1
|
Selvakumar S, Singh S, Swaminathan P. Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis. Int Microbiol 2024:10.1007/s10123-024-00537-3. [PMID: 38767682 DOI: 10.1007/s10123-024-00537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Antimicrobial resistance in bacteria is a global threat that can make antibacterial treatments ineffective. One well-known method of antibiotic resistance and a common defensive mechanism in many harmful bacteria is the synthesis of endogenous hydrogen sulfide (H2S) in bacteria. In this study, soil bacteria were screened using the lead acetate agar test and the triple sugar iron test to determine that they were non-endogenous H2S producers. This was further validated by full genome analysis of the identified organism against the gene sequences of H2S-producing genes. Antibacterial resistance of the bacteria was phenotypically analyzed using the Kirby-Bauer disk diffusion method. Then, the effect of exogenous H2S on the antibiotic-resistant bacteria was checked in sodium sulfide, leading to antibiotic re-sensitization.
Collapse
Affiliation(s)
- Sahithya Selvakumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, India
| | - Shubhi Singh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, India
| | - Priya Swaminathan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, India.
| |
Collapse
|
2
|
Caruso L, Mellini M, Catalano Gonzaga O, Astegno A, Forte E, Di Matteo A, Giuffrè A, Visca P, Imperi F, Leoni L, Rampioni G. Hydrogen sulfide production does not affect antibiotic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2024; 68:e0007524. [PMID: 38445869 PMCID: PMC10989007 DOI: 10.1128/aac.00075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Hydrogen sulfide (H2S) has been proposed to protect bacteria from antibiotics, pointing to H2S-producing enzymes as possible targets for the development of antibiotic adjuvants. Here, MIC assays performed with Pseudomonas aeruginosa mutants producing altered H2S levels demonstrate that H2S does not affect antibiotic resistance in this bacterium. Moreover, correlation analyses in a large collection of P. aeruginosa cystic fibrosis isolates argue against the protective role of H2S from antibiotic activity during chronic lung infection.
Collapse
Affiliation(s)
| | - Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
3
|
Nastasi MR, Caruso L, Giordano F, Mellini M, Rampioni G, Giuffrè A, Forte E. Cyanide Insensitive Oxidase Confers Hydrogen Sulfide and Nitric Oxide Tolerance to Pseudomonas aeruginosa Aerobic Respiration. Antioxidants (Basel) 2024; 13:383. [PMID: 38539916 PMCID: PMC10968556 DOI: 10.3390/antiox13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 07/31/2024] Open
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are long-known inhibitors of terminal oxidases in the respiratory chain. Yet, they exert pivotal signaling roles in physiological processes, and in several bacterial pathogens have been reported to confer resistance against oxidative stress, host immune responses, and antibiotics. Pseudomonas aeruginosa, an opportunistic pathogen causing life-threatening infections that are difficult to eradicate, has a highly branched respiratory chain including four terminal oxidases of the haem-copper type (aa3, cbb3-1, cbb3-2, and bo3) and one oxidase of the bd-type (cyanide-insensitive oxidase, CIO). As Escherichia coli bd-type oxidases have been shown to be H2S-insensitive and to readily recover their activity from NO inhibition, here we tested the effect of H2S and NO on CIO by performing oxygraphic measurements on membrane preparations from P. aeruginosa PAO1 and isogenic mutants depleted of CIO only or all other terminal oxidases except CIO. We show that O2 consumption by CIO is unaltered even in the presence of high levels of H2S, and that CIO expression is enhanced and supports bacterial growth under such stressful conditions. In addition, we report that CIO is reversibly inhibited by NO, while activity recovery after NO exhaustion is full and fast, suggesting a protective role of CIO under NO stress conditions. As P. aeruginosa is exposed to H2S and NO during infection, the tolerance of CIO towards these stressors agrees with the proposed role of CIO in P. aeruginosa virulence.
Collapse
Affiliation(s)
- Martina R. Nastasi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Lorenzo Caruso
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Francesca Giordano
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Marta Mellini
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Alessandro Giuffrè
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| |
Collapse
|
4
|
Zhou K, Sun L, Zhang X, Xu X, Mi K, Ma W, Zhang L, Huang L. Salmonella antimicrobials inherited and the non-inherited resistance: mechanisms and alternative therapeutic strategies. Front Microbiol 2023; 14:1176317. [PMID: 37303797 PMCID: PMC10249997 DOI: 10.3389/fmicb.2023.1176317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Salmonella spp. is one of the most important foodborne pathogens. Typhoid fever and enteritis caused by Salmonella enterica are associated with 16-33 million infections and 500,000 to 600,000 deaths annually worldwide. The eradication of Salmonella is becoming increasingly difficult because of its remarkable capacity to counter antimicrobial agents. In addition to the intrinsic and acquired resistance of Salmonella, increasing studies indicated that its non-inherited resistance, which commonly mentioned as biofilms and persister cells, plays a critical role in refractory infections and resistance evolution. These remind the urgent demand for new therapeutic strategies against Salmonella. This review starts with escape mechanisms of Salmonella against antimicrobial agents, with particular emphasis on the roles of the non-inherited resistance in antibiotic failure and resistance evolution. Then, drug design or therapeutic strategies that show impressive effects in overcoming Salmonella resistance and tolerance are summarized completely, such as overcoming the barrier of outer membrane by targeting MlaABC system, reducing persister cells by limiting hydrogen sulfide, and applying probiotics or predatory bacteria. Meanwhile, according to the clinical practice, the advantages and disadvantages of above strategies are discussed. Finally, we further analyze how to deal with this tricky problems, thus can promote above novel strategies to be applied in the clinic as soon as possible. We believed that this review will be helpful in understanding the relationships between tolerance phenotype and resistance of Salmonella as well as the efficient control of antibiotic resistance.
Collapse
Affiliation(s)
- Kaixiang Zhou
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Lei Sun
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Xuehua Zhang
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Xiangyue Xu
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Kun Mi
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Wenjin Ma
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Lan Zhang
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Lingli Huang
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| |
Collapse
|
5
|
Antibacterial gas therapy: Strategies, advances, and prospects. Bioact Mater 2023; 23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
|
6
|
Fang D, Xu T, Sun J, Shi J, Li F, Yin Y, Wang Z, Liu Y. Nicotinamide Mononucleotide Ameliorates Sleep Deprivation-Induced Gut Microbiota Dysbiosis and Restores Colonization Resistance against Intestinal Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207170. [PMID: 36698264 PMCID: PMC10037695 DOI: 10.1002/advs.202207170] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 06/12/2023]
Abstract
Gut microbiota-mediated colonization resistance (CR) is crucial in protecting the host from intestinal infections. Sleep deprivation (SD) is an important contributor in the disturbances of intestinal homeostasis. However, whether and how SD affects host CR remains largely unknown. Here, it is shown that SD impairs intestinal CR in mice, whereas nicotinamide mononucleotide (NMN) supplementation restores it. Microbial diversity and metabolomic analyses suggest that gut microbiota and metabolite profiles in SD-treated mice are highly shaped, whereas NMN reprograms these differences. Specifically, the altered gut microbiota in SD mice further incurs the disorder of secondary bile acids pool accompanied by a decrease in deoxycholic acid (DCA). Conversely, NMN supplementation retakes the potential benefits of DCA, which is associated with specific gut microbiota involved in primary bile acids metabolic flux. In animal models of infection, DCA is effective in preventing and treating bacterial infections when used alone or in combination with antibiotics. Mechanistically, DCA alone disrupts membrane permeability and aggravates oxidative damage, thereby reducing intestinal pathogen burden. Meanwhile, exogenous DCA promotes antibiotic accumulation and destroys oxidant-antioxidant system, thus potentiating antibiotic efficacy. Overall, this work highlights the important roles of gut microbiota and bile acid metabolism in the maintenance of intestinal CR.
Collapse
Affiliation(s)
- Dan Fang
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Tianqi Xu
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Jingyi Sun
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Jingru Shi
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Fulei Li
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Yanqing Yin
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Zhiqiang Wang
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education of ChinaYangzhou UniversityYangzhou225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Yuan Liu
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education of ChinaYangzhou UniversityYangzhou225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009P. R. China
| |
Collapse
|
7
|
Leung ELH, Huang J, Zhang J, Zhang J, Wang M, Zhu Y, Meng Z, Yu H, Neher E, Ma L, Yao X. Novel Anticancer Strategy by Targeting the Gut Microbial Neurotransmitter Signaling to Overcome Immunotherapy Resistance. Antioxid Redox Signal 2023; 38:298-315. [PMID: 36017627 DOI: 10.1089/ars.2021.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Microbial neurotransmitters, as potential targets for cancer therapy, are expected to provide a new perspective on the interaction between the gut microbiome and cancer immunotherapy. Recent Advances: Mounting data reveal that most neurotransmitters can be derived from gut microbiota. Furthermore, modulation of neurotransmitter signaling can limit tumor growth and enhance antitumor immunity. Critical Issues: Here, we first present the relationships between microbial neurotransmitters and cancer cells mediated by immune cells. Then, we discuss the microbial neurotransmitters recently associated with cancer immunotherapy. Notably, the review emphasizes that neurotransmitter signaling plays a substantial role in cancer immunotherapy as an emerging cancer treatment target by regulating targeted receptors and interfering with the tumor microenvironment. Future Directions: Future studies are required to uncover the antitumor mechanisms of neurotransmitter signaling to develop novel treatment strategies to overcome cancer immunotherapy resistance. Antioxid. Redox Signal. 38, 298-315.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Taipa, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Science, University of Macau, Taipa, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, China.,Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Junmin Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.,School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Juanhong Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.,School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,College of Life Science, Northwest Normal University, Lanzhou, China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiaojun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery and State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| |
Collapse
|
8
|
Huang R, Zhou Z, Lan X, Tang FK, Cheng T, Sun H, Cham-Fai Leung K, Li X, Jin L. Rapid synthesis of bismuth-organic frameworks as selective antimicrobial materials against microbial biofilms. Mater Today Bio 2023; 18:100507. [PMID: 36504541 PMCID: PMC9730226 DOI: 10.1016/j.mtbio.2022.100507] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Antibiotic resistance is a global public health threat, and urgent actions should be undertaken for developing alternative antimicrobial strategies and approaches. Notably, bismuth drugs exhibit potent antimicrobial effects on various pathogens and promising efficacy in tackling SARS-CoV-2 and related infections. As such, bismuth-based materials could precisely combat pathogenic bacteria and effectively treat the resultant infections and inflammatory diseases through a controlled release of Bi ions for targeted drug delivery. Currently, it is a great challenge to rapidly and massively manufacture bismuth-based particles, and yet there are no reports on effectively constructing such porous antimicrobial-loaded particles. Herein, we have developed two rapid approaches (i.e., ultrasound-assisted and agitation-free methods) to synthesizing bismuth-based materials with ellipsoid- (Ellipsoids) and rod-like (Rods) morphologies respectively, and fully characterized physicochemical properties. Rods with a porous structure were confirmed as bismuth metal-organic frameworks (Bi-MOF) and aligned with the crystalline structure of CAU-17. Importantly, the formation of Rods was a 'two-step' crystallization process of growing almond-flake-like units followed by stacking into the rod-like structure. The size of Bi-MOF was precisely controlled from micro-to nano-scales by varying concentrations of metal ions and their ratio to the ligand. Moreover, both Ellipsoids and Rods showed excellent biocompatibility with human gingival fibroblasts and potent antimicrobial effects on the Gram-negative oral pathogens including Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Both Ellipsoids and Rods at 50 μg/mL could disrupt the bacterial membranes, and particularly eliminate P. gingivalis biofilms. This study demonstrates highly efficient and facile approaches to synthesizing bismuth-based particles. Our work could enrich the administration modalities of metallic drugs for promising antibiotic-free healthcare.
Collapse
Affiliation(s)
- Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhiwen Zhou
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Fung Kit Tang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong SAR, China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Balasubramanian R, Hori K, Shimizu T, Kasamatsu S, Okamura K, Tanaka K, Ihara H, Masuda S. The Sulfide-Responsive SqrR/BigR Homologous Regulator YgaV of Escherichia coli Controls Expression of Anaerobic Respiratory Genes and Antibiotic Tolerance. Antioxidants (Basel) 2022; 11:antiox11122359. [PMID: 36552568 PMCID: PMC9774250 DOI: 10.3390/antiox11122359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Compositions and activities of bacterial flora in the gastrointestinal tract significantly influence the metabolism, health, and disease of host humans and animals. These enteric bacteria can switch between aerobic and anaerobic growth if oxygen tension becomes limited. Interestingly, the switching mechanism is important for preventing reactive oxygen species (ROS) production and antibiotic tolerance. Studies have also shown that intracellular and extracellular sulfide molecules are involved in this switching control, although the mechanism is not fully clarified. Here, we found that YgaV, a sulfide-responsive transcription factor SqrR/BigR homolog, responded to sulfide compounds in vivo and in vitro to control anaerobic respiratory gene expression. YgaV also responded to H2O2 scavenging in the enteric bacterium Escherichia coli. Although the wild-type (WT) showed increased antibiotic tolerance under H2S-atmospheric conditions, the ygaV mutant did not show such a phenotype. Additionally, antibiotic sensitivity was higher in the mutant than in the WT of both types in the presence and absence of exogenous H2S. These results, therefore, indicated that YgaV-dependent transcriptional regulation was responsible for maintaining redox homeostasis, ROS scavenging, and antibiotic tolerance.
Collapse
Affiliation(s)
| | - Koichi Hori
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takayuki Shimizu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Shingo Kasamatsu
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Kae Okamura
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hideshi Ihara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Correspondence:
| |
Collapse
|
10
|
Abstract
Streptococcus suis is an important zoonotic pathogen. Due to the indiscriminate use of macrolides, S. suis has developed a high level of drug resistance, which has led to a serious threat to human and animal health. However, it takes a long time to develop new antibacterial drugs. Therefore, we consider the perspective of bacterial physiological metabolism to ensure that the development of bacterial resistance to existing drugs is alleviated and bacterial susceptibility to drugs is restored. In the present study, an untargeted metabolomics analysis showed that the serine catabolic pathway was inhibited in drug-resistant S. suis. The addition of l-serine restored the fungicidal effect of macrolides on S. suisin vivo and in vitro by enhancing the serine metabolic pathway. Further studies showed that l-serine, stimulated by its serine catabolic pathway, inhibited intracellular H2S production, reduced Fe-S cluster production, and restored the normal occurrence of the Fenton reaction in cells. It also attenuated the production of glutathione, an important marker of the intracellular oxidation-reduction reaction. All these phenomena eventually contribute to an increase in the level of reactive oxygen species, which leads to intracellular DNA damage and bacterial death. Our study provides a potential new approach for the treatment of diseases caused by drug-resistant S. suis. IMPORTANCE The emergence of antimicrobial resistance is a global challenge. However, new drug development efforts consume considerable resources and time, and alleviating the pressure on existing drugs is the focus of our work. We investigated the mechanism of action of l-serine supplementation in restoring the use of macrolides in S. suis, based on the role of the serine catabolic pathway on reactive oxygen species levels and oxidative stress in S. suis. This pathway provides a theoretical basis for the rational use of macrolides in clinical practice and also identifies a possible target for restoring drug sensitivity in S. suis.
Collapse
|
11
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
12
|
Abstract
Bacterial resistance to antibiotics threatens our progress in healthcare, modern medicine, food production and ultimately life expectancy. Antibiotic resistance is a global concern, which spreads rapidly across borders and continents due to rapid travel of people, animals and goods. Derivatives of metabolically stable pyrazole nucleus are known for their wide range of pharmacological properties, including antibacterial activities. This review highlights recent reports of pyrazole derivatives targeting different bacterial strains focusing on the drug-resistant variants. Pyrazole derivatives target different metabolic pathways of both Gram-positive and Gram-negative bacteria.
Collapse
|
13
|
Seregina TA, Lobanov KV, Shakulov RS, Mironov AS. Enhancement of the Bactericidal Effect of Antibiotics by Inhibition of Enzymes Involved in Production of Hydrogen Sulfide in Bacteria. Mol Biol 2022; 56:638-648. [PMID: 36217334 PMCID: PMC9534473 DOI: 10.1134/s0026893322050120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022]
Abstract
Counteraction of the origin and distribution of multidrug-resistant pathogens responsible for intra-hospital infections is a worldwide issue in medicine. In this brief review, we discuss the results of our recent investigations, which argue that many antibiotics, along with inactivation of their traditional biochemical targets, can induce oxidative stress (ROS production), thus resulting in increased bactericidal efficiency. As we previously showed, hydrogen sulfide, which is produced in the cells of different pathogens protects them not only against oxidative stress but also against bactericidal antibiotics. Next, we clarified the interplay of oxidative stress, cysteine metabolism, and hydrogen sulfide production. Finally, demonstrated that small molecules, which inhibit a bacterial enzyme involved in hydrogen sulfide production, potentiate bactericidal antibiotics including quinolones, beta-lactams, and aminoglycosides against bacterial pathogens in in vitro and in mouse models of infection. These inhibitors also suppress bacterial tolerance to antibiotics by disrupting the biofilm formation and substantially reducing the number of persister bacteria, which survive the antibiotic treatment. We hypothesise that agents which limit hydrogen sulfide biosynthesis are effective tools to counteract the origin and distribution of multidrug-resistant pathogens.
Collapse
Affiliation(s)
- T. A. Seregina
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - K. V. Lobanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - R. S. Shakulov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - A. S. Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| |
Collapse
|
14
|
Privalsky TM, Soohoo AM, Wang J, Walsh CT, Wright GD, Gordon EM, Gray NS, Khosla C. Prospects for Antibacterial Discovery and Development. J Am Chem Soc 2021; 143:21127-21142. [PMID: 34860516 PMCID: PMC8855840 DOI: 10.1021/jacs.1c10200] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rising prevalence of multidrug-resistant bacteria is an urgent health crisis that can only be countered through renewed investment in the discovery and development of antibiotics. There is no panacea for the antibacterial resistance crisis; instead, a multifaceted approach is called for. In this Perspective we make the case that, in the face of evolving clinical needs and enabling technologies, numerous validated antibacterial targets and associated lead molecules deserve a second look. At the same time, many worthy targets lack good leads despite harboring druggable active sites. Creative and inspired techniques buoy discovery efforts; while soil screening efforts frequently lead to antibiotic rediscovery, researchers have found success searching for new antibiotic leads by studying underexplored ecological niches or by leveraging the abundance of available data from genome mining efforts. The judicious use of "polypharmacology" (i.e., the ability of a drug to alter the activities of multiple targets) can also provide new opportunities, as can the continued search for inhibitors of resistance enzymes with the capacity to breathe new life into old antibiotics. We conclude by highlighting available pharmacoeconomic models for antibacterial discovery and development while making the case for new ones.
Collapse
Affiliation(s)
- Thomas M. Privalsky
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - Alexander M. Soohoo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 United States
| | - Christopher T. Walsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Eric M. Gordon
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Nathanael S. Gray
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, United States
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
15
|
Shatalin K, Nuthanakanti A, Kaushik A, Shishov D, Peselis A, Shamovsky I, Pani B, Lechpammer M, Vasilyev N, Shatalina E, Rebatchouk D, Mironov A, Fedichev P, Serganov A, Nudler E. Inhibitors of bacterial H 2S biogenesis targeting antibiotic resistance and tolerance. Science 2021; 372:1169-1175. [PMID: 34112687 PMCID: PMC10723041 DOI: 10.1126/science.abd8377] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.
Collapse
Affiliation(s)
- Konstantin Shatalin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ashok Nuthanakanti
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Abhishek Kaushik
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Mirna Lechpammer
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Elena Shatalina
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Alexander Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow 119991, Russia
| | | | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
16
|
Gui DD, Luo W, Yan BJ, Ren Z, Tang ZH, Liu LS, Zhang JF, Jiang ZS. Effects of gut microbiota on atherosclerosis through hydrogen sulfide. Eur J Pharmacol 2021; 896:173916. [PMID: 33529724 DOI: 10.1016/j.ejphar.2021.173916] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the leading cause of death and morbidity worldwide. Atherosclerotic cardiovascular disease (ASCVD) is affected by both environmental and genetic factors. Microenvironmental disorders of the human gut flora are associated with a variety of health problems, not only gastrointestinal diseases, such as inflammatory bowel disease, but also extralintestinal organs. Hydrogen sulfide (H2S) is the third gas signaling molecule other than nitric oxide and carbon monoxide. In the cardiovascular system, H2S plays important roles in the regulation of blood pressure, angiogenesis, smooth muscle cell proliferation and apoptosis, anti-oxidative stress, cardiac functions. This review is aiming to explore the potential role of gut microbiota in the development of atherosclerosis through hydrogen sulfide production as a novel therapeutic direction for atherosclerosis.
Collapse
Affiliation(s)
- Dan-Dan Gui
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Wen Luo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China
| | - Ji-Feng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
17
|
Kato H, Ogawa T, Ohta H, Katayama Y. Enumeration of Chemoorganotrophic Carbonyl Sulfide (COS)-degrading Microorganisms by the Most Probable Number Method. Microbes Environ 2020; 35. [PMID: 32350165 PMCID: PMC7308577 DOI: 10.1264/jsme2.me19139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Carbonyl sulfide (COS) is the most abundant sulfur compound in the atmosphere, and, thus, is important in the global sulfur cycle. Soil is a major sink of atmospheric COS and the numerical distribution of soil microorganisms that degrade COS is indispensable for estimating the COS-degrading potential of soil. However, difficulties are associated with counting COS-degrading microorganisms using culture-dependent approaches, such as the most probable number (MPN) method, because of the chemical hydrolysis of COS by water. We herein developed a two-step MPN method for COS-degrading microorganisms: the first step for chemoorganotrophic growth that supported a sufficient number of cells for COS degradation in the second step. Our new MPN analysis of various environmental samples revealed that the cell density of COS-degrading microorganisms in forest soils ranged between 106 and 108 MPN (g dry soil)–1, which was markedly higher than those in volcanic deposit and water samples, and strongly correlated with the rate of COS degradation in environmental samples. Numerically dominant COS degraders that were isolated from the MPN-positive culture were related to bacteria in the orders Bacillales and Actinomycetales. The present results provide numerical evidence for the ubiquity of COS-degrading microbes in natural environments.
Collapse
Affiliation(s)
- Hiromi Kato
- Graduate School of Life Sciences, Tohoku University
| | - Takahiro Ogawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology.,Present address: Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Hiroyuki Ohta
- Department of Bioresource Science, Ibaraki University College of Agriculture
| | - Yoko Katayama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology.,Independent Administrative Institution, Tokyo National Research Institute for Cultural Properties
| |
Collapse
|
18
|
Croppi G, Zhou Y, Yang R, Bian Y, Zhao M, Hu Y, Ruan BH, Yu J, Wu F. Discovery of an Inhibitor for Bacterial 3-Mercaptopyruvate Sulfurtransferase that Synergistically Controls Bacterial Survival. Cell Chem Biol 2020; 27:1483-1499.e9. [DOI: 10.1016/j.chembiol.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
|
19
|
Liu Y, Li R, Xiao X, Wang Z. Bacterial metabolism-inspired molecules to modulate antibiotic efficacy. J Antimicrob Chemother 2020; 74:3409-3417. [PMID: 31211378 DOI: 10.1093/jac/dkz230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The decreasing antibiotic susceptibility of bacterial pathogens calls for novel antimicrobial therapies. Traditional screening pathways based on drug-target interaction have gradually reached the stage of diminishing returns. Thus, novel strategies are urgently needed in the fight against antibiotic-refractory bacteria, particularly for tolerant bacteria. Recently, evidence has accumulated demonstrating that microbial changes caused by bacterial metabolic processes significantly modulate antibiotic killing. A better understanding of these bacterial metabolic processes is indicating a need to screen novel metabolic modulators as potential antibiotic adjuvants. In this review, we describe the state of our current knowledge about how these bacterial metabolism-inspired molecules affect antibiotic efficacy, including potentiation and inhibition activity. In addition, the challenges faced and prospects for bringing them into clinic are also discussed. These examples may provide candidates or targets for the development of novel antibiotic adjuvants.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Ruichao Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xia Xiao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
20
|
Singh N, Singh R, Shukla M, Kaul G, Chopra S, Joshi KB, Verma S. Peptide Nanostructure-Mediated Antibiotic Delivery by Exploiting H 2S-Rich Environment in Clinically Relevant Bacterial Cultures. ACS Infect Dis 2020; 6:2441-2450. [PMID: 32786296 DOI: 10.1021/acsinfecdis.0c00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimuli-responsive self-destructing soft structures serve as versatile hosts for the encapsulation of guest molecules. A new paradigm for H2S-responsive structures, based on a modified tripeptide construct, is presented along with microscopy evidence of its time-dependent rupture. As a medicinally interesting application, we employed these commercial antibiotic-loaded soft structures for successful drug release and inhibition of clinically relevant, drug-susceptible, and methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Narendra Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Manjulika Shukla
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, Uttar Pradesh226001, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, Uttar Pradesh226001, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, Uttar Pradesh226001, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
21
|
Ng SY, Ong KX, Surendran ST, Sinha A, Lai JJH, Chen J, Liang J, Tay LKS, Cui L, Loo HL, Ho P, Han J, Moreira W. Hydrogen Sulfide Sensitizes Acinetobacter baumannii to Killing by Antibiotics. Front Microbiol 2020; 11:1875. [PMID: 32849459 PMCID: PMC7427342 DOI: 10.3389/fmicb.2020.01875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
The production of endogenous hydrogen sulfide (H2S) has been shown to confer antibiotic tolerance in all bacteria studied to date. Therefore, this mediator has been speculated to be a universal defense mechanism against antibiotics in bacteria. This is assuming that all bacteria produce endogenous H2S. In this study, we established that the pathogenic bacteria Acinetobacter baumannii does not produce endogenous H2S, giving us the opportunity to test the effect of exogenous H2S on antibiotic tolerance in a bacterium that does not produce it. By using a H2S-releasing compound to modulate the sulfide content in A. baumannii, we demonstrated that instead of conferring antibiotic tolerance, exogenous H2S sensitized A. baumannii to multiple antibiotic classes, and was able to revert acquired resistance to gentamicin. Exogenous H2S triggered a perturbation of redox and energy homeostasis that translated into hypersensitivity to antibiotic killing. We propose that H2S could be used as an antibiotic-potentiator and resistance-reversion agent in bacteria that do not produce it.
Collapse
Affiliation(s)
- Say Yong Ng
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Kai Xun Ong
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Smitha Thamarath Surendran
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group (CAMP IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Ameya Sinha
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Joey Jia Hui Lai
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Jacqueline Chen
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Jiaqi Liang
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Leona Kwan Sing Tay
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Hooi Linn Loo
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Jongyoon Han
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Wilfried Moreira
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| |
Collapse
|
22
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
23
|
Walsh BJC, Wang J, Edmonds KA, Palmer LD, Zhang Y, Trinidad JC, Skaar EP, Giedroc DP. The Response of Acinetobacter baumannii to Hydrogen Sulfide Reveals Two Independent Persulfide-Sensing Systems and a Connection to Biofilm Regulation. mBio 2020; 11:e01254-20. [PMID: 32576676 PMCID: PMC7315123 DOI: 10.1128/mbio.01254-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic nosocomial pathogen that is the causative agent of several serious infections in humans, including pneumonia, sepsis, and wound and burn infections. A. baumannii is also capable of forming proteinaceous biofilms on both abiotic and epithelial cell surfaces. Here, we investigate the response of A. baumannii toward sodium sulfide (Na2S), known to be associated with some biofilms at oxic/anoxic interfaces. The addition of exogenous inorganic sulfide reveals that A. baumannii encodes two persulfide-sensing transcriptional regulators, a primary σ54-dependent transcriptional activator (FisR), and a secondary system controlled by the persulfide-sensing biofilm growth-associated repressor (BigR), which is only induced by sulfide in a fisR deletion strain. FisR activates an operon encoding a sulfide oxidation/detoxification system similar to that characterized previously in Staphylococcus aureus, while BigR regulates a secondary persulfide dioxygenase (PDO2) as part of yeeE-yedE-pdo2 sulfur detoxification operon, found previously in Serratia spp. Global S-sulfuration (persulfidation) mapping of the soluble proteome reveals 513 persulfidation targets well beyond FisR-regulated genes and includes five transcriptional regulators, most notably the master biofilm regulator BfmR and a poorly characterized catabolite regulatory protein (Crp). Both BfmR and Crp are well known to impact biofilm formation in A. baumannii and other organisms, respectively, suggesting that persulfidation of these regulators may control their activities. The implications of these findings on bacterial sulfide homeostasis, persulfide signaling, and biofilm formation are discussed.IMPORTANCE Although hydrogen sulfide (H2S) has long been known as a respiratory poison, recent reports in numerous bacterial pathogens reveal that H2S and more downstream oxidized forms of sulfur collectedly termed reactive sulfur species (RSS) function as antioxidants to combat host efforts to clear the infection. Here, we present a comprehensive analysis of the transcriptional and proteomic response of A. baumannii to exogenous sulfide as a model for how this important human pathogen manages sulfide/RSS homeostasis. We show that A. baumannii is unique in that it encodes two independent persulfide sensing and detoxification pathways that govern the speciation of bioactive sulfur in cells. The secondary persulfide sensor, BigR, impacts the expression of biofilm-associated genes; in addition, we identify two other transcriptional regulators known or projected to regulate biofilm formation, BfmR and Crp, as highly persulfidated in sulfide-exposed cells. These findings significantly strengthen the connection between sulfide homeostasis and biofilm formation in an important human pathogen.
Collapse
Affiliation(s)
- Brenna J C Walsh
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Jiefei Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | | | - Lauren D Palmer
- Department of Pathology, Microbiology and Immunology, and Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yixiang Zhang
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, Indiana, USA
| | - Jonathan C Trinidad
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, Indiana, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, and Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
24
|
|
25
|
Knauf C, Abot A, Wemelle E, Cani PD. Targeting the Enteric Nervous System to Treat Metabolic Disorders? "Enterosynes" as Therapeutic Gut Factors. Neuroendocrinology 2020; 110:139-146. [PMID: 31280267 DOI: 10.1159/000500602] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
The gut-brain axis is of crucial importance for controlling glucose homeostasis. Alteration of this axis promotes the type 2 diabetes (T2D) phenotype (hyperglycaemia, insulin resistance). Recently, a new concept has emerged to demonstrate the crucial role of the enteric nervous system in the control of glycaemia via the hypothalamus. In diabetic patients and mice, modification of enteric neurons activity in the proximal part of the intestine generates a duodenal hyper-contractility that generates an aberrant message from the gut to the brain. In turn, the hypothalamus sends an aberrant efferent message that provokes a state of insulin resistance, which is characteristic of a T2D state. Targeting the enteric nervous system of the duodenum is now recognized as an innovative strategy for treatment of diabetes. By acting in the intestine, bioactive gut molecules that we called "enterosynes" can modulate the function of a specific type of neurons of the enteric nervous system to decrease the contraction of intestinal smooth muscle cells. Here, we focus on the origins of enterosynes (hormones, neurotransmitters, nutrients, microbiota, and immune factors), which could be considered therapeutic factors, and we describe their modes of action on enteric neurons. This unsuspected action of enterosynes is proposed for the treatment of T2D, but it could be applied for other therapeutic solutions that implicate communication between the gut and brain.
Collapse
Affiliation(s)
- Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Toulouse, France,
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France,
| | - Anne Abot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Toulouse, France
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France
| | - Eve Wemelle
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Toulouse, France
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France
- UCLouvain, Université Catholique de Louvain, WELBIO - Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| |
Collapse
|
26
|
Rastelli M, Cani PD, Knauf C. The Gut Microbiome Influences Host Endocrine Functions. Endocr Rev 2019; 40:1271-1284. [PMID: 31081896 DOI: 10.1210/er.2018-00280] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
The gut microbiome is considered an organ contributing to the regulation of host metabolism. Since the relationship between the gut microbiome and specific diseases was elucidated, numerous studies have deciphered molecular mechanisms explaining how gut bacteria interact with host cells and eventually shape metabolism. Both metagenomic and metabolomic analyses have contributed to the discovery of bacterial-derived metabolites acting on host cells. In this review, we examine the molecular mechanisms by which bacterial metabolites act as paracrine or endocrine factors, thereby regulating host metabolism. We highlight the impact of specific short-chain fatty acids on the secretion of gut peptides (i.e., glucagon-like peptide-1, peptide YY) and other metabolites produced from different amino acids and regulating inflammation, glucose metabolism, or energy homeostasis. We also discuss the role of gut microbes on the regulation of bioactive lipids that belong to the endocannabinoid system and specific neurotransmitters (e.g., γ-aminobutyric acid, serotonin, nitric oxide). Finally, we review the role of specific bacterial components (i.e., ClpB, Amuc_1100) also acting as endocrine factors and eventually controlling host metabolism. In conclusion, this review summarizes the recent state of the art, aiming at providing evidence that the gut microbiome influences host endocrine functions via several bacteria-derived metabolites.
Collapse
Affiliation(s)
- Marialetizia Rastelli
- Université Catholique de Louvain, UCLouvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium.,NeuroMicrobiota, European Associated Laboratory (INSERM/UCLouvain), Brussels, Belgium
| | - Patrice D Cani
- Université Catholique de Louvain, UCLouvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium.,NeuroMicrobiota, European Associated Laboratory (INSERM/UCLouvain), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCLouvain), Brussels, Belgium.,Institut de Recherche en Santé Digestive et Nutrition (IRSD), Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier (UPS), Toulouse Cedex 3, France
| |
Collapse
|
27
|
Transcription factor YcjW controls the emergency H 2S production in E. coli. Nat Commun 2019; 10:2868. [PMID: 31253770 PMCID: PMC6599011 DOI: 10.1038/s41467-019-10785-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Prokaryotes and eukaryotes alike endogenously generate the gaseous molecule hydrogen sulfide (H2S). Bacterial H2S acts as a cytoprotectant against antibiotics-induced stress and promotes redox homeostasis. In E. coli, endogenous H2S production is primarily dependent on 3-mercaptopyruvate sulfurtransferase (3MST), encoded by mstA. Here, we show that cells lacking 3MST acquire a phenotypic suppressor mutation resulting in compensatory H2S production and tolerance to antibiotics and oxidative stress. Using whole genome sequencing, we identified a non-synonymous mutation within an uncharacterized LacI-type transcription factor, ycjW. We then mapped regulatory targets of YcjW and discovered it controls the expression of carbohydrate metabolic genes and thiosulfate sulfurtransferase PspE. Induction of pspE expression in the suppressor strain provides an alternative mechanism for H2S biosynthesis. Our results reveal a complex interaction between carbohydrate metabolism and H2S production in bacteria and the role, a hitherto uncharacterized transcription factor, YcjW, plays in linking the two. Hydrogen sulfide (H2S) production in Escherichia coli is controlled by the sulfurtransferase 3MST. Here, the authors describe an alternative mechanism for H2S biosynthesis via activation of the thiosulfate sulfurtransferase PspE, a process mediated by the transcription factor YcjW.
Collapse
|
28
|
Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as 'gasotransmitters' in bacteria? Biochem Soc Trans 2018; 46:1107-1118. [PMID: 30190328 PMCID: PMC6195638 DOI: 10.1042/bst20170311] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/04/2023]
Abstract
A gasotransmitter is defined as a small, generally reactive, gaseous molecule that, in solution, is generated endogenously in an organism and exerts important signalling roles. It is noteworthy that these molecules are also toxic and antimicrobial. We ask: is this definition of a gasotransmitter appropriate in the cases of nitric oxide, carbon monoxide and hydrogen sulfide (H2S) in microbes? Recent advances show that, not only do bacteria synthesise each of these gases, but the molecules also have important signalling or messenger roles in addition to their toxic effects. However, strict application of the criteria proposed for a gasotransmitter leads us to conclude that the term ‘small molecule signalling agent’, as proposed by Fukuto and others, is preferable terminology.
Collapse
|
29
|
Avalos M, van Wezel GP, Raaijmakers JM, Garbeva P. Healthy scents: microbial volatiles as new frontier in antibiotic research? Curr Opin Microbiol 2018; 45:84-91. [PMID: 29544125 DOI: 10.1016/j.mib.2018.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Microorganisms represent a large and still resourceful pool for the discovery of novel compounds to combat antibiotic resistance in human and animal pathogens. The ability of microorganisms to produce structurally diverse volatile compounds has been known for decades, yet their biological functions and antimicrobial activities have only recently attracted attention. Various studies revealed that microbial volatiles can act as infochemicals in long-distance cross-kingdom communication as well as antimicrobials in competition and predation. Here, we review recent insights into the natural functions and modes of action of microbial volatiles and discuss their potential as a new class of antimicrobials and modulators of antibiotic resistance.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
30
|
Mack SG, Turner RL, Dwyer DJ. Achieving a Predictive Understanding of Antimicrobial Stress Physiology through Systems Biology. Trends Microbiol 2018. [PMID: 29530606 DOI: 10.1016/j.tim.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dramatic spread and diversity of antibiotic-resistant pathogens has significantly reduced the efficacy of essentially all antibiotic classes, bringing us ever closer to a postantibiotic era. Exacerbating this issue, our understanding of the multiscale physiological impact of antimicrobial challenge on bacterial pathogens remains incomplete. Concerns over resistance and the need for new antibiotics have motivated the collection of omics measurements to provide systems-level insights into antimicrobial stress responses for nearly 20 years. Although technological advances have markedly improved the types and resolution of such measurements, continued development of mathematical frameworks aimed at providing a predictive understanding of complex antimicrobial-associated phenotypes is critical to maximize the utility of multiscale data. Here we highlight recent efforts utilizing systems biology to enhance our knowledge of antimicrobial stress physiology. We provide a brief historical perspective of antibiotic-focused omics measurements, highlight new measurement discoveries and trends, discuss examples and opportunities for integrating measurements with mathematical models, and describe future challenges for the field.
Collapse
Affiliation(s)
- Sean G Mack
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Randi L Turner
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel J Dwyer
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Sciences & Technology, University of Maryland, College Park, MD 20742, USA; Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
31
|
Novel biosynthetic pathway for sulfur amino acids in Cryptococcus neoformans. Curr Genet 2017; 64:681-696. [PMID: 29159425 DOI: 10.1007/s00294-017-0783-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022]
Abstract
We elucidated a unique feature of sulfur metabolism in Cryptococcus neoformans. C. neoformans produces cysteine solely by the O-acetylserine pathway that consists of serine-O-acetyl transferase and cysteine synthase. We designated the gene encoding the former enzyme CYS2 (locus tag CNE02740) and the latter enzyme CYS1 (locus tag CNL05880). The cys1Δmutant strain was found to be avirulent in a murine infection model. Methionine practically does not support growth of the cys1Δ strain, and cysteine does not serve as a methionine source, indicating that the transsulfuration pathway does not contribute to sulfur amino acid synthesis in C. neoformans. Among the genes encoding enzymes catalyzing the reactions from homoserine to methionine, the gene corresponding to the Saccharomyces cerevisiae MET17 encoding O-acetylhomoserine sulfhydrylase (Met17p) had remained to be identified in C. neoformans. By genetic analysis of Met- mutants obtained by Agrobacterium tumefaciens-mediated mutagenesis, we concluded that Cnc01220, most similar to Str2p (36% identity), cystathionine-γ-synthase, in the Saccharomyces genome, is the C. neoformans version of O-acetylhomoserine sulfhydrylase. We designated CNC01220 as MET17. The C. neoformans met3Δ mutant defective in the first step of the sulfate assimilation pathway, sulfate adenylyltransferase, barely uses methionine as a sulfur source, whereas it uses cysteine efficiently. The poor utilization of methionine by the met3Δ mutant is most probably due to the absence of the transsulfuration pathway, causing an incapability of C. neoformans to produce cysteine and hydrogen sulfide from methionine. When cysteine is used as a sulfur source, methionine is likely produced de novo by using hydrogen sulfide derived from cysteine via an unidentified pathway. Altogether, the unique features of sulfur amino acid metabolism in C. neoformans will make this fungus a valuable experimental system to develop anti-fungal agents and to investigate physiology of hydrogen sulfide.
Collapse
|
32
|
Giedroc DP. A new player in bacterial sulfide-inducible transcriptional regulation. Mol Microbiol 2017; 105:347-352. [PMID: 28612383 DOI: 10.1111/mmi.13726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022]
Abstract
Although hydrogen sulfide (H2 S) is perhaps best known as a toxic gas, the electron-rich H2 S functions as an energy source and electron donor for chemolithotrophic and photosynthetic bacteria, via sulfide oxidation, and is a universal substrate for cysteine biosynthesis. These distinct harmful and beneficial roles of H2 S suggest the need to 'sense' prevailing concentrations of sulfide and downstream reactive sulfur species (RSS) and regulate the expression of genes mediating sulfide homeostasis. The paper by Li et al. in this issue of Molecular Microbiology adds Cupriavidus FisR to an expanding repertoire of regulatory mechanisms that bacteria have evolved to sense cellular RSS and mitigate their deleterious effects.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| |
Collapse
|
33
|
Shukla P, Khodade VS, SharathChandra M, Chauhan P, Mishra S, Siddaramappa S, Pradeep BE, Singh A, Chakrapani H. "On demand" redox buffering by H 2S contributes to antibiotic resistance revealed by a bacteria-specific H 2S donor. Chem Sci 2017; 8:4967-4972. [PMID: 28959420 PMCID: PMC5607856 DOI: 10.1039/c7sc00873b] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Understanding the mechanisms of antimicrobial resistance (AMR) will help launch a counter-offensive against human pathogens that threaten our ability to effectively treat common infections. Herein, we report bis(4-nitrobenzyl)sulfanes, which are activated by a bacterial enzyme to produce hydrogen sulfide (H2S) gas. We found that H2S helps maintain redox homeostasis and protects bacteria against antibiotic-triggered oxidative stress "on demand", through activation of alternate respiratory oxidases and cellular antioxidants. We discovered, a hitherto unknown role for this gas, that chemical inhibition of H2S biosynthesis reversed antibiotic resistance in multidrug-resistant (MDR) uropathogenic Escherichia coli strains of clinical origin, whereas exposure to the H2S donor restored drug tolerance. Together, our study provides a greater insight into the dynamic defence mechanisms of this gas, modes of antibiotic action as well as resistance while progressing towards new pharmacological targets to address AMR.
Collapse
Affiliation(s)
- Prashant Shukla
- Department of Microbiology and Cell Biology , Centre for Infectious Disease and Research , Indian Institute of Science , Bangalore 5600012 , Karnataka , India .
- International Centre for Genetic Engineering and Biotechnology , New Delhi , India
| | - Vinayak S Khodade
- Department of Chemistry , Indian Institute of Science Education and Research Pune , Dr Homi Bhabha Road, Pashan , Pune 411 008 , Maharashtra , India .
| | - Mallojjala SharathChandra
- Department of Chemistry , Indian Institute of Science Education and Research Pune , Dr Homi Bhabha Road, Pashan , Pune 411 008 , Maharashtra , India .
| | - Preeti Chauhan
- Department of Chemistry , Indian Institute of Science Education and Research Pune , Dr Homi Bhabha Road, Pashan , Pune 411 008 , Maharashtra , India .
| | - Saurabh Mishra
- Department of Microbiology and Cell Biology , Centre for Infectious Disease and Research , Indian Institute of Science , Bangalore 5600012 , Karnataka , India .
| | | | | | - Amit Singh
- Department of Microbiology and Cell Biology , Centre for Infectious Disease and Research , Indian Institute of Science , Bangalore 5600012 , Karnataka , India .
| | - Harinath Chakrapani
- Department of Chemistry , Indian Institute of Science Education and Research Pune , Dr Homi Bhabha Road, Pashan , Pune 411 008 , Maharashtra , India .
| |
Collapse
|
34
|
Mechanism of H 2S-mediated protection against oxidative stress in Escherichia coli. Proc Natl Acad Sci U S A 2017; 114:6022-6027. [PMID: 28533366 DOI: 10.1073/pnas.1703576114] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous hydrogen sulfide (H2S) renders bacteria highly resistant to oxidative stress, but its mechanism remains poorly understood. Here, we report that 3-mercaptopyruvate sulfurtransferase (3MST) is the major source of endogenous H2S in Escherichia coli Cellular resistance to H2O2 strongly depends on the activity of mstA, a gene that encodes 3MST. Deletion of the ferric uptake regulator (Fur) renders ∆mstA cells hypersensitive to H2O2 Conversely, induction of chromosomal mstA from a strong pLtetO-1 promoter (P tet -mstA) renders ∆fur cells fully resistant to H2O2 Furthermore, the endogenous level of H2S is reduced in ∆fur or ∆sodA ∆sodB cells but restored after the addition of an iron chelator dipyridyl. Using a highly sensitive reporter of the global response to DNA damage (SOS) and the TUNEL assay, we show that 3MST-derived H2S protects chromosomal DNA from oxidative damage. We also show that the induction of the CysB regulon in response to oxidative stress depends on 3MST, whereas the CysB-regulated l-cystine transporter, TcyP, plays the principle role in the 3MST-mediated generation of H2S. These findings led us to propose a model to explain the interplay between l-cysteine metabolism, H2S production, and oxidative stress, in which 3MST protects E. coli against oxidative stress via l-cysteine utilization and H2S-mediated sequestration of free iron necessary for the genotoxic Fenton reaction.
Collapse
|
35
|
Shen J, Peng H, Zhang Y, Trinidad JC, Giedroc DP. Staphylococcus aureus sqr Encodes a Type II Sulfide:Quinone Oxidoreductase and Impacts Reactive Sulfur Speciation in Cells. Biochemistry 2016; 55:6524-6534. [PMID: 27806570 DOI: 10.1021/acs.biochem.6b00714] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies implicate hydrogen sulfide (H2S) oxidation as an important aspect of bacterial antibiotic resistance and sulfide homeostasis. The cst operon of the major human pathogen Staphylococcus aureus is induced by exogenous H2S stress and encodes enzymes involved in sulfide oxidation, including a group I flavoprotein disulfide oxidoreductase sulfide:quinone oxidoreductase (SQR). In this work, we show that S. aureus SQR catalyzes the two-electron oxidation of sodium sulfide (Na2S) into sulfane sulfur (S0) when provided flavin adenine dinucleotide and a water-soluble quinone acceptor. Cyanide, sulfite, and coenzyme A (CoA) are all capable of functioning as the S0 acceptor in vitro. This activity requires a C167-C344 disulfide bond in the resting enzyme, with the intermediacy of a C344 persulfide in the catalytic cycle, verified by mass spectrometry of sulfide-reacted SQR. Incubation of purified SQR and S. aureus CstB, a known FeII persulfide dioxygenase-sulfurtransferase also encoded by the cst operon, yields thiosulfate from sulfide, in a CoA-dependent manner, thus confirming the intermediacy of CoASSH as a product and substrate of SQR and CstB, respectively. Sulfur metabolite profiling of wild-type, Δsqr, and Δsqr::pSQR strains reveals a marked and specific elevation in endogenous levels of CoASSH and inorganic tetrasulfide in the Δsqr strain. We conclude that SQR impacts the cellular speciation of these reactive sulfur species but implicates other mechanisms not dependent on SQR in the formation of low-molecular weight thiol persulfides and inorganic polysulfides during misregulation of sulfide homeostasis.
Collapse
Affiliation(s)
- Jiangchuan Shen
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Biochemistry Graduate Program, Indiana University , Bloomington, Indiana 47405, United States
| | - Hui Peng
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Biochemistry Graduate Program, Indiana University , Bloomington, Indiana 47405, United States
| | - Yixiang Zhang
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Laboratory for Biological Mass Spectrometry, Indiana University , Bloomington, Indiana 47405, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Laboratory for Biological Mass Spectrometry, Indiana University , Bloomington, Indiana 47405, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Department of Molecular and Cellular Biochemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
36
|
Lechpammer M, Tran YP, Wintermark P, Martínez-Cerdeño V, Krishnan VV, Ahmed W, Berman RF, Jensen FE, Nudler E, Zagzag D. Upregulation of cystathionine β-synthase and p70S6K/S6 in neonatal hypoxic ischemic brain injury. Brain Pathol 2016; 27:449-458. [PMID: 27465493 DOI: 10.1111/bpa.12421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Encephalopathy of prematurity (EOP) is a complex form of cerebral injury that occurs in the setting of hypoxia-ischemia (HI) in premature infants. Using a rat model of EOP, we investigated whether neonatal HI of the brain may alter the expression of cystathionine β-synthase (CBS) and the components of the mammalian target of rapamycin (mTOR) signaling. We performed unilateral carotid ligation and induced HI (UCL/HI) in Long-Evans rats at P6 and found increased CBS expression in white matter (i.e. corpus callosum, cingulum bundle and external capsule) as early as 24 h (P7) postprocedure. CBS remained elevated through P21, and, to a lesser extent, at P40. The mTOR downstream target 70 kDa ribosomal protein S6 kinase (p70S6K and phospho-p70S6K) and 40S ribosomal protein S6 (S6 and phospho-S6) were also overexpressed at the same time points in the UCL/HI rats compared to healthy controls. Overexpression of mTOR components was not observed in rats treated with the mTOR inhibitor everolimus. Behavioral assays performed on young rats (postnatal day 35-37) following UCL/HI at P6 indicated impaired preference for social novelty, a behavior relevant to autism spectrum disorder, and hyperactivity. Everolimus restored behavioral patterns to those observed in healthy controls. A gait analysis has shown that motor deficits in the hind paws of UCL/HI rats were also significantly reduced by everolimus. Our results suggest that neonatal HI brain injury may inflict long-term damage by upregulation of CBS and mTOR signaling. We propose this cascade as a possible new molecular target for EOP-a still untreatable cause of autism, hyperactivity and cerebral palsy.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA
| | - Yen P Tran
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA
| | - Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montréal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Veronica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA.,MIND Institute, University of California Davis, Sacramento, CA.,Institute for Pediatric Regenerative Medicine and Shriners Hospital for Children of Northern California, Sacramento, CA
| | - Viswanathan V Krishnan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA
| | - Waseem Ahmed
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA
| | - Robert F Berman
- MIND Institute, University of California Davis, Sacramento, CA.,Department of Neurological Surgery, University of California Davis, Sacramento, CA
| | - Frances E Jensen
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Evgeny Nudler
- Howard Hughes Medical Institute and Department of Biochemistry, New York University School of Medicine, New York, NY
| | - David Zagzag
- Departments of Pathology and Neurosurgery, Division of Neuropathology, Microvascular and Molecular Neuro-Oncology Laboratory, Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| |
Collapse
|
37
|
Wareham LK, Poole RK, Tinajero-Trejo M. CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era. J Biol Chem 2015; 290:18999-9007. [PMID: 26055702 PMCID: PMC4521022 DOI: 10.1074/jbc.r115.642926] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The possibility of a “post-antibiotic era” in the 21st century, in which common infections may kill, has prompted research into radically new antimicrobials. CO-releasing molecules (CORMs), mostly metal carbonyl compounds, originally developed for therapeutic CO delivery in animals, are potent antimicrobial agents. Certain CORMs inhibit growth and respiration, reduce viability, and release CO to intracellular hemes, as predicted, but their actions are more complex, as revealed by transcriptomic datasets and modeling. Progress is hindered by difficulties in detecting CO release intracellularly, limited understanding of the biological chemistry of CO reactions with non-heme targets, and the cytotoxicity of some CORMs to mammalian cells.
Collapse
Affiliation(s)
- Lauren K Wareham
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Robert K Poole
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Mariana Tinajero-Trejo
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|