1
|
Therapeutic and Metagenomic Potential of the Biomolecular Therapies against Periodontitis and the Oral Microbiome: Current Evidence and Future Perspectives. Int J Mol Sci 2022; 23:ijms232213708. [PMID: 36430182 PMCID: PMC9693164 DOI: 10.3390/ijms232213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The principles of periodontal therapy are based on the control of microbial pathogens and host factors that contribute to biofilm dysbiosis, with the aim of modulating the progression of periodontitis and periodontal tissue destruction. It is currently known how differently each individual responds to periodontal treatment, depending on both the bacterial subtypes that make up the dysbiotic biofilm and interindividual variations in the host inflammatory response. This has allowed the current variety of approaches for the management of periodontitis to be updated by defining the goals of target strategies, which consist of reducing the periodontopathogenic microbial flora and/or modulating the host-mediated response. Therefore, this review aims to update the current variety of approaches for the management of periodontitis based on recent target therapies. Recently, encouraging results have been obtained from several studies exploring the effects of some targeted therapies in the medium- and long-term. Among the most promising target therapies analyzed and explored in this review include: cell-based periodontal regeneration, mediators against bone resorption, emdogain (EMD), platelet-rich plasma, and growth factors. The reviewed evidence supports the hypothesis that the therapeutic combination of epigenetic modifications of periodontal tissues, interacting with the dysbiotic biofilm, is a key step in significantly reducing the development and progression of disease in periodontal patients and improving the therapeutic response of periodontal patients. However, although studies indicate promising results, these need to be further expanded and studied to truly realize the benefits that targeted therapies could bring in the treatment of periodontitis.
Collapse
|
2
|
Jeon SJ, Lee Y, Keum BR, Choi EY, Choi IS, Kim SJ. Effect of telmisartan on experimental model of periodontitis in mice. Oral Dis 2022. [PMID: 35347812 DOI: 10.1111/odi.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Affiliation(s)
- So Jung Jeon
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do, Korea
| | - Yohan Lee
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do, Korea
| | - Bo Ram Keum
- Department of Biological Science, College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Eun-Young Choi
- Department of Biological Science, College of Medical and Life Sciences, Silla University, Busan, Korea
| | - In Soon Choi
- Department of Biological Science, College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Sung-Jo Kim
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do, Korea.,Dental and Life Science Institute, Pusan National University, Yangsan, Gyeongsangnam-do, Korea.,Department of Dentistry, BHS Hanseo Hospital, Busan, Korea
| |
Collapse
|
3
|
Bekić M, Radanović M, Đokić J, Tomić S, Eraković M, Radojević D, Duka M, Marković D, Marković M, Ismaili B, Bokonjić D, Čolić M. Mesenchymal Stromal Cells from Healthy and Inflamed Human Gingiva Respond Differently to Porphyromonas gingivalis. Int J Mol Sci 2022; 23:ijms23073510. [PMID: 35408871 PMCID: PMC8998418 DOI: 10.3390/ijms23073510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/09/2023] Open
Abstract
Gingiva-Derived Mesenchymal Stromal Cells (GMSCs) have been shown to play an important role in periodontitis. However, how P. gingivalis, one of the key etiological agents of the disease, affects healthy (H)- and periodontitis (P)-GMSCs is unknown. To address this problem, we established 10 H-GMSC and 12 P-GMSC lines. No significant differences in morphology, differentiation into chondroblasts and adipocytes, expression of characteristic MSCS markers, including pericyte antigens NG2 and PDGFR, were observed between H- and P-GMSC lines. However, proliferation, cell size and osteogenic potential were higher in P-GMSCs, in contrast to their lower ability to suppress mononuclear cell proliferation. P. gingivalis up-regulated the mRNA expression of IL-6, IL-8, MCP-1, GRO-α, RANTES, TLR-2, HIF-1α, OPG, MMP-3, SDF-1, HGF and IP-10 in P-GMSCs, whereas only IL-6, MCP-1 and GRO-α were up-regulated in H-GMSCs. The expression of MCP-1, RANTES, IP-10 and HGF was significantly higher in P-GMSCs compared to H-GMSCs, but IDO1 was lower. No significant changes in the expression of TLR-3, TLR-4, TGF-β, LAP, IGFBP4 and TIMP-1 were observed in both types of GMSCs. In conclusion, our results suggest that P-GMSCs retain their pro-inflammatory properties in culture, exhibit lower immunosuppressive potential than their healthy counterparts, and impaired regeneration-associated gene induction in culture. All these functions are potentiated significantly by P. gingivalis treatment.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
| | - Marina Radanović
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (M.R.); (D.B.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (J.Đ.); (D.R.)
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
| | - Mile Eraković
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia; (M.E.); (M.D.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (J.Đ.); (D.R.)
| | - Miloš Duka
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia; (M.E.); (M.D.)
| | - Dejan Marković
- Faculty of Dental Medicine, University of Belgrade, 11118 Belgrade, Serbia;
| | - Milan Marković
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
| | - Bashkim Ismaili
- Faculty of Dental Medicine, International Balkan University, 1000 Skopje, North Macedonia;
| | - Dejan Bokonjić
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (M.R.); (D.B.)
| | - Miodrag Čolić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (M.R.); (D.B.)
- Correspondence: ; Tel.: +381-11-2619525
| |
Collapse
|
4
|
Bostanci N, Abe T, Belibasakis GN, Hajishengallis G. TREM-1 Is Upregulated in Experimental Periodontitis, and Its Blockade Inhibits IL-17A and RANKL Expression and Suppresses Bone loss. J Clin Med 2019; 8:jcm8101579. [PMID: 31581596 PMCID: PMC6832657 DOI: 10.3390/jcm8101579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Aim: Triggering receptor expressed on myeloid cells-1 (TREM-1) is a modifier of local and systemic inflammation. There is clinical evidence implicating TREM-1 in the pathogenesis of periodontitis. However, a cause-and-effect relationship has yet to be demonstrated, as is the underlying mechanism. The aim of this study was to elucidate the role of TREM-1 using the murine ligature-induced periodontitis model. Methods: A synthetic antagonistic LP17 peptide or sham control was microinjected locally into the palatal gingiva of the ligated molar teeth. Results: Mice treated with the LP17 inhibitor developed significantly less bone loss as compared to sham-treated mice, although there were no differences in total bacterial load on the ligatures. To elucidate the impact of LP17 on the host response, we analyzed the expression of a number of immune-modulating genes. The LP17 peptide altered the expression of 27/92 genes ≥ two-fold, but only interleukin (IL)-17A was significantly downregulated (4.9-fold). Importantly, LP17 also significantly downregulated the receptor activator of nuclear factor kappa-B-ligand (RANKL) to osteoprotegerin (OPG) ratio that drives osteoclastic bone resorption in periodontitis. Conclusion: Our findings show for the first time that TREM-1 regulates the IL-17A-RANKL/OPG axis and bone loss in experimental periodontitis, and its therapeutic blockade may pave the way to a novel treatment for human periodontitis.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden.
- Center of Dental Medicine, University of Zürich, 8032 Zürich, Switzerland.
| | - Toshiharu Abe
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden.
- Center of Dental Medicine, University of Zürich, 8032 Zürich, Switzerland.
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Mizraji G, Heyman O, Van Dyke TE, Wilensky A. Resolvin D2 Restrains Th1 Immunity and Prevents Alveolar Bone Loss in Murine Periodontitis. Front Immunol 2018; 9:785. [PMID: 29922275 PMCID: PMC5996935 DOI: 10.3389/fimmu.2018.00785] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
Abstract
Periodontitis is an infectious inflammatory disease of the supporting structures of the teeth. Resolvins are part of a large family of specialized pro-resolving lipid mediators that enhance active resolution of inflammation and return of inflammatory lesions to homeostasis. In this paper, we demonstrate that resolvin D2 (RvD2), a product of docosahexaenoic acid (DHA) metabolism, prevents alveolar bone loss in Porphyromonas gingivalis-induced experimental periodontitis. Investigations of the immune mechanism of RvD2 actions reveal that 6 weeks after infection, the gingiva of RvD2-treated mice exhibit decreased CD4+ T-cells as well as lower RANKL expression levels and higher osteoprotegerin expression levels. Systemically, RvD2 prevents chronic secretion of IFN-γ and rapidly restores IFN-α levels, without dampening the P. gingivalis-specific immune response. In the gingiva, immediately after P. gingivalis inoculation, RvD2 regulates the mRNA expression of IFN-γ, IL-1β, TNF-α, and IL-10, hence contributing to maintaining local homeostasis. Moreover, RvD2 treatment reduces local neutrophil numbers, whereas pro-resolving macrophage counts were increased. These findings suggest that RvD2 resolves innate inflammatory responses, inhibiting systemic and gingival Th1-type adaptive responses that are known to mediate alveolar bone loss in this model.
Collapse
Affiliation(s)
- Gabriel Mizraji
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University of Jerusalem - Hadassah Medical Center, Jerusalem, Israel.,Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem - Hadassah Medical Center, Jerusalem, Israel
| | - Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University of Jerusalem - Hadassah Medical Center, Jerusalem, Israel
| | | | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University of Jerusalem - Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
6
|
Ambili R, Janam P, Saneesh Babu PS, Prasad M, Vinod D, Anil Kumar PR, Kumary TV, Asha Nair S. Differential expression of transcription factors NF-κB and STAT3 in periodontal ligament fibroblasts and gingiva of healthy and diseased individuals. Arch Oral Biol 2017; 82:19-26. [PMID: 28578028 DOI: 10.1016/j.archoralbio.2017.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Pathogens and host mediators can activate transcription factors in periodontal cells to bring about gene level alterations, thereby accentuating the periodontal disease process. Nuclear factor-kappa B (NF-κB) and signal transducers and activators of transcription 3 (STAT3) are two pivotal transcription factors implicated in chronic inflammatory diseases. But their importance in periodontal pathogenesis has not been investigated in detail. The aim of the present study was to evaluate the expression of activated transcription factors and their target genes in healthy and diseased periodontium. DESIGN Primary culture of periodontal ligament fibroblasts (PDLF) were established from healthy and diseased periodontium using explant culture methods. NF-κB and STAT3 activation in these cells by Porphyromonas gingivalis LPS (lipopolysaccharide) was demonstrated using confocal microscopy and mRNA expression of target genes were evaluated by quantitative real time PCR. NF-κB and STAT3 expression in diseased and healthy gingival tissues were analyzed using immunohistochemistry. RESULTS A basal upregulation of transcription factors and their target genes were noted in diseased PDLF compared to healthy ones. LPS challenge induced differential expression of NF-κB and STAT3 and their target genes in diseased PDLF compared to healthy ones. Immunohistochemical analysis revealed significant activation of transcription factors in diseased gingival tissues. CONCLUSION The findings of the present study reveal the role of transcription factors NF-κB and STAT3 in periodontal pathogenesis and disease susceptibility of fibroblast subpopulations in periodontal disease could be mediated through activation of NF-κB and STAT3. Since genetic factors are nonmodifyable, transcription factors are promising targets for future host modulation therapy.
Collapse
Affiliation(s)
- R Ambili
- PMS College of Dental Sciences and Research, Thiruvananthapuram, Kerala 695028 India.
| | - Presanthila Janam
- Government Dental College, Thiruvananthapuram, Kerala 695011, India; PMS College of Dental Sciences and Research, Thiruvananthapuram, Kerala 695028 India
| | - P S Saneesh Babu
- Rajiv Gandhi Centre for Biotechnology (RGCB), Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Manu Prasad
- Rajiv Gandhi Centre for Biotechnology (RGCB), Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - D Vinod
- Tissue Culture Laboratory, Sree Chitra Thirunal Institute for Medical Sciences And Technology (SCTIMST), Biomedical Technology Wing, Poojappura, Thiruvananthapuram 695012, India
| | - P R Anil Kumar
- Tissue Culture Laboratory, Sree Chitra Thirunal Institute for Medical Sciences And Technology (SCTIMST), Biomedical Technology Wing, Poojappura, Thiruvananthapuram 695012, India
| | - T V Kumary
- Tissue Culture Laboratory, Sree Chitra Thirunal Institute for Medical Sciences And Technology (SCTIMST), Biomedical Technology Wing, Poojappura, Thiruvananthapuram 695012, India
| | - S Asha Nair
- Rajiv Gandhi Centre for Biotechnology (RGCB), Poojappura, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
7
|
Pan C, Liu J, Wang H, Song J, Tan L, Zhao H. Porphyromonas gingivalis can invade periodontal ligament stem cells. BMC Microbiol 2017; 17:38. [PMID: 28212613 PMCID: PMC5316216 DOI: 10.1186/s12866-017-0950-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
Background Porphyromonas gingivalis is strongly associated with the development, progression, severity and recurrence of periodontitis. Periodontal ligament stem cells (PDLSCs) play an important role in the maintenance of periodontal tissue self-renewal and repair. The purpose of this study was to investigate the ability of P. gingivalis to infect PDLSCs using an in vitro monolayer model. Methods We separated and cultured primary PDLSCs using the tissue block with limiting dilution method. The efficiency of P. gingivalis (ATCC 33277) infection of PDLSCs was measured using agar plate culture and quantitative polymerase chain reaction (q-PCR) methods. PDLSCs infected with P. gingivalis were also observed by transmission electron microscopy. Results We assessed stem cell properties including cell morphology, clone formation, growth activity, cell surface antigens and multiple differentiation capacity. The infection rates of P. gingivalis in PDLSC at MOIs of 50, 100, 200, and 500 were 5.83%, 8.12%, 7.77% and 7.53% according to the agar plate culture method. By q-PCR, the efficiencies of P. gingivalis infection of PDLSCs at MOIs of 50, 100, 200, and 500 were 6.74%, 10.56%, 10.36% and 9.78%, respectively. Overall, the infection efficiency based on q-PCR was higher than that according to agar plate culture. Using transmission electron microscopy, we verified that P. gingivalis (ATCC 33277) could infect and invade PDLSCs after 2 h of incubation, and endocytic vacuoles were not found surrounding the internalized bacteria. Conclusions In conclusion, our data demonstrate that P. gingivalis can invade PDLSCs. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0950-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunling Pan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, 110002, China.
| | - Junchao Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, 110002, China
| | - Hongyan Wang
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, 110002, China
| | - Jia Song
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, 110002, China
| | - Lisi Tan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, 110002, China
| | - Haijiao Zhao
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, 110002, China
| |
Collapse
|
8
|
Bostanci N, Bao K, Wahlander A, Grossmann J, Thurnheer T, Belibasakis GN. Secretome of gingival epithelium in response to subgingival biofilms. Mol Oral Microbiol 2015; 30:323-35. [PMID: 25787257 DOI: 10.1111/omi.12096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2015] [Indexed: 12/29/2022]
Abstract
Periodontitis is the chronic inflammatory destruction of periodontal tissues as a result of bacterial biofilm formation on the tooth surface. Proteins secreted by the gingival epithelium challenged by subgingival biofilms represent an important initial response for periodontal inflammation. The aim of this in vitro study was to characterize the whole secreted proteome of gingival epithelial tissue challenged by subgingival biofilms, and to evaluate the differential effects of the presence of the red-complex species in the biofilm. Multi-layered human gingival epithelial cultures were challenged with a 10-species in vitro biofilm model or its seven-species variant excluding the red complex. Liquid chromatography-tandem mass spectrometry for label-free quantitative proteomics was applied to identify and quantify the secreted epithelial proteins in the culture supernatant. A total of 192 proteins were identified and quantified. The biofilm challenge resulted in more secreted proteins being downregulated than upregulated. Even so, presence of the red complex in the biofilm was responsible for much of this downregulatory effect. Over 24 h, the upregulated biological processes were associated with inflammation and apoptosis, whereas the downregulated processes were associated with the disruption of epithelial tissue integrity and impairment of tissue turnover. Over 48 h, negative regulation of several metabolic processes and degradation of various molecular complexes was further intensified. Again, many of these biological regulations were attributed to the presence of the red complex. In conclusion, the present study provides the secreted proteome profile of gingival epithelial tissue to subgingival biofilms, and identifies a significant role for the red-complex species in the observed effects.
Collapse
Affiliation(s)
- N Bostanci
- Oral Translational Research, Center of Dental Medicine, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - K Bao
- Oral Translational Research, Center of Dental Medicine, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - A Wahlander
- Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland
| | - J Grossmann
- Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland
| | - T Thurnheer
- Oral Microbiology and Immunology, Center of Dental Medicine, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - G N Belibasakis
- Oral Microbiology and Immunology, Center of Dental Medicine, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Bao K, Papadimitropoulos A, Akgül B, Belibasakis GN, Bostanci N. Establishment of an oral infection model resembling the periodontal pocket in a perfusion bioreactor system. Virulence 2015; 6:265-73. [PMID: 25587671 PMCID: PMC4601317 DOI: 10.4161/21505594.2014.978721] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periodontal infection involves a complex interplay between oral biofilms, gingival tissues and cells of the immune system in a dynamic microenvironment. A humanized in vitro model that reduces the need for experimental animal models, while recapitulating key biological events in a periodontal pocket, would constitute a technical advancement in the study of periodontal disease. The aim of this study was to use a dynamic perfusion bioreactor in order to develop a gingival epithelial-fibroblast-monocyte organotypic co-culture on collagen sponges. An 11 species subgingival biofilm was used to challenge the generated tissue in the bioreactor for a period of 24 h. The histological and scanning electron microscopy analysis displayed an epithelial-like layer on the surface of the collagen sponge, supported by the underlying ingrowth of gingival fibroblasts, while monocytic cells were also found within the sponge mass. Bacterial quantification of the biofilm showed that in the presence of the organotypic tissue, the growth of selected biofilm species, especially Campylobacter rectus, Actinomyces oris, Streptococcus anginosus, Veillonella dispar, and Porphyromonas gingivalis, was suppressed, indicating a potential antimicrobial effect by the tissue. Multiplex immunoassay analysis of cytokine secretion showed that interleukin (IL)-1 β, IL-2, IL-4, and tumor necrosis factor (TNF)-α levels in cell culture supernatants were significantly up-regulated in presence of the biofilm, indicating a positive inflammatory response of the organotypic tissue to the biofilm challenge. In conclusion, this novel host-biofilm interaction organotypic model might resemble the periodontal pocket and have an important impact on the study of periodontal infections, by minimizing the need for the use of experimental animal models.
Collapse
Affiliation(s)
- Kai Bao
- a Oral Translational Research; Institute of Oral Biology; Center of Dental Medicine; University of Zürich ; Zürich , Switzerland
| | | | | | | | | |
Collapse
|
10
|
Osteoporosis: From osteoscience to neuroscience and beyond. Mech Ageing Dev 2015; 145:26-38. [DOI: 10.1016/j.mad.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/17/2022]
|
11
|
Yu X, Lin J, Yu Q, Kawai T, Taubman MA, Han X. Activation of Toll‐like receptor 9 inhibits lipopolysaccharide‐induced receptor activator of nuclear factor kappa‐ B ligand expression in rat B lymphocytes. Microbiol Immunol 2014; 58:51-60. [PMID: 24661200 DOI: 10.1111/1348-0421.12129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B lymphocytes express multiple TLRs that regulate their cytokine production.We investigated the effect of TLR4 and TLR9 activation on receptor activator of NF‐kB ligand (RANKL) expression by rat spleen B cells. Splenocytes or purified spleen B cells from Rowett rats were cultured with TLR4 ligand Escherichia coli LPS and/or TLR9 ligand CpG‐oligodeoxynucleotide (CpG‐ODN) for 2 days. RANKL mRNA expression and the percentage of RANKL‐positive B cells were increased in rat splenocytes challenged by E. coli LPS alone. The increases were less pronounced when cells were treated with both CpG‐ODN and E. coli LPS. Microarray analysis showed that expressions of multiple cyclin‐dependent kinase (CDK) pathway‐related genes were up‐regulated only in cells treated with both E. coli LPS and CpG-ODN. This study suggests that CpG‐ODN inhibits LPS‐induced RANKL expression in rat B cells via regulation of the CDK pathway.
Collapse
|
12
|
Bao K, Belibasakis GN, Thurnheer T, Aduse-Opoku J, Curtis MA, Bostanci N. Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation. BMC Microbiol 2014; 14:258. [PMID: 25270662 PMCID: PMC4189655 DOI: 10.1186/s12866-014-0258-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/26/2014] [Indexed: 01/12/2023] Open
Abstract
Background Periodontal diseases are polymicrobial diseases that cause the inflammatory destruction of the tooth-supporting (periodontal) tissues. Their initiation is attributed to the formation of subgingival biofilms that stimulate a cascade of chronic inflammatory reactions by the affected tissue. The Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola are commonly found as part of the microbiota of subgingival biofilms, and they are associated with the occurrence and severity of the disease. P. gingivalis expresses several virulence factors that may support its survival, regulate its communication with other species in the biofilm, or modulate the inflammatory response of the colonized host tissue. The most prominent of these virulence factors are the gingipains, which are a set of cysteine proteinases (either Arg-specific or Lys-specific). The role of gingipains in the biofilm-forming capacity of P. gingivalis is barely investigated. Hence, this in vitro study employed a biofilm model consisting of 10 “subgingival” bacterial species, incorporating either a wild-type P. gingivalis strain or its derivative Lys-gingipain and Arg-gingipan isogenic mutants, in order to evaluate quantitative and qualitative changes in biofilm composition. Results Following 64 h of biofilm growth, the levels of all 10 species were quantified by fluorescence in situ hybridization or immunofluorescence. The wild-type and the two gingipain-deficient P. gingivalis strains exhibited similar growth in their corresponding biofilms. Among the remaining nine species, only the numbers of T. forsythia were significantly reduced, and only when the Lys-gingipain mutant was present in the biofilm. When evaluating the structure of the biofilm by confocal laser scanning microscopy, the most prominent observation was a shift in the spatial arrangement of T. denticola, in the presence of P. gingivalis Arg-gingipain mutant. Conclusions The gingipains of P. gingivalis may qualitatively and quantitatively affect composition of polymicrobial biofilms. The present experimental model reveals interdependency between the gingipains of P. gingivalis and T. forsythia or T. denticola.
Collapse
|
13
|
Yu X, Lin J, Yu Q, Kawai T, Taubman MA, Han X. Activation of Toll-like receptor 9 inhibits lipopolysaccharide-induced receptor activator of nuclear factor kappa- B ligand expression in rat B lymphocytes. Microbiol Immunol 2014. [DOI: 10.1111/1348-0421.12115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoqian Yu
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
- Department of Periodontology; Peking University School and Hospital of Stomatology; 22 Zhong-Guan-Cun South Avenue Beijing 100081
| | - Jiang Lin
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
- Department of Stomatology; Fourth Hospital of Harbin Medical University; 37 Yinhang Street Harbin 150001 China
| | - Qing Yu
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
| | - Martin A. Taubman
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
| |
Collapse
|
14
|
Kebschull M, Haupt M, Jepsen S, Deschner J, Nickenig G, Werner N. Mobilization of endothelial progenitors by recurrent bacteremias with a periodontal pathogen. PLoS One 2013; 8:e54860. [PMID: 23355901 PMCID: PMC3552864 DOI: 10.1371/journal.pone.0054860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 12/19/2012] [Indexed: 11/19/2022] Open
Abstract
Background Periodontal infections are independent risk factors for atherosclerosis. However, the exact mechanisms underlying this link are yet unclear. Here, we evaluate the in vivo effects of bacteremia with a periodontal pathogen on endothelial progenitors, bone marrow-derived cells capable of endothelial regeneration, and delineate the critical pathways for these effects. Methods 12-week old C57bl6 wildtype or toll-like receptor (TLR)-2 deficient mice were repeatedly intravenously challenged with 109 live P. gingivalis 381 or vehicle. Numbers of Sca1+/flk1+ progenitors, circulating angiogenic cells, CFU-Hill, and late-outgrowth EPC were measured by FACS/culture. Endothelial function was assessed using isolated organ baths, reendothelization was measured in a carotid injury model. RANKL/osteoprotegerin levels were assessed by ELISA/qPCR. Results In wildtype mice challenged with intravenous P.gingivalis, numbers of Sca1+/flk1+ progenitors, CAC, CFU-Hill, and late-outgrowth EPC were strongly increased in peripheral circulation and spleen, whereas Sca1+/flk1+ progenitor numbers in bone marrow decreased. Circulating EPCs were functional, as indicated by improved endothelial function and improved reendothelization in infected mice. The osteoprotegerin/RANKL ratio was increased after P. gingivalis challenge in the bone marrow niche of wildtype mice and late-outgrowth EPC in vitro. Conversely, in mice deficient in TLR2, no increase in progenitor mobilization or osteoprotegerin/RANKL ratio was detected. Conclusion Recurrent transient bacteremias, a feature of periodontitis, increase peripheral EPC counts and decrease EPC pools in the bone marrow, thereby possibly reducing overall endothelial regeneration capacity, conceivably explaining pro-atherogenic properties of periodontal infections. These effects are seemingly mediated by toll-like receptor (TLR)-2.
Collapse
Affiliation(s)
- Moritz Kebschull
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Manuela Haupt
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - James Deschner
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
15
|
Reddi D, Belibasakis GN. Transcriptional profiling of bone marrow stromal cells in response to Porphyromonas gingivalis secreted products. PLoS One 2012; 7:e43899. [PMID: 22937121 PMCID: PMC3427182 DOI: 10.1371/journal.pone.0043899] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/30/2012] [Indexed: 12/18/2022] Open
Abstract
Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting (periodontal) tissues. Porphyromonas gingivalis is an oral pathogen highly implicated in the pathogenesis of this disease. It can exert its effects to a number of cells, including osteogenic bone marrow stromal cells which are important for homeostastic capacity of the tissues. By employing gene microarray technology, this study aimed to describe the overall transcriptional events (>2-fold regulation) elicited by P. gingivalis secreted products in bone marrow stromal cells, and to dissect further the categories of genes involved in bone metabolism, inflammatory and immune responses. After 6 h of challenge with P. gingivalis, 271 genes were up-regulated whereas 209 genes were down-regulated, whereas after 24 h, these numbers were 259 and 109, respectively. The early (6 h) response was characterised by regulation of genes associated with inhibition of cell cycle, induction of apoptosis and loss of structural integrity, whereas the late (24 h) response was characterised by induction of chemokines, cytokines and their associated intracellular pathways (such as NF-κB), mediators of connective tissue and bone destruction, and suppression of regulators of osteogenic differentiation. The most strongly up-regulated genes were lipocalin 2 (LCN2) and serum amyloid A3 (SAA3), both encoding for proteins of the acute phase inflammatory response. Collectively, these transcriptional changes elicited by P. gingivalis denote that the fundamental cellular functions are hindered, and that the cells acquire a phenotype commensurate with propagated innate immune response and inflammatory-mediated tissue destruction. In conclusion, the global transcriptional profile of bone marrow stromal cells in response to P. gingivalis is marked by deregulated homeostatic functions, with implications in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Durga Reddi
- Centre for Adult Oral Health, Barts and the London Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Georgios N. Belibasakis
- Centre for Adult Oral Health, Barts and the London Institute of Dentistry, Queen Mary University of London, London, United Kingdom
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Park YD, Kim YS, Jung YM, Lee SI, Lee YM, Bang JB, Kim EC. Porphyromonas gingivalis lipopolysaccharide regulates interleukin (IL)-17 and IL-23 expression via SIRT1 modulation in human periodontal ligament cells. Cytokine 2012; 60:284-93. [PMID: 22683003 DOI: 10.1016/j.cyto.2012.05.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/02/2012] [Accepted: 05/17/2012] [Indexed: 12/16/2022]
Abstract
Increased interleukin (IL)-17 and IL-23 levels exist in the gingival tissue of periodontitis patients, but the precise molecular mechanisms that regulate IL-17 and IL-23 production remain unknown. The aim of this study was to explore the role of SIRT1 signaling on Porphyromonas gingivalis lipopolysaccharide (LPS)-induced IL-17 and IL-23 production in human periodontal ligament cells (hPDLCs). IL-17 and IL-23 production was significantly increased in LPS-treated cells. LPS treatment also led to the upregulation of SIRT1 mRNA and protein expression. LPS-induced IL-17 and IL-23 upregulation was attenuated by pretreatment with inhibitors of phosphoinositide 3-kinase (PI3K), p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), and NF-κB, as well as neutralizing antibodies against Toll-like receptors (TLRs) 2 and 4. Sirtinol treatment (a known SIRT1 inhibitor) or SIRT1 knockdown by small interfering RNA blocked LPS-stimulated IL-17 and IL-23 expression. Further investigation showed that LPS decreased osteoblast markers (i.e., ALP, OPN, and BSP) and concomitantly increased osteoclast markers (i.e., RANKL and M-CSF). This response was attenuated by inhibitors of the PI3K, p38, ERK, JNK, NF-κB, and SIRT1 pathways. These findings, for the first time, suggest that human periodontopathogen P. gingivalis LPS is implicated in periodontal disease bone destruction and may mediate IL-17 and IL-23 release from hPDLCs. This process is dependent, at least in part, on SIRT1-Akt/PI3K-MAPK-NF-κB signaling.
Collapse
Affiliation(s)
- Yong-Duk Park
- Department of Preventive and Social Dentistry, School of Dentistry, Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Bougas K, Ransjö M, Johansson A. Effects of Porphyromonas gingivalis surface-associated material on osteoclast formation. Odontology 2012; 101:140-9. [DOI: 10.1007/s10266-012-0068-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
|
18
|
Belibasakis GN, Guggenheim B. Induction of prostaglandin E2and interleukin-6 in gingival fibroblasts by oral biofilms. ACTA ACUST UNITED AC 2011; 63:381-6. [DOI: 10.1111/j.1574-695x.2011.00863.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 01/27/2023]
|
19
|
Reddi D, Brown SJ, Belibasakis GN. Porphyromonas gingivalis induces RANKL in bone marrow stromal cells: involvement of the p38 MAPK. Microb Pathog 2011; 51:415-20. [PMID: 21939752 DOI: 10.1016/j.micpath.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/27/2011] [Accepted: 09/06/2011] [Indexed: 11/19/2022]
Abstract
Periodontitis is a bacterially-induced oral inflammatory disease that is characterised by tissue degradation and bone loss. Porphyromonas gingivalis is a gram negative bacterial species highly associated with the pathogenesis of chronic periodontitis. Receptor activator of nuclear factor-kB ligand (RANKL) induces bone resorption whilst osteoprotegerin (OPG) is a decoy receptor that blocks this process. Cyclooxygenase-2 (COX-2) is an enzyme responsible for the production of prostaglandin (PGE)(2,) which is a major inflammatory mediator of bone resorption. Mitogen-activated protein kinases (MAPK) are intracellular signalling molecules involved in various cell processes, including inflammation. This study aimed to investigate the effect of P. gingivalis on MAPKs and their involvement in the regulation of RANKL, OPG and COX-2 expression in bone marrow stromal cells. P. gingivalis challenge resulted in the phosphorylation of primarily the p38 MAPK. RANKL and COX-2 mRNA expressions were up-regulated, whereas OPG was down-regulated by P. gingivalis. The p38 synthetic inhibitor SB203580 abolished the P. gingivalis-induced RANKL and COX-2 expression, but did not affect OPG. Collectively, these results suggest that the p38 MAPK pathway is involved in the induction of RANKL and COX-2 by P. gingivalis, providing further insights into the pathogenic mechanisms of periodontitis.
Collapse
Affiliation(s)
- Durga Reddi
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | | | | |
Collapse
|
20
|
Belibasakis GN, Meier A, Guggenheim B, Bostanci N. The RANKL–OPG system is differentially regulated by supragingival and subgingival biofilm supernatants. Cytokine 2011; 55:98-103. [DOI: 10.1016/j.cyto.2011.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/04/2011] [Accepted: 03/15/2011] [Indexed: 11/29/2022]
|
21
|
Diverse effects of Porphyromonas gingivalis on human osteoclast formation. Microb Pathog 2011; 51:149-55. [PMID: 21539907 DOI: 10.1016/j.micpath.2011.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/12/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022]
Abstract
Porphyromonas gingivalis is associated with periodontitis, a chronic inflammatory disease of the tooth-supporting tissues. A major clinical symptom is alveolar bone loss due to excessive resorption by osteoclasts. P. gingivalis may influence osteoclast formation in diverse ways; by interacting directly with osteoclast precursors that likely originate from peripheral blood, or indirectly by activating gingival fibroblasts, cells that can support osteoclast formation. In the present study we investigated these possibilities. Conditioned medium from viable or dead P. gingivalis, or from gingival fibroblasts challenged with viable or dead P. gingivalis were added to human mononuclear osteoclast precursors. After 21 days of culture the number of multinucleated (≥3 nuclei) tartrate resistant acid phosphatase (TRACP)-positive cells was determined as a measure for osteoclast formation. Conditioned medium from viable P. gingivalis, and from fibroblasts with viable P. gingivalis stimulated osteoclast formation (1.6-fold increase p < 0.05). Conditioned medium from dead bacteria had no effect on osteoclast formation, whereas conditioned medium from fibroblasts with dead bacteria stimulated formation (1.4-fold increase, p < 0.05). Inhibition of P. gingivalis LPS activity by Polymyxin B reduced the stimulatory effect of conditioned medium. Interestingly, when RANKL and M-CSF were added to cultures, conditioned media inhibited osteoclast formation (0.6-0.7-fold decrease, p < 0.05). Our results indicate that P. gingivalis influences osteoclast formation in vitro in different ways. Directly, by bacterial factors, likely LPS, or indirectly, by cytokines produced by gingival fibroblasts in response to P. gingivalis. Depending on the presence of RANKL and M-CSF, the effect of P. gingivalis is either stimulatory or inhibitory.
Collapse
|
22
|
Kim M, Jun HK, Choi BK, Cha JH, Yoo YJ. Td92, an outer membrane protein of Treponema denticola, induces osteoclastogenesis via prostaglandin E(2)-mediated RANKL/osteoprotegerin regulation. J Periodontal Res 2011; 45:772-9. [PMID: 20682013 DOI: 10.1111/j.1600-0765.2010.01298.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a chronic inflammatory disease of the periodontium that causes significant alveolar bone loss. Osteoclasts are bone-resorbing multinucleated cells. Osteoblasts regulate osteoclast differentiation by expression of RANKL and osteoprotegerin (OPG). Td92 is a surface-exposed outer membrane protein of Treponema denticola, a periodontopathogen. Although it has been demonstrated that Td92 acts as a stimulator of various proinflammatory mediators, the role of Td92 in alveolar bone resorption remains unclear. Therefore, in this study, we investigated the role of Td92 in bone resorption. MATERIAL AND METHODS Mouse bone marrow cells were co-cultured with calvariae-derived osteoblasts in the presence or absence of Td92. Osteoclast formation was assessed by TRAP staining. Expressions of RANKL, osteoprotegerin (OPG) and prostaglandin E(2) (PGE(2) ) in osteoblasts were estimated by ELISA. RESULTS Td92 induced osteoclast formation in the co-cultures. In the osteoblasts, RANKL and PGE(2) expressions were up-regulated, whereas OPG expression was down-regulated by Td92. The addition of OPG inhibited Td92-induced osteoclast formation. The prostaglandin synthesis inhibitors NS398 and indomethacin were also shown to inhibit Td92-induced osteoclast formation. The effects of Td92 on the expressions of RANKL, OPG and PGE(2) in osteoblasts were blocked by NS398 or indomethacin. CONCLUSION These results suggest that Td92 promotes osteoclast formation through the regulation of RANKL and OPG production via a PGE(2) -dependent mechanism.
Collapse
Affiliation(s)
- M Kim
- Department of Oral Biology, BK21 Project, Oral Science Research Center, Research Center for Orofacial Hard Tissue Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | | | | | | | | |
Collapse
|
23
|
Hernández M, Gamonal J, Salo T, Tervahartiala T, Hukkanen M, Tjäderhane L, Sorsa T. Reduced expression of lipopolysaccharide-induced CXC chemokine in Porphyromonas gingivalis-induced experimental periodontitis in matrix metalloproteinase-8 null mice. J Periodontal Res 2011; 46:58-66. [DOI: 10.1111/j.1600-0765.2010.01310.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
Santos VR, Lima JA, Gonçalves TED, Bastos MF, Figueiredo LC, Shibli JA, Duarte PM. Receptor Activator of Nuclear Factor-Kappa B Ligand/Osteoprotegerin Ratio in Sites of Chronic Periodontitis of Subjects With Poorly and Well-Controlled Type 2 Diabetes. J Periodontol 2010; 81:1455-65. [DOI: 10.1902/jop.2010.100125] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Belibasakis GN, Reddi D, Bostanci N. Porphyromonas gingivalis Induces RANKL in T-cells. Inflammation 2010; 34:133-8. [DOI: 10.1007/s10753-010-9216-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Bak EJ, Park HG, Kim M, Kim SW, Kim S, Choi SH, Cha JH, Yoo YJ. The Effect of Metformin on Alveolar Bone in Ligature-Induced Periodontitis in Rats: A Pilot Study. J Periodontol 2010; 81:412-9. [DOI: 10.1902/jop.2009.090414] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Dereka XE, Markopoulou CE, Fanourakis G, Tseleni-Balafouta S, Vrotsos IA. RANKL and OPG mRNA Level after Non-Surgical Periodontal Treatment. Inflammation 2009; 33:200-6. [DOI: 10.1007/s10753-009-9174-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|