1
|
Rodrigues MV, de França DA, Rossini BC, da Silva RJ, Júnior JPA. Pathogenesis of Experimental Infection of Nile Tilapia (Oreochromis niloticus) with Nucleospora Braziliensis Pathology and Proteomic of Microsporidia. Acta Parasitol 2024; 69:1661-1673. [PMID: 39162926 DOI: 10.1007/s11686-024-00889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
The recent discovery of disease caused by Nucleospora braziliensis in Nile tilapia (Oreochromis niloticus) is important as it has highlighted the high prevalence of infection and associated mortality in cultured fish. Thus, this study conducted an experimental infection of this microsporidium to evaluate pathological alterations and conduct proteomic analysis. For pathological observation, samples of brain, eyes, gall bladder, gut, heart, kidney, liver, muscle, skin, spleen, and stomach tissue, were collected, and liquid chromatography-mass spectrometry (LC-MS/MS) was performed for proteomic analysis. The most prevalent lesions were brownish color of the liver, gill filament fusion, gut ischemia, hemorrhage of the lips and fins, hepatomegaly, spleen atrophy, splenomegaly, and stomach congestion. The most common microscopic lesions were degeneration, hemorrhage, and inflammation in the brain, gills, gut, kidney, liver, muscle, spleen, and stomach. The digested peptides were identified by LC-MS/MS and the intersection of each group showed that in the spleen there were 121 exclusive proteins in the infected sample and 252 in the control, while in the kidney, 129 proteins were identified in the infected specimen compared to 83 in the control. In conclusion, this study demonstrates the proteome profile of O. niloticus kidney and spleen tissue in response to infection with N. braziliensis.
Collapse
Affiliation(s)
| | - Danilo Alves de França
- Department of Veterinary Hygiene and Public Health, São Paulo State University (UNESP), São Paulo, Brazil
| | - Bruno Cesar Rossini
- Biotechnology Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | | | | |
Collapse
|
2
|
Qazi IH, Yuan T, Yang S, Angel C, Liu J. Molecular characterization and phylogenetic analyses of MetAP2 gene and protein of Nosema bombycis isolated from Guangdong, China. Front Vet Sci 2024; 11:1429169. [PMID: 39005720 PMCID: PMC11239577 DOI: 10.3389/fvets.2024.1429169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background Pebrine, caused by microsporidium Nosema bombycis, is a devastating disease that causes serious economic damages to the sericulture industry. Studies on development of therapeutic and diagnostic options for managing pebrine in silkworms are very limited. Methionine aminopeptidase type 2 (MetAP2) of microsporidia is an essential gene for their survival and has been exploited as the cellular target of drugs such as fumagillin and its analogues in several microsporidia spp., including Nosema of honeybees. Methods In the present study, using molecular and bioinformatics tools, we performed in-depth characterization and phylogenetic analyses of MetAP2 of Nosema bombycis isolated from Guangdong province of China. Results The full length of MetAP2 gene sequence of Nosema bombycis (Guangdong isolate) was found to be 1278 base pairs (bp), including an open reading frame of 1,077 bp, encoding a total of 358 amino acids. The bioinformatics analyses predicted the presence of typical alpha-helix structural elements, and absence of transmembrane domains and signal peptides. Additionally, other characteristics of a stable protein were also predicted. The homology-based 3D models of MetAP2 of Nosema bombycis (Guangdong isolate) with high accuracy and reliability were developed. The MetAP2 protein was expressed and purified. The observed molecular weight of MetAP2 protein was found to be ~43-45 kDa. The phylogenetic analyses showed that MetAP2 gene and amino acids sequences of Nosema bombycis (Guangdong isolate) shared a close evolutionary relationship with Nosema spp. of wild silkworms, but it was divergent from microsporidian spp. of other insects, Aspergillus spp., Saccharomyces cerevisiae, and higher animals including humans. These analyses indicated that the conservation and evolutionary relationships of MetAP2 are closely linked to the species relationships. Conclusion This study provides solid foundational information that could be helpful in optimization and development of diagnostic and treatment options for managing the threat of Nosema bombycis infection in sericulture industry of China.
Collapse
Affiliation(s)
- Izhar Hyder Qazi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sijia Yang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Christiana Angel
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Jiping Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Sangklai N, Supungul P, Jaroenlak P, Tassanakajon A. Immune signaling of Litopenaeus vannamei c-type lysozyme and its role during microsporidian Enterocytozoon hepatopenaei (EHP) infection. PLoS Pathog 2024; 20:e1012199. [PMID: 38683868 PMCID: PMC11081493 DOI: 10.1371/journal.ppat.1012199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
The microsporidian Enterocytozoon hepatopenaei (EHP) is a fungi-related, spore-forming parasite. EHP infection causes growth retardation and size variation in shrimp, resulting in severe economic losses. Studies on shrimp immune response have shown that several antimicrobial peptides (AMPs) were upregulated upon EHP infection. Among those highly upregulated AMPs is c-type lysozyme (LvLyz-c). However, the immune signaling pathway responsible for LvLyz-c production in shrimp as well as its function against the EHP infection are still poorly understood. Here, we characterized major shrimp immune signaling pathways and found that Toll and JAK/STAT pathways were up-regulated upon EHP infection. Knocking down of a Domeless (DOME) receptor in the JAK/STAT pathways resulted in a significant reduction of the LvLyz-c and the elevation of EHP copy number. We further elucidated the function of LvLyz-c by heterologously expressing a recombinant LvLyz-c (rLvLyz-c) in an Escherichia coli. rLvLyz-c exhibited antibacterial activity against several bacteria such as Bacillus subtilis and Vibrio parahaemolyticus. Interestingly, we found an antifungal activity of rLvLyz-c against Candida albican, which led us to further investigate the effects of rLvLyz-c on EHP spores. Incubation of the EHP spores with rLvLyz-c followed by a chitin staining showed that the signals were dramatically decreased in a dose-dependent manner, suggesting that rLvLyz-c possibly digest a chitin coat on the EHP spores. Transmission electron microscopy analysis revealed that an endospore layer, which is composed mainly of chitin, was digested by rLvLyz-c. Lastly, we observed that EHP spores that were treated with rLvLyz-c showed a significant reduction of the spore germination rate. We hypothesize that thinning of the endospore of EHP would result in altered permeability, hence affecting spore germination. This work provides insights into shrimp immune signaling pathways responsible for LvLyz-c production and its anti-EHP property. This knowledge will serve as important foundations for developing EHP control strategies.
Collapse
Affiliation(s)
- Nutthapon Sangklai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Pattana Jaroenlak
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Zhang L, Zhang S, Qiao Y, Cao X, Cheng J, Meng Q, Shen H. Dynamic Interplay of Metabolic and Transcriptional Responses in Shrimp during Early and Late Infection Stages of Enterocytozoon hepatopenaei (EHP). Int J Mol Sci 2023; 24:16738. [PMID: 38069062 PMCID: PMC10706788 DOI: 10.3390/ijms242316738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Enterocytozoon hepatopenaei (EHP) is a microsporidian parasite that infects Litopenaeus vannamei, causing severe hepatopancreatic microsporidiosis (HPM) and resulting in significant economic losses. This study utilizes a combined analysis of transcriptomics and metabolomics to unveil the dynamic molecular interactions between EHP and its host, the Pacific white shrimp, during the early and late stages of infection. The results indicate distinct immunological, detoxification, and antioxidant responses in the early and late infection phases. During early EHP infection in shrimp, immune activation coincides with suppression of genes like Ftz-F1 and SEPs, potentially aiding parasitic evasion. In contrast, late infection shows a refined immune response with phagocytosis-enhancing down-regulation of Ftz-F1 and a resurgence in SEP expression. This phase is characterized by an up-regulated detoxification and antioxidant response, likely a defense against the accumulated effects of EHP, facilitating a stable host-pathogen relationship. In the later stages of infection, most immune responses return to baseline levels, while some immune genes remain active. The glutathione antioxidant system is suppressed early on but becomes activated in the later stages. This phenomenon could facilitate the early invasion of EHP while assisting the host in mitigating oxidative damage caused by late-stage infection. Notably, there are distinctive events in polyamine metabolism. Sustained up-regulation of spermidine synthase and concurrent reduction in spermine levels suggest a potential role of polyamines in EHP development. Throughout the infection process, significant differences in genes such as ATP synthase and hexokinase highlight the continuous influence on energy metabolism pathways. Additionally, growth-related pathways involving amino acids such as tryptophan, histidine, and taurine are disrupted early on, potentially contributing to the growth inhibition observed during the initial stages of infection. In summary, these findings elucidate the dynamic interplay between the host, Litopenaeus vannamei, and the parasite, EHP, during infection. Specific phase differences in immune responses, energy metabolism, and antioxidant processes underscore the intricate relationship between the host and the parasite. The disruption of polyamine metabolism offers a novel perspective in understanding the proliferation mechanisms of EHP. These discoveries significantly advance our comprehension of the pathogenic mechanisms of EHP and its interactions with the host.
Collapse
Affiliation(s)
- Leiting Zhang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Sheng Zhang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yi Qiao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Jie Cheng
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qingguo Meng
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Hui Shen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
5
|
Zhang L, Zhang S, Qiao Y, Cao X, Jiang G, Cheng J, Wan X, Meng Q, Shen H. A comparative transcriptome analysis of how shrimp endure and adapt to long-term symbiosis with Enterocytozoon hepatopenaei infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109088. [PMID: 37778737 DOI: 10.1016/j.fsi.2023.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) is a prevalent microsporidian pathogen responsible for hepatopancreatic microsporidiosis (HPM) in Litopenaeus vannamei. This infection not only leads to slowed growth in shrimp abut aslo inflicts substantial economic losses in the global aquaculture industry. However, the molecular mechanisms by which EHP influences the host during various infection stages remain unclear. This study employed comparative transcriptomics to examine the effects of EHP infection on Litopenaeus vannamei between early and late stage of infection groups. Utilizing transcriptomic approaches, we identified differentially expressed genes (DEGs) with notable biological significance through the COG, GO, KEGG, GSEA, and Mufzz time-series methodologies. The results reveal that EHP infection considerably influences host gene expression, with marked differences between early and late infection across distinct timeframes. Key processes such as detoxification, cell apoptosis, and lipid metabolism are pivotal during host-parasite interactions. Hexokinase and phosphatidic acid phosphatase emerge as key factors enabling invasion and sustained effects. Cytochrome P450 and glucose-6-phosphate dehydrogenase could facilitate infection progression. EHP significantly impacts growth, especially through ecdysteroids and 17β-estradiol dehydrogenase. By delineating stage-specific effects, we gain insights into interaction between EHP and Litopenaeus vannamei, showing how intracellular pathogens reprogram host defenses into mechanisms enabling long-term persistence. This study provides a deeper understanding of host-pathogen dynamics, emphasizing the interplay between detoxification, metabolism, immunity, apoptosis and growth regulation over the course of long-term symbiosis.
Collapse
Affiliation(s)
- Leiting Zhang
- Nanjing Normal University, Nanjing, 210023, China; Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Sheng Zhang
- Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Yi Qiao
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Xiaowei Cao
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Ge Jiang
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Jie Cheng
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Xihe Wan
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Qingguo Meng
- Nanjing Normal University, Nanjing, 210023, China
| | - Hui Shen
- Nanjing Normal University, Nanjing, 210023, China; Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China.
| |
Collapse
|
6
|
Velázquez-Lizárraga AE, Sukonthamarn P, Junprung W, Nanakorn Z, Itsathitphaisarn O, Jaroenlak P, Tassanakajon A. Molecular characterization of turtle-like protein in whiteleg shrimp (Litopenaeus vannamei) and its role in Enterocytozoon hepatopenaei infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108976. [PMID: 37506856 DOI: 10.1016/j.fsi.2023.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) is a microsporidian parasite that infects shrimp hepatopancreas, causing growth retardation and disease susceptibility. Knowledge of the host-pathogen molecular mechanisms is essential to understanding the microsporidian pathogenesis. Turtle-like protein (TLP) is part of the immunoglobulin superfamily of proteins, which is widely distributed in the animal kingdom. TLP has multiple functions, such as cell surface receptors and cell adhesion molecules. The spore wall proteins (SWPs) of microsporidia are involved in the infection mechanisms. Some SWPs are responsible for spore adherence, which is part of the activation and host cell invasion processes. Previous studies showed that TLP from silkworms (Bombyx mori) interacted with SWP26, contributing to the infectivity of Nosema bombycis to its host. In this study, we identified and characterized for the first time, the Litopenaeus vannamei TLP gene (LvTLP), which encodes an 827-aa protein (92.4 kDa) composed of five immunoglobulin domains, two fibronectin type III domains, and a transmembrane region. The LvTLP transcript was expressed in all tested tissues and upregulated in the hepatopancreas at 1 and 7 days post-cohabitation (dpc) and at 9 dpc in hemocytes. To identify the LvTLP binding counterpart, recombinant (r)LvTLP and recombinant (r)EhSWP1 were produced in Escherichia coli. Coimmunoprecipitation and enzyme-linked immunosorbent assays demonstrated that rLvTLP interacted with rEhSWP with high affinity (KD = 1.20 × 10-7 M). In EHP-infected hepatopancreases, LvTLP was clustered and co-localized with some of the developing EHP plasmodia. Furthermore, LvTLP gene silencing reduced the EHP copy numbers compared with those of the control group, suggesting the critical role of LvTLP in EHP infection. These results provide insight into the molecular mechanisms of the host-pathogen interactions during EHP infection.
Collapse
Affiliation(s)
- Adrián E Velázquez-Lizárraga
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Pongsakorn Sukonthamarn
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Zittipong Nanakorn
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Ornchuma Itsathitphaisarn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, 272 Rama VI, Road, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Pattana Jaroenlak
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomic of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Shen Z, Yang Q, Luo L, Li T, Ke Z, Li T, Chen J, Meng X, Xiang H, Li C, Zhou Z, Chen P, Pan G. Non-coding RNAs identification and regulatory networks in pathogen-host interaction in the microsporidia congenital infection. BMC Genomics 2023; 24:420. [PMID: 37495972 PMCID: PMC10373312 DOI: 10.1186/s12864-023-09490-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The interaction networks between coding and non-coding RNAs (ncRNAs) including long non-coding RNA (lncRNA), covalently closed circular RNA (circRNA) and miRNA are significant to elucidate molecular processes of biological activities and interactions between host and pathogen. Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-feeding industry. However, little is known about ncRNAs that take place in the microsporidia congenital infection. Here we conducted whole-transcriptome RNA-Seq analyses to identify ncRNAs and regulatory networks for both N. bombycis and host including silkworm embryos and larvae during the microsporidia congenital infection. RESULTS A total of 4,171 mRNAs, 403 lncRNA, 62 circRNAs, and 284 miRNAs encoded by N. bombycis were identified, among which some differentially expressed genes formed cross-talk and are involved in N. bombycis proliferation and infection. For instance, a lncRNA/circRNA competing endogenous RNA (ceRNA) network including 18 lncRNAs, one circRNA, and 20 miRNAs was constructed to describe 14 key parasites genes regulation, such as polar tube protein 3 (PTP3), ricin-B-lectin, spore wall protein 4 (SWP4), and heat shock protein 90 (HSP90). Regarding host silkworm upon N. bombycis congenital infection, a total of 14,889 mRNAs, 3,038 lncRNAs, 19,039 circRNAs, and 3,413 miRNAs were predicted based on silkworm genome with many differentially expressed coding and non-coding genes during distinct developmental stages. Different species of RNAs form interacting network to modulate silkworm biological processes, such as growth, metamorphosis and immune responses. Furthermore, a lncRNA/circRNA ceRNA network consisting of 140 lncRNAs, five circRNA, and seven miRNAs are constructed hypothetically to describe eight key host genes regulation, such as Toll-6, Serpin-6, inducible nitric oxide synthase (iNOS) and Caspase-8. Notably, cross-species analyses indicate that parasite and host miRNAs play a vital role in pathogen-host interaction in the microsporidia congenital infection. CONCLUSION This is the first comprehensive pan-transcriptome study inclusive of both N. bombycis and its host silkworm with a specific focus on the microsporidia congenital infection, and show that ncRNA-mediated regulation plays a vital role in the microsporidia congenital infection, which provides a new insight into understanding the basic biology of microsporidia and pathogen-host interaction.
Collapse
Affiliation(s)
- Zigang Shen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Qiong Yang
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People's Republic of China
| | - Lie Luo
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Tangxin Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Zhuojun Ke
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing, People's Republic of China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
- College of Life Sciences, Chongqing Normal University, Chongqing, People's Republic of China
| | - Ping Chen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China.
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, People's Republic of China.
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Ang’ang’o LM, Herren JK, Tastan Bishop Ö. Structural and Functional Annotation of Hypothetical Proteins from the Microsporidia Species Vittaforma corneae ATCC 50505 Using in silico Approaches. Int J Mol Sci 2023; 24:3507. [PMID: 36834914 PMCID: PMC9960886 DOI: 10.3390/ijms24043507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Microsporidia are spore-forming eukaryotes that are related to fungi but have unique traits that set them apart. They have compact genomes as a result of evolutionary gene loss associated with their complete dependency on hosts for survival. Despite having a relatively small number of genes, a disproportionately high percentage of the genes in microsporidia genomes code for proteins whose functions remain unknown (hypothetical proteins-HPs). Computational annotation of HPs has become a more efficient and cost-effective alternative to experimental investigation. This research developed a robust bioinformatics annotation pipeline of HPs from Vittaforma corneae, a clinically important microsporidian that causes ocular infections in immunocompromised individuals. Here, we describe various steps to retrieve sequences and homologs and to carry out physicochemical characterization, protein family classification, identification of motifs and domains, protein-protein interaction network analysis, and homology modelling using a variety of online resources. Classification of protein families produced consistent findings across platforms, demonstrating the accuracy of annotation utilizing in silico methods. A total of 162 out of 2034 HPs were fully annotated, with the bulk of them categorized as binding proteins, enzymes, or regulatory proteins. The protein functions of several HPs from Vittaforma corneae were accurately inferred. This improved our understanding of microsporidian HPs despite challenges related to the obligate nature of microsporidia, the absence of fully characterized genes, and the lack of homologous genes in other systems.
Collapse
Affiliation(s)
- Lilian Mbaisi Ang’ang’o
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
9
|
Ran M, Shi Y, Li B, Xiang H, Tao M, Meng X, Li T, Li C, Bao J, Pan G, Zhou Z. Genome-Wide Characterization and Comparative Genomic Analysis of the Serpin Gene Family in Microsporidian Nosema bombycis. Int J Mol Sci 2022; 24:ijms24010550. [PMID: 36613990 PMCID: PMC9820262 DOI: 10.3390/ijms24010550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Microsporidia are ubiquitous in the environment, infecting almost all invertebrates, vertebrates, and some protists. The microsporidian Nosema bombycis causes silkworms pébrine disease and leads to huge economic losses. Parasite secreted proteins play vital roles in pathogen-host interactions. Serine protease inhibitors (serpins), belonging to the largest and most broadly distributed protease inhibitor superfamily, are also found in Microsporidia. In this study, we characterized 19 serpins (NbSPNs) in N. bombycis; eight of them were predicted with signal peptides. All NbSPN proteins contain a typical conserved serpin (PF00079) domain. The comparative genomic analysis revealed that microsporidia serpins were only found in the genus Nosema. In addition to N. bombycis, a total of 34 serpins were identified in another six species of Nosema including N. antheraeae (11), N. granulosis (8), Nosema sp. YNPr (3), Nosema sp. PM-1 (3), N. apis (4), and N. ceranae (5). Serpin gene duplications in tandem obviously occurred in Nosema antheranae. Notably, the NbSPNs were phylogenetically clustered with serpins from the Chordopoxvirinae, the subfamily of Poxvirus. All 19 NbSPN transcripts were detected in the infected midgut and fat body, while 19 NbSPN genes except for NbSPN12 were found in the transcriptome of the infected silkworm embryonic cell line BmE-SWU1. Our work paves the way for further study of serpin function in microsporidia.
Collapse
Affiliation(s)
- Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yulian Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Boning Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Meilin Tao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Correspondence: (G.P.); (Z.Z.)
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Correspondence: (G.P.); (Z.Z.)
| |
Collapse
|
10
|
Wan YC, Troemel ER, Reinke AW. Conservation of Nematocida microsporidia gene expression and host response in Caenorhabditis nematodes. PLoS One 2022; 17:e0279103. [PMID: 36534656 PMCID: PMC9762603 DOI: 10.1371/journal.pone.0279103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Microsporidia are obligate intracellular parasites that are known to infect most types of animals. Many species of microsporidia can infect multiple related hosts, but it is not known if microsporidia express different genes depending upon which host species is infected or if the host response to infection is specific to each microsporidia species. To address these questions, we took advantage of two species of Nematocida microsporidia, N. parisii and N. ausubeli, that infect two species of Caenorhabditis nematodes, C. elegans and C. briggsae. We performed RNA-seq at several time points for each host infected with either microsporidia species. We observed that Nematocida transcription was largely independent of its host. We also observed that the host transcriptional response was similar when infected with either microsporidia species. Finally, we analyzed if the host response to microsporidia infection was conserved across host species. We observed that although many of the genes upregulated in response to infection are not direct orthologs, the same expanded gene families are upregulated in both Caenorhabditis hosts. Together our results describe the transcriptional interactions of Nematocida infection in Caenorhabditis hosts and demonstrate that these responses are evolutionarily conserved.
Collapse
Affiliation(s)
- Yin Chen Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Characterizing the Proliferation Patterns of Representative Microsporidian Species Enlightens Future Studies of Infection Mechanisms. Pathogens 2022; 11:pathogens11111352. [DOI: 10.3390/pathogens11111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Microsporidia are a group of pathogens that infect all kinds of animals, such as humans, silkworms, honeybees, and shrimp; they, therefore, pose a severe threat to public health and the economy. There are over 1500 species of microsporidia that have been reported, among which Encephalitozoon hellem and Nosema bombycis are the representative zoonotic and insect-infecting species, respectively. Investigating their cell infection patterns is of great significance for understanding their infection mechanisms. Methods: Specific probes were designed for the ribosomal RNA sequences of microsporidia. Fluorescence in situ hybridization (FISH) was used to trace the proliferation cycle of the pathogens in different cells. Results: Here, two rRNA large subunit gene (LSUrRNA) probes specifically labeling N. bombycis were obtained. The life cycle of N. bombycis in silkworm cells and E. hellem in three kinds of host cells was graphically drawn. N. bombycis meronts were first observed at 30 hours post-infection (hpi), and they began merogony. Sporonts were observed at 42 hpi, and the first entire proliferation cycle was completed at 48 hpi. The proliferation cycle of E. hellem in RK13 and HEK293 epithelial cells was almost the same, completing the first life cycle after 24 hpi, but it was significantly delayed to 32 hpi in RAW264.7. Conclusions: Specific FISH probes were established for labeling microsporidia in multiple host cells. The proliferation characteristics of representative zoonotic and insect-infecting microsporidian species were clarified. This study provides an experimental pattern for future analyses of microsporidian infection mechanisms.
Collapse
|
12
|
Case Report: Microsporidial Endophthalmitis after Penetrating Eye Trauma. Optom Vis Sci 2022; 99:830-832. [PMID: 36413632 DOI: 10.1097/opx.0000000000001951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
SIGNIFICANCE In the recent past, there are increasing publications on microsporidia affecting the cornea in Asian population. However, microsporidia-causing endophthalmitis has been rarely reported. This report intends to draw the attention of eye care professionals to consider microsporidia as a differential diagnosis in cases of keratitis or endophthalmitis after ocular trauma. PURPOSE The purpose of this study was to report a case of microsporidial endophthalmitis after corneal tear in an otherwise healthy patient. CASE REPORT A 62-year-old healthy gentleman sustained injury to the left eye cornea with the tip of a soiled and wet screw driver. Two days after the corneal tear suturing, he complained of pain. On examination, circumcorneal congestion with hypopyon of 2 mm in height was present. Vitreous tap and intravitreal antibiotics were injected. Vitreous tap showed microsporidia. Pars plana vitrectomy was performed. His vision improved to 6/12. CONCLUSIONS Microsporidia are an emerging cause of stromal keratitis. In the recent past, there has been an increase in microsporidial keratitis in both immunocompetent and immunocompromised individuals. History of trauma especially in rainy season and exposure to soil are reported risk factors. This is a case report on microsporidia-causing endophthalmitis after corneal tear repair. Ophthalmologists and optometrists should be aware of the possibility of microsporidia as a potential pathogen causing stromal keratitis or endophthalmitis in a setting of ocular trauma. Early treatment can result in good visual recovery.
Collapse
|
13
|
Lu Y, An G, Wang X, Tang Y, Jin J, Bao J, Zhou Z. Encephalitozoon hellem Infection Promotes Monocytes Extravasation. Pathogens 2022; 11:pathogens11080914. [PMID: 36015036 PMCID: PMC9412707 DOI: 10.3390/pathogens11080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Microsporidia are a group of obligated intracellular fungus pathogens. Monocytes and the derivative macrophages are among the most important players in host immunity. The invasion of microsporidia may significantly affect the monocytes maturation and extravasation processes. Methods: We utilized a previously established microsporidia infection murine model to investigate the influences of microsporidia Encephalitozoon hellem (E. hellem) infection on monocyte maturation, releasing into the circulation and extravasation to the inflammation site. Flow cytometry and qPCR analysis were used to compare the monocytes and derivative macrophages isolated from bone marrow, peripheral blood and tissues of E. hellem-infected and control mice. Results: The results showed that the pro-inflammatory group of CD11b+Ly-6C+ monocytes are promoted in E. hellem-infected mice. Interestingly, the percentage of Ly-6C+ monocytes from E. hellem-infected mice are significantly lower in peripheral blood while significantly higher in the inflamed small intestine, together with up-regulated ratio of F4/80 macrophage in small intestine as well. Conclusions: Our findings demonstrated that E. hellem infection leads to promoted monocytes maturation in bone marrow, up-regulation of extravasation from peripheral blood to inflammation site and maturation into macrophages. Our study is the first systematic analysis of monocytes maturation and trafficking during microsporidia infection, and will provide better understanding of the pathogen–host interactions.
Collapse
Affiliation(s)
- Yishan Lu
- Sate Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guozhen An
- Sate Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Xue Wang
- Sate Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yunlin Tang
- Sate Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jiangyan Jin
- Sate Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jialing Bao
- Sate Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Correspondence:
| | - Zeyang Zhou
- Sate Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing 400038, China
| |
Collapse
|
14
|
Yang N, Xu J, Gao Y, Cao Z, Si L, Chang L, Li T, Yan D. Transcriptome analysis of IHHNV infection in Penaeus vannamei at different developmental stages. FISH & SHELLFISH IMMUNOLOGY 2022; 127:329-339. [PMID: 35760280 DOI: 10.1016/j.fsi.2022.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Infectious hypodermal and haematopoietic necrosis virus (IHHNV) is the smallest known virus in shrimp, which causes runt-deformity syndrome (RDS) and leads to huge economic loss every year in penaeid shrimp farming. Previous studies have shown that the juvenile Penaeus vannamei is more susceptible to IHHNV infection than the adults, but the mechanism is still unclear. In order to investigate the mechanism of pathogenic differences in IHHNV infection of P. vannamei at different developmental stages, the juvenile and adult P. vannamei were studied by transcriptome high-throughput sequencing to analyze their response to IHHNV infection. GO and KEGG enrichment were analyzed to search for differentially expressed genes (DEGs) related to immunity, growth and metabolism. The results showed that many immune-related genes of the juvenile and adult P. vannamei responded differently to IHHNV infection. For the adult P. vannamei, the expression of most immune-related genes was significantly up-regulated, which means that a cellular defense response was triggered after IHHNV infection. However, most immune-related genes in juvenile P. vannamei were inhibited, indicating that the immune system of juvenile the P. vannamei is imperfect and makes it to be more susceptible to IHHNV. Similarly, the growth-related genes of P. vannamei were changed during IHHNV infection. For the juvenile P. vannamei, the growth-related genes were significantly down-regulated, which resulted in a growth hormone disorder and prevented the juvenile P. vannamei from growth. In the adult P. vannamei, most molting-related genes were significantly up-regulated, indicating that IHHNV infection leads the adult P. vannamei to early molting to eliminate pathogen in the body. Metabolic process data showed that energy metabolism pathway was affected when P. vannamei infected with IHHNV. The adult P. vannamei infected with IHHNV can cause energetically costly and lead to the disturbance of the metabolism, activate complex immune systems to resist the invasion of pathogens. The results of this study clarified the response mechanism of P. vannamei at different developmental stages to IHHNV infection, which can provide new insights to IHHNV effective control and a reference for the study of sensitive period of different shrimp virus to host infection.
Collapse
Affiliation(s)
- Ning Yang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiahui Xu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Yang Gao
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Zheng Cao
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Lingjun Si
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Linrui Chang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Ting Li
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
15
|
Moysés CRS, Alvares-Saraiva AM, Perez EC, Spadacci-Morena DD, Vidôto da Costa LF, Xavier JG, Lallo MA. Mice with genetic and induced B-cell deficiency as a model for disseminated encephalitozoonosis. Comp Immunol Microbiol Infect Dis 2022; 81:101742. [PMID: 35074660 DOI: 10.1016/j.cimid.2021.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022]
Abstract
Encephalitozoon cuniculi, an intracellular pathogen, lives in a balanced relationship with immunocompetent individuals based on the activity of T lymphocytes. We previously highlighted the greater susceptibility of B-1 cell-deficient mice (XID mice) to encephalitozoonosis. This study aimed to develop a model of disseminated and severe encephalitozoonosis in mice with combined immunodeficiency to elucidate the role of B cells. To address this objective, cyclophosphamide (Cy)-treated BALB/c and XID mice were inoculated with E. cuniculi, followed by the evaluation of the immune response and histopathological lesions. Immunosuppressed BALB/c mice manifested no clinical signs with an increase in the populations of T lymphocytes and macrophages in the spleen. Immunosuppressed and infected XID mice revealed elevated T cells, macrophages populations, and pro-inflammatory cytokines levels (IFN-γ, TNF-α, and IL-6) with the presence of abdominal effusion and lesions in multiple organs. These clinical characteristics are associated with extensive and severe encephalitozoonosis. The symptoms and lesion size were reduced, whereas B-2 and CD4+ T cells populations were increased in the spleen by transferring B-2 cells adoptive to XID mice. Moreover, B-1 cells adoptive transfer upregulated the peritoneal populations of B-2 cells and macrophages but not T lymphocytes and decreased the symptoms. Herein, we speculated the consistency in the development of severe and disseminated encephalitozoonosis in mice with genetic deficiency of Bruton's tyrosine kinase (Btk) associated with Cy immunosuppression develop with that of the models with T cell deficiency. Taken together, these data emphasized the crucial role of B cells in the protective immune response against encephalitozoonosis.
Collapse
Affiliation(s)
- Carla Renata Serantoni Moysés
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil
| | - Anuska Marcelino Alvares-Saraiva
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil; Laboratório de Fisiopatologia, Instituto Butantan, Av. Vital Brasil 1500, CEP 05503-900 São Paulo, SP, Brazil; Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, Rua Galvão Bueno, 868, CEP 01506-000 São Paulo, SP, Brazil
| | - Elizabeth Cristina Perez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil
| | | | - Lidiana Flora Vidôto da Costa
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil
| | - José Guilherme Xavier
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil
| | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua José Maria Whitaker 290, CEP 05622-001 São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Han B, Takvorian PM, Weiss LM. The Function and Structure of the Microsporidia Polar Tube. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:179-213. [PMID: 35544004 PMCID: PMC10037675 DOI: 10.1007/978-3-030-93306-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microsporidia are obligate intracellular pathogens that were initially identified about 160 years ago. Current phylogenetic analysis suggests that they are grouped with Cryptomycota as a basal branch or sister group to the fungi. Microsporidia are found worldwide and can infect a wide range of animals from invertebrates to vertebrates, including humans. They are responsible for a variety of diseases once thought to be restricted to immunocompromised patients but also occur in immunocompetent individuals. The small oval spore containing a coiled polar filament, which is part of the extrusion and invasion apparatus that transfers the infective sporoplasm to a new host, is a defining characteristic of all microsporidia. When the spore becomes activated, the polar filament uncoils and undergoes a rapid transition into a hollow tube that will transport the sporoplasm into a new cell. The polar tube has the ability to increase its diameter from approximately 100 nm to over 600 nm to accommodate the passage of an intact sporoplasm and penetrate the plasmalemma of the new host cell. During this process, various polar tube proteins appear to be involved in polar tube attachment to host cell and can interact with host proteins. These various interactions act to promote host cell infection.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Peter M Takvorian
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, USA.
| |
Collapse
|
17
|
Suraporn S, Terenius O. Supplementation of Lactobacillus casei reduces the mortality of Bombyx mori larvae challenged by Nosema bombycis. BMC Res Notes 2021; 14:398. [PMID: 34702354 PMCID: PMC8549261 DOI: 10.1186/s13104-021-05807-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Pebrine, caused by the microsporidium Nosema bombycis, is one of the severe diseases in Thai polyvoltine strains of the silkworm Bombyx mori. Studies showing the presence of Lactobacillus species in the silkworm gut, where the Nosema parasites enter, suggests that these bacteria may have a protective effect. The aim of this study was to investigate the effect of supplementation of Lactobacillus casei on the survival ratio of silkworm larvae challenged with N. bombycis. RESULTS A group of silkworm larvae of the commercial Thai polyvoltine hybrid strain DokBua was supplemented with L. casei on the second day of the 2nd, 3rd, 4th, and 5th instar. When a control group of silkworm larvae were challenged with N. bombycis on the second day of the 4th instar, the survival rate was 68%, but it was 91% for larvae supplemented with L. casei. For those larvae that survived the treatments until pupation, we determined the growth characters larval weight, cocooning ratio, and pupation ratio, and the economic characters cocoon weight and cocoon shell weight. When infected with N. Bombycis, growth characters were significantly higher in larvae also receiving L. casei.
Collapse
Affiliation(s)
- Siripuk Suraporn
- Department of Biology, Faculty of Science, Mahasarakham University, Tambon Khamriang, Kantaravichai District, Maha Sarakham, 44150, Thailand
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, Box 549, 751 24, Uppsala, Sweden.
| |
Collapse
|
18
|
UDP-Glucosyltransferases Induced by Nosema bombycis Provide Resistance to Microsporidia in Silkworm ( Bombyx mori). INSECTS 2021; 12:insects12090799. [PMID: 34564239 PMCID: PMC8469862 DOI: 10.3390/insects12090799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Nosema bombycis (N. bombycis), an obligate intracellular eukaryotic parasite, is a virulent pathogen of the silkworm, that causes major economic losses. Although many studies have reported on B. mori host response to this pathogen, little is known about which genes are induced by N. bombycis. Our results showed that two B. mori uridine diphosphate-glucosyltransferases (UGTs) (BmUGT10295 and BmUGT8453) could be activated by N. bombycis and provide resistance to the microsporidia in silkworms. These results will contribute to our understanding of host stress reaction to pathogens and the two pathogen-induced resistant genes will provide a target for promoting pathogen resistance. Abstract As a silkworm pathogen, the microsporidian N. bombycis can be transovarially transmitted from parent to offspring and seriously impedes sericulture industry development. Previous studies found that Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are involved in regulating diverse cellular processes, such as detoxification, pigmentation, and odorant sensing. Our results showed that BmUGT10295 and BmUGT8453 genes were specifically induced in infected silkworms, but other BmUGTs were not. Tissue distribution analysis of the two BmUGTs showed that the transcriptions of the two BmUGTs were mainly activated in the midgut and Malpighian tubule of infected silkworms. Furthermore, there were significantly fewer microsporidia in over-expressed BmUGTs compared with the control, but there were significantly more microsporidia in RNA interference BmUGTs compared with the control. These findings indicate that the two BmUGTs were induced by N. bombycis and provided resistance to the microsporidia.
Collapse
|
19
|
Li P, Li M, Yuan Z, Jiang X, Yue D, Ye B, Zhao Z, Jiang J, Fan Q, Zhou Z, Chen H. 3D printed integrated separator with hybrid micro-structures for high throughput and magnetic-free nucleic acid separation from organism samples. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Hosseini Parsa M, Bahadory S, Heidari A, Khatami A, Bairami A. Molecular and microscopic prevalence of intestinal microsporidia among HIV+/AIDS patients in the Alborz province, Iran. Trans R Soc Trop Med Hyg 2021; 115:1445-1449. [PMID: 34062558 DOI: 10.1093/trstmh/trab078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/07/2021] [Accepted: 05/01/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Microsporidia are a large family of obligate intracellular protozoa; these medically important species are recognized as opportunistic agents in intestinal complications in HIV+/AIDS patients. METHODS The current cross-sectional study was designed and conducted from October 2018 to June 2019 to determine intestinal microsporidia in HIV+/AIDS patients by trichrome/Zeihl-Neelsen staining and SYBR Green-based real-time PCR. RESULTS Out of 80 HIV+/AIDS patients, 23.75% (n=19) and 12.5% (n=10) were identified by molecular and microscopic methods, respectively. The predominant species in patients was Encephalitozoon (94%), which was found by quantitative real-time PCR and its high resolution melting tool. CONCLUSION As far as we know, this is the first report from the Alborz region. The prevalence of intestinal microsporidiosis in this area in HIV+/AIDS patients was higher than both the global and national average. In addition to the need for further studies to prove protozoan pathogenicity in the aforementioned group, preventive measures should be considered.
Collapse
Affiliation(s)
- Maryam Hosseini Parsa
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz Province, Iran, 3149779453
| | - Saeed Bahadory
- Department of Parasitology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran, 141713116
| | - Aliehsan Heidari
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz Province, Iran, 3149779453
| | - Alireza Khatami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran, 1449614535.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran, 1449614535
| | - Amir Bairami
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz Province, Iran, 3149779453
| |
Collapse
|
21
|
Tanida K, Hahn A, Eberhardt KA, Tannich E, Landt O, Kann S, Feldt T, Sarfo FS, Di Cristanziano V, Frickmann H, Loderstädt U. Comparative Assessment of In-House Real-Time PCRs Targeting Enteric Disease-Associated Microsporidia in Human Stool Samples. Pathogens 2021; 10:pathogens10060656. [PMID: 34073403 PMCID: PMC8229491 DOI: 10.3390/pathogens10060656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Microsporidiosis is an infection predominantly occurring in immunosuppressed patients and infrequently also in travelers. This study was performed to comparatively evaluate the diagnostic accuracy of real-time PCR assays targeting microsporidia with etiological relevance in the stool of human patients in a latent class analysis-based test comparison without a reference standard with perfect accuracy. Thereby, two one-tube real-time PCR assays and two two-tube real-time PCR assays targeting Enterocytozoon bieneusi and Encephalocytozoon spp. were included in the assessment with reference stool material (20), stool samples from Ghanaian HIV-positive patients (903), and from travelers, migrants and Colombian indigenous people (416). Sensitivity of the assays ranged from 60.4% to 97.4% and specificity from 99.1% to 100% with substantial agreement according to Cohen’s kappa of 79.6%. Microsporidia DNA was detected in the reference material and the stool of the HIV patients but not in the stool of the travelers, migrants, and the Colombian indigenous people. Accuracy-adjusted prevalence was 5.8% (n = 78) for the study population as a whole. In conclusion, reliable detection of enteric disease-associated microsporidia in stool samples by real-time PCR could be demonstrated, but sensitivity between the compared microsporidia-specific real-time PCR assays varied.
Collapse
Affiliation(s)
- Konstantin Tanida
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany; (K.T.); (H.F.)
| | - Andreas Hahn
- Department of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany;
- National Reference Centre for Tropical Pathogens, 20359 Hamburg, Germany
| | | | - Simone Kann
- Medical Mission Institute, 97074 Würzburg, Germany;
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Medical Center Düsseldorf, 40225 Düsseldorf, Germany;
| | - Fred Stephen Sarfo
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana;
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany;
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany; (K.T.); (H.F.)
- Department of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Ulrike Loderstädt
- Department of Hospital Hygiene & Infectious Diseases, University Medicine Göttingen, 37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-551-3965709
| |
Collapse
|
22
|
Experimental Horizontal Transmission of Enterospora nucleophila (Microsporea: Enterocytozoonidae) in Gilthead Sea Bream ( Sparus aurata). Animals (Basel) 2021; 11:ani11020362. [PMID: 33535588 PMCID: PMC7912876 DOI: 10.3390/ani11020362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
Enterospora nucleophila is a microsporidian enteroparasite that infects mainly the intestine of gilthead sea bream (Sparus aurata), leading to an emaciative syndrome. Thus far, the only available information about this infection comes from natural outbreaks in farmed fish. The aim of the present study was to determine whether E. nucleophila could be transmitted horizontally using naturally infected fish as donors, and to establish an experimental in vivo procedure to study this host-parasite model without depending on natural infections. Naïve fish were exposed to the infection by cohabitation, effluent, or intubated either orally or anally with intestinal scrapings of donor fish in four different trials. We succeeded in detecting parasite in naïve fish in all the challenges, but the infection level and the disease signs were always milder than in donor fish. The parasite was found in peripheral blood of naïve fish at 4 weeks post-challenge (wpc) in oral and effluent routes, and up to 12 wpc in the anal transmission trial. Molecular diagnosis detected E. nucleophila in other organs besides intestine, such as gills, liver, stomach or heart, although the intensity was not as high as in the target tissue. The infection tended to disappear through time in all the challenge routes assayed, except in the anal infection route.
Collapse
|
23
|
He Q, Luo J, Xu JZ, Meng XZ, Pan GQ, Li T, Zhou ZY. In-vitro cultivation of Nosema bombycis sporoplasms: A method for potential genetic engineering of microsporidia. J Invertebr Pathol 2020; 174:107420. [PMID: 32522660 DOI: 10.1016/j.jip.2020.107420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
Microsporidia are obligate intracellular parasites and cannot be cultured in vitro, which limits the use of current genetic engineering technologies on this pathogen. We isolated sporoplasms of Nosema bombycis to attempt to culture the pathogen in vitro. Cell-free medium was designed and successfully maintained the sporoplasms for 5 days. The sporoplasms were able to absorb ATP from the medium and DNA replicated during cultivation, although there was not a significant change in morphology and number of sporoplasms. Our study provides a strategy for in vitro cultivation and genetic manipulation of microsporidia. .
Collapse
Affiliation(s)
- Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jin-Zhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Xian-Zhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guo-Qing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Ze-Yang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; College of Life Science, Chongqing Normal University, Chongqing 400047, China.
| |
Collapse
|
24
|
Screening of Differentially Expressed Microsporidia Genes from Nosema ceranae Infected Honey Bees by Suppression Subtractive Hybridization. INSECTS 2020; 11:insects11030199. [PMID: 32235740 PMCID: PMC7143254 DOI: 10.3390/insects11030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/21/2023]
Abstract
The microsporidium Nosema ceranae is a high prevalent parasite of the European honey bee (Apis mellifera). This parasite is spreading across the world into its novel host. The developmental process, and some mechanisms of N. ceranae-infected honey bees, has been studied thoroughly; however, few studies have been carried out in the mechanism of gene expression in N. ceranae during the infection process. We therefore performed the suppressive subtractive hybridization (SSH) approach to investigate the candidate genes of N. ceranae during its infection process. All 96 clones of infected (forward) and non-infected (reverse) library were dipped onto the membrane for hybridization. A total of 112 differentially expressed sequence tags (ESTs) had been sequenced. For the host responses, 20% of ESTs (13 ESTs, 10 genes, and 1 non-coding RNA) from the forward library and 93.6% of ESTs (44 ESTs, 28 genes) from the reverse library were identified as differentially expressed genes (DEGs) of the hosts. A high percentage of DEGs involved in catalytic activity and metabolic processes revealed that the host gene expression change after N. ceranae infection might lead to an unbalance of physiological mechanism. Among the ESTs from the forward library, 75.4% ESTs (49 ESTs belonged to 24 genes) were identified as N. ceranae genes. Out of 24 N. ceranae genes, nine DEGs were subject to real-time quantitative reverse transcription PCR (real-time qRT-PCR) for validation. The results indicated that these genes were highly expressed during N. ceranae infection. Among nine N. ceranae genes, one N. ceranae gene (AAJ76_1600052943) showed the highest expression level after infection. These identified differentially expressed genes from this SSH could provide information about the pathological effects of N. ceranae. Validation of nine up-regulated N. ceranae genes reveal high potential for the detection of early nosemosis in the field and provide insight for further applications.
Collapse
|
25
|
Morphology and Transcriptome Analysis of Nosema bombycis Sporoplasm and Insights into the Initial Infection of Microsporidia. mSphere 2020; 5:5/1/e00958-19. [PMID: 32051240 PMCID: PMC7021473 DOI: 10.1128/msphere.00958-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Once awoken from dormancy, the cellular matter of microsporidia is delivered directly into the host cell cytoplasm through the polar tube. This means that the microsporidia are difficult to study biologically in their active state without a contaminating signal from the host cell. Sporoplasm is a cell type of microsporidia in vitro, but relatively little attention has been paid to the sporoplasm in the past 150 years due to a lack of an effective separation method. Nosema bombycis, the first reported microsporidium, is a type of obligate intracellular parasite that infects silkworms and can be induced to germinate in alkaline solution in vitro. We successfully separated the N. bombycis sporoplasm in vitro, and the morphological and structural characteristics were investigated. These results provide important insight into the biology and pathogenesis of microsporidia and potentially provide a possible strategy for genetic manipulation of microsporidia targeting the sporoplasm. Microsporidia are obligate intracellular parasites that infect a wide variety of host organisms, including humans. The sporoplasm is the initial stage of microsporidian infection and proliferation, but its morphological and molecular characteristics are poorly understood. In this study, the sporoplasm of Nosema bombycis was successfully isolated and characterized after the induction of spore germination in vitro. The sporoplasm was spherical, 3.64 ± 0.41 μm in diameter, had the typical two nuclei, and was nonrefractive. Scanning and transmission electron microscopy analyses revealed that the sporoplasm was surrounded by a single membrane, and the cytoplasm was usually filled with relatively homogeneous granules, possibly ribosomes, and contained a vesicular structure comprising a concentric ring and coiled tubules. Propidium iodide staining revealed that the sporoplasm membrane showed stronger membrane permeability than did the cell plasma membrane. Transmission electron microscopy (TEM) revealed that the sporoplasm can gain entry to the host cell by phagocytosis. Transcriptome analysis of mature spores and sporoplasms showed that 541 significantly differentially expressed genes were screened (adjusted P value [Padj] < 0.05), of which 302 genes were upregulated and 239 genes were downregulated in the sporoplasm. The majority of the genes involved in trehalose synthesis metabolism, glycolysis, and the pentose phosphate pathway were downregulated, whereas 10 transporter genes were upregulated, suggesting that the sporoplasm may inhibit its own carbon metabolic activity and obtain the substances required for proliferation through transporter proteins. This study represents the first comprehensive and in-depth investigation of the sporoplasm at the morphological and molecular levels and provides novel insights into the biology of microsporidia and their infection mechanism. IMPORTANCE Once awoken from dormancy, the cellular matter of microsporidia is delivered directly into the host cell cytoplasm through the polar tube. This means that the microsporidia are difficult to study biologically in their active state without a contaminating signal from the host cell. Sporoplasm is a cell type of microsporidia in vitro, but relatively little attention has been paid to the sporoplasm in the past 150 years due to a lack of an effective separation method. Nosema bombycis, the first reported microsporidium, is a type of obligate intracellular parasite that infects silkworms and can be induced to germinate in alkaline solution in vitro. We successfully separated the N. bombycis sporoplasm in vitro, and the morphological and structural characteristics were investigated. These results provide important insight into the biology and pathogenesis of microsporidia and potentially provide a possible strategy for genetic manipulation of microsporidia targeting the sporoplasm.
Collapse
|
26
|
Zheng S, Huang Y, Chen J, Wei J, Pan G, Li C, Zhou Z. A specific molecular label for identifying mature Nosema bombycis spores. J Invertebr Pathol 2020; 170:107322. [PMID: 31901433 DOI: 10.1016/j.jip.2019.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 11/30/2022]
Abstract
Microsporidia are a fascinating phylum of obligate intracellular pathogens with unique infection processes and complicated life cycles. Microsporidian life cycles can be divided roughly into intracellular and extracellular stages. Currently, research on their life cycles were mainly explored by morphology because there are few molecular markers available with which to distinguish the different life stages. In this study, we generated H20, a monoclonal antibody (MAb) to label mature spores of Nosema bombycis. Immunofluorescence assays showed that the target protein of H20, which is highly stable and was barely affected by alkali and sodium dodecyl sulfate (SDS) treatments, was located on the mature spore surface. Western blot analysis showed that spore wall protein 26 (SWP26) was the likely target of H20. This MAb can specifically identify mature spores in a complex biological sample based on immunological detection of the parasite.
Collapse
Affiliation(s)
- Shiyi Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yukang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400715, China; College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
27
|
Chen D, Chen H, Du Y, Zhou D, Geng S, Wang H, Wan J, Xiong C, Zheng Y, Guo R. Genome-Wide Identification of Long Non-Coding RNAs and Their Regulatory Networks Involved in Apis mellifera ligustica Response to Nosema ceranae Infection. INSECTS 2019; 10:insects10080245. [PMID: 31405016 PMCID: PMC6723323 DOI: 10.3390/insects10080245] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins, and lncRNAs have been proven to play pivotal roles in a wide range of biological processes in animals and plants. However, knowledge of expression patterns and potential roles of honeybee lncRNA response to Nosema ceranae infection is completely unknown. Here, we performed whole transcriptome strand-specific RNA sequencing of normal midguts of Apis mellifera ligustica workers (Am7CK, Am10CK) and N. ceranae-inoculated midguts (Am7T, Am10T), followed by comprehensive analyses using bioinformatic and molecular approaches. A total of 6353 A. m. ligustica lncRNAs were identified, including 4749 conserved lncRNAs and 1604 novel lncRNAs. These lncRNAs had minimal sequence similarities with other known lncRNAs in other species; however, their structural features were similar to counterparts in mammals and plants, including shorter exon and intron length, lower exon number, and lower expression level, compared with protein-coding transcripts. Further, 111 and 146 N. ceranae-responsive lncRNAs were identified from midguts at 7-days post-inoculation (dpi) and 10 dpi compared with control midguts. Twelve differentially expressed lncRNAs (DElncRNAs) were shared by Am7CK vs. Am7T and Am10CK vs. Am10T comparison groups, while the numbers of unique DElncRNAs were 99 and 134, respectively. Functional annotation and pathway analysis showed that the DElncRNAs may regulate the expression of neighboring genes by acting in cis and trans fashion. Moreover, we discovered 27 lncRNAs harboring eight known miRNA precursors and 513 lncRNAs harboring 2257 novel miRNA precursors. Additionally, hundreds of DElncRNAs and their target miRNAs were found to form complex competitive endogenous RNA (ceRNA) networks, suggesting that these DElncRNAs may act as miRNA sponges. Furthermore, DElncRNA-miRNA-mRNA networks were constructed and investigated, the results demonstrated that a portion of the DElncRNAs were likely to participate in regulating the host material and energy metabolism as well as cellular and humoral immune host responses to N. ceranae invasion. Our findings revealed here offer not only a rich genetic resource for further investigation of the functional roles of lncRNAs involved in the A. m. ligustica response to N. ceranae infection, but also a novel insight into understanding the host-pathogen interaction during honeybee microsporidiosis.
Collapse
Affiliation(s)
- Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huazhi Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Du
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingding Zhou
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sihai Geng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haipeng Wang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jieqi Wan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiling Xiong
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
28
|
Li P, Mi R, Zhao R, Li X, Zhang B, Yue D, Ye B, Zhao Z, Wang L, Zhu Y, Bao C, Fan Q, Jiang X, Zhang Y. Quantitative real-time PCR with high-throughput automatable DNA preparation for molecular screening of Nosema spp. in Antheraea pernyi. J Invertebr Pathol 2019; 164:16-22. [PMID: 30981712 DOI: 10.1016/j.jip.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/15/2023]
Abstract
Accurate diagnosis of pathogenic Nosema spp. in Antheraea pernyi samples is considered especially useful for reducing economic losses in sericulture and improving food safety by maintaining pathogen-free pupae. However, microscopy and immunologic methods have poor diagnostic sensitivity, while the more sensitive PCR methods remain costly and time-consuming for template preparation. To address this issue, we introduce a sensitive ALMS-qPCR method that combines fast, simple DNA extraction using Alkali Lysis followed by Magnetic bead Separation (ALMS) and quantitative real-time PCR (qPCR). This approach is especially fit for large-scale pathogen molecular screening, because the DNA preparation procedure is fast (<0.94 min per sample) and is high-throughput (performs on a 96-well plate). It is cost-effective, since the most expensive materials can be made in the lab and can be recycled, while the automated procedure can help to minimize labor cost. Though the DNA preparation procedure was substantially simplified, common PCR inhibitory factors were not observed. The sensitivity of ALMS-qPCR is high and the limit of detection is 0.045 parasites/μL. Large-scale screening of Nosema spp. in 3000 Antheraea pernyi samples confirmed the efficacy of the ALMS-qPCR method. Sensitivity is much higher than clinical microscopy, especially for host groups with low infection prevalence and levels. High-throughput ALMS-qPCR, combining automated DNA preparation and sensitive qPCR, provides an enhanced approach for pébrine screening and epidemiological studies. The application of ALMS-qPCR in the sericulture industry will help to strengthen pébrine control and breed pathogen-free species, which means much safer food provision and better genetic resource conservation.
Collapse
Affiliation(s)
- Peipei Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China; Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Rui Mi
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Rui Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, PR China
| | - Xiangcun Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, PR China
| | - Bo Zhang
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Dongmei Yue
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Bo Ye
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Linmei Wang
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Youmin Zhu
- The Sericultural Research Institute of Liaoning Province, Dandong 118100, PR China
| | - Chen Bao
- Horticulture and Native Product Station, Rural Work Committee of Jilin Province, Changchun, Jilin Province 130000, PR China
| | - Qi Fan
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China.
| | - Xiaobin Jiang
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, PR China.
| | - Yaozhou Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
29
|
Ning M, Wei P, Shen H, Wan X, Jin M, Li X, Shi H, Qiao Y, Jiang G, Gu W, Wang W, Wang L, Meng Q. Proteomic and metabolomic responses in hepatopancreas of whiteleg shrimp Litopenaeus vannamei infected by microsporidian Enterocytozoon hepatopenaei. FISH & SHELLFISH IMMUNOLOGY 2019; 87:534-545. [PMID: 30721776 DOI: 10.1016/j.fsi.2019.01.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 05/14/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) causes hepatopancreatic microsporidiosis (HPM) in shrimp. HPM is not normally associated with shrimp mortality, but is associated with significant growth retardation. In this study, the responses induced by EHP were investigated in hepatopancreas of shrimp Litopenaeus vannamei using proteomics and metabolomics. Among differential proteins identified, several (e.g., peritrophin-44-like protein, alpha2 macroglobulin isoform 2, prophenoloxidase-activating enzymes, ferritin, Rab11A and cathepsin C) were related to pathogen infection and host immunity. Other proteomic biomarkers (i.e., farnesoic acid o-methyltransferase, juvenile hormone esterase-like carboxylesterase 1 and ecdysteroid-regulated protein) resulted in a growth hormone disorder that prevented the shrimp from molting. Both proteomic KEGG pathway (e.g., "Glycolysis/gluconeogenesis" and "Glyoxylate and dicarboxylate metabolism") and metabolomic KEGG pathway (e.g., "Galactose metabolism" and "Biosynthesis of unsaturated fatty acids") data indicated that energy metabolism pathway was down-regulated in the hepatopancreas when infected by EHP. More importantly, the changes of hormone regulation and energy metabolism could provide much-needed insight into the underlying mechanisms of stunted growth in shrimp after EHP infection. Altogether, this study demonstrated that proteomics and metabolomics could provide an insightful view into the effects of microsporidial infection in the shrimp L. vannamei.
Collapse
Affiliation(s)
- Mingxiao Ning
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Panpan Wei
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Hui Shen
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Xihe Wan
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Mingjian Jin
- Rudong Center for Control and Prevention of Aquatic Animal Infectious Disease, 25# Changjiang Road, Rudong, 226400, China
| | - Xiangqian Li
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hao Shi
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yi Qiao
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Ge Jiang
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Wen Wang
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Li Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
30
|
Martín-Hernández R, Bartolomé C, Chejanovsky N, Le Conte Y, Dalmon A, Dussaubat C, García-Palencia P, Meana A, Pinto MA, Soroker V, Higes M. Nosema ceranaeinApis mellifera: a 12 years postdetectionperspective. Environ Microbiol 2018; 20:1302-1329. [DOI: 10.1111/1462-2920.14103] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha; Spain
| | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela. Xenómica Comparada de Parásitos Humanos, IDIS, 15782 Santiago de Compostela; Galicia Spain
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | - Anne Dalmon
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | | | | | - Aranzazu Meana
- Facultad de Veterinaria, Universidad Complutense de Madrid; Spain
| | - M. Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança; 5300-253 Bragança Portugal
| | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Mariano Higes
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
| |
Collapse
|
31
|
Yang D, Pan L, Chen Z, Du H, Luo B, Luo J, Pan G. The roles of microsporidia spore wall proteins in the spore wall formation and polar tube anchorage to spore wall during development and infection processes. Exp Parasitol 2018. [PMID: 29522765 DOI: 10.1016/j.exppara.2018.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microsporidia are highly specialized obligate intracellular, spore forming divergent fungi with a wide variety host range that includes most vertebrates and invertebrates. The resistant spores are surrounded by a rigid cell wall which consists of three layers: the electron-lucent chitin and protein inner endospore, the outer-electron-dense and mainly proteinaceous exospore and plasma membrane. Interestingly, microsporidia owns a special invasion organelle, called polar tube, coiled within the interior of the spore wall and attached to anchoring disk at the anterior end of spore. Spore wall and polar tube are the major apparatuses for mature spores adhering and infecting to the host cells. In this review, we summarize the research advances in spore wall proteins (SWPs) related to spore adherence and infection, and SWPs and deproteinated chitin spore coats (DCSCs) interaction associated with SWPs deposit processes and spore wall assembly. Furthermore, we highlight the SWPs-polar tube proteins (PTPs) interaction correlated to polar tube orderly orientation, arrangement and anchorage to anchoring disk. Based on results obtained, it is helpful to improve understanding of the spore wall assembly and polar tube orderly arrangement mechanisms and molecular pathogenesis of microsporidia infection. Also, such information will provide a basis for developing effective control strategies against microporidia.
Collapse
Affiliation(s)
- Donglin Yang
- International Academy of Targeted Therapeutics and Innovation, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing, China.
| | - Lixia Pan
- Chongqing Water Resources and Electric Engineering College, Chongqing, China
| | - Zhongzhu Chen
- International Academy of Targeted Therapeutics and Innovation, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing, China
| | - Huihui Du
- Chongqing Three Gorges University, Chongqing, China
| | - Bo Luo
- Zunyi Medical University, Zunyi, Guizhou province, China
| | - Jie Luo
- College of Forestry and Life Sciences, Chongqing University of Arts and Sciences, Chongqing, China
| | - Guoqing Pan
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Lopez-Ezquerra A, Mitschke A, Bornberg-Bauer E, Joop G. Tribolium castaneum gene expression changes after Paranosema whitei infection. J Invertebr Pathol 2018; 153:92-98. [DOI: 10.1016/j.jip.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/10/2018] [Accepted: 02/12/2018] [Indexed: 12/24/2022]
|
33
|
GIBSON AMANDAK, MORRAN LEVIT. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites. J Nematol 2018. [DOI: 10.21307/jofnem-2017-083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Meng XZ, Luo B, Tang XY, He Q, Xiong TR, Fang ZY, Pan G, Li T, Zhou ZY. Pathological analysis of silkworm infected by two microsporidia Nosema bombycis CQ1 and Vairimorpha necatrix BM. J Invertebr Pathol 2017; 153:75-84. [PMID: 29258842 DOI: 10.1016/j.jip.2017.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 11/17/2022]
Abstract
Microsporidia Nosema bombycis CQ1 can be vertically transmitted in silkworm Bombyx mori but Vairimorpha necatrix BM cannot. Therefore, the pathological differences in silkworm infected with these two microsporidia required clarification. Here, we compared the virulence of N. bombycis CQ1 and V. necatrix BM against silkworm. The pathological characteristics in intestine, testis and ovary were surveyed using paraffin sections, scanning electron microscopy and transmission electron microscopy. Our data firstly showed that the virulence of V. necatrix BM was weaker than that of N. bombycis CQ1. Secondly, the typical symptom of V. necatrix BM infection is making xenomas, which are full of pathogens in different stages, at the posterior of intestine. However, no xenomas were formed surrounding intestines infected with N. bombycis CQ1. Thirdly, N. bombycis CQ1 can cluster spores near the trachea while infecting ovaries. It is worth noting that N. bombycis CQ1 infected epithelial cells and connective tissues of ovaries, while V. necatrix BM did not. Although silkworm ovaries can not be infected by V. necatrix BM in vivo, it can infect embryonic and ovarian cell lines in vitro. This study is the first report about comparing infection features of N. bombycis CQ1 and V. necatrix BM in silkworm tissues and it provided elaborate and visual information of pathological characteristics which can help to explain the different transmission strategies of these two microsporidia.
Collapse
Affiliation(s)
- Xian-Zhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Bo Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; College of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, PR China
| | - Xiang-You Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Ting-Rong Xiong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zhuo-Ya Fang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China.
| | - Ze-Yang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; College of Life Sciences, Chongqing Normal University, Chongqing 400047, PR China.
| |
Collapse
|
35
|
MICROSPORIDIOSIS IN PEPPERMINT SHRIMP (DECAPODA: HIPPOLYTIDAE:LYSMATASPP.). J Zoo Wildl Med 2017; 48:1223-1229. [DOI: 10.1638/2016-0094r.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Gibson AK, Morran LT. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites. J Nematol 2017; 49:357-372. [PMID: 29353923 PMCID: PMC5770282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 06/07/2023] Open
Abstract
Many of the outstanding questions in disease ecology and evolution call for combining observation of natural host-parasite populations with experimental dissection of interactions in the field and the laboratory. The "rewilding" of model systems holds great promise for this endeavor. Here, we highlight the potential for development of the nematode Caenorhabditis elegans and its close relatives as a model for the study of disease ecology and evolution. This powerful laboratory model was disassociated from its natural habitat in the 1960s. Today, studies are uncovering that lost natural history, with several natural parasites described since 2008. Studies of these natural Caenorhabditis-parasite interactions can reap the benefits of the vast array of experimental and genetic tools developed for this laboratory model. In this review, we introduce the natural parasites of C. elegans characterized thus far and discuss resources available to study them, including experimental (co)evolution, cryopreservation, behavioral assays, and genomic tools. Throughout, we present avenues of research that are interesting and feasible to address with caenorhabditid nematodes and their natural parasites, ranging from the maintenance of outcrossing to the community dynamics of host-associated microbes. In combining natural relevance with the experimental power of a laboratory supermodel, these fledgling host-parasite systems can take on fundamental questions in evolutionary ecology of disease.
Collapse
Affiliation(s)
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
37
|
Schulenburg H, Félix MA. The Natural Biotic Environment of Caenorhabditis elegans. Genetics 2017; 206:55-86. [PMID: 28476862 PMCID: PMC5419493 DOI: 10.1534/genetics.116.195511] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Zoological Institute, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel, Germany
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, L'université de Recherche Paris Sciences et Lettres, 75005, France
| |
Collapse
|
38
|
Chen L, Li R, You Y, Zhang K, Zhang L. A Novel Spore Wall Protein from Antonospora locustae (Microsporidia: Nosematidae) Contributes to Sporulation. J Eukaryot Microbiol 2017; 64:779-791. [PMID: 28277606 PMCID: PMC5697631 DOI: 10.1111/jeu.12410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/18/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022]
Abstract
Microsporidia are obligate intracellular parasites, existing in a wide variety of animal hosts. Here, we reported AlocSWP2, a novel protein identified from the spore wall of Antonospora locustae (formerly, Nosema locustae, and synonym, Paranosema locustae), containing four cysteines that are conserved among the homologues of several Microspodian pathogens in insects and mammals. AlocSWP2 was detected in the wall of mature spores via indirect immunofluorescence assay. In addition, immunocytochemistry localization experiments showed that the protein was observed in the wall of sporoblasts, sporonts, and meronts during sporulation within the host body, also in the wall of mature spores. AlocSWP2 was not detected in the fat body of infected locust until the 9th day after inoculating spores via RT‐PCR experiments. Furthermore, the survival percentage of infected locusts injected with dsRNA of AlocSWP2 on the 15th, 16th, and 17th days after inoculation with microsporidian were significantly higher than those of infected locusts without dsRNA treatment. Conversely, the amount of spores in locusts infected with A. locustae after treated with RNAi AlocSWP2 was significantly lower than those of infected locusts without RNAi of this gene. This novel spore wall protein from A. locustae may be involved in sporulation, thus contributing to host mortality.
Collapse
Affiliation(s)
- Longxin Chen
- Department of Entomology, China Agricultural University, Beijing, 100193, China.,Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Runting Li
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Yinwei You
- Department of Entomology, China Agricultural University, Beijing, 100193, China.,Bio-tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kun Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Long Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
39
|
Rzymski P, Słodkowicz-Kowalska A, Klimaszyk P, Solarczyk P, Poniedziałek B. Screening of protozoan and microsporidian parasites in feces of great cormorant (Phalacrocorax carbo). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9813-9819. [PMID: 28255818 PMCID: PMC5388712 DOI: 10.1007/s11356-017-8652-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
The global population of great cormorants (Phalacrocorax carbo L.) is on the rise. These birds, characterized by rapid metabolism, can deposit large quantities of feces, and because they breed on the land but forage on water, both terrestrial and aquatic environments can be simultaneously affected by their activities. The contribution of great cormorants in the dispersal of bacterial and viral pathogens has been immensely studied; whereas, the occurrence of eukaryotic parasites such as protozoans and microsporidians in these birds is little known. The present study investigated the presence of dispersive stages of potentially zoonotic protozoans belonging to the genera Blastocystis, Giardia and Cryptosporidium, and Microsporidia spores in feces collected from birds inhabiting the breeding colony established at one lake island in Poland, Europe. The feces were examined by coprological techniques (staining with iron hematoxylin, Ziehl-Neelsen, and modified Weber's chromotrope 2R-based trichrome), and with immunofluorescence antibody MERIFLUOR Cryptosporidium/Giardia assay. As found, the Cryptosporidium oocysts were identified rarely in 8% of samples (2/25; 3-5 × 103/g) and no cysts of Giardia and Blastocystis were detected. Microsporidian spores were detected in 4% of samples (1/25) but at very high frequency (4.3 × 104/g). No dispersive stages of parasites were identified in water samples collected from the littoral area near the colony. Despite the profuse defecation of cormorants, their role in the dispersion of the investigated parasites may not be as high as hypothesized.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Faculty of Health Sciences, Poznan University of Medical Sciences, Poznań, Poland.
| | - Anna Słodkowicz-Kowalska
- Department of Biology and Medical Parasitology, Faculty of Medicine I, Poznan University of Medical Sciences, Poznań, Poland
| | - Piotr Klimaszyk
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Piotr Solarczyk
- Department of Biology and Medical Parasitology, Faculty of Medicine I, Poznan University of Medical Sciences, Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Faculty of Health Sciences, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
40
|
Martín-Hernández R, Higes M, Sagastume S, Juarranz Á, Dias-Almeida J, Budge GE, Meana A, Boonham N. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis. PLoS One 2017; 12:e0170183. [PMID: 28152065 PMCID: PMC5289437 DOI: 10.1371/journal.pone.0170183] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell.
Collapse
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Albacete, Albacete, Spain
- * E-mail:
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Soledad Sagastume
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Ángeles Juarranz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joyce Dias-Almeida
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Giles E. Budge
- Fera, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aránzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Neil Boonham
- Fera, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
41
|
Kurze C, Dosselli R, Grassl J, Le Conte Y, Kryger P, Baer B, Moritz RFA. Differential proteomics reveals novel insights into Nosema-honey bee interactions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:42-49. [PMID: 27784614 DOI: 10.1016/j.ibmb.2016.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail.
Collapse
Affiliation(s)
- Christoph Kurze
- Martin-Luther-Universität Halle-Wittenberg, Institute for Biology/Molecular Ecology, Hoher Weg 4, 06120 Halle (Saale), Germany; The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia; Pennsylvania State University, Center for Infectious Disease Dynamics, W249 Millennium Science Complex, University Park, PA 16802, United States.
| | - Ryan Dosselli
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Julia Grassl
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Per Kryger
- Aarhus University, Department of Agroecology/Section of Entomology and Plant Pathology, Flakkebjerg, 4200, Slagelse, Denmark
| | - Boris Baer
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Robin F A Moritz
- Martin-Luther-Universität Halle-Wittenberg, Institute for Biology/Molecular Ecology, Hoher Weg 4, 06120 Halle (Saale), Germany; German Institute for Integrative Biodiversity Research (iDiv), Bio City, 04103 Leipzig, Germany; University of Pretoria, Department of Zoology and Entomology, Pretoria, 0002, South Africa
| |
Collapse
|
42
|
Zhang G, Sachse M, Prevost MC, Luallen RJ, Troemel ER, Félix MA. A Large Collection of Novel Nematode-Infecting Microsporidia and Their Diverse Interactions with Caenorhabditis elegans and Other Related Nematodes. PLoS Pathog 2016; 12:e1006093. [PMID: 27942022 PMCID: PMC5179134 DOI: 10.1371/journal.ppat.1006093] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/22/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022] Open
Abstract
Microsporidia are fungi-related intracellular pathogens that may infect virtually all animals, but are poorly understood. The nematode Caenorhabditis elegans has recently become a model host for studying microsporidia through the identification of its natural microsporidian pathogen Nematocida parisii. However, it was unclear how widespread and diverse microsporidia infections are in C. elegans or other related nematodes in the wild. Here we describe the isolation and culture of 47 nematodes with microsporidian infections. N. parisii is found to be the most common microsporidia infecting C. elegans in the wild. In addition, we further describe and name six new species in the Nematocida genus. Our sampling and phylogenetic analysis further identify two subclades that are genetically distinct from Nematocida, and we name them Enteropsectra and Pancytospora. Interestingly, unlike Nematocida, these two genera belong to the main clade of microsporidia that includes human pathogens. All of these microsporidia are horizontally transmitted and most specifically infect intestinal cells, except Pancytospora epiphaga that replicates mostly in the epidermis of its Caenorhabditis host. At the subcellular level in the infected host cell, spores of the novel genus Enteropsectra show a characteristic apical distribution and exit via budding off of the plasma membrane, instead of exiting via exocytosis as spores of Nematocida. Host specificity is broad for some microsporidia, narrow for others: indeed, some microsporidia can infect Oscheius tipulae but not its sister species Oscheius sp. 3, and conversely some microsporidia found infecting Oscheius sp. 3 do not infect O. tipulae. We also show that N. ausubeli fails to strongly induce in C. elegans the transcription of genes that are induced by other Nematocida species, suggesting it has evolved mechanisms to prevent induction of this host response. Altogether, these newly isolated species illustrate the diversity and ubiquity of microsporidian infections in nematodes, and provide a rich resource to investigate host-parasite coevolution in tractable nematode hosts.
Collapse
Affiliation(s)
- Gaotian Zhang
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, Inserm, ENS, PSL Research University, Paris, France
- School of Life Sciences, East China Normal University, Shanghai, China
| | | | | | - Robert J. Luallen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Marie-Anne Félix
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, Inserm, ENS, PSL Research University, Paris, France
| |
Collapse
|
43
|
Jaroenlak P, Sanguanrut P, Williams BAP, Stentiford GD, Flegel TW, Sritunyalucksana K, Itsathitphaisarn O. A Nested PCR Assay to Avoid False Positive Detection of the Microsporidian Enterocytozoon hepatopenaei (EHP) in Environmental Samples in Shrimp Farms. PLoS One 2016; 11:e0166320. [PMID: 27832178 PMCID: PMC5104377 DOI: 10.1371/journal.pone.0166320] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/26/2016] [Indexed: 01/29/2023] Open
Abstract
Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Piyachat Sanguanrut
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Shrimp Pathogen Interaction Laboratory (SPI), National Center for Genetic Engineering and Biotechnology (BIOTEC), Bangkok, Thailand
| | - Bryony A. P. Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Grant D. Stentiford
- European Community Reference Laboratory for Crustacean Diseases, Center for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset, United Kingdom
| | - Timothy W. Flegel
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kallaya Sritunyalucksana
- Shrimp Pathogen Interaction Laboratory (SPI), National Center for Genetic Engineering and Biotechnology (BIOTEC), Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
44
|
Microsporidia Intracellular Development Relies on Myc Interaction Network Transcription Factors in the Host. G3-GENES GENOMES GENETICS 2016; 6:2707-16. [PMID: 27402359 PMCID: PMC5015929 DOI: 10.1534/g3.116.029983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microsporidia are ubiquitous parasites that infect a wide range of animal hosts, and these fungal-related microbes undergo their entire replicative lifecycle inside of host cells. Despite being widespread in the environment and causing medical and agricultural harm, virtually nothing is known about the host factors important to facilitate their growth and development inside of host cells. Here, we perform a genetic screen to identify host transcription factors important for development of the microsporidian pathogen Nematocida parisii inside intestinal cells of its natural host, the nematode Caenorhabditis elegans. Through this screen, we identified the C. elegans Myc family of transcription factors as key host regulators of microsporidia growth and development. The Mad-like transcription factor MDL-1, and the Max-like transcription factors MXL-1 and MXL-2 promote pathogen levels, while the Myc-Mondo-like transcription factor MML-1 inhibits pathogen levels. We used epistasis analysis to show that MDL-1 and MXL-1, which are thought to function as a heterodimer, appear to be acting canonically. In contrast, MXL-2 and MML-1, which are also thought to function as a heterodimer, appear to be acting in separate pathways (noncanonically) in the context of pathogen infection. We also found that both MDL-1::GFP and MML-1::GFP are expressed in intestinal cells during infection. These findings provide novel insight into the host transcription factors that regulate microsporidia development.
Collapse
|
45
|
Xiang L, Guo F, Yu Y, Parson LS, LaCoste L, Gibson A, Presley SM, Peterson M, Craig TM, Rollins D, Fedynich AM, Zhu G. Multiyear Survey of Coccidia, Cryptosporidia, Microsporidia, Histomona, and Hematozoa in Wild Quail in the Rolling Plains Ecoregion of Texas and Oklahoma, USA. J Eukaryot Microbiol 2016; 64:4-17. [PMID: 27222431 DOI: 10.1111/jeu.12330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 11/30/2022]
Abstract
We developed nested PCR protocols and performed a multiyear survey on the prevalence of several protozoan parasites in wild northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains ecoregion of Texas and Oklahoma (i.e. fecal pellets, bird intestines and blood smears collected between 2010 and 2013). Coccidia, cryptosporidia, and microsporidia were detected in 46.2%, 11.7%, and 44.0% of the samples (n = 687), whereas histomona and hematozoa were undetected. Coccidia consisted of one major and two minor Eimeria species. Cryptosporidia were represented by a major unknown Cryptosporidium species and Cryptosporidium baileyi. Detected microsporidia species were highly diverse, in which only 11% were native avian parasites including Encephalitozoon hellem and Encephalitozoon cuniculi, whereas 33% were closely related to species from insects (e.g. Antonospora, Liebermannia, and Sporanauta). This survey suggests that coccidia infections are a significant risk factor in the health of wild quail while cryptosporidia and microsporidia may be much less significant than coccidiosis. In addition, the presence of E. hellem and E. cuniculi (known to cause opportunistic infections in humans) suggests that wild quail could serve as a reservoir for human microsporidian pathogens, and individuals with compromised or weakened immunity should probably take precautions while directly handling wild quail.
Collapse
Affiliation(s)
- Lixin Xiang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467, USA
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467, USA
| | - Yonglan Yu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Lacy S Parson
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467, USA
| | - Lloyd LaCoste
- Rolling Plains Quail Research Foundation, San Angelo, Texas, 76901, USA
| | - Anna Gibson
- Institute of Environmental & Human Health, Texas Tech University, Lubbock, Texas, 79416, USA
| | - Steve M Presley
- Institute of Environmental & Human Health, Texas Tech University, Lubbock, Texas, 79416, USA
| | - Markus Peterson
- Department of Wildlife & Fisheries Sciences, Texas A&M University, College Station, Texas, 77843-2258, USA
| | - Thomas M Craig
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467, USA
| | - Dale Rollins
- Rolling Plains Quail Research Foundation, San Angelo, Texas, 76901, USA.,Department of Wildlife & Fisheries Sciences, Texas A&M University, College Station, Texas, 77843-2258, USA
| | - Alan M Fedynich
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas, 78363, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467, USA
| |
Collapse
|