC10912867 DOI: 10.5812/ijpr-137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 03/07/2024]
Abstract
Background The emergence and rapid global spread of the coronavirus disease 2019 (COVID-19) has presented a significant global health challenge. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human host cells through the interaction of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), which serve as main regulators for viral entry. Specifically, ACE2 and TMPRSS2 genes are influenced by two microRNAs: miR-200b-3p and miR-214-3p, respectively. The objective of this study was to explore the association between the serum levels of miR-200b-3p and miR-214-3p and the presence of circulating ACE2 and TMPRSS2 in severe and non-severe cases of COVID-19. Objectives This study sought to examine the potential utility of microRNAs as biomarkers for assessing disease severity and progression. Additionally, the study aimed to elucidate the interplay between microRNAs and the ACE2 and TMPRSS2 proteins, which play crucial roles in facilitating SARS-CoV-2 viral entry and infection. Methods This practical-foundational study involved the collection of samples from 61 hospitalized patients with confirmed COVID-19 and 31 healthy individuals. Subsequently, the enzyme-linked immunosorbent assay (ELISA) technique was utilized to measure the concentrations of ACE2 and TMPRSS2 in the blood samples. Additionally, the expression levels of serum miR-200b-3p and miR-214-3p were analyzed using real-time polymerase chain reaction (PCR). The statistical analysis of the data was conducted using GraphPad Prism software (version 8.02) and SPSS software (version 19.0), ensuring the accurate interpretation of results. Results The findings revealed significant increases in the peripheral blood concentrations of ACE2 and TMPRSS2 in patients with non-severe COVID-19, compared to healthy individuals (P < 0.001 and P < 0.01, respectively). Similarly, patients with severe COVID-19 exhibited higher serum levels of ACE2 and TMPRSS2 than healthy subjects (P < 0.0001). Additionally, the serum levels of miR-200b-3p and miR-214-3p were decreased in both non-severe and severe COVID-19 patients, compared to healthy individuals (P < 0.01 and P < 0.0001, respectively). Moreover, a decrease in the serum levels of both miR-200b-3p and miR-214-3p was observed in patients with severe COVID-19, compared to those with non-severe cases (P < 0.001). Furthermore, this study identified a negative correlation between miR-200b-3p and ACE2 serum levels and between miR-214-3p and TMPRSS2 peripheral blood levels. Conclusions The above-mentioned findings suggest that miR-200b-3p and miR-214-3p might be potential biomarkers for disease severity and prognosis in COVID-19 patients.
Collapse
Affiliation(s)
- Faezeh Mortazavi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Soltanshahi
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Tamaddon
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Izzo C, Visco V, Gambardella J, Ferruzzi GJ, Rispoli A, Rusciano MR, Toni AL, Virtuoso N, Carrizzo A, Di Pietro P, Iaccarino G, Vecchione C, Ciccarelli M. Cardiovascular Implications of microRNAs in Coronavirus Disease 2019. J Pharmacol Exp Ther 2023; 384:102-108. [PMID: 35779946 DOI: 10.1124/jpet.122.001210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/13/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to be a global challenge due to resulting morbidity and mortality. Cardiovascular (CV) involvement is a crucial complication in coronavirus disease 2019 (COVID-19), and no strategies are available to prevent or specifically address CV events in COVID-19 patients. The identification of molecular partners contributing to CV manifestations in COVID-19 patients is crucial for providing early biomarkers, prognostic predictors, and new therapeutic targets. The current report will focus on the role of microRNAs (miRNAs) in CV complications associated with COVID-19. Indeed, miRNAs have been proposed as valuable biomarkers and predictors of both cardiac and vascular damage occurring in SARS-CoV-2 infection. SIGNIFICANCE STATEMENT: It is essential to identify the molecular mediators of coronavirus disease 2019 (COVID-19) cardiovascular (CV) complications. This report focused on the role of microRNAs in CV complications associated with COVID-19, discussing their potential use as biomarkers, prognostic predictors, and therapeutic targets.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Jessica Gambardella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Germano Junior Ferruzzi
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Antonella Rispoli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Anna Laura Toni
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| |
Collapse
|
13
|
Demongeot J, Fougère C. mRNA COVID-19 Vaccines-Facts and Hypotheses on Fragmentation and Encapsulation. Vaccines (Basel) 2022; 11:40. [PMID: 36679885 PMCID: PMC9864138 DOI: 10.3390/vaccines11010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The adventure of the mRNA vaccine began thirty years ago in the context of influenza. This consisted in encapsulating the mRNA coding for a viral protein in a lipid particle. We show how the mRNA encoding S protein has been modified for that purpose in the context of the anti-SARS-CoV-2 vaccination. RESULTS by using data coming from genetic and epidemiologic databases, we show the theoretical possibility of fragmentation of this mRNA into small RNA sequences capable of inhibiting important bio-syntheses such as the production of beta-globin. DISCUSSION we discuss two aspects related to mRNA vaccine: (i) the plausibility of mRNA fragmentation, and (ii) the role of liposomal nanoparticles (LNPs) used in the vaccine and their impact on mRNA biodistribution. CONCLUSION we insist on the need to develop lipid nanoparticles allowing personalized administration of vaccines and avoiding adverse effects due to mRNA fragmentation and inefficient biodistribution. Hence, we recommend (i) adapting the mRNA of vaccines to the least mutated virus proteins and (ii) personalizing its administration to the categories of chronic patients at risk most likely to suffer from adverse effects.
Collapse
Affiliation(s)
- Jacques Demongeot
- AGEIS & Telecom4Health, Faculty of Medicine, University Grenoble Alpes, 38700 La Tronche, France
| | | |
Collapse
|
14
|
Ren J, Guo W, Feng K, Huang T, Cai Y. Identifying MicroRNA Markers That Predict COVID-19 Severity Using Machine Learning Methods. Life (Basel) 2022; 12:1964. [PMID: 36556329 PMCID: PMC9784129 DOI: 10.3390/life12121964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Individuals with the SARS-CoV-2 infection may experience a wide range of symptoms, from being asymptomatic to having a mild fever and cough to a severe respiratory impairment that results in death. MicroRNA (miRNA), which plays a role in the antiviral effects of SARS-CoV-2 infection, has the potential to be used as a novel marker to distinguish between patients who have various COVID-19 clinical severities. In the current study, the existing blood expression profiles reported in two previous studies were combined for deep analyses. The final profiles contained 1444 miRNAs in 375 patients from six categories, which were as follows: 30 patients with mild COVID-19 symptoms, 81 patients with moderate COVID-19 symptoms, 30 non-COVID-19 patients with mild symptoms, 137 patients with severe COVID-19 symptoms, 31 non-COVID-19 patients with severe symptoms, and 66 healthy controls. An efficient computational framework containing four feature selection methods (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (DT, KNN, RF, and SVM) was designed to screen clinical miRNA markers, and a high-precision RF model with a 0.780 weighted F1 was constructed. Some miRNAs, including miR-24-3p, whose differential expression was discovered in patients with acute lung injury complications brought on by severe COVID-19, and miR-148a-3p, differentially expressed against SARS-CoV-2 structural proteins, were identified, thereby suggesting the effectiveness and accuracy of our framework. Meanwhile, we extracted classification rules based on the DT model for the quantitative representation of the role of miRNA expression in differentiating COVID-19 patients with different severities. The search for novel biomarkers that could predict the severity of the disease could aid in the clinical diagnosis of COVID-19 and in exploring the specific mechanisms of the complications caused by SARS-CoV-2 infection. Moreover, new therapeutic targets for the disease may be found.
Collapse
Affiliation(s)
- Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
15
|
Hardin LT, Xiao N. miRNAs: The Key Regulator of COVID-19 Disease. Int J Cell Biol 2022; 2022:1645366. [PMID: 36345541 PMCID: PMC9637033 DOI: 10.1155/2022/1645366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2024] Open
Abstract
As many parts of the world continue to fight the innumerable waves of COVID-19 infection, SARS-CoV-2 continues to sculpt its antigenic determinants to enhance its virulence and evolvability. Several vaccines were developed and used around the world, and oral antiviral medications are being developed against SARS-CoV-2. However, studies showed that the virus is mutating in line with the antibody's neutralization escape; thus, new therapeutic alternatives are solicited. We hereby review the key role that miRNAs can play as epigenetic mediators of the cross-talk between SARS-CoV-2 and the host cells. The limitations resulting from the "virus intelligence" to escape and antagonize the host miRNAs as well as the possible mechanisms that could be used in the viral evasion strategies are discussed. Lastly, we suggest new therapeutic approaches based on viral miRNAs.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| | - Nan Xiao
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| |
Collapse
|
16
|
Liu L, Zhang Y, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Yao L, Zhang Z, Xiao Z, Du F. Therapeutic prospects of ceRNAs in COVID-19. Front Cell Infect Microbiol 2022; 12:998748. [PMID: 36204652 PMCID: PMC9530275 DOI: 10.3389/fcimb.2022.998748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
Since the end of 2019, COVID-19 caused by SARS-CoV-2 has spread worldwide, and the understanding of the new coronavirus is in a preliminary stage. Currently, immunotherapy, cell therapy, antiviral therapy, and Chinese herbal medicine have been applied in the clinical treatment of the new coronavirus; however, more efficient and safe drugs to control the progress of the new coronavirus are needed. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) may provide new therapeutic targets for novel coronavirus treatments. The first aim of this paper is to review research progress on COVID-19 in the respiratory, immune, digestive, circulatory, urinary, reproductive, and nervous systems. The second aim is to review the body systems and potential therapeutic targets of lncRNAs, miRNAs, and circRNAs in patients with COVID-19. The current research on competing endogenous RNA (ceRNA) (lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA) in SARS-CoV-2 is summarized. Finally, we predict the possible therapeutic targets of four lncRNAs, MALAT1, NEAT1, TUG1, and GAS5, in COVID-19. Importantly, the role of PTEN gene in the ceRNA network predicted by lncRNA MALAT1 and lncRNA TUG1 may help in the discovery and clinical treatment of effective drugs for COVID-19.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou Science and Technology Bureau, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- *Correspondence: Zhuo Zhang, ; Zhangang Xiao, ; Fukuan Du,
| |
Collapse
|
17
|
SARS-CoV-2 Variants, Current Vaccines and Therapeutic Implications for COVID-19. Vaccines (Basel) 2022; 10:vaccines10091538. [PMID: 36146616 PMCID: PMC9504858 DOI: 10.3390/vaccines10091538] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Over the past two years, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused hundreds of millions of infections, resulting in an unprecedented pandemic of coronavirus disease 2019 (COVID-19). As the virus spreads through the population, ongoing mutations and adaptations are being discovered. There is now substantial clinical evidence that demonstrates the SARS-CoV-2 variants have stronger transmissibility and higher virulence compared to the wild-type strain of SARS-CoV-2. Hence, development of vaccines against SARS-CoV-2 variants to boost individual immunity has become essential. However, current treatment options are limited for COVID-19 caused by the SARS-CoV-2 variants. In this review, we describe current distribution, variation, biology, and clinical features of COVID-19 caused by SARS-CoV-2 variants (including Alpha (B.1.1.7 Lineage) variant, Beta (B.1.351 Lineage) variant, Gamma (P.1 Lineage) variant, Delta (B.1.617.2 Lineage) variant, and Omicron (B.1.1.529 Lineage) variant and others. In addition, we review currently employed vaccines in clinical or preclinical phases as well as potential targeted therapies in an attempt to provide better preventive and treatment strategies for COVID-19 caused by different SARS-CoV-2 variants.
Collapse
|
18
|
Roustai Geraylow K, Hemmati R, Kadkhoda S, Ghafouri-Fard S. miRNA expression in COVID-19. GENE REPORTS 2022; 28:101641. [PMID: 35875722 PMCID: PMC9288248 DOI: 10.1016/j.genrep.2022.101641] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/25/2022] [Accepted: 07/10/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is regarded as a challenge in health system. Several studies have assessed the immune-related aspect of this disorder to identify the host-related factors that affect the course of COVID-19. microRNAs (miRNAs) as potent regulators of immune responses have gained much attention in this regard. Recent studies have shown aberrant expression of miRNAs in COVID-19 in association with disease course. Differentially expressed miRNAs have been enriched in pathways related with inflammation and antiviral immune response. miRNAs have also been regarded as potential therapeutic targets in COVID-19, particularly for management of pathological consequences of COVID-19. In the current review, we summarize the data about dysregulation of miRNAs in COVID-19.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- ARDS, Acute respiratory distress syndrome
- COVID-19
- COVID-19, Coronavirus disease 2019
- HDAC, Histone deacetylate
- HMVEC, Human Lung Microvascular Endothelial Cells
- ORF, Open reading frame
- ROC, Receiver operating characteristic
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- TLR, Toll-like receptor
- TMPRSS2, Transmembrane protease serine 2
- UTR, Untranslated region
- hBMEC, Human brain microvascular endothelial cells
- miRNA
- miRNAs, microRNAs
Collapse
Affiliation(s)
| | - Romina Hemmati
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A, Ahmad A. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol 2022; 83:384-398. [PMID: 33484868 PMCID: PMC8046427 DOI: 10.1016/j.semcancer.2021.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.
Collapse
Affiliation(s)
- Shama Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajer Manzoor
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simmone Siddiqui
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nithya Mariappan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Iram Zafar
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aamir Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aftab Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Farmanzadeh A, Qujeq D, Yousefi T. The Interaction Network of MicroRNAs with Cytokines and Signaling Pathways in Allergic Asthma. Microrna 2022; 11:104-117. [PMID: 35507792 DOI: 10.2174/2211536611666220428134324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
Allergic asthma is a complicated disease that is affected by many factors. Numerous cytokines and signaling pathways are attributed to the cause of asthma symptoms. MicroRNAs (miRNAs) are a group of small non-coding single-stranded RNA molecules that are involved in gene silencing and posttranscriptional regulation of gene expression by targeting mRNAs. In pathological conditions, altered expression of microRNAs differentially regulates cytokines and signaling pathways and therefore, can be the underlying reason for the pathogenesis of allergic asthma. Indeed, microRNAs participate in airway inflammation via inducing airway structural cells and activating immune responses by targeting cytokines and signaling pathways. Thus, to make a complete understanding of allergic asthma, it is necessary to investigate the communication network of microRNAs with cytokines and signaling pathways which is contributed to the pathogenesis of allergic asthma. Here, we shed light on this aspect of asthma pathology by Summarizing our current knowledge of this topic.
Collapse
Affiliation(s)
- Ali Farmanzadeh
- Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
21
|
Oshinubi K, Fougère C, Demongeot J. A Model for the Lifespan Loss Due to a Viral Disease: Example of the COVID-19 Outbreak. Infect Dis Rep 2022; 14:321-340. [PMID: 35645217 PMCID: PMC9150002 DOI: 10.3390/idr14030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022] Open
Abstract
The end of the acute phase of the COVID-19 pandemic is near in some countries as declared by World Health Organization (WHO) in January 2022 based on some studies in Europe and South Africa despite unequal distribution of vaccines to combat the disease spread globally. The heterogeneity in individual age and the reaction to biological and environmental changes that has been observed in COVID-19 dynamics in terms of different reaction to vaccination by age group, severity of infection per age group, hospitalization and Intensive Care Unit (ICU) records show different patterns, and hence, it is important to improve mathematical models for COVID-19 pandemic prediction to account for different proportions of ages in the population, which is a major factor in epidemic history. We aim in this paper to estimate, using the Usher model, the lifespan loss due to viral infection and ageing which could result in pathological events such as infectious diseases. Exploiting epidemiology and demographic data firstly from Cameroon and then from some other countries, we described the ageing in the COVID-19 outbreak in human populations and performed a graphical representation of the proportion of sensitivity of some of the model parameters which we varied. The result shows a coherence between the orders of magnitude of the calculated and observed incidence numbers during the epidemic wave, which constitutes a semi-quantitative validation of the mathematical modelling approach at the population level. To conclude, the age heterogeneity of the populations involved in the COVID-19 outbreak needs the consideration of models in age groups with specific susceptibilities to infection.
Collapse
|
22
|
Peng S, Zhang T, Zhang S, Tang Q, Yan Y, Feng H. Integrated Bioinformatics and Validation Reveal IL1B and Its Related Molecules as Potential Biomarkers in Chronic Spontaneous Urticaria. Front Immunol 2022; 13:850993. [PMID: 35371000 PMCID: PMC8975268 DOI: 10.3389/fimmu.2022.850993] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background The etiopathogenesis of chronic spontaneous urticaria (CSU) has not been fully understood, and there has been extensive interest in the interaction between inflammatory dermatosis and pyroptosis. This study intends to investigate the molecular mechanism of pyroptosis-related genes in CSU via bioinformatic ways, aiming at identifying the potential key biomarker. Methods GSE72540, the RNA expression profile dataset of CSU, was utilized as the training set, and GSE57178 as the validation set. Differently expressed pyroptosis-related genes (DEPRGs), GO, KEGG, and DO analyses were performed. The hub genes were explored by the protein–protein interaction analysis. Moreover, CIBERSORT was employed for estimating immune cell types and proportions. Then, we constructed a DEmRNA–miRNA–DElncRNA ceRNA network and a drug–gene interaction network. Finally, ELISA was used for gene expression analysis. Results We recognized 17 DEPRGs, whose enrichment analyses showed that they were mostly enriched in inflammatory response and immunomodulation. Moreover, 5 hub genes (IL1B, TNF, and IRF1 are upregulated, HMGB1 and P2RX7 are downregulated) were identified via the PPI network and verified by a validation set. Then immune infiltration analysis displayed that compared with normal tissue, CSU owned a significantly higher proportion of mast cells activated, but a lower proportion of T cells CD4 naive and so on. Furthermore, IL1B was statistically and positively associated with mast cells activated in CSU, and SNHG3, the upstream factor of IL1B in the ceRNA we constructed, also related with mast cells in CSU. Further analysis exhibited that the protein subcellular localization of IL1B was extracellular, according with its intercellular regulation role; IL1B was significantly correlated with key immune checkpoints; and the NOD-like receptor signaling pathway was the mainly involved pathway of IL1B based on the couple databases. What is more, the result of ELISA of CSU patients was the same as the above analyses about IL1B. In addition, the drug–gene interaction network contained 15 potential therapeutic drugs targeting IL1B, and molecular docking might make this relationship viable. Conclusion IL1B and its related molecules might play a key role in the development of CSU and could be potential biomarkers in CSU.
Collapse
Affiliation(s)
- Shixiong Peng
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People’s Hospital, Changsha, China
| | - Teng Zhang
- Department of Dermatology, Chinese Traditional Hospital of Changsha, Changsha, China
| | - Sisi Zhang
- Nursing Department, Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Qian Tang
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People’s Hospital, Changsha, China
| | - Yang Yan
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People’s Hospital, Changsha, China
| | - Hao Feng
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People’s Hospital, Changsha, China
- *Correspondence: Hao Feng,
| |
Collapse
|
23
|
Abdolahi S, Hosseini M, Rezaei R, Mohebbi SR, Rostami-Nejad M, Mojarad EN, Mirjalali H, Yadegar A, Asadzadeh Aghdaei H, Zali MR, Baghaei K. Evaluation of miR-200c-3p and miR-421-5p levels during immune responses in the admitted and recovered COVID-19 subjects. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105207. [PMID: 34999004 PMCID: PMC8730736 DOI: 10.1016/j.meegid.2022.105207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) acts as a key receptor for the spike of SARS-CoV-2. Two main microRNAs (miRs), miR-200c-3p and miR-421-5p, are considered to modulate the expression of ACE2 gene and alterations in the expression of these miRNAs may influence the outcomes of COVID-19 infection. Accordingly, we examined whether miRNAs directing ACE2 expression altered in the SARS-CoV-2 infection. 30 patients with COVID-19 included in the study. At the time of admission and discharge, the expression of miR-200c-3p and miR-421-5p, inflammatory cytokine IL-6, and regulatory T cells' expression profiles (CD4, CD25, and Foxp3) were examined using quantitative real-time PCR method. At the time of admission, the expression levels of miR-200c-3p and miR-421-5p as well as CD4, CD25, and Foxp3 significantly decreased while IL-6 expression notably enhanced. However, by the time of discharge, the expression levels of the genes were opposite to the time of admission. Moreover, Pearson correlation analysis indicated that IL-6 expression negatively correlated with Foxp3 and miR-200c-3p expressions despite miR-421-5p and miR-200c-3p positively correlated at admission time. By manipulating miR-200c-3p and miR-421-5p expressions and controlling the ACE2 level, it is plausible to modulate the inflammation by reducing IL-6 and maintenance tolerance hemostasis during COVID-19 infection.
Collapse
Affiliation(s)
- Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
The role of microRNAs in COVID-19 with a focus on miR-200c. J Circ Biomark 2022; 11:14-23. [PMID: 35356072 PMCID: PMC8939267 DOI: 10.33393/jcb.2022.2356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/22/2022] [Indexed: 12/11/2022] Open
Abstract
Objective: Epigenetics is a quickly spreading scientific field, and the study of epigenetic regulation in various diseases such as infectious diseases is emerging. The microribonucleic acids (miRNAs) as one of the types of epigenetic processes bind to their target messenger RNAs (mRNAs) and regulate their stability and/or translation. This study aims to evaluate non-coding RNAs (ncRNAs) with a focus on miR-200c in COVID-19. In this review, we first define the epigenetics and miRNAs, and then the role of miRNAs in diseases focusing on lung diseases is explained. Finally, in this study, we will investigate the role and position of miRNAs with a focus on miR-200c in viral and severe acute respiratory syndrome–related coronavirus (SARS-CoV2) infections. Methods: Systematic search of MEDLINE, PubMed, Web of Science, Embase, and Cochrane Library was conducted for all relative papers from 2000 to 2021 with the limitations of the English language. Finally, we selected 128 articles which fit the best to our objective of study, among which 5 articles focused on the impact of miR-200c. Results: Due to the therapeutic results of various drugs in different races and populations, epigenetic processes, especially miRNAs, are important. The overall results showed that different types of miRNAs can be effective on the process of various lung diseases through different target pathways and genes. It is likely that amplified levels of miR-200c may lead to decreased angiotensin-converting enzyme-2 (ACE2) expression, which in turn may increase the potential of infection, inflammation, and the complications of coronavirus disease. Conclusion: miR-200c and its correlation with ACE2 can be used as early prognostic and diagnostic markers.
Collapse
|
25
|
Bautista-Becerril B, Pérez-Dimas G, Sommerhalder-Nava PC, Hanono A, Martínez-Cisneros JA, Zarate-Maldonado B, Muñoz-Soria E, Aquino-Gálvez A, Castillejos-López M, Juárez-Cisneros A, Lopez-Gonzalez JS, Camarena A. miRNAs, from Evolutionary Junk to Possible Prognostic Markers and Therapeutic Targets in COVID-19. Viruses 2021; 14:41. [PMID: 35062245 PMCID: PMC8781105 DOI: 10.3390/v14010041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has been a public health issue around the world in the last few years. Currently, there is no specific antiviral treatment to fight the disease. Thus, it is essential to highlight possible prognostic predictors that could identify patients with a high risk of developing complications. Within this framework, miRNA biomolecules play a vital role in the genetic regulation of various genes, principally, those related to the pathophysiology of the disease. Here, we review the interaction of host and viral microRNAs with molecular and cellular elements that could potentiate the main pulmonary, cardiac, renal, circulatory, and neuronal complications in COVID-19 patients. miR-26a, miR-29b, miR-21, miR-372, and miR-2392, among others, have been associated with exacerbation of the inflammatory process, increasing the risk of a cytokine storm. In addition, increased expression of miR-15b, -199a, and -491 are related to the prognosis of the disease, and miR-192 and miR-323a were identified as clinical predictors of mortality in patients admitted to the intensive care unit. Finally, we address miR-29, miR-122, miR-155, and miR-200, among others, as possible therapeutic targets. However, more studies are required to confirm these findings.
Collapse
Affiliation(s)
- Brandon Bautista-Becerril
- Laboratorio HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (B.B.-B.); (A.J.-C.)
- Escuela Superior de Medicina, Departamento de Posgrado, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.P.-D.); (E.M.-S.)
| | - Guillermo Pérez-Dimas
- Escuela Superior de Medicina, Departamento de Posgrado, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.P.-D.); (E.M.-S.)
| | - Paola C. Sommerhalder-Nava
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Mexico City 52786, Mexico; (P.C.S.-N.); (A.H.); (B.Z.-M.)
| | - Alejandro Hanono
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Mexico City 52786, Mexico; (P.C.S.-N.); (A.H.); (B.Z.-M.)
| | | | - Bárbara Zarate-Maldonado
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Mexico City 52786, Mexico; (P.C.S.-N.); (A.H.); (B.Z.-M.)
| | - Evangelina Muñoz-Soria
- Escuela Superior de Medicina, Departamento de Posgrado, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.P.-D.); (E.M.-S.)
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Manuel Castillejos-López
- Departamento de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Armida Juárez-Cisneros
- Laboratorio HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (B.B.-B.); (A.J.-C.)
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Cáncer Pulmonar, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Angel Camarena
- Laboratorio HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (B.B.-B.); (A.J.-C.)
| |
Collapse
|
26
|
Zanganeh S, Goodarzi N, Doroudian M, Movahed E. Potential COVID-19 therapeutic approaches targeting angiotensin-converting enzyme 2; An updated review. Rev Med Virol 2021; 32:e2321. [PMID: 34958163 DOI: 10.1002/rmv.2321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
COVID-19 has spread swiftly throughout the world posing a global health emergency. The significant numbers of deaths attributed to this pandemic have researchers battling to understand this new, dangerous virus. Researchers are looking to find possible treatment regimens and develop effective therapies. This study aims to provide an overview of published scientific information on potential treatments, emphasizing angiotensin-converting enzyme II (ACE2) inhibitors as one of the most important drug targets. SARS-CoV-2 receptor-binding domain (RBD); as a viral attachment or entry inhibitor against SARS-CoV-2, human recombinant soluble ACE2; as a genetically modified soluble form of ACE2 to compete with membrane-bound ACE2, and microRNAs (miRNAs); as a negative regulator of the expression of ACE2/TMPRSS2 to inhibit SARS-CoV2 entry into cells, are the potential therapeutic approaches discussed thoroughly in this article. This review provides the groundwork for the ongoing development of therapeutic agents and effective treatments against SARS-COV-2.
Collapse
Affiliation(s)
- Saba Zanganeh
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, New Year, USA
| |
Collapse
|
27
|
Arghiani N, Nissan T, Matin MM. Role of microRNAs in COVID-19 with implications for therapeutics. Biomed Pharmacother 2021; 144:112247. [PMID: 34601190 PMCID: PMC8463393 DOI: 10.1016/j.biopha.2021.112247] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/09/2023] Open
Abstract
COVID-19 is a pneumonia-like disease with highly transmittable and pathogenic properties caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which infects both animals and humans. Although many efforts are currently underway to test possible therapies, there is no specific FDA approved drug against SARS-CoV-2 yet. miRNA-directed gene regulation controls the majority of biological processes. In addition, the development and progression of several human diseases are associated with dysregulation of miRNAs. In this regard, it has been shown that changes in miRNAs are linked to severity of COVID-19 especially in patients with respiratory diseases, diabetes, heart failure or kidney problems. Therefore, targeting these small noncoding-RNAs could potentially alleviate complications from COVID-19. Here, we will review the roles and importance of host and RNA virus encoded miRNAs in COVID-19 pathogenicity and immune response. Then, we focus on potential miRNA therapeutics in the patients who are at increased risk for severe disease.
Collapse
Affiliation(s)
- Nahid Arghiani
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; School of Life Science, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; School of Life Science, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
28
|
Sabetian S, Castiglioni I, Jahromi BN, Mousavi P, Cava C. In Silico Identification of miRNA-lncRNA Interactions in Male Reproductive Disorder Associated with COVID-19 Infection. Cells 2021; 10:cells10061480. [PMID: 34204705 PMCID: PMC8231607 DOI: 10.3390/cells10061480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a global pandemic, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2) is the receptor for SARS-CoV-2 and transmembrane serine protease 2 (TMPRSS2) facilitates ACE2-mediated virus entry. Moreover, the expression of ACE2 in the testes of infertile men is higher than normal, which indicates that infertile men may be susceptible to be infected and SARS-CoV-2 may cause reproductive disorder through the pathway induced by ACE2 and TMPRSS2. Little is known about the pathway regulation of ACE2 and TMPRSS2 expression in male reproductive disorder. Since the regulation of gene expression is mediated by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) at the post-transcriptional level, the aim of this study was to analyze the dysregulated miRNA–lncRNA interactions of ACE2 and TMPRSS2 in male reproductive disorder. Using bioinformatics analysis, we speculate that the predicted miRNAs including miR-125a-5p, miR-125b-5p, miR-574-5p, and miR-936 as regulators of ACE2 and miR-204-5p as a modulator of TMPRSS2 are associated with male infertility. The lncRNAs with a tissue-specific expression for testis including GRM7-AS3, ARHGAP26-AS1, BSN-AS1, KRBOX1-AS1, CACNA1C-IT3, AC012361.1, FGF14-IT1, AC012494.1, and GS1-24F4.2 were predicted. The identified miRNAs and lncRNAs are proposed as potential biomarkers to study the possible association between COVID-19 and male infertility. This study encourages further studies of miRNA–lncRNA interactions to explain the molecular mechanisms of male infertility in COVID-19 patients.
Collapse
Affiliation(s)
- Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (S.S.); (B.N.J.)
| | - Isabella Castiglioni
- Department of Physics “Giuseppe Occhialini”, University of Milan-Bicocca Piazza dell’Ateneo Nuovo, 20126 Milan, Italy
- Correspondence: (I.C.); (C.C.)
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; (S.S.); (B.N.J.)
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran;
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy
- Correspondence: (I.C.); (C.C.)
| |
Collapse
|
29
|
Lima RS, Rocha LPC, Moreira PR. Genetic and epigenetic control of ACE2 expression and its possible role in COVID-19. Cell Biochem Funct 2021; 39:713-726. [PMID: 34075603 PMCID: PMC8239811 DOI: 10.1002/cbf.3648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
Coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2), is a pandemic that is claiming hundreds of thousands of lives around the world. Angiotensin‐converting enzyme‐2 (ACE2) is a key player in COVID‐19 due to its pivotal role in the SARS‐CoV‐2 infection. This enzyme is expressed throughout the body and the studies conducted so far have shown that its expression varies according to several factors, including cell type, sex, age, disease states and probably SARS‐CoV‐2 infection. Single‐nucleotide polymorphisms (SNPs) and epigenetic mechanisms, including DNA methylation, histone post‐translational modifications and microRNAs, impact ACE2 expression and may explain structural variation. The understanding of how genetic variants and epigenetic markers act to control ACE2 expression in health and disease states may contribute to comprehend several aspects of COVID‐19 that are puzzling researchers and clinicians. This review collects and appraises the literature regarding some aspects in the ACE2 biology, the expression patterns of this molecule, SNPs of the ACE2 gene and epigenetic mechanisms that may impact ACE2 expression in the context of COVID‐19.
Collapse
Affiliation(s)
- Rafael Silva Lima
- Department of Morphology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Paulo Carvalho Rocha
- Department of Morphology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula Rocha Moreira
- Department of Morphology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|