1
|
Höpfinger A, Karrasch T, Schäffler A, Schmid A. Circulating Concentrations of Cathelicidin Anti-Microbial Peptide (CAMP) Are Increased during Oral Glucose Tolerance Test. Int J Mol Sci 2023; 24:12901. [PMID: 37629082 PMCID: PMC10454907 DOI: 10.3390/ijms241612901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Recent investigation has revealed the significant role of Cathelicidin antimicrobial peptide (CAMP) in infection defense and innate immunity processes in adipose tissue. Meanwhile, knowledge of its regulation and functions in metabolic contexts as an adipokine remains sparce. The present study investigated the postprandial regulation of circulating CAMP levels during oral glucose tolerance tests (OGTTs). Eighty-six metabolically healthy volunteers participated in a standardized 75 g-2 h-OGTT setting. The effects of exogenous glucose, insulin, and incretins on CAMP expression in human adipocyte culture (cell-line SGBS) were studied in vitro. CAMP concentrations in blood serum samples were measured by ELISA techniques and adipocyte gene expression levels were quantified by real-time PCR. Of note, base-line CAMP serum quantities were negatively correlated with HDL cholesterol levels as well as with the anti-inflammatory adipokine adiponectin. During the 2 h following glucose ingestion, a significant rise in circulating CAMP concentrations was observed in considerable contrast to reduced quantities of fatty acid binding proteins (FABP) 2 and 4 and dipeptidyl peptidase 4 (DPP4). In SGBS adipocytes, neither differing glucose levels nor insulin or incretin treatment significantly induced CAMP mRNA levels. According to our data, glucose represents a positive postprandial regulator of systemic CAMP. This effect apparently is not mediated by the regulatory impact of glucose metabolism on adipocyte CAMP expression.
Collapse
Affiliation(s)
- Alexandra Höpfinger
- Department of Internal Medicine III, Giessen University Hospital, Klinikstrasse 33, 35392 Giessen, Germany; (T.K.); (A.S.); (A.S.)
| | | | | | | |
Collapse
|
2
|
High Glucose Promotes Inflammation and Weakens Placental Defenses against E. coli and S. agalactiae Infection: Protective Role of Insulin and Metformin. Int J Mol Sci 2023; 24:ijms24065243. [PMID: 36982317 PMCID: PMC10048930 DOI: 10.3390/ijms24065243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Placentas from gestational diabetes mellitus (GDM) patients undergo significant metabolic and immunologic adaptations due to hyperglycemia, which results in an exacerbated synthesis of proinflammatory cytokines and an increased risk for infections. Insulin or metformin are clinically indicated for the treatment of GDM; however, there is limited information about the immunomodulatory activity of these drugs in the human placenta, especially in the context of maternal infections. Our objective was to study the role of insulin and metformin in the placental inflammatory response and innate defense against common etiopathological agents of pregnancy bacterial infections, such as E. coli and S. agalactiae, in a hyperglycemic environment. Term placental explants were cultivated with glucose (10 and 50 mM), insulin (50–500 nM) or metformin (125–500 µM) for 48 h, and then they were challenged with live bacteria (1 × 105 CFU/mL). We evaluated the inflammatory cytokine secretion, beta defensins production, bacterial count and bacterial tissue invasiveness after 4–8 h of infection. Our results showed that a GDM-associated hyperglycemic environment induced an inflammatory response and a decreased beta defensins synthesis unable to restrain bacterial infection. Notably, both insulin and metformin exerted anti-inflammatory effects under hyperglycemic infectious and non-infectious scenarios. Moreover, both drugs fortified placental barrier defenses, resulting in reduced E. coli counts, as well as decreased S. agalactiae and E. coli invasiveness of placental villous trees. Remarkably, the double challenge of high glucose and infection provoked a pathogen-specific attenuated placental inflammatory response in the hyperglycemic condition, mainly denoted by reduced TNF-α and IL-6 secretion after S. agalactiae infection and by IL-1β after E. coli infection. Altogether, these results suggest that metabolically uncontrolled GDM mothers develop diverse immune placental alterations, which may help to explain their increased vulnerability to bacterial pathogens.
Collapse
|
3
|
Mohanty S, Kamolvit W, Scheffschick A, Björklund A, Tovi J, Espinosa A, Brismar K, Nyström T, Schröder JM, Östenson CG, Aspenström P, Brauner H, Brauner A. Diabetes downregulates the antimicrobial peptide psoriasin and increases E. coli burden in the urinary bladder. Nat Commun 2022; 13:4983. [PMID: 36127330 PMCID: PMC9489794 DOI: 10.1038/s41467-022-32636-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Diabetes is known to increase susceptibility to infections, partly due to impaired granulocyte function and changes in the innate immunity. Here, we investigate the effect of diabetes, and high glucose on the expression of the antimicrobial peptide, psoriasin and the putative consequences for E. coli urinary tract infection. Blood, urine, and urine exfoliated cells from patients are studied. The influence of glucose and insulin is examined during hyperglycemic clamps in individuals with prediabetes and in euglycemic hyperinsulinemic clamped patients with type 1 diabetes. Important findings are confirmed in vivo in type 2 diabetic mice and verified in human uroepithelial cell lines. High glucose concentrations induce lower psoriasin levels and impair epithelial barrier function together with altering cell membrane proteins and cytoskeletal elements, resulting in increasing bacterial burden. Estradiol treatment restores the cellular function with increasing psoriasin and bacterial killing in uroepithelial cells, confirming its importance during urinary tract infection in hyperglycemia. In conclusion, our findings present the effects and underlying mechanisms of high glucose compromising innate immunity.
Collapse
Affiliation(s)
- Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Witchuda Kamolvit
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anneli Björklund
- Center for Diabetes, Academic Specialist Center, Stockholm County Council, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Division of Internal Medicine, Unit for Diabetes Research, Karolinska Institutet, South Hospital, Stockholm, Sweden
| | - Jens M Schröder
- Department of Dermatology, Venerology and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Hanna Brauner
- Department of Medicine, Solna, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Wei X, Zhang L, Yang Y, Hou Y, Xu Y, Wang Z, Su H, Han F, Han J, Liu P, Hu S, Koci MD, Sun X, Zhang C. LL-37 transports immunoreactive cGAMP to activate STING signaling and enhance interferon-mediated host antiviral immunity. Cell Rep 2022; 39:110880. [PMID: 35649354 DOI: 10.1016/j.celrep.2022.110880] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022] Open
Abstract
Cyclic 2',3'-GMP-AMP (cGAMP) binds to and activates stimulator of interferon genes (STING), which then induces interferons to drive immune responses against tumors and pathogens. Exogenous cGAMP produced by infected and malignant cells and synthetic cGAMP used in immunotherapy must traverse the cell membrane to activate STING in target cells. However, as an anionic hydrophilic molecule, cGAMP is not inherently membrane permeable. Here, we show that LL-37, a human host defense peptide, can function as a transporter of cGAMP. LL-37 specifically binds cGAMP and efficiently delivers cGAMP into target cells. cGAMP transferred by LL-37 activates robust interferon responses and host antiviral immunity in a STING-dependent manner. Furthermore, we report that LL-37 inducers vitamin D3 and sodium butyrate promote host immunity by enhancing endogenous LL-37 expression and its mediated cGAMP immune response. Collectively, our data uncover an essential role of LL-37 in innate immune activation and suggest new strategies for immunotherapy.
Collapse
Affiliation(s)
- Xubiao Wei
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lulu Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yinlong Yang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yanfei Hou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yifang Xu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zhimeng Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Huili Su
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fangping Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jing Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Peiyuan Liu
- School of Life Science, Tianjin University, Tianjin, China
| | - Shuiqing Hu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew D Koci
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University College of Basic Medical Science, Shanghai, China.
| | - Conggang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
5
|
Barutta F, Bellini S, Durazzo M, Gruden G. Novel Insight into the Mechanisms of the Bidirectional Relationship between Diabetes and Periodontitis. Biomedicines 2022; 10:biomedicines10010178. [PMID: 35052857 PMCID: PMC8774037 DOI: 10.3390/biomedicines10010178] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Periodontitis and diabetes are two major global health problems despite their prevalence being significantly underreported and underestimated. Both epidemiological and intervention studies show a bidirectional relationship between periodontitis and diabetes. The hypothesis of a potential causal link between the two diseases is corroborated by recent studies in experimental animals that identified mechanisms whereby periodontitis and diabetes can adversely affect each other. Herein, we will review clinical data on the existence of a two-way relationship between periodontitis and diabetes and discuss possible mechanistic interactions in both directions, focusing in particular on new data highlighting the importance of the host response. Moreover, we will address the hypothesis that trained immunity may represent the unifying mechanism explaining the intertwined association between diabetes and periodontitis. Achieving a better mechanistic insight on clustering of infectious, inflammatory, and metabolic diseases may provide new therapeutic options to reduce the risk of diabetes and diabetes-associated comorbidities.
Collapse
|
6
|
Yang Q, Fong LA, Lyu W, Sunkara LT, Xiao K, Zhang G. Synergistic Induction of Chicken Antimicrobial Host Defense Peptide Gene Expression by Butyrate and Sugars. Front Microbiol 2021; 12:781649. [PMID: 34956146 PMCID: PMC8696121 DOI: 10.3389/fmicb.2021.781649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance is a major concern to public health demanding effective alternative strategies to disease control and prevention. Modulation of endogenous host defense peptide (HDP) synthesis has emerged as a promising antibiotic alternative approach. This study investigated a potential synergy between sugars and butyrate in inducing HDP gene expression in chickens. Our results revealed that sugars differentially regulated HDP expression in both gene- and sugar-specific manners in chicken HD11 macrophage cells. Among eight mono- and disaccharides tested, all were potent inducers of avian β-defensin 9 (AvBD9) gene (p<0.05), but only galactose, trehalose, and lactose obviously upregulated cathelicidin-B1 (CATHB1) gene expression. The expression of AvBD14 gene, on the other hand, was minimally influenced by sugars. Moreover, all sugars exhibited a strong synergy with butyrate in enhancing AvBD9 expression, while only galactose, trehalose, and lactose were synergistic with butyrate in CATHB1 induction. No synergy in AvBD14 induction was observed between sugars and butyrate. Although lactose augmented the expression of nearly all HDP genes, its synergy with butyrate was only seen with several, but not all, HDP genes. Mucin-2 gene was also synergistically induced by a combination of lactose and butyrate. Furthermore, lactose synergized with butyrate to induce AvBD9 expression in chicken jejunal explants (p<0.05). Mechanistically, hyper-acetylation of histones was observed in response to both butyrate and lactose, relative to individual compounds. Mitogen-activated protein kinase, NF-κB, and cyclic adenosine monophosphate signaling pathways were also found to be involved in butyrate- and lactose-mediated synergy in AvBD9 induction. Collectively, a combination of butyrate and a sugar with both HDP-inducing and barrier protective activities holds the promise to be developed as an alternative to antibiotics for disease control and prevention.
Collapse
Affiliation(s)
- Qing Yang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Li-An Fong
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Wentao Lyu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lakshmi T Sunkara
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.,Veterinary Diagnostic Center, Clemson University, Clemson, SC, United States
| | - Kan Xiao
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.,Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
7
|
Ma L, Chen X, Weng S, Yang X. Evaluation of the T-SPOT.TB test, oxidation-related factors, and antimicrobial peptide LL-37 in the diagnosis of pulmonary tuberculosis with type 2 diabetes. J Int Med Res 2021; 49:3000605211064418. [PMID: 34936829 PMCID: PMC8721714 DOI: 10.1177/03000605211064418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate the diagnostic value of the T cell spot (T-SPOT.TB) test, oxidation-related factors (ORF), and antimicrobial peptide LL-37 in patients with pulmonary tuberculosis (PTB) with type 2 diabetes. Methods A total of 560 patients with PTB admitted to our hospital from January 2019 to April 2021 were retrospectively included in this study. Of these, 232 patients with PTB and type 2 diabetes were assigned to the combined group, and 328 patients without complications were assigned to the PTB group. Results Areas under the curve (AUCs) for the number of spot-forming cells in CFP10 and ESAT-6 test panels detecting PTB with type 2 diabetes were 0.892 (95% confidence interval [CI] 0.831–0.921) and 0.893 (95% CI 0.841–0.935), respectively. CFP10 combined with ESAT-6 had the highest diagnostic value, with sensitivity and specificity levels and an AUC of 87.73%, 88.93%, and 0.942 (95% CI 0.907–0.967), respectively. The levels of total antioxidant capacity, superoxide dismutase, and catalase in the combined group were lower than in PTB and control groups. Conclusion The combination of T-SPOT.TB, ORF, and LL-37 in the diagnosis of pulmonary tuberculosis with type 2 diabetes mellitus has a high diagnostic value and clinical application value.
Collapse
Affiliation(s)
- Liangliang Ma
- Department of Infectious Diseases, Beijing Geriatric Hospital, Beijing, China
| | - Xuelin Chen
- Department of Infectious Diseases, Beijing Geriatric Hospital, Beijing, China
| | - Shengfeng Weng
- Department of Clinical Laboratory, 517575Beijing Geriatric Hospital, Beijing Geriatric Hospital, Beijing, China
| | - Xinting Yang
- The Third Department of Tuberculosis, 117550Beijing Chest Hospital, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int J Mol Sci 2021; 22:8087. [PMID: 34360849 PMCID: PMC8348825 DOI: 10.3390/ijms22158087] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a transitory metabolic condition caused by dysregulation triggered by intolerance to carbohydrates, dysfunction of beta-pancreatic and endothelial cells, and insulin resistance during pregnancy. However, this disease includes not only changes related to metabolic distress but also placental immunoendocrine adaptations, resulting in harmful effects to the mother and fetus. In this review, we focus on the placenta as an immuno-endocrine organ that can recognize and respond to the hyperglycemic environment. It synthesizes diverse chemicals that play a role in inflammation, innate defense, endocrine response, oxidative stress, and angiogenesis, all associated with different perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Pilar Velázquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México 11800, Mexico;
| | - Carlos Ramírez-Isarraraz
- Clínica de Urología Ginecológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico
| |
Collapse
|
9
|
Kundu J, Verma A, Verma I, Bhadada SK, Sharma S. Molecular mechanism of interaction of Mycobacterium tuberculosis with host macrophages under high glucose conditions. Biochem Biophys Rep 2021; 26:100997. [PMID: 33997314 PMCID: PMC8091876 DOI: 10.1016/j.bbrep.2021.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis has the potential to escape various cellular defense mechanisms for its survival which include various oxidative stress responses, inhibition of phagosome-lysosomes fusion and alterations in cell death mechanisms of host macrophages that are crucial for its infectivity and dissemination. Diabetic patients are more susceptible to developing tuberculosis because of impairement of innate immunity and prevailing higher glucose levels. Our earlier observations have demonstrated alterations in the protein profile of M. tuberculosis exposed to concurrent high glucose and tuberculosis conditions suggesting a crosstalk between host and pathogen under high glucose conditions. Since high glucose environment plays crucial role in the interaction of mycobacterium with host macrophages which provide a niche for the survival of M. tuberculosis, it is important to understand various interactive mechanisms under such conditions. Initial phagocytosis and containment of M. tuberculosis by macrophages, mode of macrophage cell death, respiratory burst responses, Mycobacterium and lysosomal co-localization were studied in M. tuberculosis H37Rv infected cells in the presence of varied concentrations of glucose in order to mimic diabetes like conditions. It was observed that initial attachment, phagocytosis and later containment were less effective under high glucose conditions in comparison to normal glucose. Mycobacterium infected cells showed more necrosis than apoptosis as cell death mechanism during the course of infection under high glucose concentrations. Co-localization and respiratory burst assay also indicated evasion strategies adopted by M. tuberculosis under such conditions. This study by using THP1 macrophage model of tuberculosis and high glucose conditions showed immune evasion strategies adapted during co-pathogenesis of tuberculosis and diabetes.
Collapse
Affiliation(s)
- Jyoti Kundu
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arpana Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay K. Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
Bobadilla-Del-Valle M, Leal-Vega F, Torres-Gonzalez P, Ordaz-Vazquez A, Garcia-Garcia MDL, Tovar-Vargas MDLA, Delgado-Sanchez G, Guerra De Blas PDC, Wallis RS, Ponce-De-León A, Sifuentes-Osornio J. Mycobacterial Growth Inhibition Assay (MGIA) as a Host Directed Diagnostic Tool for the Evaluation of the Immune Response in Subjects Living With Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2021; 11:640707. [PMID: 34084753 PMCID: PMC8167894 DOI: 10.3389/fcimb.2021.640707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
The lack of efficient and cost-effective diagnostic tools contributes to poor control of tuberculosis in endemic countries. Moreover, host biological processes influence susceptibility, and infection resolution. It is well known that comorbidities such as type 2 diabetes mellitus (DM2) affect the host immune response, making individuals more susceptible to Mycobacterium tuberculosis infection. Currently, there are no laboratory tools that can identify those subjects who have a higher risk of developing the disease. In this study, we used a whole blood mycobacterial growth inhibition assay to assess the immune response capacity to inhibit mycobacterial growth between healthy subjects and those living with DM2 with optimal and poor glycemic control. We also measured cytokine levels in the culture supernatant by cytokine bead arrays. We included 89 patients with DM2: 54 patients with optimal control (mean age 56.2 ± 11.75 years) and 35 patients with poor control (mean age 52.05 ± 9.94 years). We also included 44 healthy subjects as controls (mean age 42.12 ± 11.75 years). We compared the Δlog UFC (a value that represents the difference between mycobacterial growth in the control tube versus the subject’s blood) between each group. Our results demonstrate that patients with DM2 had a lower capacity to inhibit M. tuberculosis growth (Δlog UFC DM2 subjects 0.9581 (-0.3897 to 2.495) vs Δlog UFC healthy subjects 0.7190 (-0.2678 to 2.098); p=0.013). Comparing subjects living with DM2 (optimal and poor glycemic control) vs healthy subjects, we found only significant differences between healthy subjects and patients poorly controlled (Δlog UFC optimal control group 0.876 (-0.3897 to 2.495); Δlog UFC poor control group 1.078 (0.068 to 2.33); Δlog UFC healthy subjects 0.7190 (-0.2678 to 2.098); p= 0.022). Therefore, glycemic control assessed by glycosylated hemoglobin values influences the capacity of the host to control the infection. Our results confirm that the whole blood mycobacterial growth inhibition assay has potential utility as an in vitro marker of M. tuberculosis immunological control in vivo in subjects living with DM2. This assay can be used to evaluate the immune response of each individual against M. tuberculosis, allowing clinicians to choose a more specific host-directed therapy.
Collapse
Affiliation(s)
- Miriam Bobadilla-Del-Valle
- Laboratorio de Microbiologia Clinica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Francisco Leal-Vega
- Laboratorio de Microbiologia Clinica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Pedro Torres-Gonzalez
- Laboratorio de Microbiologia Clinica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Anabel Ordaz-Vazquez
- Laboratorio de Microbiologia Clinica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | | | - Ma de Los Angeles Tovar-Vargas
- Laboratorio de Microbiologia Clinica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Guadalupe Delgado-Sanchez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca, Mexico
| | - Paola Del Carmen Guerra De Blas
- Laboratorio de Microbiologia Clinica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico.,LaRed- Coordinating Center, The Mexican Emerging Infectious Diseases Clinical Research Network (La Red), Mexico City, Mexico
| | | | - Alfredo Ponce-De-León
- Laboratorio de Microbiologia Clinica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Laboratorio de Microbiologia Clinica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
11
|
Miramontes CV, Rodríguez-Carlos A, Marin-Luévano SP, Trejo Martínez LA, de Haro Acosta J, Enciso-Moreno JA, Rivas-Santiago B. Nicotine promotes the intracellular growth of Mycobacterium tuberculosis in epithelial cells. Tuberculosis (Edinb) 2020; 127:102026. [PMID: 33262029 DOI: 10.1016/j.tube.2020.102026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
Several epidemiological studies have identified the cigarette smoke as a risk factor for the infection and development of tuberculosis. Nicotine is considered the main immunomodulatory molecule of the cigarette. In the present study, we evaluated the effect of nicotine in the growth of M. tuberculosis. Lung epithelial cells and macrophages were infected with M. tuberculosis and/or treated with nicotine. The results show that nicotine increased the growth of M. tuberculosis mainly in type II pneumocytes (T2P) but not in airway basal epithelial cells nor macrophages. Further, it was observed that nicotine decreased the production of β-defensin-2, β-defensin-3, and the cathelicidin LL-37 in all the evaluated cells at 24 and 72 h post-infection. The modulation of the expression of antimicrobial peptides appears to be partially mediated by the nicotinic acetylcholine receptor α7 since the blockade of this receptor partially reverted the production of antimicrobial peptides. In summary, it was found that nicotine decreases the production of HBD-2, HBD-3, and LL-37 in T2P during the infection with M. tuberculosis promoting its intracellular growth.
Collapse
Affiliation(s)
- Claudia Valdez Miramontes
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico; Center for Research in Health Sciences and Biomedicine Autonomous University of San Luis Potosí, Mexico
| | - Adrián Rodríguez-Carlos
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - Sara P Marin-Luévano
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - Luis A Trejo Martínez
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - Jeny de Haro Acosta
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - José A Enciso-Moreno
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas. Mexican Institute for Social Security- IMSS, Zacatecas, Mexico.
| |
Collapse
|
12
|
Lago AS, Lima FR, Carvalho AM, Sampaio C, Lago N, Guimarães LH, Lago J, Machado PRL, Carvalho LP, Arruda S, Carvalho EM. Diabetes Modifies the Clinic Presentation of Cutaneous Leishmaniasis. Open Forum Infect Dis 2020; 7:ofaa491. [PMID: 33324720 PMCID: PMC7724508 DOI: 10.1093/ofid/ofaa491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) caused by L. braziliensis is characterized by 1 or multiple well-limited ulcerated lesions. Diabetes mellitus (DM) impairs neutrophil and monocyte function, and there is a report of vegetative lesions in a patient with both diseases in Morocco. Here we evaluate the influence of DM on clinical manifestations, immune response, and in the treatment of CL. METHODS The participants were 36 DM patients with CL and 36 patients with CL without DM, matched by age and gender. The diagnosis of CL was performed by documentation of DNA of L. braziliensis by polymerase chain reaction in the lesion biopsy and histopathologic findings. All patients were treated with Glucantime (Sanofi-Aventis) 20 mg/kg of weight per day for 20 days. RESULTS There was no difference in the majority of the clinical variables between the groups, and the cure rate in patients with CL and DM (67%) was similar to that observed in CL patients (56%; P ˃ .05). The most important finding was the documentation that 36% of the patients with DM and CL had atypical cutaneous lesions characterized by large superficial ulcers without defined borders. High levels of interferon-γ, tumor necrosis facor, and interleukin-1β were detected in the supernatants of mononuclear cells stimulated with Leishmania antigen in patients with DM and atypical CL. Moreover, while cure was observed in only 33% of the patients with DM and atypical CL lesions, it was observed in 85% of patients with typical lesions (P < .05). CONCLUSIONS DM modifies the clinical presentation of CL, enhances pro-inflammatory cytokine production, and impairs response to antimony therapy.
Collapse
Affiliation(s)
- Alexsandro S Lago
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, Brazil
- Post-Graduate Course in Health Sciences, Federal University of Bahia Medical School, Salvador, Bahia, Brazil
| | - Filipe R Lima
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador, Bahia, Brazil
| | | | - Camilla Sampaio
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, Brazil
- Post-Graduate Course in Health Sciences, Federal University of Bahia Medical School, Salvador, Bahia, Brazil
| | - Neuza Lago
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Luiz H Guimarães
- Federal University of Southern Bahia, Teixeira de Freitas, Bahia, Brazil
| | - Jamile Lago
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, Brazil
- Post-Graduate Course in Health Sciences, Federal University of Bahia Medical School, Salvador, Bahia, Brazil
| | - Paulo R L Machado
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, Brazil
- Post-Graduate Course in Health Sciences, Federal University of Bahia Medical School, Salvador, Bahia, Brazil
| | - Lucas P Carvalho
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, Brazil
- Post-Graduate Course in Health Sciences, Federal University of Bahia Medical School, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador, Bahia, Brazil
| | - Sérgio Arruda
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador, Bahia, Brazil
| | - Edgar M Carvalho
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador, Bahia, Brazil
- Post-Graduate Course in Health Sciences, Federal University of Bahia Medical School, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador, Bahia, Brazil
| |
Collapse
|
13
|
Patras KA, Coady A, Babu P, Shing SR, Ha AD, Rooholfada E, Brandt SL, Geriak M, Gallo RL, Nizet V. Host Cathelicidin Exacerbates Group B Streptococcus Urinary Tract Infection. mSphere 2020; 5:e00932-19. [PMID: 32321824 PMCID: PMC7178553 DOI: 10.1128/msphere.00932-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Group B Streptococcus (GBS) causes frequent urinary tract infection (UTI) in susceptible populations, including individuals with type 2 diabetes and pregnant women; however, specific host factors responsible for increased GBS susceptibility in these populations are not well characterized. Here, we investigate cathelicidin, a cationic antimicrobial peptide, known to be critical for defense during UTI with uropathogenic Escherichia coli (UPEC). We observed a loss of antimicrobial activity of human and mouse cathelicidins against GBS and UPEC in synthetic urine and no evidence for increased cathelicidin resistance in GBS urinary isolates. Furthermore, we found that GBS degrades cathelicidin in a protease-dependent manner. Surprisingly, in a UTI model, cathelicidin-deficient (Camp-/-) mice showed decreased GBS burdens and mast cell recruitment in the bladder compared to levels in wild-type (WT) mice. Pharmacologic inhibition of mast cells reduced GBS burdens and histamine release in WT but not Camp-/- mice. Streptozotocin-induced diabetic mice had increased bladder cathelicidin production and mast cell recruitment at 24 h postinfection with GBS compared to levels in nondiabetic controls. We propose that cathelicidin is an important immune regulator but ineffective antimicrobial peptide against GBS in urine. Combined, our findings may in part explain the increased frequency of GBS UTI in diabetic and pregnant individuals.IMPORTANCE Certain populations such as diabetic individuals are at increased risk for developing urinary tract infections (UTI), although the underlying reasons for this susceptibility are not fully known. Additionally, diabetics are more likely to become infected with certain types of bacteria, such as group B Streptococcus (GBS). In this study, we find that an antimicrobial peptide called cathelicidin, which is thought to protect the bladder from infection, is ineffective in controlling GBS and alters the type of immune cells that migrate to the bladder during infection. Using a mouse model of diabetes, we observe that diabetic mice are more susceptible to GBS infection even though they also have more infiltrating immune cells and increased production of cathelicidin. Taken together, our findings identify this antimicrobial peptide as a potential contributor to increased susceptibility of diabetic individuals to GBS UTI.
Collapse
Affiliation(s)
- Kathryn A Patras
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Alison Coady
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Priyanka Babu
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Samuel R Shing
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Albert D Ha
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Emma Rooholfada
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Stephanie L Brandt
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | | | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Rodriguez-Carlos A, Valdez-Miramontes C, Marin-Luevano P, González-Curiel I, Enciso-Moreno JA, Rivas-Santiago B. Metformin promotes Mycobacterium tuberculosis killing and increases the production of human β-defensins in lung epithelial cells and macrophages. Microbes Infect 2020; 22:111-118. [DOI: 10.1016/j.micinf.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/17/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
|
15
|
Häfner S. One drug to cure them all. Microbes Infect 2020; 22:290-293. [PMID: 32173571 DOI: 10.1016/j.micinf.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Sophia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Lund Group, 2200, Copenhagen, Denmark.
| |
Collapse
|
16
|
Segura-Cerda CA, López-Romero W, Flores-Valdez MA. Changes in Host Response to Mycobacterium tuberculosis Infection Associated With Type 2 Diabetes: Beyond Hyperglycemia. Front Cell Infect Microbiol 2019; 9:342. [PMID: 31637222 PMCID: PMC6787561 DOI: 10.3389/fcimb.2019.00342] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) remains as the first cause of death among infectious diseases worldwide. Global incidence of tuberculosis is in part coincident with incidence of type 2 diabetes (T2D). Incidence of T2D is recognized as a high-risk factor that may contribute to tuberculosis dissemination. However, mechanisms which favor infection under T2D are just starting to emerge. Here, we first discuss the evidences that are available to support a metabolic connection between TB and T2D. Then, we analyze the evidences of metabolic changes which occur during T2D gathered thus far for its influence on susceptibility to M. tuberculosis infection and TB progression, such as hyperglycemia, increase of 1AC levels, increase of triglycerides levels, reduction of HDL-cholesterol levels, increased concentration of lipoproteins, and modification of the activity of some hormones related to the control of metabolic homeostasis. Finally, we recognize possible advantages of metabolic management of immunity to develop new strategies for treatment, diagnosis, and prevention of tuberculosis.
Collapse
Affiliation(s)
- Cristian Alfredo Segura-Cerda
- Doctorado en Farmacología, Universidad de Guadalajara, Guadalajara, Mexico.,Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Wendy López-Romero
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
17
|
Effect of High Glucose on Human Alveolar Macrophage Phenotype and Phagocytosis of Mycobacteria. Lung 2018; 197:89-94. [PMID: 30474709 DOI: 10.1007/s00408-018-0181-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE Diabetes mellitus (DBM) reduces immunological activity and increases susceptibility to various infections, including tuberculosis (TB). Human alveolar macrophage (hAM) functions are altered in DBM. METHODS To mimic hyperglycemic conditions in the lung alveolus, we co-cultured a hAM cell line (Daisy cell line) with human umbilical vein endothelial cells for 48 h in the presence of culture media alone, normal glucose (5 mM), and high glucose (22 mM). Using flow cytometry, immunophenotype characterization included cell surface markers CD 11c, CD14, CD16, CD86, CD163, CD169, CD206, CX3CR-1, CSF-1R, and matrix metalloproteinase-9 (MMP9). Phagocytic function was measured by immunofluorescence microscopy at 24 h after inoculation of cells with GFP-expressing Mycobacterium smegmatis. RESULTS Direct exposure of AMs to high glucose and exposure in the co-culture system yield different results for the same phenotypic markers. MMP9 expression was increased under both conditions. CD169 and CX3CR1 expressions were decreased when AMs were exposed directly to high glucose but increased under co-culture. Immunofluorescence assay revealed that phagocytosis decreased in AMs when directly exposed to increased glucose levels from 2.5 mM to normal glucose (5 mM), yet AMs under co-culture did not show decreased phagocytosis until concentrations were raised to 25 mM. CONCLUSION Alteration in the expression of certain receptors may contribute to defective sentinel function of AMs, promoting susceptibility to TB in a diabetic host. Variability in cell surface marker expression under direct glucose exposure compared to exposure via co-culture reveals that cell signaling between endothelial cells and AMs may play a crucial role in the phenotypic expression of AMs.
Collapse
|
18
|
The diabetes pandemic and associated infections: suggestions for clinical microbiology. ACTA ACUST UNITED AC 2018; 30:1-17. [PMID: 30662163 PMCID: PMC6319590 DOI: 10.1097/mrm.0000000000000155] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
Abstract
There are 425 million people with diabetes mellitus in the world. By 2045, this figure will grow to over 600 million. Diabetes mellitus is classified among noncommunicable diseases. Evidence points to a key role of microbes in diabetes mellitus, both as infectious agents associated with the diabetic status and as possible causative factors of diabetes mellitus. This review takes into account the different forms of diabetes mellitus, the genetic determinants that predispose to type 1 and type 2 diabetes mellitus (especially those with possible immunologic impact), the immune dysfunctions that have been documented in diabetes mellitus. Common infections occurring more frequently in diabetic vs. nondiabetic individuals are reviewed. Infectious agents that are suspected of playing an etiologic/triggering role in diabetes mellitus are presented, with emphasis on enteroviruses, the hygiene hypothesis, and the environment. Among biological agents possibly linked to diabetes mellitus, the gut microbiome, hepatitis C virus, and prion-like protein aggregates are discussed. Finally, preventive vaccines recommended in the management of diabetic patients are considered, including the bacillus calmette-Guerin vaccine that is being tested for type 1 diabetes mellitus. Evidence supports the notion that attenuation of immune defenses (both congenital and secondary to metabolic disturbances as well as to microangiopathy and neuropathy) makes diabetic people more prone to certain infections. Attentive microbiologic monitoring of diabetic patients is thus recommendable. As genetic predisposition cannot be changed, research needs to identify the biological agents that may have an etiologic role in diabetes mellitus, and to envisage curative and preventive ways to limit the diabetes pandemic.
Collapse
|
19
|
Mendoza-Almanza G, Rivas-Santiago CE, Salgado Bustamante M, López-Hernández Y. Diabetes and tuberculosis in Mexico: results from epidemiological studies. Int J Diabetes Dev Ctries 2018. [DOI: 10.1007/s13410-017-0599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Front Immunol 2017; 8:1499. [PMID: 29163551 PMCID: PMC5681943 DOI: 10.3389/fimmu.2017.01499] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) continues to be a devastating infectious disease and remerges as a global health emergency due to an alarming rise of antimicrobial resistance to its treatment. Despite of the serious effort that has been applied to develop effective antitubercular chemotherapies, the potential of antimicrobial peptides (AMPs) remains underexploited. A large amount of literature is now accessible on the AMP mechanisms of action against a diversity of pathogens; nevertheless, research on their activity on mycobacteria is still scarce. In particular, there is an urgent need to integrate all available interdisciplinary strategies to eradicate extensively drug-resistant Mycobacterium tuberculosis strains. In this context, we should not underestimate our endogenous antimicrobial proteins and peptides as ancient players of the human host defense system. We are confident that novel antibiotics based on human AMPs displaying a rapid and multifaceted mechanism, with reduced toxicity, should significantly contribute to reverse the tide of antimycobacterial drug resistance. In this review, we have provided an up to date perspective of the current research on AMPs to be applied in the fight against TB. A better understanding on the mechanisms of action of human endogenous peptides should ensure the basis for the best guided design of novel antitubercular chemotherapeutics.
Collapse
Affiliation(s)
- Javier Arranz-Trullén
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Lu Lu
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Ester Boix
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
21
|
Predicting treatment failure, death and drug resistance using a computed risk score among newly diagnosed TB patients in Tamaulipas, Mexico. Epidemiol Infect 2017; 145:3020-3034. [PMID: 28903800 DOI: 10.1017/s0950268817001911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to develop a method for identifying newly diagnosed tuberculosis (TB) patients at risk for TB adverse events in Tamaulipas, Mexico. Surveillance data between 2006 and 2013 (8431 subjects) was used to develop risk scores based on predictive modelling. The final models revealed that TB patients failing their treatment regimen were more likely to have at most a primary school education, multi-drug resistance (MDR)-TB, and few to moderate bacilli on acid-fast bacilli smear. TB patients who died were more likely to be older males with MDR-TB, HIV, malnutrition, and reporting excessive alcohol use. Modified risk scores were developed with strong predictability for treatment failure and death (c-statistic 0·65 and 0·70, respectively), and moderate predictability for drug resistance (c-statistic 0·57). Among TB patients with diabetes, risk scores showed moderate predictability for death (c-statistic 0·68). Our findings suggest that in the clinical setting, the use of our risk scores for TB treatment failure or death will help identify these individuals for tailored management to prevent these adverse events. In contrast, the available variables in the TB surveillance dataset are not robust predictors of drug resistance, indicating the need for prompt testing at time of diagnosis.
Collapse
|
22
|
Hernández-Sánchez F, Guzmán-Beltrán S, Herrera MT, Gonzalez Y, Salgado M, Fabian G, Torres M. High glucose induces O-GlcNAc glycosylation of the vitamin D receptor (VDR) in THP1 cells and in human macrophages derived from monocytes. Cell Biol Int 2017; 41:1065-1074. [PMID: 28710799 DOI: 10.1002/cbin.10827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023]
Abstract
Chronic hyperglycemia increases the carbon flux through the hexosamine pathway, allowing the accumulation of UDP-GlcNAc. UDP-GlcNAc is the sugar donor for the enzyme-mediated protein glycosylation event known as OGlcNAcylation. This posttranslational modification targets several transcription factors implicated in glucose toxicity, insulin resistance, and diabetes. Vitamin D plays an important role in glucose homeostasis and insulin secretion through transcriptional mechanisms mediated by its receptor (VDR). Vitamin D deficiency has been associated with higher susceptibility to bacterial diseases in diabetic patients. However, it has not been explored whether VDR is subject to OGlcNAcylation or whether high glucose affects its transcriptional or biological activities. The aim of this study was to evaluate the effect of hyperglycemia on VDR OGlcNAcylation and its effects on vitamin D-mediated transcription. We predicted potential OGlcNAcylation sites using free software. Our results showed that hyperglycemia (30 mM) induces the OGlcNAcylation of VDR in THP1 cells and in human macrophages derived from monocytes (MDM). This condition did not hamper the vitamin D-dependent activation of LL-37 gene expression, and even did not impair the macrophage bactericidal activity. Our study provides new insight into vitamin D receptor posttranslational modification that may have relevance on the physiological responses of long-term hyperglycemia.
Collapse
Affiliation(s)
- Fernando Hernández-Sánchez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Sección XVI, México City, Mexico, 1408
| | - Silvia Guzmán-Beltrán
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Sección XVI, México City, Mexico, 1408
| | - María Teresa Herrera
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Sección XVI, México City, Mexico, 1408
| | - Yolanda Gonzalez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Sección XVI, México City, Mexico, 1408
| | - Manuel Salgado
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Sección XVI, México City, Mexico, 1408
| | - Guadalupe Fabian
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Sección XVI, México City, Mexico, 1408
| | - Martha Torres
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Sección XVI, México City, Mexico, 1408
| |
Collapse
|
23
|
Montoya-Rosales A, Provvedi R, Torres-Juarez F, Enciso-Moreno JA, Hernandez-Pando R, Manganelli R, Rivas-Santiago B. lysX gene is differentially expressed among Mycobacterium tuberculosis strains with different levels of virulence. Tuberculosis (Edinb) 2017; 106:106-117. [PMID: 28802397 DOI: 10.1016/j.tube.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Antimicrobial peptides (AMPs) are mainly produced by epithelial cells and macrophages to eliminate infecting mycobacteria through direct antimicrobial activity and immunomodulation. Indeed, it has been described that this line of defense is essential to control infection. However, Mycobacterium tuberculosis (Mtb) has developed mechanisms to avoid AMPs activity, for instance lysX adds lysine residues to surface phospholipids changing their net charge, leading to the repelling of the AMPs. In the present study, we determined that lysX gene is differentially expressed among Mtb strains. To achieve this aim we used several well-characterized Mtb clinical isolates, lysX mutated strains and reference strains. Our results showed that in the presence of AMPs, lysX expression increased significantly. Strains with higher lysX expression showed increased levels of intracellular survival in vivo and in vitro and induced more severe lesion related with pneumonia. Results showed that ability of Mtb to replicate intracellularly was directly correlated to the level of lysX expression showing that the amount of lysX produced by the bacterial cell is an important variable for the modulation of Mtb virulence.
Collapse
Affiliation(s)
- Alejandra Montoya-Rosales
- Department of Immunology, Faculty of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico; Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | | | - Flor Torres-Juarez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Jose A Enciso-Moreno
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", México City, Mexico
| | | | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.
| |
Collapse
|