1
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024:e0008023. [PMID: 39360834 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
2
|
Osawa T, Watanabe M, Morimoto K, Yoshiyama T, Matsuda S, Fujiwara K, Furuuchi K, Shimoda M, Ito M, Kodama T, Uesugi F, Okumura M, Tanaka Y, Sasaki Y, Ogata H, Goto H, Kudoh S, Ohta K. Activities of Daily Living, Hypoxemia, and Lymphocytes Score for Predicting Mortality Risk in Patients With Pulmonary TB. Chest 2024; 165:267-277. [PMID: 37726072 DOI: 10.1016/j.chest.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND A clinically applicable mortality risk prediction system for pulmonary TB may improve treatment outcomes, but no easy-to-calculate and accurate score has yet been reported. The aim of this study was to construct a simple and objective disease severity score for patients with pulmonary TB. RESEARCH QUESTION Does a clinical score consisting of simple objective factors predict the mortality risk of patients with pulmonary TB? STUDY DESIGN AND METHODS The data set from our previous prospective study that recruited patients newly diagnosed with pulmonary TB was used for the development cohort. Patients for the validation cohort were prospectively recruited between March 2021 and September 2022. The primary end point was all-cause in-hospital mortality. Using Cox proportional hazards regression, a mortality risk prediction model was optimized in the development cohort. The disease severity score was developed by assigning integral points to each variate. RESULTS The data from 252 patients in the development cohort and 165 patients in the validation cohort were analyzed, of whom 39 (15.5%) and 17 (10.3%), respectively, died in the hospital. The disease severity score (named the AHL score) included three clinical parameters: activities of daily living (semi-dependent, 1 point; totally dependent, 2 points); hypoxemia (1 point), and lymphocytes (< 720/μL, 1 point). This score showed good discrimination with a C statistic of 0.902 in the development cohort and 0.842 in the validation cohort. We stratified the score into three groups (scores of 0, 1-2, and 3-4), which clearly corresponded to low (0% and 1.3%), intermediate (13.5% and 8.9%), and high (55.8% and 39.3%) mortality risk in the development and validation cohorts. INTERPRETATION The easy-to-calculate AHL disease severity score for patients with pulmonary TB was able to categorize patients into three mortality risk groups with great accuracy. CLINICAL TRIAL REGISTRATION University Hospital Medical Information Network Center; No. UMIN000012727 and No. UMIN000043849; URL: www.umin.ac.jp.
Collapse
Affiliation(s)
- Takeshi Osawa
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| | - Kozo Morimoto
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan; Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Takashi Yoshiyama
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan; Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Shuichi Matsuda
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Keiji Fujiwara
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Koji Furuuchi
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Masafumi Shimoda
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Masashi Ito
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Tatsuya Kodama
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Fumiko Uesugi
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Masao Okumura
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Yoshiaki Tanaka
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Yuka Sasaki
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Hideo Ogata
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Hajime Goto
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Shoji Kudoh
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Ken Ohta
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| |
Collapse
|
3
|
Huang X, Lowrie DB, Fan XY, Hu Z. Natural products in anti-tuberculosis host-directed therapy. Biomed Pharmacother 2024; 171:116087. [PMID: 38171242 DOI: 10.1016/j.biopha.2023.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Given that the disease progression of tuberculosis (TB) is primarily related to the host's immune status, it has been gradually realized that chemotherapy that targets the bacteria may never, on its own, wholly eradicate Mycobacterium tuberculosis, the causative agent of TB. The concept of host-directed therapy (HDT) with immune adjuvants has emerged. HDT could potentially interfere with infection and colonization by the pathogens, enhance the protective immune responses of hosts, suppress the overwhelming inflammatory responses, and help to attain a state of homeostasis that favors treatment efficacy. However, the HDT drugs currently being assessed in combination with anti-TB chemotherapy still face the dilemmas arising from side effects and high costs. Natural products are well suited to compensate for these shortcomings by having gentle modulatory effects on the host immune responses with less immunopathological damage at a lower cost. In this review, we first summarize the profiles of anti-TB immunology and the characteristics of HDT. Then, we focus on the rationale and challenges of developing and implementing natural products-based HDT. A succinct report of the medications currently being evaluated in clinical trials and preclinical studies is provided. This review aims to promote target-based screening and accelerate novel TB drug discovery.
Collapse
Affiliation(s)
- Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| |
Collapse
|
4
|
Banerjee U, Chedere A, Padaki R, Mohan A, Sambaturu N, Singh A, Chandra N. PathTracer Comprehensively Identifies Hypoxia-Induced Dormancy Adaptations in Mycobacterium tuberculosis. J Chem Inf Model 2023; 63:6156-6167. [PMID: 37756209 DOI: 10.1021/acs.jcim.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mining large-scale data to discover biologically relevant information remains a challenge despite the rapid development of bioinformatics tools. Here, we have developed a new tool, PathTracer, to identify biologically relevant information flows by mining genome-wide protein-protein interaction networks following integration of gene expression data. PathTracer successfully mines interactions between genes and traces the most perturbed paths of perceived activities under the conditions of the study. We further demonstrated the utility of this tool by identifying adaptation mechanisms of hypoxia-induced dormancy in Mycobacterium tuberculosis (Mtb).
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Adithya Chedere
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Raksha Padaki
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Abhilash Mohan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Amit Singh
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, Karnataka, India
- BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
5
|
Sakata A, Fushimi Y, Arakawa Y, Shimizu Y, Nakamoto Y. 18 F-FMISO PET of an Intracranial Tuberculoma : A Great Mimicker. Clin Nucl Med 2023; 48:e212-e213. [PMID: 36730900 DOI: 10.1097/rlu.0000000000004471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Solitary intracranial tuberculomas are rare and frequently misdiagnosed as brain tumors. We report a case of intracranial tuberculous granuloma mimicking a high-grade glioma with avid uptake on 18 F-fluoromisonidazole PET/CT. It has been believed that hypoxia exists within the tuberculosis granuloma, and that this hypoxic environment causes Mycobacterium tuberculosis to lie dormant and asymptomatic infection to occur. This hypoxic and necrotic condition inside tuberculous granuloma may lead to high accumulation of 18 F-fluoromisonidazole in this case.
Collapse
Affiliation(s)
- Akihiko Sakata
- From the Departments of Diagnostic Imaging and Nuclear Medicine
| | | | - Yoshiki Arakawa
- Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichi Shimizu
- From the Departments of Diagnostic Imaging and Nuclear Medicine
| | - Yuji Nakamoto
- From the Departments of Diagnostic Imaging and Nuclear Medicine
| |
Collapse
|
6
|
Lanni F, Wijnant GJ, Xie M, Osiecki P, Dartois V, Sarathy JP. Adaptation to the intracellular environment of primary human macrophages influences drug susceptibility of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 139:102318. [PMID: 36889104 DOI: 10.1016/j.tube.2023.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
As a facultative intracellular pathogen, M. tuberculosis (Mtb) is highly adapted to evading antibacterial mechanisms in phagocytic cells. Both the macrophage and pathogen experience transcriptional and metabolic changes from the onset of phagocytosis. To account for this interaction in the assessment of intracellular drug susceptibility, we allowed a 3-day preadaptation phase post-macrophage infection prior to drug treatment. We found that intracellular Mtb in human monocyte-derived macrophages (MDM) presents dramatic alterations in susceptibility to isoniazid, sutezolid, rifampicin and rifapentine when compared to axenic culture. Infected MDM gradually accumulate lipid bodies, adopting a characteristic appearance reminiscent of foamy macrophages in granulomas. Furthermore, TB granulomas in vivo develop hypoxic cores with decreasing oxygen tension gradients across their radii. Accordingly, we evaluated the effects of hypoxia on preadapted intracellular Mtb in our MDM model. We observed that hypoxia induced greater lipid body formation and no additional shifts in drug tolerance, suggesting that the adaptation of intracellular Mtb to baseline host cell conditions under normoxia dominates changes to intracellular drug susceptibility. Using unbound plasma concentrations in patients as surrogates for free drug concentrations in lung interstitial fluid, we estimate that intramacrophage Mtb in granulomas are exposed to bacteriostatic concentrations of most study drugs.
Collapse
Affiliation(s)
- Faye Lanni
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Gert-Jan Wijnant
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Min Xie
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Paulina Osiecki
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States; Hackensack School of Medicine, Department of Medical Sciences, 123, Metro Boulevard, Nutley, NJ, 07110, United States
| | - Jansy P Sarathy
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States.
| |
Collapse
|
7
|
Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens 2022; 12:pathogens12010049. [PMID: 36678397 PMCID: PMC9865329 DOI: 10.3390/pathogens12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious diseases, is the mouse. Regarding research in tuberculosis, the mouse has provided useful information about host and bacterial traits related to susceptibility to the infection. The effect of aging, sexual dimorphisms, the route of infection, genetic differences between mice lineages and unbalanced immunity scenarios upon Mycobacterium tuberculosis infection and tuberculosis development has helped, helps and will help biomedical researchers in the design of new tools for diagnosis, treatment and prevention of tuberculosis, despite various discrepancies and the lack of deep study in some areas of these traits.
Collapse
|
8
|
Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol 2022; 20:685-701. [PMID: 35478222 PMCID: PMC9045034 DOI: 10.1038/s41579-022-00731-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Despite two decades of intensified research to understand and cure tuberculosis disease, biological uncertainties remain and hamper progress. However, owing to collaborative initiatives including academia, the pharmaceutical industry and non-for-profit organizations, the drug candidate pipeline is promising. This exceptional success comes with the inherent challenge of prioritizing multidrug regimens for clinical trials and revamping trial designs to accelerate regimen development and capitalize on drug discovery breakthroughs. Most wanted are markers of progression from latent infection to active pulmonary disease, markers of drug response and predictors of relapse, in vitro tools to uncover synergies that translate clinically and animal models to reliably assess the treatment shortening potential of new regimens. In this Review, we highlight the benefits and challenges of 'one-size-fits-all' regimens and treatment duration versus individualized therapy based on disease severity and host and pathogen characteristics, considering scientific and operational perspectives.
Collapse
Affiliation(s)
- Véronique A Dartois
- Center for Discovery and Innovation, and Hackensack Meridian School of Medicine, Department of Medical Sciences, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| |
Collapse
|
9
|
Abstract
Bacteria engulfed by phagocytic cells must resist oxidation damage and adapt to cellular hypoxia, but the mechanisms involved in this process are not completely elucidated. Recent work by Kim et al. in the Journal of Biological Chemistry investigated how the intracellular pathogen Salmonella enterica activates gene expression required to counteract oxidative damage. The authors show that this bacterium utilizes host oxidative molecules to activate regulatory proteins that enhance the production of effector molecules, counteracting the host weapon NADPH oxidase and inducing a protective response.
Collapse
|
10
|
Parbhoo T, Mouton JM, Sampson SL. Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Front Cell Infect Microbiol 2022; 12:956607. [PMID: 36237425 PMCID: PMC9551238 DOI: 10.3389/fcimb.2022.956607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis exhibits a remarkable ability to interfere with the host antimicrobial response. The pathogen exploits elaborate strategies to cope with diverse host-induced stressors by modulating its metabolism and physiological state to prolong survival and promote persistence in host tissues. Elucidating the adaptive strategies that M. tuberculosis employs during infection to enhance persistence is crucial to understanding how varying physiological states may differentially drive disease progression for effective management of these populations. To improve our understanding of the phenotypic adaptation of M. tuberculosis, we review the adaptive strategies employed by M. tuberculosis to sense and coordinate a physiological response following exposure to various host-associated stressors. We further highlight the use of animal models that can be exploited to replicate and investigate different aspects of the human response to infection, to elucidate the impact of the host environment and bacterial adaptive strategies contributing to the recalcitrance of infection.
Collapse
|
11
|
García-Morales L, Del Portillo P, Anzola JM, Ares MA, Helguera-Repetto AC, Cerna-Cortes JF, Méndez-Tenorio A, García MJ, Otal I, Martín C, Gonzalez-y-Merchand JA, Rivera-Gutiérrez S. The Lack of the TetR-Like Repressor Gene BCG_2177c (Rv2160A) May Help Mycobacteria Overcome Intracellular Redox Stress and Survive Longer Inside Macrophages When Surrounded by a Lipid Environment. Front Cell Infect Microbiol 2022; 12:907890. [PMID: 35873160 PMCID: PMC9301340 DOI: 10.3389/fcimb.2022.907890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria, like other microorganisms, survive under different environmental variations by expressing an efficient adaptive response, oriented by regulatory elements, such as transcriptional repressors of the TetR family. These repressors in mycobacteria also appear to be related to cholesterol metabolism. In this study, we have evaluated the effect of a fatty acid (oleic–palmitic–stearic)/cholesterol mixture on some phenotypic and genotypic characteristics of a tetR-mutant strain (BCG_2177c mutated gene) of M. bovis BCG, a homologous of Rv2160A of M. tuberculosis. In order to accomplish this, we have analyzed the global gene expression of this strain by RNA-seq and evaluated its neutral-lipid storage capacity and potential to infect macrophages. We have also determined the macrophage response by measuring some pro- and anti-inflammatory cytokine expressions. In comparison with wild-type microorganisms, we showed that the mutation in the BCG_2177c gene did not affect the growth of M. bovis BCG in the presence of lipids but it probably modified the structure/composition of its cell envelope. Compared to with dextrose, an overexpression of the transcriptome of the wild-type and mutant strains was observed when these mycobacteria were cultured in lipids, mainly at the exponential phase. Twelve putative intracellular redox balance maintenance genes and four others coding for putative transcriptional factors (including WhiB6 and three TetR-like) were the main elements repeatedly overexpressed when cultured in the presence of lipids. These genes belonged to the central part of what we called the “genetic lipid signature” for M. bovis BCG. We have also found that all these mycobacteria genotypic changes affected the outcome of BCG-infected macrophages, being the mutant strain most adapted to persist longer inside the host. This high persistence result was also confirmed when mutant-infected macrophages showed overexpression of the anti-inflammatory cytokine TGF-β versus pro-inflammatory cytokines. In summary, the lack of this TetR-like repressor expression, within a lipid environment, may help mycobacteria overcome intracellular redox stress and survive longer inside their host.
Collapse
Affiliation(s)
- Lázaro García-Morales
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Patricia Del Portillo
- Grupo de Biotecnología Molecular, Grupo de Bioinformática y Biología Computacional, Corporación CorpoGen, Bogotá, Colombia
| | - Juan M. Anzola
- Grupo de Biotecnología Molecular, Grupo de Bioinformática y Biología Computacional, Corporación CorpoGen, Bogotá, Colombia
- Facultad de Ingeniería y Ciencias Básicas, Universidad Central, Bogotá, D.C., Colombia
| | - Miguel A. Ares
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Addy C. Helguera-Repetto
- Departamento de Inmuno-Bioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Jorge F. Cerna-Cortes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alfonso Méndez-Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María J. García
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Jorge A. Gonzalez-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- *Correspondence: Jorge A. Gonzalez-y-Merchand, ; Sandra Rivera-Gutiérrez,
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- *Correspondence: Jorge A. Gonzalez-y-Merchand, ; Sandra Rivera-Gutiérrez,
| |
Collapse
|
12
|
Płocińska R, Wasik K, Płociński P, Lechowicz E, Antczak M, Błaszczyk E, Dziadek B, Słomka M, Rumijowska-Galewicz A, Dziadek J. The Orphan Response Regulator Rv3143 Modulates the Activity of the NADH Dehydrogenase Complex (Nuo) in Mycobacterium tuberculosis via Protein–Protein Interactions. Front Cell Infect Microbiol 2022; 12:909507. [PMID: 35837472 PMCID: PMC9274095 DOI: 10.3389/fcimb.2022.909507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Two-component signal transduction systems enable mycobacterial cells to quickly adapt and adequately respond to adverse environmental conditions encountered at various stages of host infection. We attempted to determine the role of the Rv3143 “orphan” response regulator in the physiology of Mycobacterium tuberculosis and its orthologue Msmeg_2064 in Mycobacterium smegmatis. We identified the Rv3143 protein as an interaction partner for NuoD, a member of the type I NADH dehydrogenase complex involved in oxidative phosphorylation. The mutants Δrv3143 and Δmsmeg_2064 were engineered in M. tuberculosis and M. smegmatis cells, respectively. The Δmsmeg_2064 strain exhibited a significant reduction in growth and viability in the presence of reactive nitrogen species. The Rv3143-deficient strain was sensitive to valinomycin, which is known to reduce the electrochemical potential of the cell and overexpressed genes required for nitrate respiration. An increased level of reduction of the 2,3,5-triphenyltetrazolium chloride (TTC) electron acceptor in Δrv3143 and Δmsmeg_2064 cells was also evident. The silencing of ndh expression using CRISPRi/dCas9 affected cell survival under limited oxygen conditions. Oxygen consumption during entry to hypoxia was most severely affected in the double-mutant Δmsmeg_2064 ndhCRISPRi/dCas9. We propose that the regulatory protein Rv3143 is a component of the Nuo complex and modulates its activity.
Collapse
Affiliation(s)
- Renata Płocińska
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Karolina Wasik
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Przemysław Płociński
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Ewelina Lechowicz
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Magdalena Antczak
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Ewelina Błaszczyk
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Bożena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Anna Rumijowska-Galewicz
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Jarosław Dziadek
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
- *Correspondence: Jarosław Dziadek,
| |
Collapse
|
13
|
Bresser PL, Reed J, Sathekge MM, Vorster M. 68 Ga-nitroimidazole PET/CT imaging of hypoxia in tuberculosis: A case series. J Med Radiat Sci 2022; 69:518-524. [PMID: 35760568 DOI: 10.1002/jmrs.603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) lesions in humans have been proven to be severely hypoxic with hypoxia leading to latency and dormancy of disease. Dormant TB lesions become less susceptible to standard TB treatment regimens with varying responses to treatment but may have increased susceptibility to nitroimidazole drugs. This in turn implies that positron emission tomography / computed tomography (PET/CT) imaging with radiolabelled nitroimidazoles may identify patients who will benefit from treatment with antimicrobial agents that are active against anaerobic bacteria. This case series aims to highlight the hypoxic uptake and retention of a novel 68 Ga-labelled hypoxia-seeking agent in TB lesions at different time points during anti-TB therapy using PET/CT imaging. Patients with confirmed TB underwent whole-body PET/CT after administration of a 68 Ga-nitroimidazole derivative at baseline and follow-up. Images were analysed both qualitatively and semi-quantitatively. Hypoxic uptake and change in uptake over time were analysed using lesion-to-muscle ratio (LMR) and lesion-to-blood ratio (LBR). 68 Ga-nitroimidazole avid lesions were demonstrated most frequently in the upper lobes of the lung. Low-grade hypoxic uptake was visualised in areas of consolidation, cavitation, nodules and lymph nodes. From baseline to follow-up imaging, the LMR increased with persistent hypoxic load despite morphologic improvement. This case series highlights the dynamic hypoxic microenvironment in TB lesions. From these initial data, it appears that 68 Ga-nitroimidazole is a promising candidate for monitoring hypoxic load in patients diagnosed with TB. Such imaging could identify patients who would benefit from individualised therapy targeting other mechanisms in the TB microenvironment with the intention to predict or improve treatment response.
Collapse
Affiliation(s)
- Philippa L Bresser
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Janet Reed
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Nuclear Medicine, Inkosi Albert Luthuli Central Hospital, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Li M, Patel HV, Cognetta AB, Smith TC, Mallick I, Cavalier JF, Previti ML, Canaan S, Aldridge BB, Cravatt BF, Seeliger JC. Identification of cell wall synthesis inhibitors active against Mycobacterium tuberculosis by competitive activity-based protein profiling. Cell Chem Biol 2022; 29:883-896.e5. [PMID: 34599873 PMCID: PMC8964833 DOI: 10.1016/j.chembiol.2021.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
The identification and validation of a small molecule's targets is a major bottleneck in the discovery process for tuberculosis antibiotics. Activity-based protein profiling (ABPP) is an efficient tool for determining a small molecule's targets within complex proteomes. However, how target inhibition relates to biological activity is often left unexplored. Here, we study the effects of 1,2,3-triazole ureas on Mycobacterium tuberculosis (Mtb). After screening ∼200 compounds, we focus on 4 compounds that form a structure-activity series. The compound with negligible activity reveals targets, the inhibition of which is functionally less relevant for Mtb growth and viability, an aspect not addressed in other ABPP studies. Biochemistry, computational docking, and morphological analysis confirms that active compounds preferentially inhibit serine hydrolases with cell wall and lipid metabolism functions and that disruption of the cell wall underlies biological activity. Our findings show that ABPP identifies the targets most likely relevant to a compound's antibacterial activity.
Collapse
Affiliation(s)
- Michael Li
- Department of Pharmacological Sciences and Immunology Stony Brook University, Stony Brook, NY 11790, USA
| | - Hiren V Patel
- Department of Microbiology and Immunology Stony Brook University, Stony Brook, NY 11790, USA
| | - Armand B Cognetta
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trever C Smith
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Ivy Mallick
- Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13402 Marseille, France
| | | | - Mary L Previti
- Department of Pharmacological Sciences and Immunology Stony Brook University, Stony Brook, NY 11790, USA
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13402 Marseille, France
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica C Seeliger
- Department of Pharmacological Sciences and Immunology Stony Brook University, Stony Brook, NY 11790, USA.
| |
Collapse
|
15
|
Nziza N, Cizmeci D, Davies L, Irvine EB, Jung W, Fenderson BA, de Kock M, Hanekom WA, Franken KLMC, Day CL, Ottenhoff THM, Alter G. Defining Discriminatory Antibody Fingerprints in Active and Latent Tuberculosis. Front Immunol 2022; 13:856906. [PMID: 35514994 PMCID: PMC9066635 DOI: 10.3389/fimmu.2022.856906] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious agent, second only to COVID-19 in 2020. TB is caused by infection with Mycobacterium tuberculosis (Mtb), that results either in a latent or active form of disease, the latter associated with Mtb spread. In the absence of an effective vaccine, epidemiologic modeling suggests that aggressive treatment of individuals with active TB (ATB) may curb spread. Yet, clinical discrimination between latent (LTB) and ATB remains a challenge. While antibodies are widely used to diagnose many infections, the utility of antibody-based tests to diagnose ATB has only regained significant traction recently. Specifically, recent interest in the humoral immune response to TB has pointed to potential differences in both targeted antigens and antibody features that can discriminate latent and active TB. Here we aimed to integrate these observations and broadly profile the humoral immune response across individuals with LTB or ATB, with and without HIV co-infection, to define the most discriminatory humoral properties and diagnose TB disease more easily. Using 209 Mtb antigens, striking differences in antigen-recognition were observed across latently and actively infected individuals that was modulated by HIV serostatus. However, ATB and LTB could be discriminated, irrespective of HIV-status, based on a combination of both antibody levels and Fc receptor-binding characteristics targeting both well characterized (like lipoarabinomannan, 38 kDa or antigen 85) but also novel Mtb antigens (including Rv1792, Rv1528, Rv2435C or Rv1508). These data reveal new Mtb-specific immunologic markers that can improve the classification of ATB versus LTB.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Deniz Cizmeci
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Leela Davies
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, United States
| | - Edward B. Irvine
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Wonyeong Jung
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Brooke A. Fenderson
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Cheryl L. Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| |
Collapse
|
16
|
de Oliveira Rezende A, Sabóia RS, da Costa AC, da Silva Monteiro DMP, Zagmignan A, Santiago LÂM, Carvalho RC, Pereira PVS, Junqueira-Kipnis AP, de Sousa EM. Restricted Activation of the NF-κB Pathway in Individuals with Latent Tuberculosis Infection after HIF-1α Blockade. Biomedicines 2022; 10:biomedicines10040817. [PMID: 35453567 PMCID: PMC9024452 DOI: 10.3390/biomedicines10040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculous granuloma formation is mediated by hypoxia-inducible factor 1 alpha (HIF-1α), and is essential for establishing latent tuberculosis infection (LTBI) and its progression to active tuberculosis (TB). Here, we investigated whether HIF-1α expression and adjacent mechanisms were associated with latent or active TB infection. Patients with active TB, individuals with LTBI, and healthy controls were recruited, and the expression of cytokine genes IL15, IL18, TNFA, IL6, HIF1A, and A20 in peripheral blood mononuclear cells (PBMCs) and serum vitamin D (25(OH)D3) levels were evaluated. Additionally, nuclear factor kappa B (NF-κB) and tumor necrosis factor-alpha (TNF-α) levels were analyzed in PBMC lysates and culture supernatants, respectively, after HIF-1α blockade with 2-methoxyestradiol. We observed that IL-15 expression was higher in individuals with LTBI than in patients with active TB, while IL-18 and TNF-α expression was similar between LTBI and TB groups. Additionally, serum 25(OH)D3 levels and expression of IL-6, HIF1A, and A20 were higher in patients with active TB than in individuals with LTBI. Moreover, PBMCs from individuals with LTBI showed decreased NF-κB phosphorylation and increased TNF-α production after HIF-1α blockade. Together, these results suggest that under hypoxic conditions, TNF-α production and NF-κB pathway downregulation are associated with the LTBI phenotype.
Collapse
Affiliation(s)
- Aline de Oliveira Rezende
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (A.d.O.R.); (R.C.C.); (P.V.S.P.)
| | - Rafaella Santos Sabóia
- Graduate Program in Microbial Biology, CEUMA University—UniCEUMA, São Luís 65075-120, Brazil;
| | | | | | - Adrielle Zagmignan
- Graduate Program in Health and Services Management, CEUMA University—UniCEUMA, São Luís 65075-120, Brazil; (D.M.P.d.S.M.); (A.Z.)
| | - Luis Ângelo Macedo Santiago
- Graduate Program in Biodiversity and Biotechnology, Amazônia-BIONORTE, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil;
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (A.d.O.R.); (R.C.C.); (P.V.S.P.)
| | - Paulo Vitor Soeiro Pereira
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (A.d.O.R.); (R.C.C.); (P.V.S.P.)
| | - Ana Paula Junqueira-Kipnis
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, Brazil;
| | - Eduardo Martins de Sousa
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (A.d.O.R.); (R.C.C.); (P.V.S.P.)
- Graduate Program in Microbial Biology, CEUMA University—UniCEUMA, São Luís 65075-120, Brazil;
- Graduate Program in Biodiversity and Biotechnology, Amazônia-BIONORTE, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil;
- Correspondence:
| |
Collapse
|
17
|
Antil M, Gupta V. Rv1915 and Rv1916 from Mycobacterium tuberculosis H37Rv form in vitro protein-protein complex. Biochim Biophys Acta Gen Subj 2022; 1866:130130. [PMID: 35307510 DOI: 10.1016/j.bbagen.2022.130130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) isocitrate lyase (ICL) is an established drug target that facilitates Mtb persistence. Unlike other mycobacterial strains, where ICL2 is a single gene product, H37Rv has a split event, resulting in two tandemly coded icls - rv1915 and rv1916. Our recent report on functionality of individual Rv1915 and Rv1916, led to postulate the cooperative role of these proteins in pathogen's survival under nutrient-limiting conditions. This study investigates the possibility of Rv1915 and Rv1916 interacting and forming a complex. METHODS Pull down assay, activity assay, mass spectrometry and site directed mutagenesis was employed to investigate and validate Rv1915-Rv1916 complex formation. RESULTS Rv1915 and Rv1916 form a stable complex in vitro, with enhanced ICL/MICL activities as opposed to individual proteins. Further, activities monitored in the presence of acetyl-CoA show significant increase for Rv1916 and the complex but not of Rv0467 and Rv1915Δ90CT. Both full length and truncated Rv1915Δ90CT can form complex, implying the absence of its C-terminal disordered region in complex formation. Further, in silico analysis and site-directed mutagenesis studies reveal Y64 and Y65 to be crucial residues for Rv1915-Rv1916 complex formation. CONCLUSIONS This study uncovers the association between Rv1915 and Rv1916 and supports the role of acetyl-CoA in escalating the ICL/MICL activities of Rv1916 and Rv1915Δ90CT-Rv1916 complex. GENERAL SIGNIFICANCE Partitioning of ICL2 into Rv1915 and Rv1916 that associates to form a complex in Mtb H37Rv, suggests its importance in signaling and regulation of metabolic pathway particularly in carbon assimilation.
Collapse
Affiliation(s)
- Monika Antil
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, India
| | - Vibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, India.
| |
Collapse
|
18
|
Cronan MR. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front Immunol 2022; 13:820134. [PMID: 35320930 PMCID: PMC8934850 DOI: 10.3389/fimmu.2022.820134] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The defining pathology of tuberculosis is the granuloma, an organized structure derived from host immune cells that surrounds infecting Mycobacterium tuberculosis. As the location of much of the bacteria in the infected host, the granuloma is a central point of interaction between the host and the infecting bacterium. This review describes the signals and cellular reprogramming that drive granuloma formation. Further, as a central point of host-bacterial interactions, the granuloma shapes disease outcome by altering host immune responses and bacterial susceptibility to antibiotic treatment, as discussed herein. This new understanding of granuloma biology and the signaling behind it highlights the potential for host-directed therapies targeting the granuloma to enhance antibiotic access and tuberculosis-specific immune responses.
Collapse
Affiliation(s)
- Mark R. Cronan
-
In Vivo Cell Biology of Infection Group, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
19
|
Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis. Processes (Basel) 2022. [DOI: 10.3390/pr10020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Worldwide, Tuberculosis (TB) is caused by Mycobacterium tuberculosis bacteria. Ocimum sanctum, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of Ocimum sanctum in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of Ocimum sanctum were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from O. sanctum, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and O. sanctum. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB.
Collapse
|
20
|
Mao L, Xu L, Wang X, Xing Y, Wang J, Zhang Y, Yuan W, Du J, Shi Z, Ma J, Zhang J, Zhang X, Wang X. Enhanced immunogenicity of the tuberculosis subunit Rv0572c vaccine delivered in DMT liposome adjuvant as a BCG-booster. Tuberculosis (Edinb) 2022; 134:102186. [PMID: 35245739 PMCID: PMC8881818 DOI: 10.1016/j.tube.2022.102186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
COVID-19 has affected the progress made in the prevention and treatment of tuberculosis (TB); hence, the mortality of tuberculosis has risen. Different strategies-based novel TB vaccine candidates have been developed. This study identifies strategies to overcome the limitations of Bacille Calmette-Guérin (BCG) in preventing latent infection and reactivation of TB. The latency antigen Rv0572c was selected based on the mechanism of interaction between Mycobacterium tuberculosis and its host. The rRv0572c protein was used to stimulate whole blood samples derived from patients with clinically diagnosed active TB (ATBs) or latent TB infections (LTBIs) and healthy control (HCs) donors, confirming that this protein can be recognized by T cells in patients with TB, especially LTBIs. C57BL/6 mice were used to investigate the immunogenicity of the rRv0572c protein emulsified in the liposome adjuvant dimethyldioctadecylammonium [DDA], monophosphoryl lipid A [MPLA], trehalose-6, 6′-dibehenate [TDB] (DMT). The results demonstrated that rRv0572c/DMT could boost BCG-primed mice to induce antigen-specific CD4+ T cell production and generate functional T cells dominated by antigen-specific CD8+ T cells. The rRv0572c/DMT vaccine could also trigger limited Th2 humoral immune responses. These findings suggest that rRv0572c/DMT is a potential subunit vaccine candidate that can be used as a booster vaccine for BCG.
Collapse
Affiliation(s)
- Lirong Mao
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Lifa Xu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Xiaochun Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Yingru Xing
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, 230000, China
| | - Jian Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yanpeng Zhang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Wei Yuan
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jianpeng Du
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zilun Shi
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jilei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Jingyan Zhang
- Department of Clinical Laboratory, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, 046000, China
| | - Xiaohan Zhang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Xinping Wang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
21
|
A rabbit model to study antibiotic penetration at the site of infection for non-tuberculous mycobacterial lung disease: macrolide case study. Antimicrob Agents Chemother 2022; 66:e0221221. [PMID: 35099272 DOI: 10.1128/aac.02212-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its favorable potency and pharmacokinetics, and inconsistent clinical outcome. To quantify pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a translational model describing clarithromycin distribution from plasma to lung lesions, including the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two patients on long-term macrolide therapy. Through clinical simulations, we visualized the coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous bacteriostatic and bactericidal target attainment depending on the compartment and the corresponding potency against nontuberculous mycobacteria in clinically relevant assays. Overall, clarithromycin's favorable tissue penetration and lack of bactericidal activity indicated that its clinical activity is limited by pharmacodynamic rather than pharmacokinetic factors. Our results pave the way towards the simulation of lesion pharmacokinetic-pharmacodynamic coverage by multi-drug combinations, to enable the prioritization of promising regimens for clinical trials.
Collapse
|
22
|
Detection of a target protein (GroEl2) in Mycobacterium tuberculosis using a derivative of 1,2,4-triazolethiols. Mol Divers 2021; 26:2535-2548. [PMID: 34822095 DOI: 10.1007/s11030-021-10351-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Herein, we identified a potent lead compound RRA2, within a series of 54 derivatives of 1,2,4-triazolethiols (exhibit good potency as an anti-mycobacterial agents) against intracellular Mycobacterium tuberculosis (Mtb). Compound RRA2 showed significant mycobactericidal activity against active stage Mycobacterium bovis BCG and Mtb with minimum inhibitory concentration (MIC) values of 2.3 and 2.0 µg/mL, respectively. At MIC value, RRA2 compound yielded 0.82 log reduction of colony-forming unit (cfu) against non-replicating Mtb. Furthermore, RRA2 compound was selected for further target identification due to the presence of alkyne group, showing higher selectivity index (> 66.66 ± 0.22, in non-replicating stage). Using "click" chemistry, we synthesized the biotin linker-RRA2 conjugate, purified with HPLC method and confirmed the conjugation of biotin linker-RRA2 complex by HR-MS analysis. Furthermore, we successfully pulled down and identified a specific target protein GroEl2, from Mtb whole-cell extract. Furthermore, computational molecular modeling indicated RRA2 could interact with GroEl2, which explains the structure-activity relationship observed in this study. GroEL-2 identified a potent and specific target protein for RRA 2 compound in whole cell extract of Mtb H37Ra.
Collapse
|
23
|
Cho SN, Choi JA, Lee J, Son SH, Lee SA, Nguyen TD, Choi SY, Song CH. Ang II-Induced Hypertension Exacerbates the Pathogenesis of Tuberculosis. Cells 2021; 10:cells10092478. [PMID: 34572127 PMCID: PMC8465031 DOI: 10.3390/cells10092478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
It has been known that infection plays a role in the development of hypertension. However, the role of hypertension in the progression of infectious diseases remain unknown. Many countries with high rates of hypertension show geographical overlaps with those showing high incidence rates of tuberculosis (TB). To explore the role of hypertension in tuberculosis, we compared the effects of hypertension during mycobacterial infection, we infected both hypertensive Angiotensin II (Ang II) and control mice with Mycobacterium tuberculosis (Mtb) strain H37Ra by intratracheal injection. Ang II-induced hypertension promotes cell death through both apoptosis and necrosis in Mtb H37Ra infected mouse lungs. Interestingly, we found that lipid accumulation in pulmonary tissues was significantly increased in the hypertension group compared to the normal controls. Ang II-induced hypertension increases the formation of foamy macrophages during Mtb infection and it leads to cell death. Moreover, the hypertension group showed more severe granuloma formation and fibrotic lesions in comparison with the control group. Finally, we observed that the total number of mycobacteria was increased in the lungs in the hypertension group compared to the normal controls. Taken together, these results suggest that hypertension increases intracellular survival of Mtb through formation of foamy macrophages, resulting in severe pathogenesis of TB.
Collapse
Affiliation(s)
- Soo-Na Cho
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Junghwan Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sang-Hun Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Seong-Ahn Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Tam-Doan Nguyen
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Song-Yi Choi
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Translational Immunology Institute, Chungnam National University, Daejeon 34134, Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-N.C.); (J.-A.C.); (J.L.); (S.-H.S.); (S.-A.L.); (T.-D.N.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Translational Immunology Institute, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-580-8245; Fax: +82-42-585-3686
| |
Collapse
|
24
|
Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, Scott A. Lactate cross-talk in host-pathogen interactions. Biochem J 2021; 478:3157-3178. [PMID: 34492096 PMCID: PMC8454702 DOI: 10.1042/bcj20210263] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Lactate is the main product generated at the end of anaerobic glycolysis or during the Warburg effect and its role as an active signalling molecule is increasingly recognised. Lactate can be released and used by host cells, by pathogens and commensal organisms, thus being essential for the homeostasis of host-microbe interactions. Infection can alter this intricate balance, and the presence of lactate transporters in most human cells including immune cells, as well as in a variety of pathogens (including bacteria, fungi and complex parasites) demonstrates the importance of this metabolite in regulating host-pathogen interactions. This review will cover lactate secretion and sensing in humans and microbes, and will discuss the existing evidence supporting a role for lactate in pathogen growth and persistence, together with lactate's ability to impact the orchestration of effective immune responses. The ubiquitous presence of lactate in the context of infection and the ability of both host cells and pathogens to sense and respond to it, makes manipulation of lactate a potential novel therapeutic strategy. Here, we will discuss the preliminary research that has been carried out in the context of cancer, autoimmunity and inflammation.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - Frances S Grudzinska
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Matthew K O'Shea
- Department of Infection, University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, U.K
| | - Darragh Duffy
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - David R Thickett
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Aaron Scott
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
25
|
Pharmacokinetics and Target Attainment of SQ109 in Plasma and Human-Like Tuberculosis Lesions in Rabbits. Antimicrob Agents Chemother 2021; 65:e0002421. [PMID: 34228540 PMCID: PMC8370215 DOI: 10.1128/aac.00024-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SQ109 is a novel well-tolerated drug candidate in clinical development for the treatment of drug-resistant tuberculosis (TB). It is the only inhibitor of the MmpL3 mycolic acid transporter in clinical development. No SQ109-resistant mutant has been directly isolated thus far in vitro, in mice, or in patients, which is tentatively attributed to its multiple targets. It is considered a potential replacement for poorly tolerated components of multidrug-resistant TB regimens. To prioritize SQ109-containing combinations with the best potential for cure and treatment shortening, one must understand its contribution against different bacterial populations in pulmonary lesions. Here, we have characterized the pharmacokinetics of SQ109 in the rabbit model of active TB and its penetration at the sites of disease—lung tissue, cellular and necrotic lesions, and caseum. A two-compartment model with first-order absorption and elimination described the plasma pharmacokinetics. At the human-equivalent dose, parameter estimates fell within the ranges published for preclinical species. Tissue concentrations were modeled using an “effect” compartment, showing high accumulation in lung and cellular lesion areas with penetration coefficients in excess of 1,000 and lower passive diffusion in caseum after 7 daily doses. These results, together with the hydrophobic nature and high nonspecific caseum binding of SQ109, suggest that multiweek dosing would be required to reach steady state in caseum and poorly vascularized compartments, similar to bedaquiline. Linking lesion pharmacokinetics to SQ109 potency in assays against replicating, nonreplicating, and intracellular M. tuberculosis showed SQ109 concentrations markedly above pharmacokinetic-pharmacodynamic targets in lung and cellular lesions throughout the dosing interval.
Collapse
|
26
|
Brandenburg J, Marwitz S, Tazoll SC, Waldow F, Kalsdorf B, Vierbuchen T, Scholzen T, Gross A, Goldenbaum S, Hölscher A, Hein M, Linnemann L, Reimann M, Kispert A, Leitges M, Rupp J, Lange C, Niemann S, Behrends J, Goldmann T, Heine H, Schaible UE, Hölscher C, Schwudke D, Reiling N. WNT6/ACC2-induced storage of triacylglycerols in macrophages is exploited by Mycobacterium tuberculosis. J Clin Invest 2021; 131:e141833. [PMID: 34255743 DOI: 10.1172/jci141833] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
In view of emerging drug-resistant tuberculosis (TB), host-directed adjunct therapies are urgently needed to improve treatment outcomes with currently available anti-TB therapies. One approach is to interfere with the formation of lipid-laden "foamy" macrophages in the host, as they provide a nutrient-rich host cell environment for Mycobacterium tuberculosis (Mtb). Here, we provide evidence that Wnt family member 6 (WNT6), a ligand of the evolutionarily conserved Wingless/Integrase 1 (WNT) signaling pathway, promotes foam cell formation by regulating key lipid metabolic genes including acetyl-CoA carboxylase 2 (ACC2) during pulmonary TB. Using genetic and pharmacological approaches, we demonstrated that lack of functional WNT6 or ACC2 significantly reduced intracellular triacylglycerol (TAG) levels and Mtb survival in macrophages. Moreover, treatment of Mtb-infected mice with a combination of a pharmacological ACC2 inhibitor and the anti-TB drug isoniazid (INH) reduced lung TAG and cytokine levels, as well as lung weights, compared with treatment with INH alone. This combination also reduced Mtb bacterial numbers and the size of mononuclear cell infiltrates in livers of infected mice. In summary, our findings demonstrate that Mtb exploits WNT6/ACC2-induced storage of TAGs in macrophages to facilitate its intracellular survival, a finding that opens new perspectives for host-directed adjunctive treatment of pulmonary TB.
Collapse
Affiliation(s)
- Julius Brandenburg
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sebastian Marwitz
- Pathology, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Simone C Tazoll
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Franziska Waldow
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Bioanalytical Chemistry
| | - Barbara Kalsdorf
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Clinical Infectious Diseases
| | | | | | - Annette Gross
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Svenja Goldenbaum
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | | | - Lara Linnemann
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | | | - Andreas Kispert
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Michael Leitges
- Division of BioMedical Sciences/Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Jan Rupp
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Department of Infectious Diseases and Microbiology and
| | - Christoph Lange
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Clinical Infectious Diseases.,Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany.,Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | | | - Torsten Goldmann
- Pathology, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | | - Ulrich E Schaible
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | - Christoph Hölscher
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Infection Immunology, and
| | - Dominik Schwudke
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany.,Bioanalytical Chemistry
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
27
|
Jeny F, Bernaudin JF, Valeyre D, Kambouchner M, Pretolani M, Nunes H, Planès C, Besnard V. Hypoxia Promotes a Mixed Inflammatory-Fibrotic Macrophages Phenotype in Active Sarcoidosis. Front Immunol 2021; 12:719009. [PMID: 34456926 PMCID: PMC8385772 DOI: 10.3389/fimmu.2021.719009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background Macrophages are pivotal cells in sarcoidosis. Monocytes-derived (MD) macrophages have recently been demonstrated to play a major role especially in pulmonary sarcoidosis. From inflammatory tissues to granulomas, they may be exposed to low oxygen tension environments. As hypoxia impact on sarcoidosis immune cells has never been addressed, we designed the present study to investigate MD-macrophages from sarcoidosis patients in this context. We hypothesized that hypoxia may induce functional changes on MD-macrophages which could have a potential impact on the course of sarcoidosis. Methods We studied MD-macrophages, from high active sarcoidosis (AS) (n=26), low active or inactive sarcoidosis (IS) (n=24) and healthy controls (n=34) exposed 24 hours to normoxia (21% O2) or hypoxia (1.5% O2). Different macrophage functions were explored: hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB) activation, cytokines secretion, phagocytosis, CD80/CD86/HLA-DR expression, profibrotic response. Results We observed that hypoxia, with a significantly more pronounced effect in AS compared with controls and IS, increased the HIF-1α trans-activity, promoted a proinflammatory response (TNFα, IL1ß) without activating NF-κB pathway and a profibrotic response (TGFß1, PDGF-BB) with PAI-1 secretion associated with human lung fibroblast migration inhibition. These results were confirmed by immunodetection of HIF-1α and PAI-1 in granulomas observed in pulmonary biopsies from patients with sarcoidosis. Hypoxia also decreased the expression of CD80/CD86 and HLA-DR on MD-macrophages in the three groups while it did not impair phagocytosis and the expression of CD36 expression on cells in AS and IS at variance with controls. Conclusions Hypoxia had a significant impact on MD-macrophages from sarcoidosis patients, with the strongest effect seen in patients with high active disease. Therefore, hypoxia could play a significant role in sarcoidosis pathogenesis by increasing the macrophage proinflammatory response, maintaining phagocytosis and reducing antigen presentation, leading to a deficient T cell response. In addition, hypoxia could favor fibrosis by promoting profibrotic cytokines response and by sequestering fibroblasts in the vicinity of granulomas.
Collapse
Affiliation(s)
- Florence Jeny
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- AP-HP, Pulmonology Department, Avicenne Hospital, Bobigny, France
| | - Jean-François Bernaudin
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- Faculty of Medicine, Sorbonne University, Paris, France
| | - Dominique Valeyre
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- AP-HP, Pulmonology Department, Avicenne Hospital, Bobigny, France
| | - Marianne Kambouchner
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- AP-HP, Pathology Department, Avicenne Hospital, Bobigny, France
| | - Marina Pretolani
- Inserm UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France
- Faculty of Medicine, Bichat Hospital, Paris University, Paris, France
- Laboratory of Excellence, INFLAMEX, Paris University, DHU FIRE, Paris, France
| | - Hilario Nunes
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- AP-HP, Pulmonology Department, Avicenne Hospital, Bobigny, France
| | - Carole Planès
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- AP-HP, Physiology Department, Avicenne Hospital, Bobigny, France
| | - Valérie Besnard
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
| |
Collapse
|
28
|
Proteome remodeling in the Mycobacterium tuberculosis PknG knockout: Molecular evidence for the role of this kinase in cell envelope biogenesis and hypoxia response. J Proteomics 2021; 244:104276. [PMID: 34044169 DOI: 10.1016/j.jprot.2021.104276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis, is among the deadliest human pathogens. One of M. tuberculosis's pathogenic hallmarks is its ability to persist in a dormant state in the host. Thus, this pathogen has developed mechanisms to withstand stressful conditions found in the human host. Particularly, the Ser/Thr-protein kinase PknG has gained relevance since it regulates nitrogen metabolism and facilitates bacterial survival inside macrophages. Nevertheless, the molecular mechanisms underlying these effects are far from being elucidated. To further investigate these issues, we performed quantitative proteomic analyses of protein extracts from M. tuberculosis H37Rv and a mutant lacking pknG. We found that in the absence of PknG the mycobacterial proteome was remodeled since 5.7% of the proteins encoded by M. tuberculosis presented significant changes in its relative abundance compared with the wild-type. The main biological processes affected by pknG deletion were cell envelope components biosynthesis and response to hypoxia. Thirteen DosR-regulated proteins were underrepresented in the pknG deletion mutant, including Hrp-1, which was 12.5-fold decreased according to Parallel Reaction Monitoring experiments. Altogether, our results allow us to postulate that PknG regulation of bacterial adaptation to stress conditions might be an important mechanism underlying its reported effect on intracellular bacterial survival. SIGNIFICANCE: PknG is a Ser/Thr kinase from Mycobacterium tuberculosis with key roles in bacterial metabolism and bacterial survival within the host. However, at present the molecular mechanisms underlying these functions remain largely unknown. In this work, we evaluate the effect of pknG deletion on M. tuberculosis proteome using different approaches. Our results clearly show that the global proteome was remodeled in the absence of PknG and shed light on new molecular mechanism underlying PknG role. Altogether, this work contributes to a better understanding of the molecular bases of the adaptation of M. tuberculosis, one of the most deadly human pathogens, to its host.
Collapse
|
29
|
Peterson EJR, Abidi AA, Arrieta-Ortiz ML, Aguilar B, Yurkovich JT, Kaur A, Pan M, Srinivas V, Shmulevich I, Baliga NS. Intricate Genetic Programs Controlling Dormancy in Mycobacterium tuberculosis. Cell Rep 2021; 31:107577. [PMID: 32348771 PMCID: PMC7605849 DOI: 10.1016/j.celrep.2020.107577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/18/2019] [Accepted: 04/06/2020] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) displays the remarkable ability to transition in and out of dormancy, a hallmark of the pathogen’s capacity to evade the immune system and exploit susceptible individuals. Uncovering the gene regulatory programs that underlie the phenotypic shifts in MTB during disease latency and reactivation has posed a challenge. We develop an experimental system to precisely control dissolved oxygen levels in MTB cultures in order to capture the transcriptional events that unfold as MTB transitions into and out of hypoxia-induced dormancy. Using a comprehensive genome-wide transcription factor binding map and insights from network topology analysis, we identify regulatory circuits that deterministically drive sequential transitions across six transcriptionally and functionally distinct states encompassing more than three-fifths of the MTB genome. The architecture of the genetic programs explains the transcriptional dynamics underlying synchronous entry of cells into a dormant state that is primed to infect the host upon encountering favorable conditions. Mycobacterium tuberculosis (MTB) persists within the host by counteracting disparate stressors including hypoxia. Peterson et al. report a transcriptional program that coordinates sequential state transitions to drive MTB in and out of hypoxia-induced dormancy. Among varied properties, this program encodes advanced preparedness to infect the host in favorable conditions.
Collapse
Affiliation(s)
| | - Abrar A Abidi
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Boris Aguilar
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Amardeep Kaur
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, Departments of Microbiology and Biology, University of Washington, Seattle, WA; Lawrence Berkeley National Laboratories, Berkeley, CA.
| |
Collapse
|
30
|
Mycobacterium tuberculosis Load in Host Cells and the Antibacterial Activity of Alveolar Macrophages Are Linked and Differentially Regulated in Various Lung Lesions of Patients with Pulmonary Tuberculosis. Int J Mol Sci 2021; 22:ijms22073452. [PMID: 33810600 PMCID: PMC8037353 DOI: 10.3390/ijms22073452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis (Mtb) infection with the formation of a broad range of abnormal lung lesions within a single patient. Although host-pathogen interactions determine disease outcome, they are poorly understood within individual lesions at different stages of maturation. We compared Mtb load in a tuberculoma wall and the lung tissue distant from tuberculomas in TB patients. These data were combined with an analysis of activation and bactericidal statuses of alveolar macrophages and other cell subtypes examined both in ex vivo culture and on the histological sections obtained from the same lung lesions. The expression of pattern recognition receptors CD14, CD11b, and TLR-2, transcription factors HIF-1α, HIF-2α, and NF-κB p50 and p65, enzymes iNOS and COX-2, reactive oxygen species (ROS) biosynthesis, and lipid production were detected for various lung lesions, with individual Mtb loads in them. The walls of tuberculomas with insufficient inflammation and excessive fibrosis were identified as being the main niche for Mtb survival (single or as colonies) in non-foamy alveolar macrophages among various lung lesions examined. The identification of factors engaged in the control of Mtb infection and tissue pathology in local lung microenvironments, where host-pathogen relationships take place, is critical for the development of new therapeutic strategies.
Collapse
|
31
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
32
|
Bresser PL, Vorster M, Sathekge MM. An overview of the developments and potential applications of 68Ga-labelled PET/CT hypoxia imaging. Ann Nucl Med 2021; 35:148-158. [PMID: 33400147 DOI: 10.1007/s12149-020-01563-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
Non-invasive imaging of hypoxia plays a role in monitoring the body's adaptive response or the development of pathology under hypoxic conditions. Various techniques to image hypoxia have been investigated with a shift towards the use of molecular imaging using PET/CT. The role of hypoxia-specific radiopharmaceuticals such as radiolabelled nitroimidazoles is well documented particularly in the oncologic setting. With the increasing utilisation of in-house labelling with a PET benchtop generator, such as the 68Ge/68Ga generator, the use of 68Ga-labelled hypoxic radiopharmaceuticals in the clinical setting is developing. Since hypoxia plays a role in various pathologic states including infectious disease such as TB, there is a need to explore the potential application of 68Ga-labelled hypoxia seeking radiopharmaceuticals beyond oncology. The purpose of this review is to describe the developments of 68Ga-labelled hypoxic radiopharmaceuticals including the various chelators that have been investigated. Further, the role of hypoxia imaging in various pathologies is discussed with particular emphasis on the potential clinical applications of hypoxia PET/CT in TB.
Collapse
Affiliation(s)
- Philippa L Bresser
- Department of Radiography, Faculty of Health Sciences, School of Healthcare Sciences, University of Pretoria, HW Snyman Building North, Room 4-33, Bophelo Road, Gezina, Pretoria, 0002, South Africa. .,Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Mariza Vorster
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Kolbe K, Bell AC, Prosser GA, Assmann M, Yang HJ, Forbes HE, Gallucci S, Mayer-Barber KD, Boshoff HI, Barry Iii CE. Development and Optimization of Chromosomally-Integrated Fluorescent Mycobacterium tuberculosis Reporter Constructs. Front Microbiol 2020; 11:591866. [PMID: 33362741 PMCID: PMC7755994 DOI: 10.3389/fmicb.2020.591866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium tuberculosis resides in the lungs in various lesion types with unique microenvironmental conditions. This diversity is in line with heterogeneous disease progression and divergent drug efficiency. Fluorescent reporter strains can be used to decipher the micromilieu and to guide future treatment regimens. Current reporters using replicating plasmids, however, are not suitable for long-term mouse infections or studies in non-human primates. Using a combination of recombinant DNA and protein optimization techniques, we have developed reporter strains based on integrative plasmids, which exhibit stimulus-response characteristics and fluorescence intensities comparable to those based on replicating plasmids. We successfully applied the concepts by constructing a multi-color reporter strain able to detect simultaneous changes in environmental pH, Mg2+ concentrations, and protein expression levels.
Collapse
Affiliation(s)
- Katharina Kolbe
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alice C Bell
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gareth A Prosser
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Drug Discovery Unit, College of Life Sciences, James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Maike Assmann
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - He Eun Forbes
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sophia Gallucci
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Clifton E Barry Iii
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
Looney MM, Lu Y, Karakousis PC, Halushka MK. Mycobacterium tuberculosis Infection Drives Mitochondria-Biased Dysregulation of Host Transfer RNA-Derived Fragments. J Infect Dis 2020; 223:1796-1805. [PMID: 32959876 DOI: 10.1093/infdis/jiaa596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis, causes 10 million infections and 1.5 million deaths per year worldwide. The success of Mtb as a human pathogen is directly related to its ability to suppress host responses, which are critical for clearing intracellular pathogens. Emerging evidence suggests that key response pathways may be regulated by a novel class of small noncoding RNA, called transfer RNA (tRNA)-derived fragments (tRFs). tRFs can complex with Argonaute proteins to target and degrade messenger RNA targets, similarly to micro RNAs, but have thus far been overlooked in the context of bacterial infections. METHODS We generated a novel miRge2.0-based tRF-analysis tool, tRFcluster, and used it to analyze independently generated and publicly available RNA-sequencing datasets to assess tRF dysregulation in host cells following infection with Mtb and other intracellular bacterial pathogens. RESULTS We found that Mtb and Listeria monocytogenes drive dramatic tRF dysregulation, whereas other bacterial pathogens do not. Interestingly, Mtb infection uniquely increased the expression of mitochondria-derived tRFs rather than genomic-derived tRFs, suggesting an association with mitochondrial damage in Mtb infection. CONCLUSIONS tRFs are dysregulated in some, but not all, bacterial infections. Biased dysregulation of mitochondria-derived tRFs in Mtb infection suggests a link between mitochondrial distress and tRF production.
Collapse
Affiliation(s)
- Monika M Looney
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yin Lu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Petros C Karakousis
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Yu Y, Cai W, Zhou J, Lu H, Wang Y, Song Y, He R, Pei F, Wang X, Zhang R, Liu H, Wei F. Anti-arthritis effect of berberine associated with regulating energy metabolism of macrophages through AMPK/ HIF-1α pathway. Int Immunopharmacol 2020; 87:106830. [PMID: 32738596 DOI: 10.1016/j.intimp.2020.106830] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Berberine (BBR) is the effective constituent of Cortex phellodendri and was characterized as an excellent anti-microbial agent with significant anti-inflammatory effects. Previously, we had demonstrated that BBR alleviated the inflammatory response in adjuvant-induced arthritis (AA) rats by regulating polarization of macrophages. However, the exact mechanics by which BBR regulates macrophage polarization remained unclear. Here, we showed that BBR treatment had little influence on total number of macrophages in joints of AA rats, but increased the proportion of M2 macrophages and decreased the proportion of M1 macrophages. Meanwhile, we found BBR up-regulated the expression of AMP-activated protein kinase phosphorylation (p-AMPK) and down-regulated the expression of Hypoxia inducible factor 1α (HIF-1α) in synovial macrophages of AA rats. In vitro, using LPS-stimulated peritoneal macrophages from normal rats, we also verified that pretreatment with BBR promoted transition from M1 to M2 by up-regulating the expression of p-AMPK and suppressing the expression of HIF-1α. Compound C (an AMPK inhibitor) could abrogate the inhibition of BBR on migration of macrophages. Glycolysis of M1 suppressed by BBR through decreasing lactate export, glucose consumption, and increasing intracellular ATP content, which was remarkably reversed by Compound C. These findings indicated that anti-arthritis effect of BBR is associated with regulating energy metabolism of macrophages through AMPK/HIF-1α pathway.
Collapse
Affiliation(s)
- Yun Yu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Weiwei Cai
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Jing Zhou
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Huaqiu Lu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Yining Song
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Rui He
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Feilong Pei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Xiaodie Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Renhao Zhang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China; Anhui BBCA Pharmaceuticals Co., Ltd, No.6288, Donghai Avenue, Bengbu 233000, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu 233000, Anhui, China; Anhui BBCA Pharmaceuticals Co., Ltd, No.6288, Donghai Avenue, Bengbu 233000, Anhui, China; School of Chemistry and Chemical Engineering, Anhui University, No.3, Feixi Rode, Hefei 230039, Anhui, China.
| |
Collapse
|
36
|
Hortle E, Oehlers SH. Host-directed therapies targeting the tuberculosis granuloma stroma. Pathog Dis 2020; 78:5800987. [DOI: 10.1093/femspd/ftaa015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Mycobacteria have co-evolved with their hosts resulting in pathogens adept at intracellular survival. Pathogenic mycobacteria actively manipulate infected macrophages to drive granuloma formation while subverting host cell processes to create a permissive niche. Granuloma residency confers phenotypic antimicrobial resistance by physically excluding or neutralising antibiotics. Host-directed therapies (HDTs) combat infection by restoring protective immunity and reducing immunopathology independent of pathogen antimicrobial resistance status. This review covers innovative research that has discovered ‘secondary’ symptoms of infection in the granuloma stroma are actually primary drivers of infection and that relieving these stromal pathologies with HDTs benefits the host. Advances in our understanding of the relationship between tuberculosis and the host vasculature, haemostatic system and extracellular matrix reorganisation are discussed. Preclinical and clinical use of HDTs against these stromal targets are summarised.
Collapse
Affiliation(s)
- Elinor Hortle
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW 2050, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW 2050, Australia
| |
Collapse
|
37
|
Subbarao S, Sanchez-Garrido J, Krishnan N, Shenoy AR, Robertson BD. Genetic and pharmacological inhibition of inflammasomes reduces the survival of Mycobacterium tuberculosis strains in macrophages. Sci Rep 2020; 10:3709. [PMID: 32111888 PMCID: PMC7048741 DOI: 10.1038/s41598-020-60560-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis infection causes high rates of morbidity and mortality. Host-directed therapy may enhance the immune response, reduce tissue damage and shorten treatment duration. The inflammasome is integral to innate immune responses but over-activation has been described in tuberculosis (TB) pathology and TB-immune reconstitution syndrome. Here we explore how clinical isolates differentially activate the inflammasome and how inflammasome inhibition can lead to enhanced bacterial clearance. Wild-type, Nlrp3−/−/Aim2−/−, Casp1/11−/− and Asc−/− murine bone-marrow derived macrophages (BMDMs) were infected with laboratory strain M. tuberculosis H37Rv or clinical isolates from various lineages. Inflammasome activation and bacterial numbers were measured, and pharmacological inhibition of NLRP3 was achieved using MCC950. Clinical isolates of M. tuberculosis differed in their ability to activate inflammasomes. Beijing isolates had contrasting effects on IL-1β and caspase-1 activation, but all clinical isolates induced lower IL-1β release than H37Rv. Our studies suggest the involvement of NLRP3, AIM2 and an additional unknown sensor in IL-1β maturation. Pharmacological blockade of NLRP3 with MCC950 reduced bacterial survival, and combined treatment with the antimycobacterial drug rifampicin enhanced the effect. Modulating the inflammasome is an attractive adjunct to current anti-mycobacterial therapy that warrants further investigation.
Collapse
Affiliation(s)
- Sathyavani Subbarao
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Flowers Building, Imperial College London, London, SW7 2AZ, UK
| | - Julia Sanchez-Garrido
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Flowers Building, Imperial College London, London, SW7 2AZ, UK
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Flowers Building, Imperial College London, London, SW7 2AZ, UK
| | - Avinash R Shenoy
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Flowers Building, Imperial College London, London, SW7 2AZ, UK.
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Flowers Building, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
38
|
Arbués A, Brees D, Chibout SD, Fox T, Kammüller M, Portevin D. TNF-α antagonists differentially induce TGF-β1-dependent resuscitation of dormant-like Mycobacterium tuberculosis. PLoS Pathog 2020; 16:e1008312. [PMID: 32069329 PMCID: PMC7048311 DOI: 10.1371/journal.ppat.1008312] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/28/2020] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
TNF-α- as well as non-TNF-α-targeting biologics are prescribed to treat a variety of immune-mediated inflammatory disorders. The well-documented risk of tuberculosis progression associated with anti-TNF-α treatment highlighted the central role of TNF-α for the maintenance of protective immunity, although the rate of tuberculosis detected among patients varies with the nature of the drug. Using a human, in-vitro granuloma model, we reproduce the increased reactivation rate of tuberculosis following exposure to Adalimumab compared to Etanercept, two TNF-α-neutralizing biologics. We show that Adalimumab, because of its bivalence, specifically induces TGF-β1-dependent Mycobacterium tuberculosis (Mtb) resuscitation which can be prevented by concomitant TGF-β1 neutralization. Moreover, our data suggest an additional role of lymphotoxin-α–neutralized by Etanercept but not Adalimumab–in the control of latent tuberculosis infection. Furthermore, we show that, while Secukinumab, an anti-IL-17A antibody, does not revert Mtb dormancy, the anti-IL-12-p40 antibody Ustekinumab and the recombinant IL-1RA Anakinra promote Mtb resuscitation, in line with the importance of these pathways in tuberculosis immunity. Mycobacterium tuberculosis (Mtb) is the world’s leading infectious killer. Multi-cellular immune structures called granulomas may constitute a latent form of Mtb infection and a potential reservoir for future cases. Post-marketing surveillance data suggested that Mtb protective immunity is unequally impacted by different TNF-α-targeting drugs used to treat inflammatory disorders. We used an in-vitro granuloma model to reproduce these clinical observations and gain mechanistic insights and, in addition, to assess the risk of tuberculosis reactivation associated with the use of other immunomodulatory drugs. These results may inspire pharmacologists to design future drug-development strategies of biologics in particular, while immunologists and microbiologists will find a relevant experimental approach to disentangle the complex interactions involved in Mtb protective immunity and immunopathogenesis.
Collapse
Affiliation(s)
- Ainhoa Arbués
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dominique Brees
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Todd Fox
- Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail: (MK); (DP)
| | - Damien Portevin
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (MK); (DP)
| |
Collapse
|
39
|
Whitehouse AJ, Libardo MDJ, Kasbekar M, Brear PD, Fischer G, Thomas CJ, Barry CE, Boshoff HIM, Coyne AG, Abell C. Targeting of Fumarate Hydratase from Mycobacterium tuberculosis Using Allosteric Inhibitors with a Dimeric-Binding Mode. J Med Chem 2019; 62:10586-10604. [PMID: 31517489 PMCID: PMC10478077 DOI: 10.1021/acs.jmedchem.9b01203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the growing worldwide prevalence of antibiotic-resistant strains of tuberculosis (TB), new targets are urgently required for the development of treatments with novel modes of action. Fumarate hydratase (fumarase), a vulnerable component of the citric acid cycle in Mycobacterium tuberculosis (Mtb), is a metabolic target that could satisfy this unmet demand. A key challenge in the targeting of Mtb fumarase is its similarity to the human homolog, which shares an identical active site. A potential solution to this selectivity problem was previously found in a high-throughput screening hit that binds in a nonconserved allosteric site. In this work, a structure-activity relationship study was carried out with the determination of further structural biology on the lead series, affording derivatives with sub-micromolar inhibition. Further, the screening of this series against Mtb in vitro identified compounds with potent minimum inhibitory concentrations.
Collapse
Affiliation(s)
- Andrew J. Whitehouse
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - M. Daben J. Libardo
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Monica Kasbekar
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20850, USA
| | - Paul D. Brear
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Craig J. Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20850, USA
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony G. Coyne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
40
|
Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun 2019; 10:4970. [PMID: 31672993 PMCID: PMC6823465 DOI: 10.1038/s41467-019-12956-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
The viability of Mycobacterium tuberculosis (Mtb) depends on energy generated by its respiratory chain. Cytochrome bc1-aa3 oxidase and type-2 NADH dehydrogenase (NDH-2) are respiratory chain components predicted to be essential, and are currently targeted for drug development. Here we demonstrate that an Mtb cytochrome bc1-aa3 oxidase deletion mutant is viable and only partially attenuated in mice. Moreover, treatment of Mtb-infected marmosets with a cytochrome bc1-aa3 oxidase inhibitor controls disease progression and reduces lesion-associated inflammation, but most lesions become cavitary. Deletion of both NDH-2 encoding genes (Δndh-2 mutant) reveals that the essentiality of NDH-2 as shown in standard growth media is due to the presence of fatty acids. The Δndh-2 mutant is only mildly attenuated in mice and not differently susceptible to clofazimine, a drug in clinical use proposed to engage NDH-2. These results demonstrate the intrinsic plasticity of Mtb's respiratory chain, and highlight the challenges associated with targeting the pathogen's respiratory enzymes for tuberculosis drug development.
Collapse
|
41
|
Prasad D, Arora D, Nandicoori VK, Muniyappa K. Elucidating the functional role of Mycobacterium smegmatis recX in stress response. Sci Rep 2019; 9:10912. [PMID: 31358794 PMCID: PMC6662834 DOI: 10.1038/s41598-019-47312-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The RecX protein has attracted considerable interest because the recX mutants exhibit multiple phenotypes associated with RecA functions. To further our understanding of the functional relationship between recA and recX, the effect of different stress treatments on their expression profiles, cell yield and viability were investigated. A significant correlation was found between the expression of Mycobacterium smegmatis recA and recX genes at different stages of growth, and in response to different stress treatments albeit recX exhibiting lower transcript and protein abundance at the mid-log and stationary phases of the bacterial growth cycle. To ascertain their roles in vivo, a targeted deletion of the recX and recArecX was performed in M. smegmatis. The growth kinetics of these mutant strains and their sensitivity patterns to different stress treatments were assessed relative to the wild-type strain. The deletion of recA affected normal cell growth and survival, while recX deletion showed no significant effect. Interestingly, deletion of both recX and recA genes results in a phenotype that is intermediate between the phenotypes of the ΔrecA mutant and the wild-type strain. Collectively, these results reveal a previously unrecognized role for M. smegmatis recX and support the notion that it may regulate a subset of the yet unknown genes involved in normal cell growth and DNA-damage repair.
Collapse
Affiliation(s)
- Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Divya Arora
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
42
|
Revisiting hypoxia therapies for tuberculosis. Clin Sci (Lond) 2019; 133:1271-1280. [PMID: 31209098 DOI: 10.1042/cs20190415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
Abstract
The spectre of the coming post-antibiotic age demands novel therapies for infectious diseases. Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the single deadliest infection throughout human history. M. tuberculosis has acquired antibiotic resistance at an alarming rate with some strains reported as being totally drug resistant. Host-directed therapies (HDTs) attempt to overcome the evolution of antibiotic resistance by targeting relatively immutable host processes. Here, I hypothesise the induction of hypoxia via anti-angiogenic therapy will be an efficacious HDT against TB. I argue that anti-angiogenic therapy is a modernisation of industrial revolution era sanatoria treatment for TB, and present a view of the TB granuloma as a 'bacterial tumour' that can be treated with anti-angiogenic therapies to reduce bacterial burden and spare host immunopathology. I suggest two complementary modes of action, induction of bacterial dormancy and activation of host hypoxia-induced factor (HIF)-mediated immunity, and define the experimental tools necessary to test this hypothesis.
Collapse
|
43
|
Rienksma RA, Schaap PJ, Martins dos Santos VAP, Suarez-Diez M. Modeling Host-Pathogen Interaction to Elucidate the Metabolic Drug Response of Intracellular Mycobacterium tuberculosis. Front Cell Infect Microbiol 2019; 9:144. [PMID: 31139575 PMCID: PMC6519342 DOI: 10.3389/fcimb.2019.00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
Little is known about the metabolic state of Mycobacterium tuberculosis (Mtb) inside the phagosome, a compartment inside phagocytes for killing pathogens and other foreign substances. We have developed a combined model of Mtb and human metabolism, sMtb-RECON and used this model to predict the metabolic state of Mtb during infection of the host. Amino acids are predicted to be used for energy production as well as biomass formation. Subsequently we assessed the effect of increasing dosages of drugs targeting metabolism on the metabolic state of the pathogen and predict resulting metabolic adaptations and flux rerouting through various pathways. In particular, the TCA cycle becomes more important upon drug application, as well as alanine, aspartate, glutamate, proline, arginine and porphyrin metabolism, while glycine, serine, and threonine metabolism become less important. We modeled the effect of 11 metabolically active drugs. Notably, the effect of eight could be recreated and two major profiles of the metabolic state were predicted. The profiles of the metabolic states of Mtb affected by the drugs BTZ043, cycloserine and its derivative terizidone, ethambutol, ethionamide, propionamide, and isoniazid were very similar, while TMC207 is predicted to have quite a different effect on metabolism as it inhibits ATP synthase and therefore indirectly interferes with a multitude of metabolic pathways.
Collapse
Affiliation(s)
- Rienk A. Rienksma
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
44
|
Rao M, Dodoo E, Zumla A, Maeurer M. Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Front Microbiol 2019; 10:962. [PMID: 31134013 PMCID: PMC6514247 DOI: 10.3389/fmicb.2019.00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
The biology and clinical efficacy of immune cells from patients with infectious diseases or cancer are associated with metabolic programming. Host immune- and stromal-cell genetic and epigenetic signatures in response to the invading pathogen shape disease pathophysiology and disease outcomes. Directly linked to the immunometabolic axis is the role of the host microbiome, which is also discussed here in the context of productive immune responses to lung infections. We also present host-directed therapies (HDT) as a clinically viable strategy to refocus dysregulated immunometabolism in patients with infectious diseases, which requires validation in early phase clinical trials as adjuncts to conventional antimicrobial therapy. These efforts are expected to be continuously supported by newly generated basic and translational research data to gain a better understanding of disease pathology while devising new molecularly defined platforms and therapeutic options to improve the treatment of patients with pulmonary infections, particularly in relation to multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
45
|
Del Portillo P, García-Morales L, Menéndez MC, Anzola JM, Rodríguez JG, Helguera-Repetto AC, Ares MA, Prados-Rosales R, Gonzalez-y-Merchand JA, García MJ. Hypoxia Is Not a Main Stress When Mycobacterium tuberculosis Is in a Dormancy-Like Long-Chain Fatty Acid Environment. Front Cell Infect Microbiol 2019; 8:449. [PMID: 30687646 PMCID: PMC6333855 DOI: 10.3389/fcimb.2018.00449] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
The capacity of Mycobacterium tuberculosis (Mtb) to sense, respond and adapt to a variable and hostile environment within the host makes it one of the most successful human pathogens. During different stages of infection, Mtb is surrounded by a plethora of lipid molecules and current evidence points out the relevance of fatty acids during the infectious process. In this study, we have compared the transcriptional response of Mtb to hypoxia in cultures supplemented with a mix of even long-chain fatty acids or dextrose as main carbon sources. Using RNA sequencing, we have identified differential expressed genes in early and late hypoxia, defined according to the in vitro Wayne and Hayes model, and compared the results with the exponential phase of growth in both carbon sources. We show that the number of genes over-expressed in the lipid medium was quite low in both, early and late hypoxia, relative to conditions including dextrose, with the exception of transcripts of stable and non-coding RNAs, which were more expressed in the fatty acid medium. We found that sigB and sigE were over-expressed in the early phase of hypoxia, confirming their pivotal role in early adaptation to low oxygen concentration independently of the carbon source. A drastic contrast was found with the transcriptional regulatory factors at early hypoxia. Only 2 transcriptional factors were over-expressed in early hypoxia in the lipid medium compared to 37 that were over-expressed in the dextrose medium. Instead of Rv0081, known to be the central regulator of hypoxia in dextrose, Rv2745c (ClgR), seems to play a main role in hypoxia in the fatty acid medium. The low level of genes associated to the stress-response during their adaptation to hypoxia in fatty acids, suggests that this lipid environment makes hypoxia a less stressful condition for the tubercle bacilli. Taken all together, these results indicate that the presence of lipid molecules shapes the metabolic response of Mtb to an adaptive state for different stresses within the host, including hypoxia. This fact could explain the success of Mtb to establish long-term survival during latent infection.
Collapse
Affiliation(s)
- Patricia Del Portillo
- Departamento de Biotecnología Molecular y Biología Computacional y Bioinformática, Corporación CorpoGen, Bogotá, Colombia
| | - Lázaro García-Morales
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
| | - María Carmen Menéndez
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Manuel Anzola
- Departamento de Biotecnología Molecular y Biología Computacional y Bioinformática, Corporación CorpoGen, Bogotá, Colombia
| | - Juan Germán Rodríguez
- Departamento de Biotecnología Molecular y Biología Computacional y Bioinformática, Corporación CorpoGen, Bogotá, Colombia
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Torre de Investigación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Rafael Prados-Rosales
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Cooperative Research bioGUNE (CICbioGUNE), Bizkaia Technology Park, Derio, Spain
| | - Jorge A. Gonzalez-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Jesús García
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
46
|
Ravan P, Nejad Sattari T, Siadat SD, Vaziri F. Evaluation of the expression of cytokines and chemokines in macrophages in response to rifampin-monoresistant Mycobacterium tuberculosis and H37Rv strain. Cytokine 2018; 115:127-134. [PMID: 30594437 DOI: 10.1016/j.cyto.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/17/2018] [Accepted: 12/02/2018] [Indexed: 01/02/2023]
Abstract
Macrophages are the primary phagocytes in the lungs and a part of the host defense system against Mycobacterium tuberculosis (Mtb), involved in the primary immune response. While several studies have assessed the effects of resistance to rifampin on Mtb physiology, the consequences of mutations in genes encoding the beta subunit of RNA polymerase (rpoB) for host-pathogen interactions remain poorly understood. In this study, rifampin-monoresistant (RMR) Mtb and H37Rv strains were used to infect the THP-1-derived macrophages. Real-time quantitative reverse transcription PCR assay was carried out to determine mRNA expression in 84 cytokine and chemokine genes. Production of specific cytokines and chemokines was measured by ELISA assay. In conclusion, the current study shed more light on the fitness cost of RMR strain and the potential effects of rpoB gene mutations on Mtb-host interactions. These results initially demonstrate that the Mtb carrying the rpoB-S450L can modulate macrophage responses to mediate bacterial survival.
Collapse
Affiliation(s)
- Parvaneh Ravan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Taher Nejad Sattari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
47
|
Li Y, Spiropoulos J, Cooley W, Khara JS, Gladstone CA, Asai M, Bossé JT, Robertson BD, Newton SM, Langford PR. Galleria mellonella - a novel infection model for the Mycobacterium tuberculosis complex. Virulence 2018; 9:1126-1137. [PMID: 30067135 PMCID: PMC6086298 DOI: 10.1080/21505594.2018.1491255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animal models have long been used in tuberculosis research to understand disease pathogenesis and to evaluate novel vaccine candidates and anti-mycobacterial drugs. However, all have limitations and there is no single animal model which mimics all the aspects of mycobacterial pathogenesis seen in humans. Importantly mice, the most commonly used model, do not normally form granulomas, the hallmark of tuberculosis infection. Thus there is an urgent need for the development of new alternative in vivo models. The insect larvae, Galleria mellonella has been increasingly used as a successful, simple, widely available and cost-effective model to study microbial infections. Here we report for the first time that G. mellonella can be used as an infection model for members of the Mycobacterium tuberculosis complex. We demonstrate a dose-response for G. mellonella survival infected with different inocula of bioluminescent Mycobacterium bovis BCG lux, and demonstrate suppression of mycobacterial luminesence over 14 days. Histopathology staining and transmission electron microscopy of infected G. mellonella phagocytic haemocytes show internalization and aggregation of M. bovis BCG lux in granuloma-like structures, and increasing accumulation of lipid bodies within M. bovis BCG lux over time, characteristic of latent tuberculosis infection. Our results demonstrate that G. mellonella can act as a surrogate host to study the pathogenesis of mycobacterial infection and shed light on host-mycobacteria interactions, including latent tuberculosis infection.
Collapse
Affiliation(s)
- Yanwen Li
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - John Spiropoulos
- b Department of Pathology , Animal and Plant Health Agency , Addlestone , UK
| | - William Cooley
- b Department of Pathology , Animal and Plant Health Agency , Addlestone , UK
| | - Jasmeet Singh Khara
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK.,c Department of Pharmacy , National University of Singapore , Singapore
| | - Camilla A Gladstone
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Masanori Asai
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Janine T Bossé
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Brian D Robertson
- d MRC Centre for Molecular Bacteriology and Infection, Department of Medicine , Imperial College London , London , UK
| | - Sandra M Newton
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Paul R Langford
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| |
Collapse
|
48
|
Activity of DNA-targeted C8-linked pyrrolobenzodiazepine-heterocyclic polyamide conjugates against aerobically and hypoxically grown Mycobacterium tuberculosis under acidic and neutral conditions. J Antibiot (Tokyo) 2018; 71:831-834. [PMID: 29795520 DOI: 10.1038/s41429-018-0068-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/25/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the aetiological agent of tuberculosis, the leading cause of death worldwide from a single infectious agent. Mtb is a highly adaptable human pathogen that might enter a dormant non-replicating (NR), drug-tolerant stage. Reactivation of dormant Mtb can lead to active disease. Antibiotic treatments of active and latent tuberculosis are long, complex and may fail to fully eradicate the infection. Therefore, it is imperative to identify novel compounds with new mechanisms of action active against NR bacilli. Dormant Mtb habitat is mostly thought to be the pH-neutral and hypoxic caseous granuloma. We have used the Wayne culture model to reproduce this environment and tested the activities of two DNA-targeted agents, C8-linked-pyrrolobenzodiazepine(PBD)-polyamide conjugates 1 and 2, against Mtb grown in aerobic and hypoxic conditions in both acidic and pH-neutral media. PBD 2 showed growth inhibitory activity at 5.1 µg/ml against 19-day-old hypoxic NR Mtb cultures with 1.8 log10 CFU reduction on day 21 at pH 7.3. PBD 2 was particularly effective against 5-day-old aerobic cells at pH 7.3, with CFU reduction (>6.8 log10) on day 21 at 5.1 µg/ml being identical to that of rifampin at 8 µg/ml. PBD 2 qualifies as a promising lead against aerobic and NR Mtb.
Collapse
|
49
|
Kolbe K, Veleti SK, Johnson EE, Cho YW, Oh S, Barry CE. Role of Chemical Biology in Tuberculosis Drug Discovery and Diagnosis. ACS Infect Dis 2018; 4:458-466. [PMID: 29364647 DOI: 10.1021/acsinfecdis.7b00242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The use of chemical techniques to study biological systems (often referred to currently as chemical biology) has become a powerful tool for both drug discovery and the development of novel diagnostic strategies. In tuberculosis, such tools have been applied to identifying drug targets from hit compounds, matching high-throughput screening hits against large numbers of isolated protein targets and identifying classes of enzymes with important functions. Metabolites unique to mycobacteria have provided important starting points for the development of innovative tools. For example, the unique biology of trehalose has provided both novel diagnostic strategies as well as probes of in vivo biological processes that are difficult to study any other way. Other mycobacterial metabolites are potentially valuable starting points and have the potential to illuminate new aspects of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Katharina Kolbe
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Sri Kumar Veleti
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Emma E. Johnson
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Young-Woo Cho
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| |
Collapse
|
50
|
Shaping the niche in macrophages: Genetic diversity of the M. tuberculosis complex and its consequences for the infected host. Int J Med Microbiol 2017; 308:118-128. [PMID: 28969988 DOI: 10.1016/j.ijmm.2017.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Pathogenic mycobacteria of the Mycobacterium tuberculosis complex (MTBC) have co-evolved with their individual hosts and are able to transform the hostile environment of the macrophage into a permissive cellular habitat. The impact of MTBC genetic variability has long been considered largely unimportant in TB pathogenesis. Members of the MTBC can now be distinguished into three major phylogenetic groups consisting of 7 phylogenetic lineages and more than 30 so called sub-lineages/subgroups. MTBC genetic diversity indeed influences the transmissibility and virulence of clinical MTBC isolates as well as the immune response and the clinical outcome. Here we review the genetic diversity and epidemiology of MTBC strains and describe the current knowledge about the host immune response to infection with MTBC clinical isolates using human and murine experimental model systems in vivo and in vitro. We discuss the role of innate cytokines in detail and portray two in our group recently developed approaches to characterize the intracellular niches of MTBC strains. Characterizing the niches and deciphering the strategies of MTBC strains to transform an antibacterial effector cell into a permissive cellular habitat offers the opportunity to identify strain- and lineage-specific key factors which may represent targets for novel antimicrobial or host directed therapies for tuberculosis.
Collapse
|