1
|
Ma J, Xu S, Li Z, Li YA, Wang S, Shi H. Enhancement of protective efficacy of recombinant attenuated Salmonella typhimurium delivering H9N2 avian influenza virus hemagglutinins(HA) antigen vaccine candidate strains by C-C motif chemokine ligand 5 in chickens(chCCL5). Vet Microbiol 2024; 298:110264. [PMID: 39395372 DOI: 10.1016/j.vetmic.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
The H9N2 inactivated avian influenza vaccine cannot induce cellular and mucosal immune responses, while the attenuated Salmonella vector as an intracellular bacterium can induce dominant cellular and mucosal immune responses. However, it provides low protection against the virus when delivering viral antigens and needs further optimization. Chicken C-C motif chemokine ligand 5 (chCCL5) is an important CC chemokine associated with immune cell chemotaxis, migration, and viral infection. This study connected the sequence of chCCL5 (CCL5) with the hemagglutinin sequence of the H9N2 avian influenza virus (yH9HA), utilizing the attenuated Salmonella typhimurium vector containing the delayed lysis system MazE/F regulated by arabinose as a carrier. A vaccine strain of recombinant attenuated Salmonella typhimurium and H9N2 avian influenza virus HA, rSC0130 (pS0017-yH9HA-CCL5), was successfully constructed. The experimental results indicate that yH9HA-CCL5 can be expressed in 293 T cells; compared to the strain without CCL5, rSC0130 (pS0017-yH9HA-CCL5) can induce significantly increased cellular immune responses and provide better protective effects in H9N2 virus challenge experiments. The above results indicate that chCCL5 can significantly enhance the protective effect of Salmonella delivering H9N2 avian influenza virus HA protein vaccine against H9N2 avian influenza virus infection, providing valuable theoretical support for further improving the protective efficiency of recombinant attenuated Salmonella vectors for delivering viral antigens.
Collapse
Affiliation(s)
- Jingwen Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shunshun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zewei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
2
|
Dolatyabi S, Renu S, Schrock J, Renukaradhya GJ. Chitosan-nanoparticle-based oral Salmonella enteritidis subunit vaccine elicits cross-protection against Salmonella typhimurium in broilers. Poult Sci 2024; 103:103569. [PMID: 38447310 PMCID: PMC11067733 DOI: 10.1016/j.psj.2024.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Non-typhoidal Salmonella infection is a significant health and economic burden in poultry industry. Developing an oral vaccine to induce robust mucosal immunity in the intestines of birds, especially cross protection against different Salmonella serotypes is challenging. Therefore, a potent oral vaccine platform that can mitigate different serotypes of Salmonella is warranted for the poultry industry. We reported earlier that the Salmonella enteritidis (SE) immunogenic outer membrane proteins (OMPs) and flagellin (FLA) entrapped in mannose chitosan nanoparticles (OMPs-FLA-mCS NPs) administered prime-boost (d-3 and 3-wk later) by oral inoculation elicits mucosal immunity and reduces challenge SE colonization by over 1 log10 CFU in birds. In this study, we sought to evaluate whether the SE antigens containing OMPs-FLA-mCS NPs vaccine induces cross-protection against Salmonella typhimurium (ST) in broilers. Our data indicated that the OMPs-FLA-mCS NPs vaccine induced higher cross-protective antibody responses compared to commercial Poulvac ST vaccine (contains a modified-live ST bacterium). Particularly, OMPs-FLA-mCS-NP vaccine elicited OMPs and FLA antigens specific increased production of secretory IgA and IgY antibodies in samples collected at both post-vaccination and post-challenge timepoints compared to commercial vaccine group. Notably, the vaccine reduced the challenge ST bacterial load by 0.8 log10 CFU in the cecal content, which was comparable to the outcome of Poulvac ST vaccination. In conclusion, our data suggested that orally administered OMPs-FLA-mCS-NP SE vaccine elicited cross protective mucosal immune responses against ST colonization in broilers. Thus, this candidate vaccine could be a viable option replacing the existing both live and killed Salmonella vaccines for birds.
Collapse
Affiliation(s)
- Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences; The Ohio State University, Wooster, OH 44691, USA
| | - Sankar Renu
- Center for Food Animal Health, Department of Animal Sciences; The Ohio State University, Wooster, OH 44691, USA
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences; The Ohio State University, Wooster, OH 44691, USA
| | - Gourapura J Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences; The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
3
|
Sang S, Song W, Lu L, Ou Q, Guan Y, Tao H, Wang Y, Liu C. The Trimeric Autotransporter Adhesin SadA from Salmonella spp. as a Novel Bacterial Surface Display System. Vaccines (Basel) 2024; 12:399. [PMID: 38675781 PMCID: PMC11054257 DOI: 10.3390/vaccines12040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Bacterial surface display platforms have been developed for applications such as vaccine delivery and peptide library screening. The type V secretion system is an attractive anchoring motif for the surface expression of foreign proteins in gram-negative bacteria. SadA belongs to subtype C of the type V secretion system derived from Salmonella spp. and promotes biofilm formation and host cell adherence. The inner membrane lipoprotein SadB is important for SadA translocation. In this study, SadA was used as an anchoring motif to expose heterologous proteins in Salmonella typhimurium using SadB. The ability of SadA to display heterologous proteins on the S. typhimurium surface in the presence of SadB was approximately three-fold higher than that in its absence of SadB. Compared to full-length SadA, truncated SadAs (SadA877 and SadA269) showed similar display capacities when exposing the B-cell epitopes of urease B from Helicobacter pylori (UreB158-172aa and UreB349-363aa). We grafted different protein domains, including mScarlet (red fluorescent protein), the urease B fragment (UreBm) from H. pylori SS1, and/or protective antigen domain 4 from Bacillus anthracis A16R (PAD4), onto SadA877 or SadA1292. Whole-cell dot blotting, immunofluorescence, and flow cytometric analyses confirmed the localization of Flag×3-mScarlet (~30 kDa) and Flag×3-UreBm-mScarlet (~58 kDa) to the S. typhimurium surface using truncated SadA877 or SadA1292 as an anchoring motif. However, Flag×3-UreBm-PAD4-mScarlet (~75 kDa) was displayed on S. typhimurium using SadA1292. The oral administrated pSadBA1292-FUM/StmΔygeAΔmurI and pSadBA877-FUM/StmΔygeAΔmurI could elicit a significant mucosal and humoral immunity response. SadA could thus be used as an anchoring motif for the surface expression of large heterologous proteins as a potential strategy for attenuated bacterial vaccine development.
Collapse
Affiliation(s)
- Shuli Sang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Wenge Song
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Lu Lu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Qikun Ou
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Yiyan Guan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Haoxia Tao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Yanchun Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Chunjie Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| |
Collapse
|
4
|
Winter K, Houle S, Dozois CM, Ward BJ. Multimodal vaccination targeting the receptor binding domains of Clostridioides difficile toxins A and B with an attenuated Salmonella Typhimurium vector (YS1646) protects mice from lethal challenge. Microbiol Spectr 2024; 12:e0310922. [PMID: 38189293 PMCID: PMC10846063 DOI: 10.1128/spectrum.03109-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Developing a vaccine against Clostridioides difficile is a key strategy to protect the elderly. Two candidate vaccines using a traditional approach of intramuscular (IM) delivery of recombinant antigens targeting C. difficile toxins A (TcdA) and B (TcdB) failed to meet their primary endpoints in large phase 3 trials. To elicit a mucosal response against C. difficile, we repurposed an attenuated strain of Salmonella Typhimurium (YS1646) to deliver the receptor binding domains (rbd) of TcdA and TcdB to the gut-associated lymphoid tissues, to elicit a mucosal response against C. difficile. In this study, YS1646 candidates with either rbdA or rbdB expression cassettes integrated into the bacterial chromosome at the attTn7 site were generated and used in a short-course multimodal vaccination strategy that combined oral delivery of the YS1646 candidate(s) on days 0, 2, and 4 and IM delivery of recombinant antigen(s) on day 0. Five weeks after vaccination, mice had high serum IgG titers and increased intestinal antigen-specific IgA titers. Multimodal vaccination increased the IgG avidity compared to the IM-only control. In the mesenteric lymph nodes, we observed increased IL-5 secretion and increased IgA+ plasma cells. Oral vaccination skewed the IgG response toward IgG2c dominance (vs IgG1 dominance in the IM-only group). Both oral alone and multimodal vaccination against TcdA protected mice from lethal C. difficile challenge (100% survival vs 30% in controls). Given the established safety profile of YS1646, we hope to move this vaccine candidate forward into a phase I clinical trial.IMPORTANCEClostridioides difficile remains a major public health threat, and new approaches are needed to develop an effective vaccine. To date, the industry has focused on intramuscular vaccination targeting the C. difficile toxins. Multiple disappointing results in phase III trials have largely confirmed that this may not be the best strategy. As C. difficile is a pathogen that remains in the intestine, we believe that targeting mucosal immune responses in the gut will be a more successful strategy. We have repurposed a highly attenuated Salmonella Typhimurium (YS1646), originally pursued as a cancer therapeutic, as a vaccine vector. Using a multimodal vaccination strategy (both recombinant protein delivered intramuscularly and YS1646 expressing antigen delivered orally), we elicited both systemic and local immune responses. Oral vaccination alone completely protected mice from lethal challenge. Given the established safety profile of YS1646, we hope to move these vaccine candidates forward into a phase I clinical trial.
Collapse
Affiliation(s)
- Kaitlin Winter
- Department of Microbiology and Immunology, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Sébastien Houle
- Institut National de Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Brian J. Ward
- Department of Microbiology and Immunology, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
5
|
Guo P, Wang S, Yue H, Zhang X, Ma G, Li X, Wei W. Advancement of Engineered Bacteria for Orally Delivered Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302702. [PMID: 37537714 DOI: 10.1002/smll.202302702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Indexed: 08/05/2023]
Abstract
The use of bacteria and their biotic components as therapeutics has shown great potential in the treatment of diseases. Orally delivered bacteria improve patient compliance compared with injection-administered bacteria and are considered the preferred mode. However, due to the harsh gastrointestinal environment, the viability and therapeutic efficacy of orally delivered bacteria are significantly reduced in vivo. In recent years, with the rapid development of synthetic biology and nanotechnology, bacteria and biotic components have been engineered to achieve directed genetic reprogramming for construction and precise spatiotemporal control in the gastrointestinal tract, which can improve viability and therapeutic efficiency. Herein, a state-of-the-art review on the current progress of engineered bacterial systems for oral delivery is provided. The different types of bacterial and biotic components for oral administration are first summarized. The engineering strategies of these bacteria and biotic components and their treatment of diseases are next systematically summarized. Finally, the current challenges and prospects of these bacterial therapeutics are highlighted that will contribute to the development of next-generation orally delivered bacteriotherapy.
Collapse
Affiliation(s)
- Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Swain B, Campodonico VA, Curtiss R. Recombinant Attenuated Edwardsiella piscicida Vaccine Displaying Regulated Lysis to Confer Biological Containment and Protect Catfish against Edwardsiellosis. Vaccines (Basel) 2023; 11:1470. [PMID: 37766146 PMCID: PMC10534663 DOI: 10.3390/vaccines11091470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
We implemented a unique strategy to construct a recombinant attenuated Edwardsiella vaccine (RAEV) with a biological containment phenotype that causes regulated bacterial cell wall lysis. This process ensures that the vaccine strain is not able to persist in the environment. The murA gene is responsible for the catalysis of one of the first steps in the biosynthesis of muramic acid, which is a crucial component of the bacterial cell wall. The regulated lysis phenotype was achieved by inserting the tightly regulated araC ParaBAD cassette in place of the chromosomal murA promoter. Strains with this mutation require growth media supplemented with arabinose in order to survive. Without arabinose, they are unable to synthesize the peptidoglycan cell wall. Following the colonization of fish lymphoid tissues, the murA protein is no longer synthesized due to the lack of arabinose. Lysis is subsequently achieved in vivo, thus preventing the generation of disease symptoms and the spread of the strain into the environment. Vaccine strain χ16016 with the genotype ΔPmurA180::TT araC ParaBADmurA is attenuated and shows a higher LD50 value than that of the wild-type strain. Studies have demonstrated that χ16016 induced TLR4, TLR5, TLR8, TLR9, NOD1 and NOD2-mediated NF-κB pathways and upregulated the gene expression of various cytokines, such as il-8, il-1β, tnf-a, il-6 and ifn-γ in catfish. We observed significant upregulation of the expression profiles of cd4, cd8 and mhc-II genes in different organs of vaccinated catfish. Vaccine strain χ16016 induced systemic and mucosal IgM titers and conferred significant protection to catfish against E. piscicida wild-type challenge. Our lysis RAEV is the first live attenuated vaccine candidate designed to be used in the aquaculture industry that displays this biological containment property.
Collapse
Affiliation(s)
- Banikalyan Swain
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | |
Collapse
|
7
|
Zhou G, Tian J, Tian Y, Ma Q, Li Q, Wang S, Shi H. Recombinant-attenuated Salmonella enterica serovar Choleraesuis vector expressing the PlpE protein of Pasteurella multocida protects mice from lethal challenge. BMC Vet Res 2023; 19:128. [PMID: 37598169 PMCID: PMC10439597 DOI: 10.1186/s12917-023-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/27/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Bacterial surface proteins play key roles in pathogenicity and often contribute to microbial adhesion and invasion. Pasteurella lipoprotein E (PlpE), a Pasteurella multocida (P. multocida) surface protein, has recently been identified as a potential vaccine candidate. Live attenuated Salmonella strains have a number of potential advantages as vaccine vectors, including immunization with live vector can mimic natural infections by organisms, lead to the induction of mucosal, humoral, and cellular immune responses. In this study, a previously constructed recombinant attenuated Salmonella Choleraesuis (S. Choleraesuis) vector rSC0016 was used to synthesize and secrete the surface protein PlpE of P. multocida to form the vaccine candidate rSC0016(pS-PlpE). Subsequently, the immunogenicity of S. Choleraesuis rSC0016(pS-PlpE) as an oral vaccine to induce protective immunity against P. multocida in mice was evaluated. RESULTS After immunization, the recombinant attenuated S. Choleraesuis vector can efficiently delivered P. multocida PlpE protein in vivo and induced a specific immune response against this heterologous antigen in mice. In addition, compared with the inactivated vaccine, empty vector (rSC0016(pYA3493)) and PBS immunized groups, the rSC0016(pS-PlpE) vaccine candidate group induced higher antigen-specific mucosal, humoral and mixed Th1/Th2 cellular immune responses. After intraperitoneal challenge, the rSC0016(pS-PlpE) immunized group had a markedly enhanced survival rate (80%), a better protection efficiency than 60% of the inactivated vaccine group, and significantly reduced tissue damage. CONCLUSIONS In conclusion, our study found that the rSC0016(pS-PlpE) vaccine candidate provided good protection against challenge with wild-type P. multocida serotype A in a mouse infection model, and may potentially be considered for use as a universal vaccine against multiple serotypes of P. multocida in livestock, including pigs.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jiashuo Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
8
|
Feng Y, Yu Z, Zhao R, Qin Z, Geng Y, Chen D, Huang X, Ouyang P, Zuo Z, Guo H, Deng H, Huang C, Lai W. Unraveling extracellular protein signatures to enhance live attenuated vaccine development through type II secretion system disruption in Vibriomimicus. Microb Pathog 2023; 181:106215. [PMID: 37380063 DOI: 10.1016/j.micpath.2023.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Type II secretion systems (T2SS) are important molecular machines used by bacteria to transport a wide range of proteins across the outer membrane from the periplasm. Vibrio mimicus is an epidemic pathogen threats to both aquatic animals and human health. Our previous study demonstrates that T2SS deletion reduced virulence by 307.26 times in yellow catfish. However, the specific effects of T2SS-mediated extracellular protein secretion in V. mimicus, including its potential role in exotoxin secretion or other mechanisms, require further investigation. Through proteomics and phenotypic analyses, this study observed that the ΔT2SS strain exhibited significant self-aggregation and dynamic deficiency, with a notable negative correlation with subsequent biofilm formation. The proteomics analysis revealed 239 different abundances of extracellular proteins after T2SS deletion, including 19 proteins with higher abundance and 220 proteins with lower and even absent in the ΔT2SS strain. These extracellular proteins are involved in various pathways, such as metabolism, virulence factors expression, and enzymes. Among them, purine, pyruvate, and pyrimidine metabolism, and the Citrate cycle, were the primary pathways affected by T2SS. Our phenotypic analysis is consistent with these findings, suggesting that the decreased virulence of ΔT2SS strains is due to the effect of T2SS on these proteins, which negatively impacts growth, biofilm formation, auto-aggregation, and motility of V. mimicus. These results provide valuable insights for designing deletion targets for attenuated vaccines development against V. mimicus and expand our understanding of the biological functions of T2SS.
Collapse
Affiliation(s)
- Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zehui Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Laboratory Animal Center, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Ruoxuan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhengyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
9
|
Yang M, Su Y, Jiang Y, Huang X, Liu Q, Kong Q. Reducing the endotoxic activity or enhancing the vaccine immunogenicity by altering the length of lipid A acyl chain in Salmonella. Int Immunopharmacol 2023; 114:109575. [PMID: 36700768 DOI: 10.1016/j.intimp.2022.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The balance of the attenuation and reactogenicity is an issue in the development of recombinant attenuated Salmonella vaccines (RASV). Some reactogenic strains produced side effects are partially induced by lipid A. As reported, the number of lipid A acyl chains influence the strength and outcome of immune responses. However, there is rarely any study to investigate the modifications of acyl chain length on the effect of the toxicity and immunogenicity in Salmonella. In this study, foreign acyltransferase genes lpxA and lpxD were introduced into S. Typhimurium, which produced the S006 (ΔaraBAD::PlppCtlpxAC10) or S007 (ΔproBA::PlppSslpxDC16) strains with C10 or C16 acyl chains respectively. The results showed that the increased polymyxin B susceptibility, reduced swimming and invasion capabilities were observed in the S006. In addition, it also exhibited a lower endotoxicity and colonization ability compared to the parent strain. The result indicated the introduction of C10 acyl chains could be as a candidate choice for lipid A detoxifying strategy in engineering bacteria. However, the longer acyl chain modification didn't obviously change these abilities. Parallelly, these modifications were introduced into a Salmonella vaccine strain to determine their influences on the immune responses against Pneumonia. After inoculation by the strain V003 (ΔaraBAD ΔproBA::PlppSslpxDC16 χ9241), the mice produced robust levels of anti-PspA IgG, and a balanced Th1/Th2 immunity, which resulted in a significant survival improvement of mice with challenging against Streptococcus pneumonia. Therefore, the combination of lipid A modification with C16 acyl chain may be a better strategy for the development of ideal RASVs.
Collapse
Affiliation(s)
- Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Xin Huang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Qing Liu
- College of Animal Science and technology, Southwest University, Chongqing 400715, China.
| | - Qingke Kong
- College of veterinary medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Zhou G, Tian Y, Tian J, Ma Q, Huang S, Li Q, Wang S, Shi H. Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the P42 and P97 Antigens Protects Mice against Mycoplasma hyopneumoniae Challenge. Microbiol Spectr 2022; 10:e0236122. [PMID: 36377878 PMCID: PMC9769600 DOI: 10.1128/spectrum.02361-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is the etiological agent of swine enzootic pneumonia (EP), which has been associated with considerable economic losses due to reduced daily weight gain and feed efficiency. Adhesion to the cilia is important for Mhp to colonize the respiratory epithelium. Therefore, a successful vaccine must induce broad Mhp-specific immune responses at the mucosal surface. Recombinant attenuated Salmonella strains are believed to act as powerful live vaccine vectors that are able to elicit mucosal immune responses against various pathogens. To develop efficacious and inexpensive vaccines against Mhp, the immune responses and protection induced by recombinant attenuated Salmonella vaccines based on the P42 and P97 antigens of Mhp were evaluated. In general, the oral inoculation of recombinant rSC0016(pS-P42) or rSC0016(pS-P97) resulted in strong mucosal immunity, cell-mediated immunity, and humoral immunity, which was a mixed Th1/Th2-type response. In addition, the levels of specific IL-4 and IFN-γ in the immunized mice were increased, and the proliferation of lymphocytes was also enhanced, confirming the production of a good cellular immune response. Finally, both vaccine candidate strains were able to improve the weight loss of mice after a challenge and reduce clinical symptoms, lung pathological damage, and the inflammatory cell infiltration. These results suggest that the delivery of protective antigens with recombinant attenuated Salmonella vectors may be an effective means by which to combat Mhp infection. IMPORTANCE Mhp is the main pathogen of porcine enzootic pneumonia, a highly infectious and economically significant respiratory disease that affects pigs of all ages. As the target tissue of Mhp infections are the mucosal sites of the respiratory tract, the induction of protective immunity at the mucosal tissues is the most efficient strategy by which to block disease transmission. Because the stimulation of mucosal immune responses is efficient, Salmonella-vector oral vaccines are expected to be especially useful against mucosal-invading pathogens. In this study, we expressed the immunogenic proteins of P42 and P97 with the attenuated Salmonella Choleraesuis vector rSC0016, thereby generating a low-cost and more effective vaccine candidate against Mhp by inducing significant mucosal, humoral and cellular immunity. Furthermore, rSC0016(pS-P42) effectively prevents Mhp-induced weight loss and the pulmonary inflammation of mice. Because of the effectiveness of rSC0016(pS-P42) against Mhp infection in mice, this novel vaccine candidate strain shows great potential for its use in the pig breeding industry.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jiashuo Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shan Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
11
|
Ghasemi A, Wang S, Sahay B, Abbott JR, Curtiss R. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice. Front Immunol 2022; 13:1034683. [PMID: 36466847 PMCID: PMC9716130 DOI: 10.3389/fimmu.2022.1034683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Helicobacter pylori is a major cause of gastric mucosal inflammation, peptic ulcers, and gastric cancer. Emerging antimicrobial-resistant H. pylori has hampered the effective eradication of frequent chronic infections. Moreover, a safe vaccine is highly demanded due to the absence of effective vaccines against H. pylori. In this study, we employed a new innovative Protective Immunity Enhanced Salmonella Vaccine (PIESV) vector strain to deliver and express multiple H. pylori antigen genes. Immunization of mice with our vaccine delivering the HpaA, Hp-NAP, UreA and UreB antigens, provided sterile protection against H. pylori SS1 infection in 7 out of 10 tested mice. In comparison to the control groups that had received PBS or a PIESV carrying an empty vector, immunized mice exhibited specific and significant cellular recall responses and antigen-specific serum IgG1, IgG2c, total IgG and gastric IgA antibody titers. In conclusion, an improved S. Typhimurium-based live vaccine delivering four antigens shows promise as a safe and effective vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Jeffrey R. Abbott
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| |
Collapse
|
12
|
Senevirathne A, Hewawaduge C, Sivasankar C, Lee JH. Prospective lipid-A altered live attenuated Salmonella Gallinarum confers protectivity, DIVA capability, safety and low endotoxicity against fowl typhoid. Vet Microbiol 2022; 274:109572. [PMID: 36113357 DOI: 10.1016/j.vetmic.2022.109572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
The present study describes creating an attenuated Salmonella Gallinarum (SG) strain with reduced endotoxicity to prevent fowl typhoid. The strain was attenuated by deleting the lon, cpxR, and rfaL virulence-related genes. Endotoxicity was reduced by deleting the pagL open reading frame and replacing it with the lpxE gene derived from Francisella tularencis. Both events, (1) deletion of the pagL and (2) introduction of the lpxE genes, conferred reduced endotoxicity by detoxifying the lipid A structure. The detoxified SG strain (SGVSdt) was well tolerated in 7-day-old chicks when administered orally at 1 × 108 CFU/bird and in 14-day-old birds administered 1 × 107 CFU/bird subcutaneously. Parenteral immunization of detoxified vaccine strain was completely safe in birds and free of environmental contamination. Subcutaneous immunization conferred disease protection and induced humoral and cell-mediated immune responses marked by Th1-skewed patterns similar to those produced by the commercial SG9R vaccine strain. Compared with the SG9R-based vaccine, the SGVSdt construct generated significantly fewer inflammatory TNF-α responses while significantly inducing IFN-γ cytokine levels as an indication of an adaptive antibacterial response. The differentiating infected from vaccinated animals (DIVA) capability was on par with the predecessor SGVS. This study presents an appealing biological strategy to minimize lipid A-mediated endotoxicity without compromising protective efficacy against the SG challenge. Reduced endotoxicity permits the utilization of higher inoculation doses to maximize protection against fowl typhoid.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
13
|
Oral Administration with Recombinant Attenuated Regulated Delayed Lysis Salmonella Vaccines Protecting against Staphylococcus aureus Kidney Abscess Formation. Vaccines (Basel) 2022; 10:vaccines10071073. [PMID: 35891237 PMCID: PMC9324569 DOI: 10.3390/vaccines10071073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Abscess formation is one of the main symptoms of Staphylococcus aureus infection. It is very important to inhibit abscess formation for preventing S. aureus persistent infection. To find a feasible solution, the live oral vaccines delivering S. aureus antigens, rEsxAB and rHlam, were constructed, which were based on the attenuated regulated delayed lysis Salmonella enterica subspecies Serovar Typhimurium strain χ11802, and the inhibiting effect on abscess formation was evaluated in mice kidneys. As the results showed, after oral administration, humoral immunity was induced via the mucosal route as the antigen-specific IgG in the serum and IgA in the intestinal mucus both showed significant increases. Meanwhile, the production of IFN-γ and IL-17 in the kidney tissue suggested that Th1/Th17-biased cellular immunity played a role in varying degrees. After challenged intravenously (i.v.) with S. aureus USA300, the χ11802(pYA3681−esxAB)-vaccinated group showed obvious inhibition in kidney abscess formation among the vaccinated group, as the kidney abscess incidence rate and the staphylococcal load significantly reduced, and the kidney pathological injury was improved significantly. In conclusion, this study provided experimental data and showed great potential for live oral vaccine development with the attenuated regulated delayed lysis Salmonella Typhimurium strains against S. aureus infection.
Collapse
|
14
|
Swain B, Powell CT, Curtiss R. Construction and Evaluation of Recombinant Attenuated Edwardsiella piscicida Vaccine (RAEV) Vector System Encoding Ichthyophthirius multifiliis (Ich) Antigen IAG52B. Front Immunol 2022; 12:802760. [PMID: 35145512 PMCID: PMC8821916 DOI: 10.3389/fimmu.2021.802760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
We have successfully designed and constructed a RAEV vector system with regulated-delayed attenuation in vivo attributes that synthesizes Ichthyophthirius multifiliis (Ich) protective antigen IAG52B to enable vaccination of fish susceptible to edwardsiellosis and white spot disease. The first feature of this vaccine delivery system is an Edwardsiella piscicida strain carrying genomic deletions of asdA. AsdA is an enzyme necessary for the synthesis of diaminopimelic acid (DAP), which is an essential component of the peptidoglycan layer of the cell wall of Gram-negative bacteria. asdA mutant strains have obligate growth requirements for DAP in the medium or a plasmid vector with the wild-type asdA gene enabling synthesis of DAP. This balanced-lethal plasmid vector-host system in E. piscicida enables as a second feature the synthesis of recombinant antigens to induce protective immunity against fish pathogens. Recombinant protective antigen IAG52B from the fish pathogen I. multifiliis was synthesized by RAEV strains harboring the AsdA+ plasmid pG8R8029. The third feature of this vaccine strain is a regulated-delayed attenuation in vivo phenotype that is based on the replacement of an arabinose-regulated araC ParaBAD cassette for the promoters of the fur and crp genes of E. piscicida such that the expression of these genes is dependent on arabinose provided during growth. Thus, following colonization, the Fur and Crp proteins stop being synthesized due to the lack of arabinose and attenuation is progressively achieved in vivo to prevent generation of diseases symptoms. Our vaccine strain χ16022 with the genotype ΔasdA10 ΔPfur170::TT araC ParaBAD fur ΔPcrp68::TT araC ParaBAD crp contains the AsdA+ plasmid, pG8R8029, which encodes the IAG52B antigen. Vaccine strain χ16022(pG8R8029) is attenuated and induces systemic and mucosal IgM titer against E. piscicida and Ich in zebrafish. In addition, transcript levels of tnf-α, il-1β, il-6 and il-8 were significantly increased in different tissues of vaccinated zebrafish compared to unimmunized fish. Zebrafish vaccinated with χ16022(pG8R8029) showed 60% survival upon intracoelomic (i.c.) challenge with a lethal dose of virulent E. piscicida strain J118. Our RAEV system could be used as a generalized vaccine-vector system to protect teleost fish against multiple bacterial, viral and parasitic infectious diseases.
Collapse
Affiliation(s)
- Banikalyan Swain
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Cole T Powell
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Curtiss
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Liang K, Zhang R, Luo H, Zhang J, Tian Z, Zhang X, Zhang Y, Ali MK, Kong Q. Optimized Attenuated Salmonella Typhimurium Suppressed Tumor Growth and Improved Survival in Mice. Front Microbiol 2022; 12:774490. [PMID: 35003007 PMCID: PMC8733734 DOI: 10.3389/fmicb.2021.774490] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
The gram-negative facultative anaerobic bacteria Salmonella enterica serovar Typhimurium (hereafter S. Typhimurium) has always been considered as one candidate of anti-tumor agents or vectors for delivering drug molecules. In this study, we compared several widely studied S. Typhimurium strains in their anti-tumor properties aiming to screen out the best one for further optimization and use in cancer therapy. In terms of the motility, virulence and anti-tumor efficacy, the three strains 14028, SL1344, and UK-1 were similar and obviously better than LT-2, and UK-1 showed the best phenotypes among them. Therefore, the strain UK-1 (D) was selected for the following studies. Its auxotrophic mutant strain (D1) harboring ∆aroA and ∆purM mutations was further optimized through the modification of lipid A structure, generating a new strain named D2 with stronger immunostimulatory activity. Finally, the ∆asd derivative of D2 was utilized as one live vector to deliver anti-tumor molecules including the angiogenesis inhibitor endostatin and apoptosis inducer TRAIL and the therapeutic and toxic-side effects were evaluated in mouse models of colon carcinoma and melanoma. After intraperitoneal infection, engineered Salmonella bacteria equipped with endostatin and/or TRAIL significantly suppressed the tumor growth and prolonged survival of tumor-bearing mice compared to PBS or bacteria carrying the empty plasmid. Consistently, immunohistochemical studies confirmed the colonization of Salmonella bacteria and the expression of anti-tumor molecules inside tumor tissue, which were accompanied by the increase of cell apoptosis and suppression of tumor angiogenesis. These results demonstrated that the beneficial anti-tumor efficacy of attenuated S. Typhimurium bacteria could be improved through delivery of drug molecules with powerful anti-tumor activities.
Collapse
Affiliation(s)
- Kang Liang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Rui Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Haiyan Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jinlong Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenyuan Tian
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaofen Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yulin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Ruvalcaba-Gómez JM, Villagrán Z, Valdez-Alarcón JJ, Martínez-Núñez M, Gomez-Godínez LJ, Ruesga-Gutiérrez E, Anaya-Esparza LM, Arteaga-Garibay RI, Villarruel-López A. Non-Antibiotics Strategies to Control Salmonella Infection in Poultry. Animals (Basel) 2022; 12:102. [PMID: 35011208 PMCID: PMC8749512 DOI: 10.3390/ani12010102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/04/2023] Open
Abstract
Salmonella spp. is a facultative intracellular pathogen causing localized or systemic infections, involving economic and public health significance, and remains the leading pathogen of food safety concern worldwide, with poultry being the primary transmission vector. Antibiotics have been the main strategy for Salmonella control for many years, which has allowed producers to improve the growth and health of food-producing animals. However, the utilization of antibiotics has been reconsidered since bacterial pathogens have established and shared a variety of antibiotic resistance mechanisms that can quickly increase within microbial communities. The use of alternatives to antibiotics has been recommended and successfully applied in many countries, leading to the core aim of this review, focused on (1) describing the importance of Salmonella infection in poultry and the effects associated with the use of antibiotics for disease control; (2) discussing the use of feeding-based (prebiotics, probiotics, bacterial subproducts, phytobiotics) and non-feeding-based (bacteriophages, in ovo injection, vaccines) strategies in poultry production for Salmonella control; and (3) exploring the use of complementary strategies, highlighting those based on -omics tools, to assess the effects of using the available antibiotic-free alternatives and their role in lowering dependency on the existing antimicrobial substances to manage bacterial infections in poultry effectively.
Collapse
Affiliation(s)
- José Martín Ruvalcaba-Gómez
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Jalisco 47600, Mexico; (J.M.R.-G.); (L.J.G.-G.)
| | - Zuamí Villagrán
- Los Altos University Center, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Jalisco 47600, Mexico; (Z.V.); (E.R.-G.); (L.M.A.-E.)
| | - Juan José Valdez-Alarcón
- Multidisciplinary Center for Biotechnology Studies, Centenary and Meritorious University of Michoacán of San Nicolás de Hidalgo, Michoacán 58893, Mexico;
| | | | - Lorena Jacqueline Gomez-Godínez
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Jalisco 47600, Mexico; (J.M.R.-G.); (L.J.G.-G.)
| | - Edmundo Ruesga-Gutiérrez
- Los Altos University Center, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Jalisco 47600, Mexico; (Z.V.); (E.R.-G.); (L.M.A.-E.)
| | - Luis Miguel Anaya-Esparza
- Los Altos University Center, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Jalisco 47600, Mexico; (Z.V.); (E.R.-G.); (L.M.A.-E.)
| | - Ramón Ignacio Arteaga-Garibay
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Jalisco 47600, Mexico; (J.M.R.-G.); (L.J.G.-G.)
| | - Angélica Villarruel-López
- University Center for Exact and Engineering Sciences, University of Guadalajara, Blvd. Marcelino García Barragán 1421, Jalisco 44430, Mexico
| |
Collapse
|
17
|
Abstract
Polysaccharides are often the most abundant antigens found on the extracellular surfaces of bacterial cells. These polysaccharides play key roles in interactions with the outside world, and for many bacterial pathogens, they represent what is presented to the human immune system. As a result, many vaccines have been or currently are being developed against carbohydrate antigens. In this review, we explore the diversity of capsular polysaccharides (CPS) in Salmonella and other selected bacterial species and explain the classification and function of CPS as vaccine antigens. Despite many vaccines being developed using carbohydrate antigens, the low immunogenicity and the diversity of infecting strains and serovars present an antigen formulation challenge to manufacturers. Vaccines tend to focus on common serovars or have changing formulations over time, reflecting the trends in human infection, which can be costly and time-consuming. We summarize the approaches to generate carbohydrate-based vaccines for Salmonella, describe vaccines that are in development and emphasize the need for an effective vaccine against non-typhoidal Salmonella strains.
Collapse
|
18
|
Galen JE, Wahid R, Buskirk AD. Strategies for Enhancement of Live-Attenuated Salmonella-Based Carrier Vaccine Immunogenicity. Vaccines (Basel) 2021; 9:162. [PMID: 33671124 PMCID: PMC7923097 DOI: 10.3390/vaccines9020162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
The use of live-attenuated bacterial vaccines as carriers for the mucosal delivery of foreign antigens to stimulate the mucosal immune system was first proposed over three decades ago. This novel strategy aimed to induce immunity against at least two distinct pathogens using a single bivalent carrier vaccine. It was first tested using a live-attenuated Salmonella enterica serovar Typhi strain in clinical trials in 1984, with excellent humoral immune responses against the carrier strain but only modest responses elicited against the foreign antigen. Since then, clinical trials with additional Salmonella-based carrier vaccines have been conducted. As with the original trial, only modest foreign antigen-specific immunity was achieved in most cases, despite the incorporation of incremental improvements in antigen expression technologies and carrier design over the years. In this review, we will attempt to deconstruct carrier vaccine immunogenicity in humans by examining the basis of bacterial immunity in the human gastrointestinal tract and how the gut detects and responds to pathogens versus benign commensal organisms. Carrier vaccine design will then be explored to determine the feasibility of retaining as many characteristics of a pathogen as possible to elicit robust carrier and foreign antigen-specific immunity, while avoiding over-stimulation of unacceptably reactogenic inflammatory responses.
Collapse
Affiliation(s)
- James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Amanda D. Buskirk
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Process and Facilities, Division of Microbiology Assessment II, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA;
| |
Collapse
|
19
|
Swain B, Powell CT, Curtiss R. Pathogenicity and immunogenicity of Edwardsiella piscicida ferric uptake regulator (fur) mutations in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2020; 107:497-510. [PMID: 33176201 DOI: 10.1016/j.fsi.2020.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella piscicida is the etiological agent of edwardsiellosis in fish and causes severe economic losses in global aquaculture. Vaccination would be the most effective method to prevent infectious diseases and their associated economic losses. The ferric uptake regulator (Fur) is an important transcriptional global regulator of Gram-negative bacteria. In this study, we examined the regulatory function of Fur in E. piscicida. We designed a strain that displays features of the wild-type virulent strain of E. piscicida at the time of immunization to enable strains first to effectively colonize lymphoid tissues and then to exhibit a regulated delayed attenuation in vivo to preclude inducing disease symptoms. Regulated delayed attenuation in vivo is based on the substitution of a tightly regulated araC ParaBAD cassette for the promoter of the fur gene such that expression of this gene is dependent on arabinose provided during growth. Thus, following E. piscicida mutant colonization of lymphoid tissues, the Fur protein ceases to be synthesized due to the absence of arabinose such that attenuation is gradually manifest in vivo to preclude induction of diseases symptoms. We deleted the promoter, including all sequences that interact with activator or repressor proteins, for the fur gene, and substituted the improved araC ParaBAD cassette to yield an E. piscicida strain with the ΔPfur170:TT araC ParaBADfur deletion-insertion mutation (χ16012). Compared to the wild-type strain J118, χ16012 exhibited retarded growth and enhanced siderophore production in the absence of arabinose. mRNA levels of Fur-regulated genes were analyzed in iron deplete or replete condition in wild-type and fur mutant strains. We observed zebrafish immunized with χ16012 showed better colonization and protection compared to the Δfur (χ16001). Studies showed that E. piscicida strain χ16012 is attenuated and induces systemic and mucosal IgM titer in zebrafish. In addition, we found an increase in transcript levels of tnf-α, il-1β, il-8 and ifn-γ in different tissues of zebrafish immunized with χ16012 compared to the unimmunized group. We conclude that, E. piscicida with regulated delayed attenuation could be an effective immersion vaccine for the aquaculture industry.
Collapse
Affiliation(s)
- Banikalyan Swain
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA.
| | - Cole T Powell
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| | - Roy Curtiss
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| |
Collapse
|
20
|
Liu Q, Shen X, Bian X, Kong Q. Effect of deletion of gene cluster involved in synthesis of Enterobacterial common antigen on virulence and immunogenicity of live attenuated Salmonella vaccine when delivering heterologous Streptococcus pneumoniae antigen PspA. BMC Microbiol 2020; 20:150. [PMID: 32513100 PMCID: PMC7278252 DOI: 10.1186/s12866-020-01837-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Enterobacterial common antigen (ECA) is a family-specific surface antigen shared by all members of the Enterobacteriaceae family. Previous studies showed that the loss of ECA results in Salmonella attenuation, indicating its usefulness as a vaccine candidate for Salmonella infection, but no studies have shown whether the mutation resulting from the deletion of the ECA operon in conjunction with other mutations could be used as an antigen vehicle for heterologous protein antigen delivery. RESULTS In this study, we introduced a nonpolar, defined ECA operon deletion into wild-type S. Typhimurium χ3761 and an attenuated vaccine strain χ9241, obtaining two isogenic ECA operon mutants, namely, χ12357 and χ12358, respectively. A number of in vitro and in vivo properties of the mutants were analyzed. We found that the loss of ECA did not affect the growth, lipopolysaccharide (LPS) production and motility of S. Typhimurium wild type strain χ3761 and its attenuated vaccine strain χ9241 but significantly affected the virulence when administered orally to BALB/c mice. Furthermore, the effects of the ECA mutation on the immunogenicity of a recombinant S. Typhimurium vaccine strain χ9241 when delivering the pneumococcal antigen PspA were determined. The result showed that the total anti-PspA IgG level of χ12358 (pYA4088) was slightly lower than that of χ9241 (pYA4088), but the protection rate was not compromised. CONCLUSIONS ECA affects virulence and benefits the Th2 immunity of Salmonella Typhimurium, therefore, it is feasible to use a reversible ECA mutant mode to design future Salmonella vaccine strains for heterologous protective antigens.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Xuegang Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoping Bian
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| |
Collapse
|
21
|
Liu Q, Su H, Bian X, Wang S, Kong Q. Live attenuated Salmonella Typhimurium with monophosphoryl lipid A retains ability to induce T-cell and humoral immune responses against heterologous polysaccharide of Shigella flexneri 2a. Int J Med Microbiol 2020; 310:151427. [PMID: 32654768 DOI: 10.1016/j.ijmm.2020.151427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
Shigella flexneri 2a (Sf2a) is one of the most frequently isolated Shigella strains that causes the endemic shigellosis in developing countries. In this study, we used recombinant attenuated Salmonella vaccine (RASV) strains to deliver Sf2a O-antigen and characterized the immune responses induced by the vectored O-antigen. First, we identified genes sufficient for biosynthesis of Sf2a O-antigen. A plasmid containing the identified genes was then introduced into the RASV strains, which were manipulated to produce only the heterologous O-antigen and modified lipid A. After oral immunization of mice, we demonstrated that RASV strains could induce potent humoral immune responses as well as robust CD4+ T-cell responses against Sf2a Lipopolysaccharide (LPS) and protect mice against virulent Sf2a challenge. The induced serum antibodies mediated high levels of Shigella-specific serum bactericidal activity and C3 deposition. Moreover, the IgG+ B220low/int BM cell and T follicular helper (Tfh) cell responses could also be triggered effectively. The live attenuated Salmonella with the modified lipid A delivering Sf2a O-antigen polysaccharide showed the same ability to induce immune responses against Sf2a LPS as the strain with the original lipid A. These findings underscore the potential of RASV delivered Sf2a O-antigen for induction of robust CD4+ T-cell and IgG responses and warrant further studies toward the development of Shigella vaccine candidates with RASV strains.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China
| | - Huali Su
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| | - Xiaoping Bian
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China; Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA.
| |
Collapse
|
22
|
Pfister SP, Schären OP, Beldi L, Printz A, Notter MD, Mukherjee M, Li H, Limenitakis JP, Werren JP, Tandon D, Cuenca M, Hagemann S, Uster SS, Terrazos MA, Gomez de Agüero M, Schürch CM, Coelho FM, Curtiss R, Slack E, Balmer ML, Hapfelmeier S. Uncoupling of invasive bacterial mucosal immunogenicity from pathogenicity. Nat Commun 2020; 11:1978. [PMID: 32332737 PMCID: PMC7181798 DOI: 10.1038/s41467-020-15891-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
There is the notion that infection with a virulent intestinal pathogen induces generally stronger mucosal adaptive immunity than the exposure to an avirulent strain. Whether the associated mucosal inflammation is important or redundant for effective induction of immunity is, however, still unclear. Here we use a model of auxotrophic Salmonella infection in germ-free mice to show that live bacterial virulence factor-driven immunogenicity can be uncoupled from inflammatory pathogenicity. Although live auxotrophic Salmonella no longer causes inflammation, its mucosal virulence factors remain the main drivers of protective mucosal immunity; virulence factor-deficient, like killed, bacteria show reduced efficacy. Assessing the involvement of innate pathogen sensing mechanisms, we show MYD88/TRIF, Caspase-1/Caspase-11 inflammasome, and NOD1/NOD2 nodosome signaling to be individually redundant. In colonized animals we show that microbiota metabolite cross-feeding may recover intestinal luminal colonization but not pathogenicity. Consequent immunoglobulin A immunity and microbial niche competition synergistically protect against Salmonella wild-type infection.
Collapse
Affiliation(s)
- Simona P Pfister
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Olivier P Schären
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andrea Printz
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Matheus D Notter
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Mohana Mukherjee
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Hai Li
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Julien P Limenitakis
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Joel P Werren
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Disha Tandon
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Miguelangel Cuenca
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stefanie Hagemann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephanie S Uster
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Miguel A Terrazos
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mercedes Gomez de Agüero
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Christian M Schürch
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fernanda M Coelho
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Roy Curtiss
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Emma Slack
- Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Switzerland
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel, Basel, Switzerland
| | | |
Collapse
|
23
|
Felgner S, Spöring I, Pawar V, Kocijancic D, Preusse M, Falk C, Rohde M, Häussler S, Weiss S, Erhardt M. The immunogenic potential of bacterial flagella for Salmonella-mediated tumor therapy. Int J Cancer 2020; 147:448-460. [PMID: 31755108 DOI: 10.1002/ijc.32807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023]
Abstract
Genetically engineered Salmonella Typhimurium are potent vectors for prophylactic and therapeutic measures against pathogens as well as cancer. This is based on the potent adjuvanticity that supports strong immune responses. The physiology of Salmonella is well understood. It simplifies engineering of both enhanced immune-stimulatory properties as well as safety features, thus, resulting in an appropriate balance between attenuation and efficacy for clinical applications. A major virulence factor of Salmonella is the flagellum. It is also a strong pathogen-associated molecular pattern recognized by extracellular and intracellular receptors of immune cells of the host. At the same time, it represents a serious metabolic burden. Accordingly, the bacteria evolved tight regulatory mechanisms that control flagella synthesis in vivo. Here, we systematically investigated the immunogenicity and adjuvant properties of various flagella mutants of Salmonella in vitro and in a mouse cancer model in vivo. We found that mutants lacking the flagellum-specific ATPase FliHIJ or the inner membrane ring FliF displayed the greatest stimulatory capacity and strongest antitumor effects, while remaining safe in vivo. Scanning electron microscopy revealed the presence of outer membrane vesicles in the ΔfliF and ΔfliHIJ mutants. Finally, the combination of the ΔfliF and ΔfliHIJ mutations with our previously described attenuated and immunogenic background strain SF102 displayed strong efficacy against the highly resistant cancer cell line RenCa. We thus conclude that manipulating flagella biosynthesis has great potential for the construction of highly efficacious and versatile Salmonella vector strains.
Collapse
Affiliation(s)
- Sebastian Felgner
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Imke Spöring
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vinay Pawar
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Central Facilities for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dino Kocijancic
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Medical School Hannover, Hannover, Germany
| | - Manfred Rohde
- Central Facilities for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Marc Erhardt
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Broadway KM, Scharf BE. Salmonella Typhimurium as an Anticancer Therapy: Recent Advances and Perspectives. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Zhang Y, Fang Z, Li R, Huang X, Liu Q. Design of Outer Membrane Vesicles as Cancer Vaccines: A New Toolkit for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091314. [PMID: 31500086 PMCID: PMC6769604 DOI: 10.3390/cancers11091314] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer vaccines have been extensively studied in recent years and have contributed to exceptional achievements in cancer treatment. They are some of the most newly developed vaccines, although only two are currently approved for use, Provenge and Talimogene laherparepvec (T-VEC). Despite the approval of these two vaccines, most vaccines have been terminated at the clinical trial stage, which indicates that although they are effective in theory, concerns still exist, including low antigenicity of targeting antigens and tumor heterogeneity. In recent years, with new understanding of the biological function and vaccine potential of outer membrane vesicles (OMVs), their potential application in cancer vaccine design deserves our attention. Therefore, this review focuses on the mechanisms, advantages, and prospects of OMVs as antigen-carrier vaccines in cancer vaccine development. We believe that OMV-based vaccines present a safe and effective cancer therapeutic option with broad application prospects.
Collapse
Affiliation(s)
- Yingxuan Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Zheyan Fang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Ruizhen Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China.
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
26
|
A Live Salmonella Vaccine Delivering PcrV through the Type III Secretion System Protects against Pseudomonas aeruginosa. mSphere 2019; 4:4/2/e00116-19. [PMID: 30996108 PMCID: PMC6470209 DOI: 10.1128/msphere.00116-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is an important opportunistic pathogen that causes infections in cystic fibrosis and hospitalized patients. Therapeutic treatments are limited due to the emergence and spread of new antibiotic-resistant strains. In this context, the development of a vaccine is a priority. Here, we used an attenuated strain of Salmonella enterica serovar Typhimurium as a vehicle to express and deliver the Pseudomonas antigen PcrV. This vaccine induced the generation of specific antibodies in mice and protected them from lethal infections with P. aeruginosa. This is an important step toward the development of an effective vaccine for the prevention of infections caused by P. aeruginosa in humans. Pseudomonas aeruginosa is a common Gram-negative opportunistic pathogen that is intrinsically resistant to a wide range of antibiotics. The development of a broadly protective vaccine against P. aeruginosa remains a major challenge. Here, we used an attenuated strain of Salmonella enterica serovar Typhimurium as a vehicle to express P. aeruginosa antigens. A fusion between the S. enterica type III secretion effector protein SseJ and the P. aeruginosa antigen PcrV expressed under the control of the sseA promoter was translocated by Salmonella into host cells in vitro and elicited the generation of specific antibodies in mice. Mice immunized with attenuated Salmonella expressing this fusion had reduced bacterial loads in the spleens and lungs and lower serum levels of proinflammatory cytokines than control mice after P. aeruginosa infection. Importantly, immunized mice also showed significantly enhanced survival in this model. These results suggest that type III secretion effectors of S. enterica are appropriate carriers in the design of a live vaccine to prevent infections caused by P. aeruginosa. IMPORTANCE The Gram-negative bacterium Pseudomonas aeruginosa is an important opportunistic pathogen that causes infections in cystic fibrosis and hospitalized patients. Therapeutic treatments are limited due to the emergence and spread of new antibiotic-resistant strains. In this context, the development of a vaccine is a priority. Here, we used an attenuated strain of Salmonella enterica serovar Typhimurium as a vehicle to express and deliver the Pseudomonas antigen PcrV. This vaccine induced the generation of specific antibodies in mice and protected them from lethal infections with P. aeruginosa. This is an important step toward the development of an effective vaccine for the prevention of infections caused by P. aeruginosa in humans.
Collapse
|
27
|
Adams LJ, Zeng X, Lin J. Development and Evaluation of Two Live Salmonella-Vectored Vaccines for Campylobacter Control in Broiler Chickens. Foodborne Pathog Dis 2019; 16:399-410. [PMID: 30864853 DOI: 10.1089/fpd.2018.2561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Campylobacter is the leading bacterial cause of human enteritis in developed countries. Human campylobacteriosis is commonly associated with the consumption of undercooked, contaminated chicken, a natural host of Campylobacter. Thus, the control of Campylobacter colonization in poultry at the farm level would reduce the risk of human exposure to this pathogen. Vaccination is an attractive intervention measure to mitigate Campylobacter in poultry. Our recent studies have demonstrated that the outer-membrane proteins CmeC (an essential component of CmeABC multidrug efflux pump) and CfrA (ferric enterobactin receptor) are feasible candidates for immune intervention against Campylobacter. By targeting these two promising vaccine candidates, live attenuated Salmonella-vectored vaccines were developed and evaluated in this study. Briefly, the cfrA and cmeC genes were cloned into expression vector pYA3493 and transferred into Salmonella enterica serovar Typhimurium χ8914, the USDA licensed live attenuated vaccine strain. The oral live Salmonella vaccines producing CfrA or CmeC (truncated or full length) were successfully constructed by using delicate molecular manipulation despite the challenge due to the potential toxic effect of the cloned gene product in the Escherichia coli host. Expression and membrane localization of the target protein in the vaccines were confirmed by immunoblotting. The efficacies of the two live vaccines that produce full-length CfrA or CmeC were evaluated by using broiler chickens. However, oral vaccination of chickens failed to trigger significant systemic and intestinal mucosal immune responses and, consequently, did not confer protection against Campylobacter jejuni colonization chickens. The vaccination regimens of the constructed live Salmonella-vectored vaccine need to be optimized in future studies.
Collapse
Affiliation(s)
- Lindsay Jones Adams
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
28
|
Liang K, Liu Q, Li P, Luo H, Wang H, Kong Q. Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer Lett 2019; 448:168-181. [PMID: 30753837 DOI: 10.1016/j.canlet.2019.01.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
Bacteria have been investigated as anti-tumor therapeutic agents for more than a century, since Coley first observed successful curing of a patient with inoperable cancer by injection of streptococcal organisms. Previous studies have demonstrated that some obligate or facultative anaerobes can selectively accumulate and proliferate within tumors and suppress their growth. Developments in molecular biology as well as the complete genome sequencing of many bacterial species have increased the applicability of bacterial organisms for cancer treatment. In particular, the facultative anaerobe Salmonella Typhimurium has been widely studied and genetically engineered to improve its tumor-targeting ability as well as to reduce bacterial virulence. Moreover, the effectiveness of engineered attenuated S. Typhimurium strains employed as live delivery vectors of various anti-tumor therapeutic agents or combined with other therapies has been evaluated in a large number of animal experiments. The well-known S. Typhimurium mutant VNP20009 and its derivative strain TAPET-CD have even been applied in human clinical trials. However, Salmonella-mediated cancer therapies have not achieved the expected success, except in animal experiments. Many problems remain to be solved to exploit more promising strategies for combatting cancer with Salmonella bacteria. Here, we summarize the promising studies regarding cancer therapy mediated by Salmonella bacteria and highlight the main mechanisms of Salmonella anti-tumor activities.
Collapse
Affiliation(s)
- Kang Liang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Pei Li
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hongyan Luo
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Haoju Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, 32608, USA.
| |
Collapse
|
29
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
30
|
Zhao X, Liang S, Dai Q, Jia R, Zhu D, Liu M, Wang M, Chen S, Yang Q, Wu Y, Zhang S, Zhang L, Liu Y, Yu Y, Cheng A. Regulated delayed attenuation enhances the immunogenicity and protection provided by recombinant Salmonellaenterica serovar Typhimurium vaccines expressing serovar Choleraesuis O-polysaccharides. Vaccine 2018; 36:5010-5019. [DOI: 10.1016/j.vaccine.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/27/2022]
|
31
|
Endostatin gene therapy delivered by attenuated Salmonella typhimurium in murine tumor models. Cancer Gene Ther 2018; 25:167-183. [DOI: 10.1038/s41417-018-0021-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
|
32
|
Kocijancic D, Leschner S, Felgner S, Komoll RM, Frahm M, Pawar V, Weiss S. Therapeutic benefit of Salmonella attributed to LPS and TNF-α is exhaustible and dictated by tumor susceptibility. Oncotarget 2018; 8:36492-36508. [PMID: 28445131 PMCID: PMC5482671 DOI: 10.18632/oncotarget.16906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022] Open
Abstract
The potential of bacteria-mediated tumor therapy (BMTT) is highlighted by more than a century of investigation. Attenuated Salmonella has prevailed as promising therapeutic agents. For BMTT - categorized as an immune therapy - the exact contribution of particular immune reactions to the therapeutic effect remains ambiguous. In addition, one could argue for or against the requirement of bacterial viability and tumor targeting. Herein we evaluate the isolated therapeutic efficacy of purified LPS and TNF-α, which together account for a dominant immunogenic pathway of gram negative bacteria like Salmonella. We show that therapeutic efficacy against CT26 tumors does not require bacterial viability. Analogous to viable Salmonella SL7207, tumor regression by a specific CD8+ T cell response can be induced by purified LPS or recombinant TNF-α (rTNF-α). Conversely, therapeutic effects against RenCa tumors were abrogated upon bacterial avitalization and limited using isolated adjuvants. This argues for an alternative mechanistic explanation for SL7207 against RenCa that depends on viability and persistence. Unable to boost bacterial therapies by co-injection of rTNF-α suggested therapeutic effects along this axis are exhausted by the intrinsic adjuvanticity of bacteria alone. However, the importance of TNF-α for BMTT was highlighted by its support of tumor invasion and colonization in concert with lower infective doses of Salmonella. In consideration, bacterial therapeutic effectiveness along the axis of LPS and TNF-α appears limited, and does not offer the necessary plasticity for different tumors. This emphasizes a need for recombinant strengthening and vehicular exploitation to accommodate potency, plasticity and distinctiveness in BMTT.
Collapse
Affiliation(s)
- Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sara Leschner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ronja-Melinda Komoll
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vinay Pawar
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
33
|
Yurina V. Live Bacterial Vectors-A Promising DNA Vaccine Delivery System. Med Sci (Basel) 2018; 6:E27. [PMID: 29570602 PMCID: PMC6024733 DOI: 10.3390/medsci6020027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccination is one of the most successful immunology applications that has considerably improved human health. The DNA vaccine is a new vaccine being developed since the early 1990s. Although the DNA vaccine is promising, no human DNA vaccine has been approved to date. The main problem facing DNA vaccine efficacy is the lack of a DNA vaccine delivery system. Several studies explored this limitation. One of the best DNA vaccine delivery systems uses a live bacterial vector as the carrier. The live bacterial vector induces a robust immune response due to its natural characteristics that are recognized by the immune system. Moreover, the route of administration used by the live bacterial vector is through the mucosal route that beneficially induces both mucosal and systemic immune responses. The mucosal route is not invasive, making the vaccine easy to administer, increasing the patient's acceptance. Lactic acid bacterium is one of the most promising bacteria used as a live bacterial vector. However, some other attenuated pathogenic bacteria, such as Salmonella spp. and Shigella spp., have been used as DNA vaccine carriers. Numerous studies showed that live bacterial vectors are a promising candidate to deliver DNA vaccines.
Collapse
Affiliation(s)
- Valentina Yurina
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, East Java 65145, Malang, Indonesia.
| |
Collapse
|
34
|
Zeninskaya NA, Kolesnikov AV, Ryabko AK, Shemyakin IG, Dyatlov IA, Kozyr AV. [Aptamers in the Treatment of Bacterial Infections: Problems and Prospects]. ACTA ACUST UNITED AC 2018; 71:350-8. [PMID: 29297663 DOI: 10.15690/vramn591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aptamers are short single-stranded oligonucleotides which are selected via targeted chemical evolution in vitro to bind a molecular target of interest. The aptamer selection technology is designated as SELEX (Systematic evolution of ligands by exponential enrichment). SELEX enables isolation of oligonucleotide aptamers binding a wide range of targets of interest with little respect for their nature and molecular weight. A number of applications of aptamer selection were developed ranging from biosensor technologies to antitumor drug discovery. First aptamer-based pharmaceutical (Macugen) was approved by FDA for clinical use in 2004, and since then more than ten aptamer-based drugs undergo various phases of clinical trials. From the medicinal chemist’s point of view, aptamers represent a new class of molecules suitable for the development of new therapeutics. Due to the stability, relative synthesis simplicity, and development of advanced strategies of target specific molecular selection, aptamers attract increased attention of drug discovery community. Difficulties of the development of next-generation antibiotics basing on the conventional basis of combinatorial chemistry and high-throughput screening have also amplified the interest to aptamer-based therapeutic candidates. The present article reviews the investigations focused on the development of antibacterial aptamers and discusses the potential and current limitations of the use of this type of therapeutic molecules.
Collapse
|
35
|
Clark-Curtiss JE, Curtiss R. Salmonella Vaccines: Conduits for Protective Antigens. THE JOURNAL OF IMMUNOLOGY 2018; 200:39-48. [PMID: 29255088 DOI: 10.4049/jimmunol.1600608] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Vaccines afford a better and more cost-effective approach to combatting infectious diseases than continued reliance on antibiotics or antiviral or antiparasite drugs in the current era of increasing incidences of diseases caused by drug-resistant pathogens. Recombinant attenuated Salmonella vaccines (RASVs) have been significantly improved to exhibit the same or better attributes than wild-type parental strains to colonize internal lymphoid tissues and persist there to serve as factories to continuously synthesize and deliver rAgs. Encoded by codon-optimized pathogen genes, Ags are selected to induce protective immunity to infection by that pathogen. After immunization through a mucosal surface, the RASV attributes maximize their abilities to elicit mucosal and systemic Ab responses and cell-mediated immune responses. This article summarizes many of the numerous innovative technologies and discoveries that have resulted in RASV platforms that will enable development of safe efficacious RASVs to protect animals and humans against a diversity of infectious disease agents.
Collapse
Affiliation(s)
- Josephine E Clark-Curtiss
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610.,Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and .,Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
36
|
Constructing novel chimeric DNA vaccine against Salmonella enterica based on SopB and GroEL proteins: an in silico approach. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0360-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Maddux JT, Stromberg ZR, Curtiss Iii R, Mellata M. Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli. Front Immunol 2017; 8:1280. [PMID: 29062318 PMCID: PMC5640888 DOI: 10.3389/fimmu.2017.01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/25/2017] [Indexed: 01/21/2023] Open
Abstract
Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC) strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP) is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV) strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428) containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337) was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428) synthesized the major pilin (EcpA) and tip pilus adhesin (EcpD) on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337) without ECP or χ9558(pYA4428) with ECP, produced anti-Salmonella LPS and anti-E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit an immune response to E. coli and Salmonella antigens in some mice, provide significant protection in some internal organs during ExPEC challenge, and thus this study is a promising initial step toward developing a vaccine for prevention of ExPEC infections. Future studies should optimize the ExPEC antigens displayed by the RASV strain for a more robust immune response and enhanced protection against ExPEC infection.
Collapse
Affiliation(s)
- Jacob T Maddux
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Roy Curtiss Iii
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Melha Mellata
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
38
|
Zhao X, Dai Q, Jia R, Zhu D, Liu M, Wang M, Chen S, Sun K, Yang Q, Wu Y, Cheng A. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice. Front Cell Infect Microbiol 2017; 7:391. [PMID: 28929089 PMCID: PMC5591321 DOI: 10.3389/fcimb.2017.00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022] Open
Abstract
Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBADrfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella Newport lethal challenge. All of the mice in the three vaccine-immunized groups survived the lethal Salmonella Typhimurium challenge. In contrast, SLT26 (pCZ11) and SLT27 (pCZ11) conferred full protection against lethal Salmonella Newport challenge, but SLT25 (pCZ11) provided only 50% heterologous protection. Thus, we developed two novel Salmonella bivalent vaccines, SLT26 (pCZ11) and SLT27 (pCZ11), suggesting that the delivery of a heterologous O-antigen in attenuated Salmonella strains is a prospective approach for developing Salmonella vaccines with broad serovar coverage.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qinlong Dai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
39
|
Huang C, Liu Q, Luo Y, Li P, Liu Q, Kong Q. Regulated delayed synthesis of lipopolysaccharide and enterobacterial common antigen of Salmonella Typhimurium enhances immunogenicity and cross-protective efficacy against heterologous Salmonella challenge. Vaccine 2017; 34:4285-92. [PMID: 27423383 DOI: 10.1016/j.vaccine.2016.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/03/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
Lipopolysaccharide (LPS) O-antigen and enterobacterial common antigen (ECA) are two major polysaccharide structures on the surface of Salmonella enterica serovar Typhimurium. Previous studies have demonstrated that regulated truncation of LPS enhances the cross-reaction against conserved outer membrane proteins (OMPs) from enteric bacteria. We speculate that the regulation of both O-antigen and ECA may enhance the induction of immune responses against conserved OMPs from enteric bacteria. In this work we targeted rfbB and rffG genes which encode dTDP-glucose 4,6-dehydratases and share the same function in regulating O-antigen and ECA synthesis. We constructed a mutant, S496 (ΔrfbB6 ΔrffG7 ΔpagL73::TT araC PBADrfbB-3), in which rfbB gene expression was dependent on exogenously supplied arabinose during in vitro growth and achieved the simultaneous tight regulation of both LPS and ECA synthesis, as demonstrated by the LPS profile and Western blotting using antisera against LPS and ECA. When administered orally, S. Typhimurium S496 was completely attenuated for virulence but still retained the capacity to colonize and disseminate in mice. In addition, we found that oral immunization with S496 resulted in increased immune responses against OMPs from enteric bacteria and enhanced survival compared with immunization with S492 possessing ΔrfbB6 ΔrffG8 mutations when challenged with lethal doses of Salmonella Choleraesuis or Salmonella Enteritidis. These results indicate that S. Typhimurium arabinose-regulated rfbB strain S496 is a good vaccine candidate, conferring cross-protection against lethal challenge with heterologous Salmonella.
Collapse
Affiliation(s)
- Chun Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yali Luo
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pei Li
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiong Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
40
|
Zhao X, Dai Q, Zhu D, Liu M, Chen S, Sun K, Yang Q, Wu Y, Kong Q, Jia R. Recombinant attenuated Salmonella Typhimurium with heterologous expression of the Salmonella Choleraesuis O-polysaccharide: high immunogenicity and protection. Sci Rep 2017; 7:7127. [PMID: 28754982 PMCID: PMC5533773 DOI: 10.1038/s41598-017-07689-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022] Open
Abstract
Non-typhoidal Salmonella are associated with gastrointestinal disease worldwide and invasive disease in Africa. We constructed novel bivalent vaccines through the recombinant expression of heterologous O-antigens from Salmonella Choleraesuis in Salmonella Typhimurium. A recombinant Asd+ plasmid pCZ1 with the cloned Salmonella Choleraesuis O-antigen gene cluster was introduced into three constructed Salmonella Typhimurium Δasd mutants: SLT11 (ΔrfbP), SLT12 (ΔrmlB-rfbP) and SLT16 (ΔrfbP ∆pagL::TT araCPBADrfbP). Immunoblotting demonstrated that SLT11 (pCZ1) and SLT12 (pCZ1) efficiently expressed the heterologous O-antigen. In the presence of arabinose, SLT16 (pCZ1) expressed both the homologous and heterologous O-antigens, whereas in the absence of arabinose, SLT16 (pCZ1) mainly expressed the heterologous O-antigen. We deleted the crp/cya genes in SLT12 (pCZ1) and SLT16 (pCZ1) for attenuation purposes, generating the recombinant vaccine strains SLT17 (pCZ1) and SLT18 (pCZ1). Immunization with either SLT17 (pCZ1) or SLT18 (pCZ1) induced specific IgG against the heterologous O-antigen, which mediated significant killing of Salmonella Choleraesuis and provided full protection against a lethal homologous challenge in mice. Furthermore, SLT17 (pCZ1) or SLT18 (pCZ1) immunization resulted in 83% or 50% heterologous protection against Salmonella Choleraesuis challenge, respectively. Our study demonstrates that heterologous O-antigen expression is a promising strategy for the development of multivalent Salmonella vaccines.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qinlong Dai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Kunfeng Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China. .,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5401, USA.
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.
| |
Collapse
|
41
|
aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant. mBio 2016; 7:mBio.01220-16. [PMID: 27601574 PMCID: PMC5013297 DOI: 10.1128/mbio.01220-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. Recombinant attenuated bacterial vector systems based on genetically engineered Salmonella have been developed as highly potent vaccines. Due to the pathogenic properties of Salmonella, efficient attenuation is required for clinical applications. Since the hallmark study by Hoiseth and Stocker in 1981 (S. K. Hoiseth and B. A. D. Stocker, Nature 291:238–239, 1981, http://dx.doi.org/10.1038/291238a0), the auxotrophic ΔaroA mutation has been generally considered safe and universally used to attenuate bacterial strains. Here, we are presenting the remarkable finding that a deletion of aroA leads to pronounced alterations of gene expression, metabolism, and cellular physiology, which resulted in increased immunogenicity, virulence, and adjuvant potential of Salmonella. These results suggest that the enhanced immunogenicity of aroA-deficient Salmonella strains might be advantageous for optimizing bacterial vaccine carriers and immunotherapy. Accordingly, we demonstrate a superior performance of ΔaroA Salmonella in bacterium-mediated tumor therapy. In addition, the present study highlights the importance of a functional shikimate pathway to sustain bacterial physiology and metabolism.
Collapse
|
42
|
Sanapala S, Rahav H, Patel H, Sun W, Curtiss R. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague. Vaccine 2016; 34:2410-2416. [PMID: 27060051 DOI: 10.1016/j.vaccine.2016.03.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/12/2016] [Accepted: 03/29/2016] [Indexed: 01/14/2023]
Abstract
Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine.
Collapse
Affiliation(s)
- Shilpa Sanapala
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hannah Rahav
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hetal Patel
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Roy Curtiss
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
43
|
Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. Int J Microbiol 2016; 2016:8451728. [PMID: 27051423 PMCID: PMC4802035 DOI: 10.1155/2016/8451728] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 01/20/2023] Open
Abstract
The rising incidence of cancer cases worldwide generates an urgent need of novel treatment options. Applying bacteria may represent a valuable therapeutic variant that is intensively investigated nowadays. Interestingly, the idea to apply bacteria wittingly or unwittingly dates back to ancient times and was revived in the 19th century mainly by the pioneer William Coley. This review summarizes and compares the results of the past 150 years in bacteria mediated tumor therapy from preclinical to clinical studies. Lessons we have learned from the past provide a solid foundation on which to base future efforts. In this regard, several perspectives are discussed by which bacteria in addition to their intrinsic antitumor effect can be used as vector systems that shuttle therapeutic compounds into the tumor. Strategic solutions like these provide a sound and more apt exploitation of bacteria that may overcome limitations of conventional therapies.
Collapse
Affiliation(s)
- Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
44
|
Felgner S, Kocijancic D, Frahm M, Curtiss R, Erhardt M, Weiss S. Optimizing Salmonella enterica serovar Typhimurium for bacteria-mediated tumor therapy. Gut Microbes 2016; 7:171-7. [PMID: 26939530 PMCID: PMC4856459 DOI: 10.1080/19490976.2016.1155021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteria-mediated tumor therapy using Salmonella enterica serovar Typhimurium is a therapeutic option with great potential. Numerous studies explored the potential of Salmonella Typhimurium for therapeutic applications, however reconciling safety with vectorial efficacy remains a major issue. Recently we have described a conditionally attenuated Salmonella vector that is based on genetic lipopolysaccharide modification. This vector combines strong attenuation with appropriate anti-tumor properties by targeting various cancerous tissues in vivo. Therefore, it was promoted as an anti-tumor agent. In this addendum, we summarize these findings and demonstrate additional optimization steps that may further improve the therapeutic efficacy of our vector strain.
Collapse
Affiliation(s)
- Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Roy Curtiss
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, USA
| | - Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Immunology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
45
|
Jiang Y, Mo H, Willingham C, Wang S, Park JY, Kong W, Roland KL, Curtiss R. Protection Against Necrotic Enteritis in Broiler Chickens by Regulated Delayed Lysis Salmonella Vaccines. Avian Dis 2016; 59:475-85. [PMID: 26629620 DOI: 10.1637/11094-041715-reg] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Necrotic enteritis (NE), caused by Gram-positive Clostridium perfringens type A strains, has gained more attention in the broiler industry due to governmental restrictions affecting the use of growth-promoting antibiotics in feed. To date, there is only one commercial NE vaccine available, based on the C. perfringens alpha toxin. However, recent work has suggested that the NetB toxin, not alpha toxin, is the most critical virulence factor for causing NE. These findings notwithstanding, it is clear from prior research that immune responses against both toxins can provide some protection against NE. In this study, we delivered a carboxyl-terminal fragment of alpha toxin and a GST-NetB fusion protein using a novel attenuated Salmonella vaccine strain designed to lyse after 6-10 rounds of replication in the chicken host. We immunized birds with vaccine strains producing each protein individually, a mixture of the two strains, or with a single vaccine strain that produced both proteins. Immunization with strains producing either of the single proteins was not protective, but immunization with a mixture of the two or with a single strain producing both proteins resulted in protective immunity. The vaccine strain synthesizing both PlcC and GST-NetB was able to elicit strong production of intestinal IgA, IgY, and IgM antibodies and significantly protect broilers against C. perfringens challenge against both mild and severe challenges. Although not part of our experimental plan, the broiler chicks we obtained for these studies were apparently contaminated during transit from the hatchery with group D Salmonella. Despite this drawback, the vaccines worked well, indicating applicability to real-world conditions.
Collapse
Affiliation(s)
- Yanlong Jiang
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Hua Mo
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Crystal Willingham
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Shifeng Wang
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Jie-Yeun Park
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Wei Kong
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Kenneth L Roland
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Roy Curtiss
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287.,B School of Life Sciences, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
46
|
Moor K, Wotzka SY, Toska A, Diard M, Hapfelmeier S, Slack E. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species. Front Immunol 2016; 7:34. [PMID: 26904024 PMCID: PMC4749699 DOI: 10.3389/fimmu.2016.00034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/24/2016] [Indexed: 12/28/2022] Open
Abstract
Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 1010 peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency.
Collapse
Affiliation(s)
- Kathrin Moor
- Institute for Microbiology, ETH Zürich , Zürich , Switzerland
| | - Sandra Y Wotzka
- Institute for Microbiology, ETH Zürich , Zürich , Switzerland
| | - Albulena Toska
- Institute for Microbiology, ETH Zürich , Zürich , Switzerland
| | - Médéric Diard
- Institute for Microbiology, ETH Zürich , Zürich , Switzerland
| | | | - Emma Slack
- Institute for Microbiology, ETH Zürich , Zürich , Switzerland
| |
Collapse
|
47
|
Abstract
Three major plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people in human history. Due to its extreme virulence and the ease of its transmission, Y. pestis has been used purposefully for biowarfare in the past. Currently, plague epidemics are still breaking out sporadically in most of parts of the world, including the United States. Approximately 2000 cases of plague are reported each year to the World Health Organization. However, the potential use of the bacteria in modern times as an agent of bioterrorism and the emergence of a Y. pestis strain resistant to eight antibiotics bring out severe public health concerns. Therefore, prophylactic vaccination against this disease holds the brightest prospect for its long-term prevention. Here, we summarize the progress of the current vaccine development for counteracting plague.
Collapse
Affiliation(s)
- Wei Sun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, 110880, Gainesville, FL, 32611-0880, USA.
| |
Collapse
|
48
|
Joo SH. Lipid A as a Drug Target and Therapeutic Molecule. Biomol Ther (Seoul) 2015; 23:510-6. [PMID: 26535075 PMCID: PMC4624066 DOI: 10.4062/biomolther.2015.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 11/05/2022] Open
Abstract
In this review, lipid A, from its discovery to recent findings, is presented as a drug target and therapeutic molecule. First, the biosynthetic pathway for lipid A, the Raetz pathway, serves as a good drug target for antibiotic development. Several assay methods used to screen for inhibitors of lipid A synthesis will be presented, and some of the promising lead compounds will be described. Second, utilization of lipid A biosynthetic pathways by various bacterial species can generate modified lipid A molecules with therapeutic value.
Collapse
Affiliation(s)
- Sang Hoon Joo
- Laboratory of Biochemistry, College of Pharmacy, Catholic University of Daegu, Gyeongbuk 38430, Republic of Korea
| |
Collapse
|
49
|
Mignon C, Sodoyer R, Werle B. Antibiotic-free selection in biotherapeutics: now and forever. Pathogens 2015; 4:157-81. [PMID: 25854922 PMCID: PMC4493468 DOI: 10.3390/pathogens4020157] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 11/16/2022] Open
Abstract
The continuously improving sophistication of molecular engineering techniques gives access to novel classes of bio-therapeutics and new challenges for their production in full respect of the strengthening regulations. Among these biologic agents are DNA based vaccines or gene therapy products and to a lesser extent genetically engineered live vaccines or delivery vehicles. The use of antibiotic-based selection, frequently associated with genetic manipulation of microorganism is currently undergoing a profound metamorphosis with the implementation and diversification of alternative selection means. This short review will present examples of alternatives to antibiotic selection and their context of application to highlight their ineluctable invasion of the bio-therapeutic world.
Collapse
Affiliation(s)
- Charlotte Mignon
- Technology Research Institute Bioaster, 317 avenue Jean-Jaurés, 69007 Lyon, France.
| | - Régis Sodoyer
- Technology Research Institute Bioaster, 317 avenue Jean-Jaurés, 69007 Lyon, France.
| | - Bettina Werle
- Technology Research Institute Bioaster, 317 avenue Jean-Jaurés, 69007 Lyon, France.
| |
Collapse
|
50
|
Zariri A, van der Ley P. Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev Vaccines 2015; 14:861-76. [PMID: 25797360 DOI: 10.1586/14760584.2015.1026808] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipopolysaccharide (LPS), a dominant component of the Gram-negative bacterial outer membrane, is a strong activator of the innate immune system, and thereby an important determinant in the adaptive immune response following bacterial infection. This adjuvant activity can be harnessed following immunization with bacteria-derived vaccines that naturally contain LPS, and when LPS or molecules derived from it are added to purified vaccine antigens. However, the downside of the strong biological activity of LPS is its ability to contribute to vaccine reactogenicity. Modification of the LPS structure allows triggering of a proper immune response needed in a vaccine against a particular pathogen while at the same time lowering its toxicity. Extensive modifications to the basic structure are possible by using our current knowledge of bacterial genes involved in LPS biosynthesis and modification. This review focuses on biosynthetic engineering of the structure of LPS and implications of these modifications for generation of safe adjuvants.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | |
Collapse
|