1
|
Park J, Park S, Kim J, Cho YJ, Lee JS. Ctr9 promotes virulence of Candida albicans by regulating methionine metabolism. Virulence 2024; 15:2405616. [PMID: 39316797 PMCID: PMC11423685 DOI: 10.1080/21505594.2024.2405616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Candida albicans, a part of normal flora, is an opportunistic fungal pathogen and causes severe health issues in immunocompromised patients. Its pathogenicity is intricately linked to the transcriptional regulation of its metabolic pathways. Paf1 complex (Paf1C) is a crucial transcriptional regulator that is highly conserved in eukaryotes. The objective of this study was to explore the role of Paf1C in the metabolic pathways and how it influences the pathogenicity of C. albicans. Paf1C knockout mutant strains of C. albicans (ctr9Δ/Δ, leo1Δ/Δ, and cdc73Δ/Δ) were generated using the CRISPR-Cas9 system. To investigate the effect of Paf1C on pathogenicity, macrophage interaction assays and mouse survival tests were conducted. The growth patterns of the Paf1C knockout mutants were analyzed through spotting assays and growth curve measurements. Transcriptome analysis was conducted under yeast conditions (30°C without serum) and hyphal conditions (37°C with 10% FBS), to further elucidate the role of Paf1C in the pathogenicity of C. albicans. CTR9 deletion resulted in the attenuation of C. albicans virulence, in macrophage and mouse models. Furthermore, we confirmed that the reduced virulence of the ctr9Δ/Δ mutant can be attributed to a decrease in C. albicans cell abundance. Moreover, transcriptome analysis revealed that metabolic processes required for cell proliferation are impaired in ctr9Δ/Δ mutant. Notably, CTR9 deletion led to the downregulation of methionine biosynthetic genes and the cAMP-PKA signaling pathway-related hypha essential genes, which are pivotal for virulence. Our results suggest that Ctr9-regulated methionine metabolism is a crucial factor for determining C. albicans pathogenicity.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jueun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Pacheco MI, Guimarães B, Pereira-Silva P, Costa-Barbosa A, Gonçalves MST, Sousa MJ, Sampaio P. Combining Fluconazole with Benzo[ a]phenoxazine Derivatives as a Promising Strategy Against Fluconazole-Resistant Candida Species. Molecules 2024; 29:5197. [PMID: 39519838 PMCID: PMC11547786 DOI: 10.3390/molecules29215197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The rise in non-albicans Candida species, exhibiting unpredictable antifungal resistance, complicates treatment and contributes to the growing threat of invasive, life-threatening infections. This study evaluates the antifungal activity of four benzo[a]phenoxazine derivatives (C34, C35, A42, and A44) against 14 Candida strains following EUCAST standards. Fluconazole interactions are analysed through fractional inhibitory concentration index (FICI) calculation and response surface analysis based on the Bliss model. Macrophage-like J774A.1 cells are used to assess Candida killing in the presence of synergistic compounds. The MIC values against the different strains vary, with C34 showing the strongest activity, followed by C35, while A42 has the highest MIC values, indicating lower efficacy. However, A42 demonstrates the best synergy with fluconazole against fluconazole-resistant Candida strains. Cytotoxicity assays reveal that the chloropropyl group present in C35 and A42 enhances cytocompatibility. Co-culture with macrophages shows significant yeast killing for C. albicans and C. auris when fluconazole and A42 are combined, requiring concentrations 4 and 16 times lower than their MIC values, enhancing antifungal activity. Given fluconazole's fungistatic nature and the emergence of drug-resistant strains, benzo[a]phenoxazine derivatives' ability to enhance fluconazole's efficacy present a promising strategy to address antifungal resistance in critical pathogens. These findings align with global research priorities, offering new potential avenues for developing more effective antifungal therapies.
Collapse
Affiliation(s)
- Maria Inês Pacheco
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal (M.J.S.)
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Bárbara Guimarães
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Patrícia Pereira-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal (M.J.S.)
- Institute of Science and Innovation for Bio Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Augusto Costa-Barbosa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal (M.J.S.)
- Institute of Science and Innovation for Bio Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal (M.J.S.)
- Institute of Science and Innovation for Bio Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal (M.J.S.)
- Institute of Science and Innovation for Bio Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Sahu SR, Dutta A, Peroumal D, Kumari P, Utakalaja BG, Patel SK, Acharya N. Immunogenicity and efficacy of CNA25 as a potential whole-cell vaccine against systemic candidiasis. EMBO Mol Med 2024; 16:1254-1283. [PMID: 38783167 PMCID: PMC11178797 DOI: 10.1038/s44321-024-00080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Disseminated fungal infections account for ~1.5 million deaths per year worldwide, and mortality may increase further due to a rise in the number of immunocompromised individuals and drug-resistance fungal species. Since an approved antifungal vaccine is yet to be available, this study explored the immunogenicity and vaccine efficacy of a DNA polymerase mutant strain of Candida albicans. CNA25 is a pol32ΔΔ strain that exhibits growth defects and does not cause systemic candidiasis in mice. Immunized mice with live CNA25 were fully protected against C. albicans and C. parapsilosis but partially against C. tropicalis and C. glabrata infections. CNA25 induced steady expression of TLR2 and Dectin-1 receptors leading to a faster recognition and clearance by the immune system associated with the activation of protective immune responses mostly mediated by neutrophils, macrophages, NK cells, B cells, and CD4+ and CD8+ T cells. Molecular blockade of Dectin-1, IL-17, IFNγ, and TNFα abolished resistance to reinfection. Altogether, this study suggested that CNA25 collectively activates innate, adaptive, and trained immunity to be a promising live whole-cell vaccine against systemic candidiasis.
Collapse
Affiliation(s)
- Satya Ranjan Sahu
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Abinash Dutta
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Doureradjou Peroumal
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | - Premlata Kumari
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Bhabasha Gyanadeep Utakalaja
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Shraddheya Kumar Patel
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Regional Center for Biotechnology, Faridabad, Haryana, 751021, India
| | - Narottam Acharya
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
4
|
Chen M, Huang WK, Yao Y, Wu SM, Yang YX, Liu WX, Luo G, Wei SF, Zhang H, Liu HM, Wang B. Heterologous expression of the insect SVWC peptide WHIS1 inhibits Candida albicans invasion into A549 and HeLa epithelial cells. Front Microbiol 2024; 15:1358752. [PMID: 38873147 PMCID: PMC11169590 DOI: 10.3389/fmicb.2024.1358752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Candida albicans (C. albicans), a microbe commonly isolated from Candida vaginitis patients with vaginal tract infections, transforms from yeast to hyphae and produces many toxins, adhesins, and invasins, as well as C. albicans biofilms resistant to antifungal antibiotic treatment. Effective agents against this pathogen are urgently needed. Antimicrobial peptides (AMPs) have been used to cure inflammation and infectious diseases. In this study, we isolated whole housefly larvae insect SVWC peptide 1 (WHIS1), a novel insect single von Willebrand factor C-domain protein (SVWC) peptide from whole housefly larvae. The expression pattern of WHIS1 showed a response to the stimulation of C. albicans. In contrast to other SVWC members, which function as antiviral peptides, interferon (IFN) analogs or pathogen recognition receptors (PRRs), which are the prokaryotically expressed MdWHIS1 protein, inhibit the growth of C. albicans. Eukaryotic heterologous expression of WHIS1 inhibited C. albicans invasion into A549 and HeLa cells. The heterologous expression of WHIS1 clearly inhibited hyphal formation both extracellularly and intracellularly. Furthermore, the mechanism of WHIS1 has demonstrated that it downregulates all key hyphal formation factors (ALS1, ALS3, ALS5, ECE1, HWP1, HGC1, EFG1, and ZAP1) both extracellularly and intracellularly. These data showed that heterologously expressed WHIS1 inhibits C. albicans invasion into epithelial cells by affecting hyphal formation and adhesion factor-related gene expression. These findings provide new potential drug candidates for treating C. albicans infection.
Collapse
Affiliation(s)
- Ming Chen
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Wei-Kang Huang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yang Yao
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi-Mei Wu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yong-Xin Yang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen-Xia Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Gang Luo
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shao-Feng Wei
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Hua Zhang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Hong-Mei Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Bing Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| |
Collapse
|
5
|
Zhang TY, Chen YQ, Tan JC, Zhou JA, Chen WN, Jiang T, Zha JY, Zeng XK, Li BW, Wei LQ, Zou Y, Zhang LY, Hong YM, Wang XL, Zhu RZ, Xu WX, Xi J, Wang QQ, Pan L, Zhang J, Luan Y, Zhu RX, Wang H, Chen C, Liu NN. Global fungal-host interactome mapping identifies host targets of candidalysin. Nat Commun 2024; 15:1757. [PMID: 38413612 PMCID: PMC10899660 DOI: 10.1038/s41467-024-46141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Candidalysin, a cytolytic peptide toxin secreted by the human fungal pathogen Candida albicans, is critical for fungal pathogenesis. Yet, its intracellular targets have not been extensively mapped. Here, we performed a high-throughput enhanced yeast two-hybrid (HT-eY2H) screen to map the interactome of all eight Ece1 peptides with their direct human protein targets and identified a list of potential interacting proteins, some of which were shared between the peptides. CCNH, a regulatory subunit of the CDK-activating kinase (CAK) complex involved in DNA damage repair, was identified as one of the host targets of candidalysin. Mechanistic studies revealed that candidalysin triggers a significantly increased double-strand DNA breaks (DSBs), as evidenced by the formation of γ-H2AX foci and colocalization of CCNH and γ-H2AX. Importantly, candidalysin binds directly to CCNH to activate CAK to inhibit DNA damage repair pathway. Loss of CCNH alleviates DSBs formation under candidalysin treatment. Depletion of candidalysin-encoding gene fails to induce DSBs and stimulates CCNH upregulation in a murine model of oropharyngeal candidiasis. Collectively, our study reveals that a secreted fungal toxin acts to hijack the canonical DNA damage repair pathway by targeting CCNH and to promote fungal infection.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yao-Qi Chen
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing-Cong Tan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wan-Ning Chen
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tong Jiang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin-Yin Zha
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Xiang-Kang Zeng
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, China
| | - Bo-Wen Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu-Qi Wei
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun Zou
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu-Yao Zhang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue-Mei Hong
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiu-Li Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Run-Ze Zhu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wan-Xing Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Xi
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin-Qin Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Pan
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, China
| | - Jian Zhang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Yang Luan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui-Xin Zhu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Wang J, Yang L, Cheng A, Tham CY, Tan W, Darmawan J, de Sessions PF, Wan Y. Direct RNA sequencing coupled with adaptive sampling enriches RNAs of interest in the transcriptome. Nat Commun 2024; 15:481. [PMID: 38212309 PMCID: PMC10784512 DOI: 10.1038/s41467-023-44656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Abundant cellular transcripts occupy most of the sequencing reads in the transcriptome, making it challenging to assay for low-abundant transcripts. Here, we utilize the adaptive sampling function of Oxford Nanopore sequencing to selectively deplete and enrich RNAs of interest without biochemical manipulation before sequencing. Adaptive sampling performed on a pool of in vitro transcribed RNAs resulted in a net increase of 22-30% in the proportion of transcripts of interest in the population. Enriching and depleting different proportions of the Candida albicans transcriptome also resulted in a 11-13.5% increase in the number of reads on target transcripts, with longer and more abundant transcripts being more efficiently depleted. Depleting all currently annotated Candida albicans transcripts did not result in an absolute enrichment of remaining transcripts, although we identified 26 previously unknown transcripts and isoforms, 17 of which are antisense to existing transcripts. Further improvements in the adaptive sampling of RNAs will allow the technology to be widely applied to study RNAs of interest in diverse transcriptomes.
Collapse
Affiliation(s)
- Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Lin Yang
- Oxford Nanopore Technologies, Singapore, 138667, Singapore
| | - Anthony Cheng
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | | | - Wenting Tan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Jefferson Darmawan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | | | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
7
|
Kulig K, Bednaruk K, Rudolphi-Szydło E, Barbasz A, Wronowska E, Barczyk-Woznicka O, Karnas E, Pyza E, Zuba-Surma E, Rapala-Kozik M, Karkowska-Kuleta J. Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages. Int J Mol Sci 2023; 24:17179. [PMID: 38139005 PMCID: PMC10742962 DOI: 10.3390/ijms242417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO2 by the fungal pathogen Candida albicans were investigated. The interaction of EVs with human pro-monocytes of the U-937 cell line was established, and the most notable effect was attributed to oxidative stress-related EVs. The immunomodulatory potential of tested EVs against human THP-1 macrophages was verified using cytotoxicity assay, ROS-production assay, and the measurement of cytokine production. All fungal EVs tested did not show a significant cytotoxic effect on THP-1 cells, although a slight pro-oxidative impact was indicated for EVs released by C. albicans cells grown under oxidative stress. Furthermore, for all tested types of EVs, the pro-inflammatory properties related to increased IL-8 and TNF-α production and decreased IL-10 secretion were demonstrated, with the most significant effect observed for EVs released under oxidative stress conditions.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Bednaruk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Acuna E, Ndlovu E, Molaeitabari A, Shahina Z, Dahms TES. Carvacrol-Induced Vacuole Dysfunction and Morphological Consequences in Nakaseomyces glabratus and Candida albicans. Microorganisms 2023; 11:2915. [PMID: 38138059 PMCID: PMC10745442 DOI: 10.3390/microorganisms11122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
With the prevalence of systemic fungal infections caused by Candida albicans and non-albicans species and their resistance to classical antifungals, there is an urgent need to explore alternatives. Herein, we evaluate the impact of the monoterpene carvacrol, a major component of oregano and thyme oils, on clinical and laboratory strains of C. albicans and Nakaseomyces glabratus. Carvacrol induces a wide range of antifungal effects, including the inhibition of growth and hyphal and biofilm formation. Using biochemical and microscopic approaches, we elucidate carvacrol-induced hyphal inhibition. The significantly reduced survival rates following exposure to carvacrol were accompanied by dose-dependent vacuolar acidification, disrupted membrane integrity, and aberrant morphology. Germ tube assays, used to elucidate the relationship between vacuolar dysfunction and hyphal inhibition, showed that carvacrol significantly reduced hyphal formation, which was accompanied by a defective C. albicans morphology. Thus, we show a link between vacuolar acidification/disrupted vacuole membrane integrity and compromised candidal morphology/morphogenesis, demonstrating that carvacrol exerts its anti-hyphal activity by altering vacuole integrity.
Collapse
Affiliation(s)
| | | | | | - Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 1P4, Canada; (E.A.)
| | | |
Collapse
|
9
|
Li F, Gao Y, Cheng W, Su X, Yang R. Gut fungal mycobiome: A significant factor of tumor occurrence and development. Cancer Lett 2023; 569:216302. [PMID: 37451425 DOI: 10.1016/j.canlet.2023.216302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A variety of bacteria, viruses, fungi, protists, archaea and protozoa coexists within the mammalian gastrointestinal (GI) tract such as that fungi are detectable in all intestinal and colon segments in almost all healthy adults. Although fungi can cause infectious diseases, they are also related to gut and systemic homeostasis. Importantly, through transformation of different forms such as from yeast to hyphae, interaction among gut microbiota such as fungal and bacterial interaction, host factors such as immune and host derived factors, and fungus genetic and epigenetic factors, fungi can be transformed from commensal into pathogenic lifestyles. Recent studies have shown that fungi play a significant role in the occurrence and development of tumors such as colorectal cancer. Indeed, evidences have shown that multiple species of different fungi exist in different tumors. Studies have also demonstrated that fungi are related to the occurrence and development of tumors, and also survival of patients. Here we summarize recent advances in the transformation of fungi from commensal into pathogenic lifestyles, and the effects of gut pathogenic fungi on the occurrence and development of tumors such as colorectal and pancreatic cancers.
Collapse
Affiliation(s)
- Fan Li
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
10
|
Chen Y, Gao Y, Yuan M, Zheng Z, Yin J. Anti- Candida albicans Effects and Mechanisms of Theasaponin E1 and Assamsaponin A. Int J Mol Sci 2023; 24:ijms24119350. [PMID: 37298302 DOI: 10.3390/ijms24119350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen, and its drug resistance is becoming a serious problem. Camellia sinensis seed saponins showed inhibitory effects on resistant Candida albicans strains, but the active components and mechanisms are unclear. In this study, the effects and mechanisms of two Camellia sinensis seed saponin monomers, theasaponin E1 (TE1) and assamsaponin A (ASA), on a resistant Candida albicans strain (ATCC 10231) were explored. The minimum inhibitory concentration and minimum fungicidal concentration of TE1 and ASA were equivalent. The time-kill curves showed that the fungicidal efficiency of ASA was higher than that of TE1. TE1 and ASA significantly increased the cell membrane permeability and disrupted the cell membrane integrity of C. albicans cells, probably by interacting with membrane-bound sterols. Moreover, TE1 and ASA induced the accumulation of intracellular ROS and decreased the mitochondrial membrane potential. Transcriptome and qRT-PCR analyses revealed that the differentially expressed genes were concentrated in the cell wall, plasma membrane, glycolysis, and ergosterol synthesis pathways. In conclusion, the antifungal mechanisms of TE1 and ASA included the interference with the biosynthesis of ergosterol in fungal cell membranes, damage to the mitochondria, and the regulation of energy metabolism and lipid metabolism. Tea seed saponins have the potential to be novel anti-Candida albicans agents.
Collapse
Affiliation(s)
- Yuhong Chen
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Mingan Yuan
- Jinhua Academy of Agricultural Science, Jinhua 321000, China
| | - Zhaisheng Zheng
- Jinhua Academy of Agricultural Science, Jinhua 321000, China
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
11
|
Fink S, Fischer M, Spange S, Beier O, Horn K, Tittelbach J, Wiegand C. Cold Atmospheric Plasma Exerts Antimicrobial Effects in a 3D Skin Model of Cutaneous Candidiasis. Antibiotics (Basel) 2023; 12:antibiotics12050933. [PMID: 37237836 DOI: 10.3390/antibiotics12050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cutaneous candidiasis is characterized by an overgrowth of Candida leading to skin inflammation and infection. Similar to bacteria, Candida can develop tolerance to common antifungal drugs. Cold atmospheric plasma (CAP), with its proven antimicrobial properties, offers a promising alternative to the prevailing methods. Because of plasma heterogeneity each new device must be tested individually for its effectiveness. Antimicrobial activity is usually studied using planktonic microorganisms or animal models, making it difficult to extrapolate the results to the human system. Therefore, a 3D skin model of cutaneous candidiasis for the antimicrobial testing of CAP was established. First, the reaction of the 3D-skin model to Candida infection was examined using various histological and molecular-biological methods. Infection with C. albicans resulted in increased expression and secretion of pro-inflammatory cytokines and augmented expression of antimicrobial peptides. Within 48 h, hyphal growth spread throughout the model and caused tissue damage. Second, the CAP treatment was employed. It was shown that CAP significantly reduced the spread of the yeast in the infected skin models as well as decreased the expression and secretion of the infection markers. The plasma device exhibited a high antifungal activity by completely inhibiting hyphal growth and reducing inflammation at the highest treatment duration.
Collapse
Affiliation(s)
- Sarah Fink
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Michael Fischer
- Institute of Micro- and Nanotechnologies, Ilmenau University of Technology, 98639 Ilmenau, Germany
| | | | | | | | - Jörg Tittelbach
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| |
Collapse
|
12
|
Song S, Zhu L, Xu H, Wen Y, Feng R. Phenylboronic acid-installed poly(isobutene-alt-maleic anhydride) polymeric micelles for pH-dependent release of amphotericin B. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
El-Sakhawy MA, M Donia AER, Kobisi ANA, Abdelbasset WK, Saleh AM, Ibrahim AM, Negm RM. Oral Candidiasis of Tobacco Smokers: A Literature Review. Pak J Biol Sci 2023; 26:1-14. [PMID: 37129200 DOI: 10.3923/pjbs.2023.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The mouth is a vital point of entry into the human body, the health of the mouth entails mental, physical as well as social well-being. Studying diseases, microbiota and environmental conditions of the mouth is important to maintain oral health and all body. The smoke of tobacco cigarettes is one of the worst habits that affect the health of the mouth and the body. Therefore, this review has been conducted to study the effect of smoking on the balance of the oral microbiota and the opportunistic organisms, one of the most important of them <i>Candida</i>. Although a few studies have found that cigarette smoking does not influence carriage by <i>Candida</i> significantly. However, most of the studies had results completely contrary to that, smoking cigarettes affect <i>Candida</i> pathogenic characteristics such as a transition from yeast to hyphal form, biofilm formation and, virulence-related gene expressions. Tobacco is not only an inducer of the transition process but it considers an excellent medium for this process. Furthermore, smoking was significantly associated with <i>Candida</i> pathogenicity in patients with clinically suspected oral leukoplakia and smoking worsens oral candidiasis and dampens epithelial cell defense response. Nicotine significantly altered the composition and proportion of yeast cells, as well as the extracellular polysaccharide amounts which increase biofilm matrix and thickness which could promote oral candidiasis. Smoking has the potential to alter the oral condition and cause severe oxidative stress, thereby damaging the epithelial barrier of the mouth. These oxidative molecules during smoking activate epithelial cells proteins called oxidative stress-sensing proteins. If some of these proteins induced, widely thought to have anti-inflammatory properties, inhibit the secretion of pro-inflammatory cytokines and are linked to inflammation and oxidative stress is thought to be a possible therapeutic objective and a crucial regulator for smoking-related oral diseases and mouth candidiasis for instance leukoplakia. Also, it is transported into the cell nucleus in the existence of additional electrophilic chemicals to activate antioxidant enzyme gene expression. Therefore, smoking cigarettes destroys oral health and consequently destroys the health of the whole body.
Collapse
|
14
|
Liu W, Li M, Tian B, Yang X, Du W, Wang X, Zhou H, Ding C, Sai S. Calcofluor white-cholesteryl hydrogen succinate conjugate mediated liposomes for enhanced targeted delivery of voriconazole into Candida albicans. Biomater Sci 2023; 11:307-321. [DOI: 10.1039/d2bm01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A nano antifungal-drug delivery system is designed to increase voriconazole efficacy by specifically binding to chitin in the fungal cell wall.
Collapse
Affiliation(s)
- Wei Liu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Mengshun Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Xuesong Yang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Wei Du
- College of Life and Health Science, Northeastern University, Shenyang, 110015, China
| | - Xiuwen Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Huihui Zhou
- Department of Pathology, Affiliated Yuhuangding Hospital of Qingdao University, Yantai, Shandong 266071, China
| | - Chen Ding
- College of Life and Health Science, Northeastern University, Shenyang, 110015, China
| | - Sixiang Sai
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| |
Collapse
|
15
|
Zaongo SD, Ouyang J, Isnard S, Zhou X, Harypursat V, Cui H, Routy JP, Chen Y. Candida albicans can foster gut dysbiosis and systemic inflammation during HIV infection. Gut Microbes 2023; 15:2167171. [PMID: 36722096 PMCID: PMC9897780 DOI: 10.1080/19490976.2023.2167171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Candida albicans (C. albicans) is a ubiquitous fungal commensal component of the human microbiota, and under certain circumstances, such as during an immunocompromised state, it may initiate different types of infection. Moreover, C. albicans continuously and reciprocally interacts with the host immune system as well as with other elements of the gut microbiota, thus contributing significantly to both gut homeostasis and host immunity. People living with HIV (PLWH), including those receiving antiretroviral therapy, are characterized by a depletion of CD4 + T-cells and dysbiosis in their gut. C. albicans colonization is frequent in PLWH, causing both a high prevalence and high morbidity. Gut barrier damage and elevated levels of microbial translocation are also fairly common in this population. Herein, we take a closer look at the reciprocity among C. albicans, gut microbiota, HIV, and the host immune system, thus throwing some light on this complex interplay.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,CONTACT Yaokai Chen Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
16
|
A Clinical Study Provides the First Direct Evidence That Interindividual Variations in Fecal β-Lactamase Activity Affect the Gut Mycobiota Dynamics in Response to β-Lactam Antibiotics. mBio 2022; 13:e0288022. [PMID: 36448778 PMCID: PMC9765473 DOI: 10.1128/mbio.02880-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Antibiotics disturb the intestinal bacterial microbiota, leading to gut dysbiosis and an increased risk for the overgrowth of opportunistic pathogens. It is not fully understood to what extent antibiotics affect the fungal fraction of the intestinal microbiota, the mycobiota. There is no report of the direct role of antibiotics in the overgrowth in healthy humans of the opportunistic pathogenic yeast Candida albicans. Here, we have explored the gut mycobiota of 22 healthy subjects before, during, and up to 6 months after a 3-day regimen of third-generation cephalosporins (3GCs). Using ITS1-targeted metagenomics, we highlighted the strong intra- and interindividual diversity of the healthy gut mycobiota. With a specific quantitative approach, we showed that C. albicans prevalence was much higher than previously reported, with all subjects but one being carriers of C. albicans, although with highly variable burdens. 3GCs significantly altered the mycobiota composition and the fungal load was increased both at short and long term. Both C. albicans relative and absolute abundances were increased but 3GCs did not reduce intersubject variability. Variations in C. albicans burden in response to 3GC treatment could be partly explained by changes in the levels of endogenous fecal β-lactamase activity, with subjects characterized by a high increase of β-lactamase activity displaying a lower increase of C. albicans levels. A same antibiotic treatment might thus affect differentially the gut mycobiota and C. albicans carriage, depending on the treated subject, suggesting a need to adjust the current risk factors for C. albicans overgrowth after a β-lactam treatment. IMPORTANCE Fungal infections are redoubtable healthcare-associated complications in immunocompromised patients. Particularly, the commensal intestinal yeast Candida albicans causes invasive infections in intensive care patients and is, therefore, associated with high mortality. These infections are preceded by an intestinal expansion of C. albicans before its translocation into the bloodstream. Antibiotics are a well-known risk factor for C. albicans overgrowth but the impact of antibiotic-induced dysbiosis on the human gut mycobiota-the fungal microbiota-and the understanding of the mechanisms involved in C. albicans overgrowth in humans are very limited. Our study shows that antibiotics increase the fungal proportion in the gut and disturb the fungal composition, especially C. albicans, in a subject-dependent manner. Indeed, variations across subjects in C. albicans burden in response to β-lactam treatment could be partly explained by changes in the levels of endogenous fecal β-lactamase activity. This highlighted a potential new key factor for C. albicans overgrowth. Thus, the significance of our research is in providing a better understanding of the factors behind C. albicans intestinal overgrowth, which might lead to new means to prevent life-threatening secondary infections.
Collapse
|
17
|
Chang W, Zhang M, Jin X, Zhang H, Zheng H, Zheng S, Qiao Y, Yu H, Sun B, Hou X, Lou H. Inhibition of fungal pathogenicity by targeting the H 2S-synthesizing enzyme cystathionine β-synthase. SCIENCE ADVANCES 2022; 8:eadd5366. [PMID: 36525499 PMCID: PMC9757746 DOI: 10.1126/sciadv.add5366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The global emergence of antifungal resistance threatens the limited arsenal of available treatments and emphasizes the urgent need for alternative antifungal agents. Targeting fungal pathogenic functions is an appealing alternative therapeutic strategy. Here, we show that cystathionine β-synthase (CBS), compared with cystathionine γ-lyase, is the major enzyme that synthesizes hydrogen sulfide in the pathogenic fungus Candida albicans. Deletion of CBS leads to deficiencies in resistance to oxidative stress, retarded cell growth, defective hyphal growth, and increased β-glucan exposure, which, together, reduce the pathogenicity of C. albicans. By high-throughput screening, we identified protolichesterinic acid, a natural molecule obtained from a lichen, as an inhibitor of CBS that neutralizes the virulence of C. albicans and exhibits therapeutic efficacy in a murine candidiasis model. These findings support the application of CBS as a potential therapeutic target to fight fungal infections.
Collapse
Affiliation(s)
- Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haijuan Zhang
- School of Pharmacy, Linyi University, Linyi, Shandong Province, China
| | - Hongbo Zheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Sha Zheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yanan Qiao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haina Yu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Bin Sun
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong Province, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
18
|
Genetic Diversity of Candida spp. Isolates Colonizing Twins and Their Family Members. Pathogens 2022; 11:pathogens11121532. [PMID: 36558865 PMCID: PMC9783311 DOI: 10.3390/pathogens11121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
A wide range of options for studying Candida species are available through genetic methods. Twins, particularly monozygotic ones and their families may be fitting subjects for studying those microorganisms. The question is: How specific can yeast flora be in an individual? The study aimed to analyze the strain relatedness among commensal yeasts isolated from various parts of the bodies of healthy people and to compare correlations between the genotypes of the isolates. Yeasts were isolated from 63 twins and their family members (n = 25) from the oral cavity, anus, interdigital space and navel. After species identification, Candida albicans (n = 139), C. parapsilosis (n = 39), C. guilliermondii (n = 25), C. dubliniensis (n = 11) and C. krusei (n = 9) isolates were analyzed using the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) optimization method. The similarities between the strains were calculated based on the Dice (Sab) coefficient and are displayed graphically as dendrograms. Using cluster analysis, the following relatedness was distinguished: 13 genotypes and three unique (Un) patterns among C. albicans; 10 genotypes and four Un patterns among C. parapsilosis; three genotypes and one Un pattern among C. guilliermondii and C. dubliniensis; and three genotypes among C. krusei isolates. The presence of identical, similar or both genotypes among the strains isolated from family members shows the transmission of yeasts between ontocenoses in the same person and between individuals. The similarity between the genotypes of C. albicans, C. guilliermondii, C. dubliniensis and C. krusei was more remarkable than between the genotypes of C. parapsilosis in the strains isolated from ontocenoses of the same individual and their family members. The degrees of genetic similarity between Candida spp. strains isolated from monozygotic twins and those obtained from their relatives did not differ.
Collapse
|
19
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|
20
|
Yang L, Zhong L, Ma Z, Sui Y, Xie J, Liu X, Ma T. Antifungal effects of alantolactone on Candida albicans: An in vitro study. Biomed Pharmacother 2022; 149:112814. [PMID: 35290888 DOI: 10.1016/j.biopha.2022.112814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
The human fungal pathogen Candida albicans can cause many kinds of infections, including biofilm infections on medical devices, while the available antifungal drugs are limited to only a few. In this study, alantolactone (Ala) demonstrated antifungal activities against C. albicans, as well as other Candida species, with a MIC of 72 μg/mL. Ala could also inhibit the adhesion, yeast-to-hyphal transition, biofilm formation and development of C. albicans. The exopolysaccharide of biofilm matrix and extracellular phospholipase production could also be reduced by Ala treatment. Ala could increase permeability of C. albicans cell membrane and ROS contribute to the anti-biofilm activity of Ala. Overall, the present study suggests that Ala may provide a promising candidate for developing antifungal drugs against C. albicans infections.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jia'nan Xie
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Tonghui Ma
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
21
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
22
|
Arita GS, Faria DR, Capoci IR, Kioshima ES, Bonfim-Mendonça PS, Svidzinski TI. Cell wall associated proteins involved in filamentation with impact on the virulence of Candida albicans. Microbiol Res 2022; 258:126996. [DOI: 10.1016/j.micres.2022.126996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/21/2022] [Accepted: 02/20/2022] [Indexed: 12/14/2022]
|
23
|
Yang LB, Guo G, Tian ZQ, Zhou LX, Zhu LJ, Peng J, Sun CQ, Huang MJ. TMT-based quantitative proteomic analysis of the effects of novel antimicrobial peptide AMP-17 against Candida albicans. J Proteomics 2022; 250:104385. [PMID: 34606990 DOI: 10.1016/j.jprot.2021.104385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Candida albicans is the most common human fungal pathogen in immunocompromised individuals. With the emergence of clinical fungal resistance, there is an urgent need to develop novel antifungal agents. AMP-17, a novel antimicrobial peptide from Musca domestica, has an antifungal effect against C. albicans, but its mechanism of antifungal action remains unclear. In the current study, we performed a proteomics analysis in C. albicans using TMT technique under the treatment of AMP-17. A total of 3931 proteins were identified, of which 3600 included quantitative information. With a 1.5-fold change threshold and a t-test p-value < 0.05 as standard, 423 differentially expressed proteins (DEPs) were up-regulated and 180 DEPs were down-regulated in the AMP-17/control. Notably, GO enrichment revealed that DEPs associated with the cell wall, RNA and oxidative stress were significantly up-regulated, while DEPs involved in ergosterol metabolism and membrane were significantly down-regulated in the AMP-17/control. KEGG pathway enrichment revealed that DEPs involved seven significant metabolic pathways, mainly involved oxidative phosphorylation, RNA degradation, propanoate metabolism and fatty acid metabolism. These results show that AMP-17 induces a complex organism response in C. albicans, indicating that AMP-17 may inhibit growth by affecting multiple targets in C. albicans cells. SIGNIFICANCE: Antimicrobial peptides (AMPs) are an important part of the innate immune system of organisms and having broad range of activity against fungi, bacteria and viruses. These AMPs are considered as probable candidate for forthcoming drugs, due to their broad range of activity, lesser toxicity and decreased resistance development by target cells. AMP-17, a novel antimicrobial peptide from M. domestica, has significant antifungal activity against C. albicans. It has been confirmed that AMP-17 can play an antifungal effect by destroying the cell wall and cell membrane of C. albicans in previous studies, but its mechanism of action at the protein level is currently unclear. In the current study, using the TMT-based quantitative proteomics method, 603 differentially expressed proteins were identified in the cells of C. albicans treated with AMP-17 for 12 h, and these DEPs were closely related to cell wall, cell membrane, RNA degradation and oxidative stress. The results provide new insights into the potential mechanism of action of AMP- 17 against C. albicans. Meanwhile, it provides certain technical support and theoretical basis for the research and development of novel peptide drugs.
Collapse
Affiliation(s)
- Long-Bing Yang
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.
| | - Zhu-Qing Tian
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
| | - Luo-Xiong Zhou
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Li-Juan Zhu
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- Key Laboratory of Biology and Medical Engineering, Department of Biotechnology, School of Biology & Engineering, Guizhou Medical University, Guiyang, China
| | - Chao-Qin Sun
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
| | - Ming-Jiao Huang
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
24
|
Vandermeulen MD, Cullen PJ. Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity. PLoS Genet 2022; 18:e1009988. [PMID: 34982769 PMCID: PMC8759647 DOI: 10.1371/journal.pgen.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Phenotypes can change during exposure to different environments through the regulation of signaling pathways that operate in integrated networks. How signaling networks produce different phenotypes in different settings is not fully understood. Here, Gene by Environment Interactions (GEIs) were used to explore the regulatory network that controls filamentous/invasive growth in the yeast Saccharomyces cerevisiae. GEI analysis revealed that the regulation of invasive growth is decentralized and varies extensively across environments. Different regulatory pathways were critical or dispensable depending on the environment, microenvironment, or time point tested, and the pathway that made the strongest contribution changed depending on the environment. Some regulators even showed conditional role reversals. Ranking pathways' roles across environments revealed an under-appreciated pathway (OPI1) as the single strongest regulator among the major pathways tested (RAS, RIM101, and MAPK). One mechanism that may explain the high degree of regulatory plasticity observed was conditional pathway interactions, such as conditional redundancy and conditional cross-pathway regulation. Another mechanism was that different pathways conditionally and differentially regulated gene expression, such as target genes that control separate cell adhesion mechanisms (FLO11 and SFG1). An exception to decentralized regulation of invasive growth was that morphogenetic changes (cell elongation and budding pattern) were primarily regulated by one pathway (MAPK). GEI analysis also uncovered a round-cell invasion phenotype. Our work suggests that GEI analysis is a simple and powerful approach to define the regulatory basis of complex phenotypes and may be applicable to many systems.
Collapse
Affiliation(s)
- Matthew D. Vandermeulen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
25
|
Nanoparticle-modified PMMA to prevent denture stomatitis: a systematic review. Arch Microbiol 2021; 204:75. [DOI: 10.1007/s00203-021-02653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
|
26
|
da Silva Dantas A, Nogueira F, Lee KK, Walker LA, Edmondson M, Brand AC, Lenardon MD, Gow NAR. Crosstalk between the calcineurin and cell wall integrity pathways prevents chitin overexpression in Candida albicans. J Cell Sci 2021; 134:jcs258889. [PMID: 34792152 PMCID: PMC8729787 DOI: 10.1242/jcs.258889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/09/2021] [Indexed: 10/26/2022] Open
Abstract
Echinocandins such as caspofungin are frontline antifungal drugs that compromise β-1,3 glucan synthesis in the cell wall. Recent reports have shown that fungal cells can resist killing by caspofungin by upregulation of chitin synthesis, thereby sustaining cell wall integrity (CWI). When echinocandins are removed, the chitin content of cells quickly returns to basal levels, suggesting that there is a fitness cost associated with having elevated levels of chitin in the cell wall. We show here that simultaneous activation of the calcineurin and CWI pathways generates a subpopulation of Candida albicans yeast cells that have supra-normal chitin levels interspersed throughout the inner and outer cell wall, and that these cells are non-viable, perhaps due to loss of wall elasticity required for cell expansion and growth. Mutations in the Ca2+-calcineurin pathway prevented the formation of these non-viable supra-high chitin cells by negatively regulating chitin synthesis driven by the CWI pathway. The Ca2+-calcineurin pathway may therefore act as an attenuator that prevents the overproduction of chitin by coordinating both chitin upregulation and negative regulation of the CWI signaling pathway. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alessandra da Silva Dantas
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Filomena Nogueira
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Children's Cancer Research Institute, Labdia and Max F. Perutz Laboratories, Vienna 1090, Austria
| | - Keunsook K. Lee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- NGeneBio Company, 288 Digital-ro, Guro-gu, Seoul 08390, South Korea
| | - Louise A. Walker
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Matt Edmondson
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
| | - Alexandra C. Brand
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Megan D. Lenardon
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Neil A. R. Gow
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
27
|
Ding X, Kambara H, Guo R, Kanneganti A, Acosta-Zaldívar M, Li J, Liu F, Bei T, Qi W, Xie X, Han W, Liu N, Zhang C, Zhang X, Yu H, Zhao L, Ma F, Köhler JR, Luo HR. Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages. Nat Commun 2021; 12:6699. [PMID: 34795266 PMCID: PMC8602704 DOI: 10.1038/s41467-021-27034-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is the most common cause of fungal sepsis. Inhibition of inflammasome activity confers resistance to polymicrobial and LPS-induced sepsis; however, inflammasome signaling appears to protect against C. albicans infection, so inflammasome inhibitors are not clinically useful for candidiasis. Here we show disruption of GSDMD, a known inflammasome target and key pyroptotic cell death mediator, paradoxically alleviates candidiasis, improving outcomes and survival of Candida-infected mice. Mechanistically, C. albicans hijacked the canonical inflammasome-GSDMD axis-mediated pyroptosis to promote their escape from macrophages, deploying hyphae and candidalysin, a pore-forming toxin expressed by hyphae. GSDMD inhibition alleviated candidiasis by preventing C. albicans escape from macrophages while maintaining inflammasome-dependent but GSDMD-independent IL-1β production for anti-fungal host defenses. This study demonstrates key functions for GSDMD in Candida's escape from host immunity in vitro and in vivo and suggests that GSDMD may be a potential therapeutic target in C. albicans-induced sepsis.
Collapse
Affiliation(s)
- Xionghui Ding
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
- Department of Burn and Plastic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Hiroto Kambara
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Rongxia Guo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Apurva Kanneganti
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Jiajia Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Ting Bei
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Xuemei Xie
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Wenli Han
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Ningning Liu
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Cunling Zhang
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Xiaoyu Zhang
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Hongbo Yu
- VA Boston Healthcare System, Department of Pathology and Laboratory Medicine, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Li Zhao
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Julia R Köhler
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Hongbo R Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Iracane E, Vega-Estévez S, Buscaino A. On and Off: Epigenetic Regulation of C. albicans Morphological Switches. Pathogens 2021; 10:pathogens10111463. [PMID: 34832617 PMCID: PMC8619191 DOI: 10.3390/pathogens10111463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The human fungal pathogen Candida albicans is a dimorphic opportunistic pathogen that colonises most of the human population without creating any harm. However, this fungus can also cause life-threatening infections in immunocompromised individuals. The ability to successfully colonise different host niches is critical for establishing infections and pathogenesis. C. albicans can live and divide in various morphological forms critical for its survival in the host. Indeed, C. albicans can grow as both yeast and hyphae and can form biofilms containing hyphae. The transcriptional regulatory network governing the switching between these different forms is complex but well understood. In contrast, non-DNA based epigenetic modulation is emerging as a crucial but still poorly studied regulatory mechanism of morphological transition. This review explores our current understanding of chromatin-mediated epigenetic regulation of the yeast to hyphae switch and biofilm formation. We highlight how modification of chromatin structure and non-coding RNAs contribute to these morphological transitions.
Collapse
|
29
|
Kim J, Park S, Kwon SH, Lee EJ, Lee JS. Set1-mediated H3K4 methylation is required for Candida albicans virulence by regulating intracellular level of reactive oxygen species. Virulence 2021; 12:2648-2658. [PMID: 34696687 PMCID: PMC8555521 DOI: 10.1080/21505594.2021.1980988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen that exists in normal flora but can cause infection in immunocompromised individuals. The transition to pathogenic C. albicans requires a change of various gene expressions. Because histone-modifying enzymes can regulate gene expression, they are thought to control the virulence of C. albicans. Indeed, the absence of H3 lysine 4 (H3K4) methyltransferase Set1 has been shown to reduce the virulence of C. albicans; however, Set1-regulated genes responsible for this attenuated virulence phenotype remain unknown. Here, we demonstrated that Set1 positively regulates the expression of mitochondrial protein genes by methylating H3K4. In particular, levels of cellular mitochondrial reactive oxygen species (ROS) were higher in Δset1 than in the wild-type due to the defect of those genes’ expression. Set1 deletion also increases H2O2 sensitivity and prevents proper colony formation when interacting with macrophage in vitro, consistent with its attenuated virulence in vivo. Together, these findings suggest that Set1 is required to regulate proper cellular ROS production by positively regulating the expression of mitochondrial protein genes and subsequently sustaining mitochondrial membrane integrity. Consequently, C. albicans maintains proper ROS levels via Set1-mediated transcriptional regulation, thus establishing a rapid defense against external ROS generated by the host.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Molecular Bioscience College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - Shinae Park
- Department of Molecular Bioscience College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| |
Collapse
|
30
|
Chemical Composition and Antimicrobial Activity of a New Olive Pomace Functional Ingredient. Pharmaceuticals (Basel) 2021; 14:ph14090913. [PMID: 34577612 PMCID: PMC8471359 DOI: 10.3390/ph14090913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Olive pomace, an olive oil processing byproduct, can be upcycled and meet the current demand for natural and sustainable food ingredients. In this work, a patented process was used to obtain a functional ingredient from different olive pomaces. The nutritional, chemical and antioxidant profiles, as well as the antimicrobial activity against S. aureus, E. coli and C. albicans, were investigated for the first time. The amount of phenolics ranged between 3.1 and 3.8 g gallic acid eq./100 g in all samples and flavonoids between 2.0 and 3.2 g catechin eq/100 g. No significant differences were found regarding the antioxidant activity. The total fat varied between 5 and 11%, α-tocopherol being the major vitamer and oleic acid the main fatty acid. The protein and ash contents were 1–4% and 10–17%, respectively. The functional ingredient with a higher hydroxytyrosol content (220 mg/100 g) also presented the best minimal inhibitory concentration against the tested bacteria. No activity against C. albicans was verified. This new functional ingredient presents the potential to be used as a natural preservative or as a nutritional profile enhancer. Moreover, it can be an advantageous ingredient in food products, since it comprises specific lipid and hydrophilic bioactive compounds usually not present in other plant extracts.
Collapse
|
31
|
Hassan Y, Chew SY, Than LTL. Candida glabrata: Pathogenicity and Resistance Mechanisms for Adaptation and Survival. J Fungi (Basel) 2021; 7:jof7080667. [PMID: 34436206 PMCID: PMC8398317 DOI: 10.3390/jof7080667] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Candida glabrata is a yeast of increasing medical relevance, particularly in critically ill patients. It is the second most isolated Candida species associated with invasive candidiasis (IC) behind C. albicans. The attributed higher incidence is primarily due to an increase in the acquired immunodeficiency syndrome (AIDS) population, cancer, and diabetic patients. The elderly population and the frequent use of indwelling medical devices are also predisposing factors. This work aimed to review various virulence factors that facilitate the survival of pathogenic C. glabrata in IC. The available published research articles related to the pathogenicity of C. glabrata were retrieved and reviewed from four credible databases, mainly Google Scholar, ScienceDirect, PubMed, and Scopus. The articles highlighted many virulence factors associated with pathogenicity in C. glabrata, including adherence to susceptible host surfaces, evading host defences, replicative ageing, and producing hydrolytic enzymes (e.g., phospholipases, proteases, and haemolysins). The factors facilitate infection initiation. Other virulent factors include iron regulation and genetic mutations. Accordingly, biofilm production, tolerance to high-stress environments, resistance to neutrophil killings, and development of resistance to antifungal drugs, notably to fluconazole and other azole derivatives, were reported. The review provided evident pathogenic mechanisms and antifungal resistance associated with C. glabrata in ensuring its sustenance and survival.
Collapse
Affiliation(s)
- Yahaya Hassan
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano 700241, Nigeria;
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Shu Yih Chew
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-39769-2373
| |
Collapse
|
32
|
Min K, Jannace TF, Si H, Veeramah KR, Haley JD, Konopka JB. Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans. PLoS Pathog 2021; 17:e1009861. [PMID: 34398936 PMCID: PMC8389844 DOI: 10.1371/journal.ppat.1009861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/26/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Microbial pathogens grow in a wide range of different morphologies that provide distinct advantages for virulence. In the fungal pathogen Candida albicans, adenylyl cyclase (Cyr1) is thought to be a master regulator of the switch to invasive hyphal morphogenesis and biofilm formation. However, faster growing cyr1Δ/Δ pseudorevertant (PR) mutants were identified that form hyphae in the absence of cAMP. Isolation of additional PR mutants revealed that their improved growth was due to loss of one copy of BCY1, the negative regulatory subunit of protein kinase A (PKA) from the left arm of chromosome 2. Furthermore, hyphal morphogenesis was improved in some of PR mutants by multigenic haploinsufficiency resulting from loss of large regions of the left arm of chromosome 2, including global transcriptional regulators. Interestingly, hyphal-associated genes were also induced in a manner that was independent of cAMP. This indicates that basal protein kinase A activity is an important prerequisite to induce hyphae, but activation of adenylyl cyclase is not needed. Instead, phosphoproteomic analysis indicated that the Cdc28 cyclin-dependent kinase and the casein kinase 1 family member Yck2 play key roles in promoting polarized growth. In addition, integrating transcriptomic and proteomic data reveals hyphal stimuli induce increased production of key transcription factors that contribute to polarized morphogenesis.
Collapse
Affiliation(s)
- Kyunghun Min
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - Thomas F. Jannace
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - Haoyu Si
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - Krishna R. Veeramah
- Department of Ecology and Evolution, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - John D. Haley
- Department of Pathology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
- Biological Mass Spectrometry Shared Resource, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - James B. Konopka
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Cascione M, De Matteis V, Pellegrino P, Albanese G, De Giorgi ML, Paladini F, Corsalini M, Rinaldi R. Improvement of PMMA Dental Matrix Performance by Addition of Titanium Dioxide Nanoparticles and Clay Nanotubes. NANOMATERIALS 2021; 11:nano11082027. [PMID: 34443858 PMCID: PMC8402145 DOI: 10.3390/nano11082027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Over the last decades, several materials have been proposed for the fabrication of dental and mandibular prosthetic implants. Today, the poly(methyl-methacrylate) (PMMA) resin is the most spread material, due to its ease of processing, low cost, aesthetic properties, low weight, biocompatibility, and biostability in the oral cavity. However, the porous surface (which favors the adhesion of microorganisms) and the weak mechanical properties (which lead to wear or fracture) are the major concerns. The inclusion of engineered nanomaterials in the acrylic matrix could improve the performances of PMMA. In this study, we added two different kind of nanomaterials, namely titanium dioxide nanoparticles (TiO2NPs) and halloysite clay nanotubes (HNTs) at two concentrations (1% and 3% w/w) in PMMA. Then, we assessed the effect of nanomaterials inclusion by the evaluation of specific physical parameters: Young’s modulus, roughness, and wettability. In addition, we investigated the potential beneficial effects regarding the Candida albicans (C. albicans) colonization reduction, the most common yeast responsible of several infections in oral cavity. Our experimental results showed an improvement of PMMA performance, following the addition of TiO2NPs and HNTs, in a dose dependent manner. In particular, the presence of TiO2NPs in the methacrylate matrix induced a greater increase in PMMA stiffness respect to HNTs addition. On the other hand, HNTs reduced the rate of C. albicans colonization more significantly than TiO2NPs. The results obtained are of great interest for the improvement of PMMA physico-chemical properties, in view of its possible application in clinical dentistry.
Collapse
Affiliation(s)
- Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
- Correspondence: (Mf.C.); (V.D.M.)
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
- Correspondence: (Mf.C.); (V.D.M.)
| | - Paolo Pellegrino
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| | - Giovanni Albanese
- U.O.C. of Plastic Surgery and Burns Center, Department of Oral Hygiene Clinic, Hospital “A. Perrino”, 72100 Brindisi, Italy;
- Dental School, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Maria Luisa De Giorgi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| | - Fabio Paladini
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| | - Massimo Corsalini
- Dental School, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (P.P.); (M.L.D.G.); (F.P.); (R.R.)
| |
Collapse
|
34
|
Maia CMDA, Pasetto S, Nonaka CFW, Costa EMMDB, Murata RM. Yeast-Host Interactions: Anadenanthera colubrina Modulates Virulence Factors of C. albicans and Inflammatory Response In Vitro. Front Pharmacol 2021; 12:629778. [PMID: 34168555 PMCID: PMC8217765 DOI: 10.3389/fphar.2021.629778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Oral candidiasis is one of the most common fungal infections in humans. Its incidence has increased widely, as well as the antifungal resistance, demanding for the search for novel antifungal therapeutic agents. Anadenanthera colubrina (Vell.) Brenan is a plant species that has been proven to possess pharmacological effects, including antifungal and anti-inflammatory activities. This study evaluated in vitro the effects of standardized A. colubrina extract on virulence factors of Candida albicans and its regulation on immune response through C. albicans-host interaction. Antifungal activity was evaluated by Broth Microdilution Method against reference Candida strains (C. albicans, C. glabrata, C. tropicalis; C. dubliniensis). Anti-biofilm effect was performed on C. albicans mature biofilm and quantified by CFU/mL/g of biofilm dry weight. Proleotlytic enzymatic activities of proteinase and phospholipase were assessed by Azocasein and Phosphatidylcholine assays, respectively. Cytotoxicity effect was determined by Cell Titer Blue Viability Assay on Human Gingival Fibroblasts. Co-cultured model was used to analyze C. albicans coexisting with HGF by Scanning Electron Microscopy and fluorescence microscopies; gene expression was assessed by RT-PCR of C. albicans enzymes (SAP-1, PLB-1) and of host inflammatory cytokines (IL-6, IL-8, IL-1β, IL-10). Cytokines secretion was analysed by Luminex. The extract presented antifungal effect with MIC<15.62 μg/ml against Candida strains. Biofilm and proteolytic activity were significant reduced at 312.4 μg/ml (20 × 15.62 μg/ml) extract concentration. Cell viability was maintained higher than 70% in concentrations up to 250 μg/ml (LD50 = 423.3 μg/ml). Co-culture microscopies demonstrated a substantial decreased in C. albicans growth and minimal toxicity against host cells. Gene expressions of SAP-1/PLB-1 were significantly down-regulated and host immune response was modulated by a significant decreased on IL-6 and IL-8 cytokines secretion. A. colubrina had antifungal activity on Candida strains, antibiofilm, and anti-proteolytic enzyme effects against C. albicans. Presented low cytotoxicity to the host cells and modulatory effects on the host immune response.
Collapse
Affiliation(s)
- Carolina Medeiros de Almeida Maia
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Brazil
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Silvana Pasetto
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | | | | | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
35
|
Sanchez A, Lee B, Gandhi K, Garza J, Ventolini G. A rare case report: Cutaneous Candida tropicalis infection disguised as a sacral decubitus rash in an immunocompetent individual. J Infect Public Health 2021; 14:1018-1020. [PMID: 34153726 DOI: 10.1016/j.jiph.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022] Open
Abstract
Candida infection is seen in patients with weak or disrupted host responses. Cutaneous candidiasis typically affects the intertriginous areas and presents with a red plaque surrounded by satellite lesions. Diagnosis of cutaneous candidiasis is made by visual inspection followed by potassium hydroxide normal saline microscopic preparation (wet mount) and polymerase chain reaction identification or culture of fungal organism. The following case describes a 38-year-old patient with limited mobility who presented with a peri sacral lesion that was first assumed to be a decubitus ulcer by nursing facility staff, but proved to be a cutaneous infection by Candida tropicalis, a less common Candida species. The unusual location as well as the characteristic C. tropicalis micro- and macroscopic appearance are described which ultimately led to the diagnosis of a cutaneous fungal infection in an otherwise immunocompetent individual that was resolved with fluconazole therapy. Our case report emphasizes the need for early diagnosis of cutaneous lesions in patients with limited mobility in consideration that not all Candida species thrive in similar environments and can present in unusual locations of the human body. Although rare, C. tropicalis could be found in this vulnerable population.
Collapse
Affiliation(s)
- Asley Sanchez
- School of Medicine, Texas Tech University Health Sciences Center (TTUHSC) at the Permian Basin, TX, USA
| | - Ben Lee
- School of Medicine, Texas Tech University Health Sciences Center (TTUHSC) at the Permian Basin, TX, USA
| | - Kushal Gandhi
- School of Medicine, Texas Tech University Health Sciences Center (TTUHSC) at the Permian Basin, TX, USA
| | - John Garza
- School of Medicine, Texas Tech University Health Sciences Center (TTUHSC) at the Permian Basin, TX, USA; The University of Texas Permian Basin, Odessa, TX, USA
| | - Gary Ventolini
- School of Medicine, Texas Tech University Health Sciences Center (TTUHSC) at the Permian Basin, TX, USA.
| |
Collapse
|
36
|
Andrade JC, Kumar S, Kumar A, Černáková L, Rodrigues CF. Application of probiotics in candidiasis management. Crit Rev Food Sci Nutr 2021; 62:8249-8264. [PMID: 34024191 DOI: 10.1080/10408398.2021.1926905] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Candidiasis (e.g., oral, gastrointestinal, vaginal, urinary tract, systemic) is a worldwide growing problem, since antifungal resistance and immunosuppression states are rising. To address this problem, very few drugs are available for the treatment of Candida spp. infections. Therefore, novel therapeutic strategies are urgently required. Probiotics have been proposed for the prevention and treatment of bacterial infections due to their safety record and efficacy, however, little is still known about their potential role regarding fungal infections. The purpose of this review is to present an updated summary of the evidence of the antifungal effects of probiotics along with a discussion of their potential use as an alternative/complementary therapy against Candida spp. infections. Thus, we performed a literature search using appropriate keywords ("Probiotic + Candida", "Candidiasis treatment", and "Probiotic + candidiasis") to retrieve relevant studies (both preclinical and clinical) with special emphasis on the works published in the last 5 years. An increasing amount of evidence has shown the potential usefulness of probiotics in the management of oral and vulvovaginal candidiasis in recent years. Among other results, we found that, as for bacterial infections, Lactobacillus, Bifidobacterium, and Saccharomyces are the most studied and effective genus for this purpose. However, in other areas, particularly in skincandidiaisis, studies are low or lacking. Thus, further investigation is necessary including in vitro and in vivo studies to establish the usefulness of probiotics in the management of candidiasis.
Collapse
Affiliation(s)
- José Carlos Andrade
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, Gandra PRD, Portugal
| | - Sunil Kumar
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Célia F Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Ickrath P, Sprügel L, Beyersdorf N, Scherzad A, Hagen R, Hackenberg S. Detection of Candida albicans-Specific CD4+ and CD8+ T Cells in the Blood and Nasal Mucosa of Patients with Chronic Rhinosinusitis. J Fungi (Basel) 2021; 7:jof7060403. [PMID: 34063898 PMCID: PMC8224094 DOI: 10.3390/jof7060403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is ubiquitously present, and colonization in the nose and oral cavity is common. In healthy patients, it usually does not act as a pathogen, but in some cases can cause diseases. The influence of C. albicans as a trigger of T cell activation on the pathogenesis of chronic rhinosinusitis (CRS) is controversial, and its exact role is not clear to date. The aim of the present study was to detect and characterize C. albicans-specific CD4+ and CD8+ T cells in patients with CRS, with and without nasal polyps. Tissue and blood samples were collected from patients suffering from chronic rhinosinusitis with (CRSwNP) and without nasal polyps (CRSsNP), and from healthy controls. A peptide pool derived from C. albicans antigen was added to tissue and blood samples. After 6 days, lymphocytes were analyzed by multicolor flow cytometry. Activation was assessed by the intracellular marker Ki-67, and the cytokine secretion was measured. Tissue CD8+ T cells of CRSsNP patients showed a significantly higher proportion of Ki-67+ cells after activation with C. albicans antigen compared to peripheral blood CD8+ T cells. Cytokine secretion in response to C. albicans antigen was similar for all study groups. In this study, C. albicans-specific CD4+ and CD8+ T cells were detected in peripheral blood and mucosal tissue in all study groups. In patients suffering from CRSsNP, C. albicans-specific CD8+ T cells were relatively enriched in the nasal mucosa, suggesting that they might play a role in the pathogenesis of CRSsNP.
Collapse
Affiliation(s)
- Pascal Ickrath
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (L.S.); (A.S.); (R.H.); (S.H.)
- Correspondence: ; Tel.: +49-931-201-21288; Fax: +49-931-201-21321
| | - Lisa Sprügel
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (L.S.); (A.S.); (R.H.); (S.H.)
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Wuerzburg, Germany;
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (L.S.); (A.S.); (R.H.); (S.H.)
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (L.S.); (A.S.); (R.H.); (S.H.)
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (L.S.); (A.S.); (R.H.); (S.H.)
| |
Collapse
|
38
|
Uppar V, Chandrashekharappa S, Shivamallu C, P S, Kollur SP, Ortega-Castro J, Frau J, Flores-Holguín N, Basarikatti AI, Chougala M, Mohan M M, Banuprakash G, Jayadev, Venugopala KN, Nandeshwarappa BP, Veerapur R, Al-Kheraif AA, Elgorban AM, Syed A, Mudnakudu-Nagaraju KK, Padmashali B, Glossman-Mitnik D. Investigation of Antifungal Properties of Synthetic Dimethyl-4-Bromo-1-(Substituted Benzoyl) Pyrrolo[1,2-a] Quinoline-2,3-Dicarboxylates Analogues: Molecular Docking Studies and Conceptual DFT-Based Chemical Reactivity Descriptors and Pharmacokinetics Evaluation. Molecules 2021; 26:2722. [PMID: 34066433 PMCID: PMC8124935 DOI: 10.3390/molecules26092722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, frequently colonizes immune-compromised patients and causes mild to severe systemic reactions. Only few antifungal drugs are currently in use for therapeutic treatment. However, evolution of a drug-resistant C. albicans fungal pathogen is of major concern in the treatment of patients, hence the clinical need for novel drug design and development. In this study, in vitro screening of novel putative pyrrolo[1,2-a]quinoline derivatives as the lead drug targets and in silico prediction of the binding potential of these lead molecules against C. albicans pathogenic proteins, such as secreted aspartic protease 3 (SAP3; 2H6T), surface protein β-glucanase (3N9K) and sterol 14-alpha demethylase (5TZ1), were carried out by molecular docking analyses. Further, biological activity-based QSAR and theoretical pharmacokinetic analysis were analyzed. Here, in vitro screening of novel analogue derivatives as drug targets against C. albicans showed inhibitory potential in the concentration of 0.4 µg for BQ-06, 07 and 08, 0.8 µg for BQ-01, 03, and 05, 1.6 µg for BQ-04 and 12.5 µg for BQ-02 in comparison to the standard antifungal drug fluconazole in the concentration of 30 µg. Further, in silico analysis of BQ-01, 03, 05 and 07 analogues docked on chimeric 2H6T, 3N9K and 5TZ1 revealed that these analogues show potential binding affinity, which is different from the therapeutic antifungal drug fluconazole. In addition, these molecules possess good drug-like properties based on the determination of conceptual Density Functional Theory (DFT)-based descriptors, QSAR and pharmacokinetics. Thus, the study offers significant insight into employing pyrrolo[1,2-a]quinoline analogues as novel antifungal agents against C. albicans that warrants further investigation.
Collapse
Affiliation(s)
- Vijayakumar Uppar
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi 591156, Karnataka, India; (V.U.); (A.I.B.)
| | - Sandeep Chandrashekharappa
- Institute for Stem Cell Science and Regenerative Medicine, NCBS, TIFR, GKVK-Campus Bellary road, Bengaluru 560065, Karnataka, India;
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) 226002, India;
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India; (C.S.); (M.M.M.)
| | - Sushma P
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) 226002, India;
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru 570026, Karnataka, India;
| | - Joaquín Ortega-Castro
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Malllorca, Spain; (J.O.-C.); (J.F.)
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Malllorca, Spain; (J.O.-C.); (J.F.)
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih 31136, Mexico; (N.F.-H.); (D.G.-M.)
| | - Atiyaparveen I. Basarikatti
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi 591156, Karnataka, India; (V.U.); (A.I.B.)
| | - Mallikarjun Chougala
- Department of Biotechnology, JSS College of Arts, Commerce and Science (Autonomous), Mysore 570025, Karnataka, India;
| | - Mrudula Mohan M
- Department of Biotechnology & Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India; (C.S.); (M.M.M.)
| | - Govindappa Banuprakash
- Department of Chemistry, SJB Institute of Technology, Bengaluru 560060, Kengeri, India; (G.B.); (J.)
| | - Jayadev
- Department of Chemistry, SJB Institute of Technology, Bengaluru 560060, Kengeri, India; (G.B.); (J.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Belakatte P. Nandeshwarappa
- Department of Studies in Chemistry, Shivagangothri, Davangere University, Davangere 577007, Karnataka, India;
| | - Ravindra Veerapur
- Department of Metallurgy and Materials Engineering, Malawi Institute of Technology, Malawi University of Science and Technology, P.O. Box-5916 Limbe, Malawi;
| | - Abdulaziz A. Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.E.); (A.S.)
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.E.); (A.S.)
| | - Kiran K. Mudnakudu-Nagaraju
- Department of Biotechnology & Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India; (C.S.); (M.M.M.)
| | - Basavaraj Padmashali
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi 591156, Karnataka, India; (V.U.); (A.I.B.)
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih 31136, Mexico; (N.F.-H.); (D.G.-M.)
| |
Collapse
|
39
|
Antifungal Activity of Novel Formulations Based on Terpenoid Prodrugs against C. albicans in a Mouse Model. Pharmaceutics 2021; 13:pharmaceutics13050633. [PMID: 33946740 PMCID: PMC8146751 DOI: 10.3390/pharmaceutics13050633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Carvacrol (CAR), a phenolic monoterpenoid, has been extensively investigated for its antimicrobial and antifungal activity. As a result of its poor physicochemical properties, water soluble carvacrol prodrugs (WSCPs) with improved water solubility were previously synthesized and found to possess antimicrobial activity. Here, three novel CAR analogs, WSCP1, WSCP2, and WSCP3, were tested against fluconazole (FLU)-sensitive and -resistant strains where they showed greater antifungal activity than CAR against C. albicans. The probable mechanism by which the CAR prodrugs exert the antifungal activity was studied. Results from medium acidification assays demonstrated that the CAR and its synthetically designed prodrugs inhibit the yeast plasma membrane H+-ATPase (Pma1p), an essential target in fungi. In other words, in vitro data indicated that CAR analogs can prove to be a better alternative to CAR considering their improved water solubility. In addition, CAR and WSCP1 were developed into intravaginal formulations and administered at test doses of 50 mg/kg in a mouse model of vulvovaginal candidiasis (VVC). Whereas the CAR and WSCP1 formulations both exhibited antifungal efficacy in the mouse model of VVC, the WSCP1 formulation was superior to CAR, showing a remarkable decrease in infection by ~120-fold compared to the control (infected, untreated animals). Taken together, a synthetically designed prodrug of CAR, namely WSCP1, proved to be a possible solution for poorly water-soluble drugs, an inhibitor of an essential yeast pump in vitro and an effective and promising antifungal agent in vivo.
Collapse
|
40
|
Schmitz NA, Thakare RP, Chung CS, Lee CM, Elias JA, Lee CG, LeBlanc BW. Chitotriosidase Activity Is Counterproductive in a Mouse Model of Systemic Candidiasis. Front Immunol 2021; 12:626798. [PMID: 33796101 PMCID: PMC8007879 DOI: 10.3389/fimmu.2021.626798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian cells do not produce chitin, an insoluble polymer of N-acetyl-D-glucosamine (GlcNAc), although chitin is a structural component of the cell wall of pathogenic microorganisms such as Candida albicans. Mammalian cells, including cells of the innate immune system elaborate chitinases, including chitotriosidase (Chit1), which may play a role in the anti-fungal immune response. In the current study, using knockout mice, we determined the role of Chit1 against systemic candidiasis. Chit1-deficient mice showed significant decrease in kidney fungal burden compared to mice expressing the functional enzyme. Using in vitro anti-candidal neutrophil functional assays, the introduction of the Chit1:chitin digestion end-product, chitobiose (N-acetyl-D-glucosamine dimer, GlcNAc2), decreased fungal-induced neutrophil swarming and Candida killing in vitro. Also, a role for the lectin-like binding site on the neutrophil integrin CR3 (Mac-1, CD11b/CD18) was found through physiological competitive interference by chitobiose. Furthermore, chitobiose treatment of wild type mice during systemic candidiasis resulted in the significant increase in fungal burden in the kidney. These data suggest a counterproductive role of Chit1 in mounting an efficient anti-fungal defense against systemic candidiasis.
Collapse
Affiliation(s)
- Nicholas A Schmitz
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| | - Ritesh P Thakare
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Brian W LeBlanc
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
41
|
Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, Portela RD, Tasic L. Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation. Int J Mol Sci 2021; 22:2485. [PMID: 33801230 PMCID: PMC7957900 DOI: 10.3390/ijms22052485] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been successfully applied in several areas due to their significant antimicrobial activity against several microorganisms. In dentistry, AgNP can be applied in disinfection, prophylaxis, and prevention of infections in the oral cavity. In this work, the use of silver nanoparticles in dentistry and associated technological innovations was analyzed. The scientific literature was searched using PubMed and Scopus databases with descriptors related to the use of silver nanoparticles in dentistry, resulting in 90 open-access articles. The search for patents was restricted to the A61K code (International Patent Classification), using the same descriptors, resulting in 206 patents. The results found were ordered by dental specialties and demonstrated the incorporation of AgNPs in different areas of dentistry. In this context, the search for patents reaffirmed the growth of this technology and the dominance of the USA pharmaceutical industry over AgNPs product development. It could be concluded that nanotechnology is a promising area in dentistry with several applications.
Collapse
Affiliation(s)
- Clara Couto Fernandez
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Ana Rita Sokolonski
- Laboratory of Oral Biochemistry, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (A.R.S.); (D.B.A.)
| | - Maísa Santos Fonseca
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Danijela Stanisic
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil; (D.S.); (L.T.)
| | - Danilo Barral Araújo
- Laboratory of Oral Biochemistry, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (A.R.S.); (D.B.A.)
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil;
| | - Ricardo Dias Portela
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil; (D.S.); (L.T.)
| |
Collapse
|
42
|
Rai LS, Wijlick LV, Bougnoux ME, Bachellier-Bassi S, d'Enfert C. Regulators of commensal and pathogenic life-styles of an opportunistic fungus-Candida albicans. Yeast 2021; 38:243-250. [PMID: 33533498 DOI: 10.1002/yea.3550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
The yeast Candida albicans is primarily a commensal of humans that colonizes the mucosal surfaces of the gastrointestinal and genital tracts. Yet, C. albicans can under certain circumstances undergo a shift from commensalism to pathogenicity. This transition is governed by fungal factors such as morphological transitions, environmental cues for instance relationships with gut microbiota and the host immune system. C. albicans utilizes distinct sets of regulatory programs to colonize or infect its host and to evade the host defense systems. Moreover, an orchestrated iron acquisition mechanism operates to adapt to specific niches with variable iron availability. Studies on regulatory networks and morphogenesis of these two distinct modes of C. albicans growth, suggest that both yeast and hyphal forms exist in both growth patterns and the regulatory circuits are inter-connected. Here, we summarize current knowledge about C. albicans commensal-to-pathogen shift, its regulatory elements and their contribution to human disease.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| | - Lasse Van Wijlick
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France.,Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | | | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| |
Collapse
|
43
|
Loss of Arp1, a putative actin-related protein, triggers filamentous and invasive growth and impairs pathogenicity in Candida albicans. Comput Struct Biotechnol J 2020; 18:4002-4015. [PMID: 33363697 PMCID: PMC7744652 DOI: 10.1016/j.csbj.2020.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/27/2022] Open
Abstract
The polymorphous cellular shape of Candida albicans, in particular the transition from a yeast to a filamentous form, is crucial for either commensalism or life-threatening infections of the host. Various external or internal stimuli, including serum and nutrition starvation, have been shown to regulate filamentous growth primarily through two classical signaling pathways, the cAMP-PKA and the MAPK pathways. Genotoxic stress also induces filamentous growth, but through independent pathways, and little is known about negative regulation during this reversible morphological transition. In this study, we established that ARP1 in C. albicans, similar to its homolog in S. cerevisiae, has a role in nuclei separation and spindle orientation. Deletion of ARP1 generated filamentous and invasive growth as well as increased biofilm formation, accompanied by up-regulation of hyphae specific genes, such as HWP1, UME6 and ALS3. The filamentous and invasive growth of the ARP1 deletion strain was independent of transcription factors Efg1, Cph1 and Ume6, but was suppressed by deleting checkpoint BUB2 or overexpressing NRG1. Deletion of ARP1 impaired the colonization of Candida cells in mice and also attenuated virulence in a mouse model. All the data suggest that loss of ARP1 activates filamentous and invasive growth in vitro, and that it positively regulates virulence in vivo, which provides insight into actin-related morphology and pathogenicity in C. albicans.
Collapse
|
44
|
Sun L, Liao K. The Effect of Honokiol on Ergosterol Biosynthesis and Vacuole Function in Candida albicans. J Microbiol Biotechnol 2020; 30:1835-1842. [PMID: 33263334 PMCID: PMC9728367 DOI: 10.4014/jmb.2008.08019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.
Collapse
Affiliation(s)
- Lingmei Sun
- Department of Pharmacology, Medical School of Southeast University, Nanjing 20009, P.R. China,Corresponding authors L.Sun Phone: +86-25-83272525 E-mail:
| | - Kai Liao
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing 10009, P.R. China,K.Liao E-mail:
| |
Collapse
|
45
|
Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels. ISME JOURNAL 2020; 15:1257-1270. [PMID: 33323978 PMCID: PMC8115155 DOI: 10.1038/s41396-020-00848-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Candida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate bacterial-fungal metabolic interactions in the gut as determinants of fungal abundance. We optimized the predictive capacity of our model using wild type and mutant C. albicans growth data and used it for in silico metabolic interaction predictions. Our analysis of more than 900 paired fungal–bacterial metabolic models predicted key gut bacterial species modulating C. albicans colonization levels. Among the studied microbes, Alistipes putredinis was predicted to negatively affect C. albicans levels. We confirmed these findings by metagenomic sequencing of stool samples from 24 human subjects and by fungal growth experiments in bacterial spent media. Furthermore, our pairwise simulations guided us to specific metabolites with promoting or inhibitory effect to the fungus when exposed in defined media under carbon and nitrogen limitation. Our study demonstrates that in silico metabolic prediction can lead to the identification of gut microbiome features that can significantly affect potentially harmful levels of C. albicans. Genome-scale model reconstruction of C. albicans with 89% growth accuracy. Mutualism and parasitism are the most common predicted C. albicans-gut bacteria interactions. Metagenomic sequencing and in vitro assays reveal modulators of fungal growth. Alistipes putredinis potentially prevents elevated C. albicans levels.
Collapse
|
46
|
Aquaresta F, Kawilarang AP, Endraswari PD. Gastric Perforation Associated with Candidiasis and NSAIDS. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2020. [DOI: 10.20473/ijtid.v8i3.16084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Invasive candidiasis is an important health-care-associated fungal infection. Candida is often described as an opportunistic pathogen. It is commensal flora in the gastrointestinal tract. Invasive candidiasis can happen usually because of a consequence of increased or abnormal colonization together with a local or generalized defect in host defenses. Candidiasis can occur in patients with HIV, therapy with a broad-spectrum antibiotic, transplant organ, and immunocompromised. Most cases of gastric perforation occur as complications of Peptic Ulcer Disease (PUD), Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) and gastric neoplasms, but candidiasis as a cause of gastric perforation is very rare. This study aims to reveal the correlation between gastric perforation with candidiasis and NSAIDs. It was reported that a 57-year-old East Java Indonesian female presented with severe epigastric pain, generalized peritonitis, fever, nausea also vomiting and had a history of NSAIDs used for five years. The patient was taken to the general surgery of Dr. Sutomo Surabaya Hospital and performed exploratory laparotomy. A gastric perforation was discovered in the antrum. Microbiology culture examination from biopsy gastric tissue revealed an intense fungal growth from sabouraudagar medium and there is no other microorganism that grew in aerobic culture. Candida albicans was identified by VITEK® 2 COMPACT. Histopathological examination from biopsy gastric tissue was performed by Olympus CX-21 microscope, showed invasive Candida albicans consisting of numerous fungal yeasts and pseudohyphae invading and destroying the gastric wall. The patient was subsequently treated with fluconazole anti-fungal and discharge home after nine days postoperative period in good condition. From this result, we suggest using an antifungal treatment for patients who use NSAIDs for long periods to prevent candidiasis.
Collapse
|
47
|
Lenardon MD, Sood P, Dorfmueller HC, Brown AJ, Gow NA. Scalar nanostructure of the Candida albicans cell wall; a molecular, cellular and ultrastructural analysis and interpretation. Cell Surf 2020; 6:100047. [PMID: 33294751 PMCID: PMC7691183 DOI: 10.1016/j.tcsw.2020.100047] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the importance of fungal cell walls as the principle determinant of fungal morphology and the defining element determining fungal interactions with other cells, few scalar models have been developed that reconcile chemical and microscopic attributes of its structure. The cell wall of the fungal pathogen Candida albicans is comprised of an amorphous inner skeletal layer of β(1,3)- and β(1,6)-glucan and chitin and an outer fibrillar layer thought to be dominated by highly mannosylated cell wall proteins. The architecture of these two layers can be resolved at the electron microscopy level, but the visualised structure of the wall has not yet been defined precisely in chemical terms. We have therefore examined the precise structure, location and molecular sizes of the cell wall components using transmission electron microscopy and tomography and tested predictions of the cell wall models using mutants and agents that perturb the normal cell wall structure. We demonstrate that the fibrils are comprised of a frond of N-linked outer chain mannans linked to a basal layer of GPI-proteins concentrated in the mid-wall region and that the non-elastic chitin microfibrils are cantilevered with sufficient lengths of non-fibrillar chitin and/or β-glucan to enable the chitin-glucan cage to flex, e.g. during morphogenesis and osmotic swelling. We present the first three-dimensional nano-scalar model of the C. albicans cell wall which can be used to test hypotheses relating to the structure-function relationships that underpin the pathobiology of this fungal pathogen.
Collapse
Key Words
- 2D, two dimensions
- 2°, secondary
- 3D, three dimensions
- 3°, tertiary
- 6xHis, hexahistidine tag
- AFM, atomic force microscopy
- BSA, bovine serum albumin
- CWPs, cell wall proteins
- Cell wall proteins
- ChBD, chitin binding domain
- Chitin
- EndoH, endoglycosidase H
- Fc-dectin-1, soluble chimeric form of dectin-1
- Fungal cell wall ultrastructure
- GPI, glycosylphosphatidylinositol
- HPF/FS, high pressure freezing/freeze substitution
- HuCκ, human kappa light chain
- N-mannan
- NMR, nuclear magnetic resonance
- OD600, optical density at 600 nm
- PAMPs, pathogen associated molecular patterns
- PBS, phosphate buffered saline
- PRRs, pattern recognition receptors
- SEM, scanning electron microscopy
- TEM, transmission electron microscopy
- WGA, wheat germ agglutinin
- rpm, revolutions per minute
- scAb, single chain antibody
- β-glucan
Collapse
Affiliation(s)
- Megan D. Lenardon
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Prashant Sood
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Helge C. Dorfmueller
- Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Alistair J.P. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Neil A.R. Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
48
|
Costa CP, Bezerra AR, Almeida A, Rocha SM. Candida Species (Volatile) Metabotyping through Advanced Comprehensive Two-Dimensional Gas Chromatography. Microorganisms 2020; 8:E1911. [PMID: 33266330 PMCID: PMC7760324 DOI: 10.3390/microorganisms8121911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023] Open
Abstract
Microbial metabolomics is a challenge strategy that allows a comprehensive analysis of metabolites within a microorganism and may support a new approach in microbial research, including the microbial diagnosis. Thus, the aim of this research was to in-depth explore a metabolomics strategy based on the use of an advanced multidimensional gas chromatography for the comprehensive mapping of cellular metabolites of C. albicans and non-C. albicans (C. glabrata and C. tropicalis) and therefore contributing for the development of a comprehensive platform for fungal detection management and for species distinction in early growth times (6 h). The volatile fraction comprises 126 putatively identified metabolites distributed over several chemical families: acids, alcohols, aldehydes, hydrocarbons, esters, ketones, monoterpenic and sesquiterpenic compounds, norisoprenoids, phenols and sulphur compounds. These metabolites may be related with different metabolic pathways, such as amino acid metabolism and biosynthesis, fatty acids metabolism, aromatic compounds degradation, mono and sesquiterpenoid synthesis and carotenoid cleavage. These results represent an enlargement of ca. 70% of metabolites not previously reported for C. albicans, 91% for C. glabrata and 90% for C. tropicalis. This study represents the most detailed study about Candida species exometabolome, allowing a metabolomic signature of each species, which signifies an improvement towards the construction of a Candida metabolomics platform whose application in clinical diagnostics can be crucial to guide therapeutic interventions.
Collapse
Affiliation(s)
- Carina Pedrosa Costa
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal;
| | - Ana Rita Bezerra
- Health Sciences Department, Institute for Biomedicine—iBiMED, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal;
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Sílvia M. Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
49
|
Jenull S, Tscherner M, Mair T, Kuchler K. ATAC-Seq Identifies Chromatin Landscapes Linked to the Regulation of Oxidative Stress in the Human Fungal Pathogen Candida albicans. J Fungi (Basel) 2020; 6:E182. [PMID: 32967096 PMCID: PMC7559329 DOI: 10.3390/jof6030182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human fungal pathogens often encounter fungicidal stress upon host invasion, but they can swiftly adapt by transcriptional reprogramming that enables pathogen survival. Fungal immune evasion is tightly connected to chromatin regulation. Hence, fungal chromatin modifiers pose alternative treatment options to combat fungal infections. Here, we present an assay for transposase-accessible chromatin using sequencing (ATAC-seq) protocol adapted for the opportunistic pathogen Candida albicans to gain further insight into the interplay of chromatin accessibility and gene expression mounted during fungal adaptation to oxidative stress. The ATAC-seq workflow not only facilitates the robust detection of genomic regions with accessible chromatin but also allows for the precise modeling of nucleosome positions in C. albicans. Importantly, the data reveal genes with altered chromatin accessibility in upstream regulatory regions, which correlate with transcriptional regulation during oxidative stress. Interestingly, many genes show increased chromatin accessibility without change in gene expression upon stress exposure. Such chromatin signatures could predict yet unknown regulatory factors under highly dynamic transcriptional control. Additionally, de novo motif analysis in genomic regions with increased chromatin accessibility upon H2O2 treatment shows significant enrichment for Cap1 binding sites, a major factor of oxidative stress responses in C. albicans. Taken together, the ATAC-seq workflow enables the identification of chromatin signatures and highlights the dynamics of regulatory mechanisms mediating environmental adaptation of C. albicans.
Collapse
Affiliation(s)
| | | | | | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria; (S.J.); (M.T.); (T.M.)
| |
Collapse
|
50
|
Yuan-Biao Q, Lan-Fang Z, Qi Q, Jia-Hui N, Ze-Mei R, Hai-Mei Y, Chen-Chen Z, Hong-Ju P, Nan-Nan D, Qing-Shan L. Antifungal resistance-modifying multiplexing action of Momordica charantia protein and phosphorylated derivatives on the basis of growth-dependent gene coregulation in Candida albicans. Med Mycol 2020; 59:myaa070. [PMID: 32871589 DOI: 10.1093/mmy/myaa070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023] Open
Abstract
Fungal growth-dependent gene coregulation is strongly implicated in alteration of gene-encoding target proteases ruling with an antifungal resistance niche and biology of resistant mutants. On the basis of multi-alterative processes in this platform, the resistance-modifying strategy is designed in ketoconazole resistant Candida albicans and evaluated with less selective Momordica charantia protein and allosterically phosphorylated derivatives at the Thr102, Thr24 and Thr255 sites, respectively. We demonstrate absolutely chemo-sensitizing efficacy regarding stepwise-modifying resistance in sensitivity, by a load of only 26.23-40.00 μg/l agents in Sabouraud's dextrose broth. Five successive modifying-steps realize the decreasing of ketoconazole E-test MIC50 from 11.10 to a lower level than 0.10 mg/l. With the ketoconazole resistance-modifying, colony undergoes a high-frequency morphological switch between high ploidy (opaque) and small budding haploid (white). A cellular event in the first modifying-step associates with relatively slow exponential growth (ie, a 4-h delay)-dependent action, mediated by agents adsorption. Moreover, multiple molecular roles are coupled with intracellularly and extracellularly binding to ATP-dependent RNA helicase dbp6; the 0.08-2.45 fold upregulation of TATA-box-binding protein, rRNA-processing protein and translation initiation factor 5A; and the 7.52-55.33% decrease of cytochrome P450 lanosterol 14α-demethylase, glucan 1, 3-β glucosidase, candidapepsin-1 and 1-acylglycerol-3-phosphate O-acyltransferase. Spatial and temporal gene coregulation, in the transcription and translation initiation stages with rRNA-processing, is a new coprocessing platform enabling target protease attenuations for resistance-impairing. An updated resistance-modifying measure of these agents in the low-dose antifungal strategic design may provide opportunities to a virtually safe therapy that is in high dose-dependency. LAY SUMMARY A new platform to modify resistance is fungal growth-dependent gene coregulation. MAP30 and phosphorylated derivatives are candidate resistance-modifying agents. Low-dose stepwise treatment absolutely modifies azole resistance in model fungus.
Collapse
Affiliation(s)
- Qiao Yuan-Biao
- Shanxi Key Laboratory of Innovative Drugs for the Treatment of Serious Diseases Basing on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, P. R. China
- Graduate Institute of Pharmaceutical Chemistry, Luliang University, Luliang, Shanxi 033001, P. R. China
| | - Zhang Lan-Fang
- Shanxi Key Laboratory of Innovative Drugs for the Treatment of Serious Diseases Basing on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, P. R. China
| | - Qiao Qi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Husargatan 3, Box 582, SE-751 23 Uppsala, Sweden
| | - Niu Jia-Hui
- Graduate Institute of Pharmaceutical Chemistry, Luliang University, Luliang, Shanxi 033001, P. R. China
| | - Ren Ze-Mei
- Graduate Institute of Pharmaceutical Chemistry, Luliang University, Luliang, Shanxi 033001, P. R. China
| | - Yang Hai-Mei
- Graduate Institute of Pharmaceutical Chemistry, Luliang University, Luliang, Shanxi 033001, P. R. China
| | - Zhu Chen-Chen
- Graduate Institute of Pharmaceutical Chemistry, Luliang University, Luliang, Shanxi 033001, P. R. China
| | - Pan Hong-Ju
- Graduate Institute of Pharmaceutical Chemistry, Luliang University, Luliang, Shanxi 033001, P. R. China
| | - Duan Nan-Nan
- Graduate Institute of Pharmaceutical Chemistry, Luliang University, Luliang, Shanxi 033001, P. R. China
| | - Li Qing-Shan
- Shanxi Key Laboratory of Innovative Drugs for the Treatment of Serious Diseases Basing on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, P. R. China
| |
Collapse
|