1
|
Iqbal N, Bano A, Raja DA, Raza A, Ilyas R, Akhlaq R, Saleem I, Ahmed A, Musharraf SG, Malik MI. Enhancement in the Antibacterial Activity of Rifaximin by Delivery through Gelatin Nanoparticles. Drug Dev Ind Pharm 2024:1-15. [PMID: 39286917 DOI: 10.1080/03639045.2024.2405622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES Bacterial infections are a noteworthy global health concern that necessitates the development of new strategies to enhance the potency and efficacy of antibiotics. Rifaximin (RFX), a broad-spectrum antibiotic, exhibits promising antibacterial activity against several bacterial strains. However, its insolubility and impermeability impede the exploitation of its full potential. The objective of the current study is to overcome the inherent caveats of RFX in order to exploit its maximum potential. SIGNIFICANCE The exploitation of the full potential of antibiotics is necessary for reduction in their dosage and to minimize antibiotic pollution. This is a preliminary study aiming for maximum utilization of RFX at the target site and reduction in its release in unmetabolized form. METHODS Gelatin is a biopolymer that has gained significant attention for biomedical applications owing to its inherent biocompatibility and biodegradability. In this study, bovine gelatin nanoparticles (BGNPs) were fabricated by the self-assembly method for their application as a carrier of RFX to enhance its antibacterial activity. The study employs a comprehensive range of experimental techniques to characterize the fabricated BGNPs such as DLS, Zeta Potential, FT-IR, AFM, SEM-EDX, and UV-Vis spectrophotometry. RESULTS The average size of the fabricated BGNPs was 100 nm with a zeta potential value of -15.3 mV. The loading of RFX on BGNPs rendered an increase in its size to 136 nm with a zeta potential value of -16 mV. In-vitro assays and microscopic analyses were conducted to compare the antibacterial efficacy of RFX and RFX@BGNPs. An excellent loading capacity followed by sustained release of RFX from RFX@BGNPs rendered a significant enhancement in its pharmaceutical efficacy. The release of RFX from RFX@BGNPs followed the Higuchi and Korsmeyer-Peppasmodels. The antibacterial efficacy of RFX against Staphylococcus aureus has doubled by delivery through RFX@BGNPs, assessed by inhibitory and biofilm inhibitory assays. The enhancement in the antibacterial efficiency was further endorsed by SEM and microscopic imaging of the control and treated bacterial colonies. CONCLUSION The study demonstrates an enhancement in the antimicrobial efficacy of RFX by its delivery in the form of RFX@BGNPs to exploit its full potential for practical applications.
Collapse
Affiliation(s)
- Nida Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Amber Bano
- Third World Center for science and technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Daim Asif Raja
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ali Raza
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rabia Ilyas
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rafia Akhlaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Imran Saleem
- School of Pharmacy &BiomolecularSciences, Liverpool John Moores University, UK
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Third World Center for science and technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
2
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
3
|
Omer SN, Shanmugam V. Exploring the antibiofilm and toxicity of tin oxide nanoparticles: Insights from in vitro and in vivo investigations. Microb Pathog 2024; 190:106639. [PMID: 38616002 DOI: 10.1016/j.micpath.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND INFORMATION The advancement of biological-mediated nanoscience towards higher levels and novel benchmarks is readily apparent, owing to the use of non-toxic synthesis processes and the incorporation of various additional benefits. This study aimed to synthesize stable tin oxide nanoparticles (SnO2-NPs) using S. rhizophila as a mediator. METHODS The nanoparticles that were created by biosynthesis was examined using several analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). RESULTS The results obtained from the characterization techniques suggest that S. rhizophila effectively catalyzed the reduction of SnCl2 to SnO2-NPs duration of 90 min at ambient temperature with the ƛmax of 328 nm. The size of the nano crystallite formations was measured to be 23 nm. The present study investigates nanoscale applications' antibacterial efficacy against four bacterial strains, including Klebsiella Sp, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The observed zone of inhibition for the nanoparticles (NPs) varied from 10 to 25 mm. The research findings demonstrate that the nanoparticles (NPs) are effective as antibacterial, phytotoxic, and cytotoxic agents.
Collapse
Affiliation(s)
- Soghra Nashath Omer
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, TN, India
| | - Venkatkumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, TN, India.
| |
Collapse
|
4
|
Jha NK, Gopu V, Sivasankar C, Singh SR, Devi PB, Murali A, Shetty PH. In vitro and in silico assessment of anti-biofilm and anti-quorum sensing properties of 2,4-Di-tert butylphenol against Acinetobacter baumannii. J Med Microbiol 2024; 73. [PMID: 38506718 DOI: 10.1099/jmm.0.001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Introduction. Acinetobacter baumannii is a nosocomial pathogen with a high potential to cause food-borne infections. It is designated as a critical pathogen by the World Health Organization due to its multi-drug resistance and mortalities reported. Biofilm governs major virulence factors, which promotes drug resistance in A. baumannii. Thus, a compound with minimum selection pressure on the pathogen can be helpful to breach biofilm-related virulence.Hypothesis/Gap Statement. To identify anti-biofilm and anti-virulent metabolites from extracts of wild Mangifera indica (mango) brine pickle bacteria that diminishes pathogenesis and resistance of A. baumannii.Aim. This study reports anti-biofilm and anti-quorum sensing (QS) efficacy of secondary metabolites from bacterial isolates of fermented food origin.Method. Cell-free supernatants (CFS) of 13 bacterial isolates from fermented mango brine pickles were screened for their efficiency in inhibiting biofilm formation and GC-MS was used to identify its metabolites. Anti-biofilm metabolite was tested on early and mature biofilms, pellicle formation, extra polymeric substances (EPS), cellular adherence, motility and resistance of A. baumannii. Gene expression and in silico studies were also carried out to validate the compounds efficacy.Results. CFS of TMP6b identified as Bacillus vallismortis, inhibited biofilm production (83.02 %). Of these, major compound was identified as 2,4-Di-tert-butyl phenol (2,4-DBP). At sub-lethal concentrations, 2,4-DBP disrupted both early and mature biofilm formation. Treatment with 2,4-DBP destructed in situ biofilm formed on glass and plastic. In addition, key virulence traits like pellicle (77.5 %), surfactant (95.3 %), EPS production (3-fold) and cell adherence (65.55 %) reduced significantly. A. baumannii cells treated with 2,4-DBP showed enhanced sensitivity towards antibiotics, oxide radicals and blood cells. Expression of biofilm-concomitant virulence genes like csuA/B, pgaC, pgaA, bap, bfmR, katE and ompA along with QS genes abaI, abaR significantly decreased. The in silico studies further validated the higher binding affinity of 2,4-DBP to the AbaR protein than the cognate ligand molecule.Conclusion. To our knowledge, this is the first report to demonstrate 2,4- DBP has anti-pathogenic potential alone and with antibiotics by in vitro, and in silico studies against A. baumannii. It also indicates its potential use in therapeutics and bio-preservatives.
Collapse
Affiliation(s)
- Nisha Kumari Jha
- Department of Food Science and Technology, Pondicherry University, Pondicherry-605014, India
| | - Venkadesaperumal Gopu
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chandran Sivasankar
- Department of Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan-54596, Republic of Korea
| | - Satya Ranjan Singh
- Department of Bioinformatics, Pondicherry University, Pondicherry-605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry-605014, India
| | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Pondicherry-605014, India
| | | |
Collapse
|
5
|
Li L, Gao X, Li M, Liu Y, Ma J, Wang X, Yu Z, Cheng W, Zhang W, Sun H, Song X, Wang Z. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol 2024; 14:1324895. [PMID: 38465230 PMCID: PMC10920351 DOI: 10.3389/fcimb.2024.1324895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yuchun Liu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Jiayue Ma
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Safari MS, Mohabatkar H, Behbahani M. Novel surface biochemical modifications of urinary catheters to prevent catheter-associated urinary tract infections. J Biomed Mater Res B Appl Biomater 2024; 112:e35372. [PMID: 38359168 DOI: 10.1002/jbm.b.35372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
More than 70% of hospital-acquired urinary tract infections are related to urinary catheters, which are commonly used for the treatment of about 20% of hospitalized patients. Urinary catheters are used to drain the bladder if there is an obstruction in the tube that carries urine out of the bladder (urethra). During catheter-associated urinary tract infections, microorganisms rise up in the urinary tract and reach the bladder, and cause infections. Various materials are used to fabricate urinary catheters such as silicone, polyurethane, and latex. These materials allow bacteria and fungi to develop colonies on their inner and outer surfaces, leading to bacteriuria or other infections. Urinary catheters could be modified to exert antibacterial and antifungal effects. Although so many research have been conducted over the past years on the fabrication of antibacterial and antifouling catheters, an ideal catheter needs to be developed for long-term catheterization of more than a month. In this review, we are going to introduce the recent advances in fabricating antibacterial materials to prevent catheter-associated urinary tract infections, such as nanoparticles, antibiotics, chemical compounds, antimicrobial peptides, bacteriophages, and plant extracts.
Collapse
Affiliation(s)
- Mohammad Sadegh Safari
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
7
|
Şirin MC, Cezaroğlu Y, Sesli Çetin E, Arıdoğan B, Trak D, Arslan Y. Antibacterial and antibiofilm efficacy of colistin & meropenem conjugated silver nanoparticles against Escherichia coli and Klebsiella pneumoniae. J Basic Microbiol 2023; 63:1397-1411. [PMID: 37821405 DOI: 10.1002/jobm.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
The progressive increase in infections caused by multidrug-resistant (MDR) Gram-negative bacteria and the emergence of resistance to last-resort antimicrobial drugs in recent years necessitate the development of new therapeutic strategies. This study was conducted to obtain nanostructured antimicrobials by conjugating colistin (COL) and meropenem (MEM) antibiotics with biosynthesized silver nanoparticles (bio-AgNPs) via the green synthesis method using Rosa damascena extract, and to investigate the antibacterial and antibiofilm activity of these nanostructures against Escherichia coli and Klebsiella pneumoniae strains. Ultraviolet-visible spectrophotometry, high-resolution-transmission electron microscopy, atomic force microscopy, X-ray diffraction, and Fourier transform-infrared spectroscopy analyses were performed to determine the physical and chemical properties of synthesized bio-AgNPs, COL@bio-AgNPs, MEM@bio-AgNPs, and COL&MEM@bio-AgNPs. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of nanoparticles were determined on standard and MDR clinical strains. The antibiofilm efficacy and cytotoxic effect of nanoparticles were evaluated by the crystal violet dye method and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye method, respectively. The characterization analyses demonstrated that the synthesized nanoparticles had crystal structure and spherical morphology (5.6-30.2 nm in size). Antibiotic conjugated nanoparticles exhibited better antimicrobial activity and lower MIC values (0.125-4 µg/mL) on the tested strains compared to free antibiotics, and MIC values were decreased up to 1024-fold (p < 0.05). Antibiotic conjugated nanoparticles were found to be more effective in biofilm eradication than free antibiotics and bio-AgNPs and had a less inhibitory effect on peripheral blood mononuclear cell viability. The findings revealed that antibiotic-conjugated nanoparticles have the potential to be used as an effective antimicrobial drug against MDR E. coli and K. pneumoniae strains.
Collapse
Affiliation(s)
- M Cem Şirin
- Department of Medical Microbiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Yasemin Cezaroğlu
- Department of Medical Microbiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - E Sesli Çetin
- Department of Medical Microbiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Buket Arıdoğan
- Department of Medical Microbiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Diğdem Trak
- Department of Nanoscience and Nanotechnology, Faculty of Science and Literature, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Yasin Arslan
- Department of Nanoscience and Nanotechnology, Faculty of Science and Literature, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
8
|
Maleki AR, Tabatabaei RR, Aminian F, Ranjbar S, Ashrafi F, Ranjbar R. Antibacterial and antibiofilm effects of green synthesized selenium nanoparticles on clinical Klebsiella pneumoniae isolates. J Basic Microbiol 2023; 63:1373-1382. [PMID: 37699755 DOI: 10.1002/jobm.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology covers many disciplines, including the biological sciences. In this study, selenium nanoparticles (Se-NPs) were synthesized using Artemisia annua extract and investigated against clinical strains of klebsiella pneumoniae (K. pneumoniae) for their anti-biofilm effects. In this experimental study, from May 1998 to September 1998, 50 clinical samples of blood, urine, and sputum were collected, and K. pneumoniae strains were isolated using microbiological methods. Subsequently, the antibacterial effects of Se-NPs at concentrations of 12-25-50-100/5-6/3-25/125 μg/mL were studied. Finally, biofilm-producing strains were isolated, and the expression of mrkA biofilm gene was studied in real-time strains treated with Se-NPs using real-time polymerase chain reaction (PCR). Out of 50 clinical samples, 20 strains of K. pneumoniae were isolated. Minimum inhibitory concentration (MIC) results of Se-NPs showed that Se-NPs were capable of significant cell killing. Real-time PCR results also showed that mrkA gene expression was significantly reduced in strains treated with Se-NPs. According to this study, Se-NPs could reduce bacterial growth and biofilm formation, therefore, could be considered a candidate drug in the medical application for infections caused by K. pneumoniae.
Collapse
Affiliation(s)
- Ali Reza Maleki
- Depatment of Microbiology, School of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Robab Rafiei Tabatabaei
- Depatment of Microbiology, School of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Fatemeh Aminian
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Sina Ranjbar
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ashrafi
- Depatment of Microbiology, School of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Marzaman ANF, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Recent Advances in Pharmaceutical Approaches of Antimicrobial Agents for Selective Delivery in Various Administration Routes. Antibiotics (Basel) 2023; 12:822. [PMID: 37237725 PMCID: PMC10215767 DOI: 10.3390/antibiotics12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems. AMR-related infectious diseases are also discussed, as is the efficiency of various delivery systems. Future considerations in developing highly effective antimicrobial delivery devices to address antibiotic resistance are also presented here, especially on the smart delivery system of antibiotics.
Collapse
Affiliation(s)
- Ardiyah Nurul Fitri Marzaman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Tri Puspita Roska
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sulistiawati Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Cindy Kristina Enggi
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Marianti A. Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Venkatram Prasad Shastri
- Institute for Macromolecular Chemistry, Albert Ludwigs Universitat Freiburg, 79085 Freiburg, Germany;
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| |
Collapse
|
10
|
Singh R, Dutt S, Sharma P, Sundramoorthy AK, Dubey A, Singh A, Arya S. Future of Nanotechnology in Food Industry: Challenges in Processing, Packaging, and Food Safety. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200209. [PMID: 37020624 PMCID: PMC10069304 DOI: 10.1002/gch2.202200209] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Indexed: 05/27/2023]
Abstract
Over the course of the last several decades, nanotechnology has garnered a growing amount of attention as a potentially valuable technology that has significantly impacted the food industry. Nanotechnology helps in enhancing the properties of materials and structures that are used in various fields such as agriculture, food, pharmacy, and so on. Applications of nanotechnology in the food market have included the encapsulation and distribution of materials to specific locations, the improvement of flavor, the introduction of antibacterial nanoparticles into food, the betterment of prolonged storage, the detection of pollutants, enhanced storage facilities, locating, identifying, as well as consumer awareness. Labeling food goods with nano barcodes helps ensure their security and may also be used to track their distribution. This review article presents a discussion about current advances in nanotechnology along with its applications in the field of food-tech, food packaging, food security, enhancing life of food products, etc. A detailed description is provided about various synthesis routes of nanomaterials, that is, chemical, physical, and biological methods. Nanotechnology is a rapidly improving the field of food packaging and the future holds great opportunities for more enhancement via the development of new nanomaterials and nanosensors.
Collapse
Affiliation(s)
- Rajesh Singh
- Food Craft InstituteDepartment of Skill DevelopmentNagrotaJammuJammu and Kashmir181221India
| | - Shradha Dutt
- School of SciencesCluster University of JammuJammuJammu and Kashmir180001India
| | - Priyanka Sharma
- School of Hospitality and Tourism ManagementUniversity of JammuJammuJammu and Kashmir180006India
| | - Ashok K. Sundramoorthy
- Centre for Nano‐BiosensorsDepartment of ProsthodonticsSaveetha Dental College and HospitalsSaveetha Institute of Medical and Technical SciencesChennaiTamil Nadu600077India
| | - Aman Dubey
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| | - Anoop Singh
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| | - Sandeep Arya
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| |
Collapse
|
11
|
Raza A, Zehra M, Ramzan M, Siddiqui AJ, Akbar A, Ahmed A, Musharraf SG. Untargeted Metabolomics Analysis of Gentamicin-Induced Tolerant Colonies of Klebsiella pneumoniae. Eur J Pharm Sci 2023; 185:106436. [PMID: 36965642 DOI: 10.1016/j.ejps.2023.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
PURPOSE Antibiotic resistance development in pathogenic bacteria like Klebsiella pneumoniae seriously threatens humankind. Therefore, it is important to understand the interaction of bacteria with antibiotic agents and how it acquires resistance at the molecular level. The current study describes metabolomics analysis of K. pneumoniae sensitive strains and its gentamicin-tolerant (resistant) strains. METHODS K. pneumoniae strains were treated at five different concentrations of gentamicin, increasing from a low dose (16.2 µg/mL) to the highest dose (250 µg/mL) at three incubation time periods (24h, 48h, and 72h). Colonies obtained at various concentrations and time intervals were subjected to metabolomic analysis using GC-MS. RESULTS A drastic change was observed in the morphology of K. pneumoniae colonies with the increasing gentamicin concentration. Moreover, K. pneumoniae strains grown at the highest concentration (250 µg/mL) were found tolerant to 1 mg/mL gentamicin (4-folds) and considered resistant strains. A total of 459 metabolites were identified. A sequential down/up-regulation in 4, 3, and 4 metabolites were observed in association with the increasing gentamicin concentration at 24h, 48h, and 72h, respectively. While with the comparative analysis of resistant and sensitive strains, a total of seven down- and sixteen up-regulated metabolites were observed. The concentration of some fatty acids and sugars have been found to increase while, a few metabolites like inosine, tyrosine, 1-propionylproline, and 2-hydroxyacetic acid have been found down-regulated in resistant samples. CONCLUSION These regulator metabolites might be associated with resistance development in K. pneumoniae against gentamicin and might be helpful in the rapid detection of gentamicin-resistant clinical strains.
Collapse
Affiliation(s)
- Ali Raza
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Moatter Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Ramzan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Amna Jabbar Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Azra Akbar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ayaz Ahmed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
12
|
Shirmohammadi A, Maleki Dizaj S, Sharifi S, Fattahi S, Negahdari R, Ghavimi MA, Memar MY. Promising Antimicrobial Action of Sustained Released Curcumin-Loaded Silica Nanoparticles against Clinically Isolated Porphyromonas gingivalis. Diseases 2023; 11:diseases11010048. [PMID: 36975597 PMCID: PMC10047251 DOI: 10.3390/diseases11010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis (P. gingivalis) has always been one of the leading causes of periodontal disease, and antibiotics are commonly used to control it. Numerous side effects of synthetic drugs, as well as the spread of drug resistance, have led to a tendency toward using natural antimicrobials, such as curcumin. The present study aimed to prepare and physicochemically characterize curcumin-loaded silica nanoparticles and to detect their antimicrobial effects on P. gingivalis. METHODS Curcumin-loaded silica nanoparticles were prepared using the chemical precipitation method and then were characterized using conventional methods (properties such as the particle size, drug loading percentage, and release pattern). P. gingivalis was isolated from one patient with chronic periodontal diseases. The patient's gingival crevice fluid was sampled using sterile filter paper and was transferred to the microbiology laboratory in less than 30 min. The disk diffusion method was used to determine the sensitivity of clinically isolated P. gingivalis to curcumin-loaded silica nanoparticles. SPSS software, version 20, was used to compare the data between groups with a p value of <0.05 as the level of significance. Then, one-way ANOVA testing was utilized to compare the groups. RESULTS The curcumin-loaded silica nanoparticles showed a nanometric size and a drug loading percentage of 68% for curcumin. The nanoparticles had a mesoporous structure and rod-shaped morphology. They showed a relatively rapid release pattern in the first 5 days. The release of the drug from the nanoparticles continued slowly until the 45th day. The results of in vitro antimicrobial tests showed that P. gingivalis was sensitive to the curcumin-loaded silica nanoparticles at concentrations of 50, 25, 12.5, and 6.25 µg/mL. One-way ANOVA showed that there was a significant difference between the mean growth inhibition zone, and the concentration of 50 µg/mL showed the highest inhibition zone (p ≤ 0.05). CONCLUSION Based on the obtained results, it can be concluded that the local nanocurcumin application for periodontal disease and implant-related infections can be considered a promising method for the near future in dentistry.
Collapse
Affiliation(s)
- Adileh Shirmohammadi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Shirin Fattahi
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Science, Tabriz 5166, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166, Iran
| |
Collapse
|
13
|
Antibiofilm Activity and Synergistic Effects of Thymol-Loaded Poly (Lactic-Co-Glycolic Acid) Nanoparticles with Amikacin against Four Salmonella enterica Serovars. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:7274309. [PMID: 36698730 PMCID: PMC9870694 DOI: 10.1155/2023/7274309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 01/19/2023]
Abstract
Background Salmonella species are frequently linked to biofilm-associated infections. Biofilm formation intensively reduces the efficacy of antibiotics and the host immune system. Therefore, new therapeutic strategies are needed. Thymol, the main monoterpene phenol found in Thymus vulgaris, has been shown to possess potent antibiofilm activity. Our previous findings showed that thymol enhanced the antibiofilm activity of aminoglycosides against Salmonella enterica serovars. However, the clinical potential of thymol has not yet been realized due to its low aqueous solubility and high volatility. Nano-based drug delivery systems have emerged as a novel strategy to resolve these problems. This study aimed to investigate the antibiofilm activity of thymol-loaded poly (lactic-co-glycolic acid) nanoparticles (TH-NPs) and their synergism when used in combination with amikacin antibiotics. Methods The antibacterial activity of TH-NPs was evaluated using the broth microdilution method. Biofilm formation and antibiofilm assays were performed by the miniaturized microtiter plate method. Interaction studies between TH-NPs and amikacin against biofilm were determined using the checkerboard method. Results TH-NPs exhibited antibacterial activity against planktonic cells of S. enterica serovars that were more efficient (8 to 32 times) than free thymol alone. S. Typhimurium and S. Choleraesuis isolates were considered strong biofilm producers. The combination of TH-NPs with amikacin showed synergistic activity in the inhibition and eradication of S. enterica serovar biofilm. The minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) of amikacin were reduced by 32 to 128-fold when used in combination with TH-NPs. Time-kill kinetic studies showed that the combination of TH-NPs with amikacin possesses bactericidal action. Conclusion This study suggests that the combination of TH-NPs with amikacin can be an alternative to overcome biofilm-associatedSalmonella diseases and therefore should be further explored as a model to search for new antibiofilm drugs.
Collapse
|
14
|
Khan A, Jabeen H, Ahmad T, Rehman NU, Khan SS, Shareef H, Sarwar R, Yahya S, Hussain N, Uddin J, Hussain J, Al-Harrasi A. Comparative efficacy of cephradine-loaded silver and gold nanoparticles against resistant human pathogens. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:312-321. [DOI: 10.1080/21691401.2022.2144340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Humera Jabeen
- Department of Chemistry, Sardar Bahadur Khan Women’s University, Quetta, Pakistan
| | - Touqeer Ahmad
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Saleha Suleman Khan
- Department of Chemistry, Sardar Bahadur Khan Women’s University, Quetta, Pakistan
| | - Huma Shareef
- Department of Pharmacognosy, Faculty of Pharmacy, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Saira Yahya
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Nusrat Hussain
- Department of Chemistry, University of Baltistan Skardu, Skardu, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
15
|
Barani M, Fathizadeh H, Arkaban H, Kalantar-Neyestanaki D, Akbarizadeh MR, Turki Jalil A, Akhavan-Sigari R. Recent Advances in Nanotechnology for the Management of Klebsiella pneumoniae-Related Infections. BIOSENSORS 2022; 12:1155. [PMID: 36551122 PMCID: PMC9776335 DOI: 10.3390/bios12121155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Klebsiella pneumoniae is an important human pathogen that causes diseases such as urinary tract infections, pneumonia, bloodstream infections, bacteremia, and sepsis. The rise of multidrug-resistant strains has severely limited the available treatments for K. pneumoniae infections. On the other hand, K. pneumoniae activity (and related infections) urgently requires improved management strategies. A growing number of medical applications are using nanotechnology, which uses materials with atomic or molecular dimensions, to diagnose, eliminate, or reduce the activity of different infections. In this review, we start with the traditional treatment and detection method for K. pneumoniae and then concentrate on selected studies (2015-2022) that investigated the application of nanoparticles separately and in combination with other techniques against K. pneumoniae.
Collapse
Affiliation(s)
- Mahmood Barani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan 7616916338, Iran
| | - Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, Amir Al Momenin Hospital, Zabol University of Medical Sciences, Zabol 9861663335, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, 72076 Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, 00014 Warsaw, Poland
| |
Collapse
|
16
|
Wu J, Chen J, Wang Y, Meng Q, Zhao J. Siderophore iucA of hypermucoviscous Klebsiella pneumoniae promotes liver damage in mice by inducing oxidative stress. Biochem Biophys Rep 2022; 32:101376. [PMID: 36340868 PMCID: PMC9634269 DOI: 10.1016/j.bbrep.2022.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The hypermucoviscosity/hypervirulent K. pneumoniae (hvKP) is a dominant cause of pyogenic liver abscess (PLA) and has contributed to the endemicity of disease in Asian country. The siderophore aerobactin (iucA) is highly expressed in hvKP and acting virulence role during hvKP infection. However, its role in the PLA is poorly understood. We constructed iucA deletion mutant (ΔiucA-hvKP852) and used animal study to characterize the role of siderophore iucA in K. pneumoniae liver abscess. The animal experiments showed that ΔiucA-hvKP852 strain had lower virulence in mice compared to hvKP852 wild type strain. At 24 h after infection, only two of ten mice developed liver abscess during infection with ΔiucA-hvKP852 strain, while nine of ten mice infected with wild type hvKP852 strain showed multiple lesions of liver abscess. The liver tissue infected with ΔiucA-hvKP852 exhibited low reactive oxygen stress levels compared to those infected by wild type hvKP852 strain (P < 0.05). The results suggest that siderophore iucA play an important role in the liver abscess by inducing oxidative stress. iucA positive strains produces more siderophore than iucA negative hvK. pneumoniae. Siderophore production is positively related with Oxidative stress in hvK. pneumoniae. iucA enhances oxidative stress in liver and forms liver abscess during hvK. pneumoniae infection.
Collapse
Affiliation(s)
- Jinyin Wu
- Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Jie Chen
- Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ying Wang
- Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Qingtai Meng
- Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Jizi Zhao
- Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China,Corresponding author. Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
17
|
Enoxacin-based derivatives: antimicrobial and antibiofilm agent: a biology-oriented drug synthesis (BIODS) approach. Future Med Chem 2022; 14:947-962. [PMID: 35695000 DOI: 10.4155/fmc-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: To find alternative molecules against Klebsiella pneumonia, Proteus mirabilis and methicillin-resistant Staphylococcus aureus, new enoxacin derivatives were synthesized and screened. Methods: All derivatives exhibited promising antibacterial activities as compared to standard enoxacin (2 μg/ml) and standard cefixime (82 μg/ml). Compounds 2, 3 and 5 significantly downregulated the gene expression of biofilm-forming genes. Conclusion: Based on our results, these molecules may serve as potential drug candidates to cure several bacterial infections in the future.
Collapse
|
18
|
Lagha R, Abdallah FB, Mezni A, Alzahrani OM. Effect of Plasmonic Gold Nanoprisms on Biofilm Formation and Heat Shock Proteins Expression in Human Pathogenic Bacteria. Pharmaceuticals (Basel) 2021; 14:1335. [PMID: 34959736 PMCID: PMC8703320 DOI: 10.3390/ph14121335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles have gained interest in biomedical sciences in the areas of nano-diagnostics, bio-labeling, drug delivery, and bacterial infection. In this study, we examined, for the first time, the antibacterial and antibiofilm properties of plasmonic gold nanoprisms against human pathogenic bacteria using MIC and crystal violet. In addition, the expression level of GroEL/GroES heat shock proteins was also investigated by western blot. Gold nanoparticles were characterized by TEM and EDX, which showed equilateral triangular prisms with an average edge length of 150 nm. Antibacterial activity testing showed a great effect of AuNPs against pathogenic bacteria with MICs values ranging from 50 μg/mL to 100 μg/mL. Nanoparticles demonstrated strong biofilm inhibition action with a percentage of inhibition ranging from 40.44 to 82.43%. Western blot analysis revealed that GroEL was an AuNPs-inducible protein with an increase of up to 66.04%, but GroES was down-regulated with a reduction of up to 46.81%. Accordingly, plasmonic gold nanoprisms, could be a good candidate for antibiotics substitution in order to treat bacterial infections.
Collapse
Affiliation(s)
- Rihab Lagha
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (R.L.); (O.M.A.)
- Research Unit UR17ES30: Virology and Antiviral Strategies, Higher Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Fethi Ben Abdallah
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (R.L.); (O.M.A.)
- Research Unit UR17ES30: Virology and Antiviral Strategies, Higher Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Amine Mezni
- Department of Chemistry, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Othman M. Alzahrani
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (R.L.); (O.M.A.)
| |
Collapse
|
19
|
Ahmad T, Mahbood F, Sarwar R, Iqbal A, Khan M, Muhammad S, Al-Riyami K, Hussain N, Uddin J, Khan A, Al-Harrasi A. Synthesis of gemifloxacin conjugated silver nanoparticles, their amplified bacterial efficacy against human pathogen and their morphological study via TEM analysis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:661-671. [PMID: 34818127 DOI: 10.1080/21691401.2021.2003805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Drug-loaded nanoparticles (NPs) allow specific accumulation and controlled release of drugs to infected tissues with minimal cytotoxicity. In this study, gemifloxacin conjugated silver nanoparticles (Gemi-AgNPs) were synthesized, and the amplification of their antibacterial potential against the human pathogen as well as their stability was monitored under physiological conditions. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the interaction between -NH2 and -OH functional moiety and the metal surface. The morphological analyses via transmission electron microscopy revealed that Gemi-AgNPs has a round oval shape and average particle size of 22.23 ± 2 nm. The antibacterial and antibiofilm activities of these NPS showed that Gemi-AgNPs exhibit excellent antimicrobial and biofilm inhibition activity against human pathogens, namely, Proteus mirabilis (P. mirabilis) and methicillin-resistant Staphylococcus aureus (MRSA). A significant increase in the antibiofilm activity of Gemi-AgNPs was confirmed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, and microscopic analysis. Gemi-AgNPs exhibited the ability to inhibit urease with an IC50 value of 57.4 ± 0.72 µg/mL. The changes in the bacterial cell morphology were analyzed via TEM, which revealed that cell membranes disrupted and completely destroyed the cell morphology by the treatment of Gemi-AgNPs.
Collapse
Affiliation(s)
- Touqeer Ahmad
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Fazal Mahbood
- Institute of Chemical Sciences, University of Swat, KP, Pakistan
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Ayesha Iqbal
- Division of Pharmacy Practice and Policy, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sayyar Muhammad
- Department of Chemistry, Islamia College, Peshawar, Pakistan
| | - Khamis Al-Riyami
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Nusrat Hussain
- Department of Chemistry, University of Baltistan Skardu, Skardu, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
20
|
Synergistic Antibiofilm Effect of Thymol and Piperine in Combination with Aminoglycosides Antibiotics against Four Salmonella enterica Serovars. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1567017. [PMID: 34745275 PMCID: PMC8566057 DOI: 10.1155/2021/1567017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022]
Abstract
Biofilms related to human infection have high levels of pathogenicity due to their resistance to antimicrobial agents. The discovery of antibiofilm agents is necessary. One approach to overcome this problem is the use of antibiotics agents' combination. This study aimed to determine the efficacy of the combination of natural products thymol and piperine with three aminoglycosides antibiotics, amikacin, kanamycin, and streptomycin against biofilm-forming Salmonella enterica. The microtiter plate assay method was used to evaluate the biofilm-producing capacity of the isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined by the broth microdilution method. The inhibition of biofilm formation and biofilm eradication was determined using the microtiter broth method. The checkerboard method was used to determine the combined effects of natural products with aminoglycosides antibiotics. All the tested isolates showed various levels of biofilm formation. Overall, combinations provided 43.3% of synergy in preventing the biofilm formation and 40% of synergy in eradicating preformed biofilms, and in both cases, no antagonism was observed. The combination of thymol with kanamycin showed a synergistic effect with 16- to 32-fold decrease of the minimum biofilm eradication concentration (MBEC) of kanamycin. The interaction of piperine with amikacin and streptomycin also revealed a synergistic effect with 16-fold reduction of the minimum biofilm inhibitory concentration (MBIC). The combination of thymol with the three antibiotics showed a strong synergistic effect in both inhibiting the biofilm formation and eradicating the preformed biofilm. This study demonstrates that thymol and piperine potentiate the antibiofilm activity of amikacin, kanamycin, and streptomycin. These combinations are a promising approach therapeutic to overcome the problem of Salmonella enterica biofilm-associated infections. In addition, these combinations could help reduce the concentration of individual components, thereby minimizing the nephrotoxicity of aminoglycosides antibiotics.
Collapse
|
21
|
Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Escalating medical expenses due to infectious diseases are causing huge socioeconomic pressure on mankind globally. The emergence of antibiotic resistance has further aggravated this problem. Drug-resistant pathogens are also capable of forming thick biofilms on biotic and abiotic surfaces to thrive in a harsh environment. To address these clinical problems, various strategies including antibacterial agent delivering matrices and bactericidal coatings strategies have been developed. In this review, we have discussed various types of polymeric vehicles such as hydrogels, sponges/cryogels, microgels, nanogels, and meshes, which are commonly used to deliver antibiotics, metal nanoparticles, and biocides. Compositions of these polymeric matrices have been elaborately depicted by elucidating their chemical interactions and potential activity have been discussed. On the other hand, various implant/device-surface coating strategies which exploit the release-active mechanism of bacterial killing are discussed in elaboration. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Dipanjana Patra
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| |
Collapse
|
22
|
Usmani Y, Ahmed A, Faizi S, Versiani MA, Shamshad S, Khan S, Simjee SU. Antimicrobial and biofilm inhibiting potential of an amide derivative [N-(2', 4'-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide] of ursolic acid by modulating membrane potential and quorum sensing against colistin resistant Acinetobacter baumannii. Microb Pathog 2021; 157:104997. [PMID: 34048890 DOI: 10.1016/j.micpath.2021.104997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii is Gram-negative, an opportunistic pathogen responsible for life-threatening ventilator-associated pneumonia. World Health Organization (WHO) enlisted it as a priority pathogen for which therapeutic options need speculations. Biofilm further benefits this pathogen and aids 100-1000 folds more resistant against antimicrobials and the host immune system. In this study, ursolic acid (1) and its amide derivatives (2-4) explored for their antimicrobial and antibiofilm potential against colistin-resistant A. baumannii (CRAB) reference and clinical strains. Viability, crystal violet, microscopic, and gene expression assays further detailed the active compounds' antimicrobial and biofilm inhibition potential. Compound 4 [N-(2',4'-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide)], a synthetic amide derivate of ursolic acid significantly inhibits bacterial growth with MIC in the range of 78-156 μg/mL against CRAB isolates. This compound failed to completely kill the CRAB isolates even at 500 μg/mL concentration, suggesting the compound's anti-virulence and bacteriostatic nature. Short and prolonged exposure of 4 inhibited or delayed the bacterial growth at sub MIC, MIC, and 2× MIC, as evident in time-kill and post-antibacterial assay. It significantly inhibited and eradicated >70% of biofilm formation at MIC and sub MIC levels compared to colistin required in high concentrations. Microscopic analysis showed disintegrated biofilm after treatment with the 4 further strengthened its antibiofilm potential. Atomic force microscopy (AFM) hinted the membrane disrupting effect of 4 at MIC's. Further it was confirmed by DiBAC4 using fluorescence-activating cells sorting (FACS), suggesting a depolarized membrane at MIC. Gene expression analysis also supported our data as it showed reduced expression of biofilm-forming (bap) and quorum sensing (abaR) genes after treatment with sub MIC of 4. The results suggest that 4 significantly inhibit bacterial growth and biofilm mode of colistin-resistant A. baumannii. Thus, further studies are required to decipher the complete mechanism of action to develop 4 as a new pharmacophore against A. baumannii.
Collapse
Affiliation(s)
- Yamina Usmani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Ali Versiani
- Department of Chemistry, Federal Urdu University of Arts, Science, and Technology, Gulshan-e-Iqbal, Karachi, 75300, Pakistan
| | - Shumaila Shamshad
- Department of Chemistry, Federal Urdu University of Arts, Science, and Technology, Gulshan-e-Iqbal, Karachi, 75300, Pakistan
| | - Saeed Khan
- Department of Pathology, Dow International Medical College, Dow Diagnostic Research and Reference Laboratory, Dow University of Health Sciences, Karachi, Pakistan
| | - Shabana U Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
23
|
Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem Biophys Rep 2021; 26:100991. [PMID: 33912692 PMCID: PMC8063742 DOI: 10.1016/j.bbrep.2021.100991] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs.
Collapse
Affiliation(s)
- A. Sani
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Department of Biological Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - C. Cao
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - D. Cui
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
24
|
de Moura DF, Rocha TA, de Melo Barros D, da Silva MM, Dos Santos Santana M, Neta BM, Cavalcanti IMF, Martins RD, da Silva MV. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol. Arch Microbiol 2021; 203:4303-4311. [PMID: 34110480 DOI: 10.1007/s00203-021-02377-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
The aim of this study was to evaluate the antioxidant, antibacterial, and antibiofilm activities of nerolidol. The antioxidant activity of nerolidol was determined using the total antioxidant activity method. Antibacterial activity was performed using the microdilution method to determine the minimum inhibitory concentration (MIC) against seven standard strains of the ATCC and four bacterial clinical isolates with a resistance profile, following the Clinical and Laboratory Standards Institute (CLSI). The antibiofilm activity of nerolidol was performed using the crystal violet method. The results of the antioxidant test revealed a total antioxidant activity of 93.94%. Nerolidol inhibited the growth of Staphylococcus aureus (MIC = 1 mg/mL), Streptococcus mutans (MIC = 4 mg/mL), Pseudomonas aeruginosa (MIC = 0.5 mg/mL), and Klebsiella pneumoniae (MIC = 0.5 mg/mL). For clinical isolates, nerolidol showed an inhibitory potential against multidrug-resistant P. aeruginosa, K. pneumoniae carbapenemase (MIC = 0.5 mg/mL), methicillin-susceptible S. aureus (MIC = 2 mg/mL), and methicillin-resistant S. aureus (MIC = 2 mg/mL). Nerolidol showed similar antibacterial activity against ATCC strains and hospital clinical isolates with resistance profile, suggesting that even though these strains are resistant to antibiotics, they are still sensitive to nerolidol. Nerolidol exerted a dose-dependent effect on the inhibition of biofilm formation, even at subinhibitory concentrations. Nerolidol inhibited bacterial biofilms of ATCC strains at a rate ranging from 51 to 98%, at concentrations ranging from 0.5 to 4 mg/mL. For clinical bacterial isolates, biofilm inhibition ranged from 6 to 60%. Therefore, the present study showed the antioxidant, antibacterial, and antibiofilm properties of nerolidol.
Collapse
Affiliation(s)
- Danielle Feijó de Moura
- Laboratório de Parasitologia, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil.,Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Tamiris Alves Rocha
- Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Dayane de Melo Barros
- Laboratório de Microbiologia de Alimentos, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Marllyn Marques da Silva
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de células, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Marcielle Dos Santos Santana
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Beatriz Mendes Neta
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil. .,Setor de Microbiologia Clínica do Laboratório de Imunopatologia Keizo Asami da Universidade Federal de Pernambuco (LIKA/UFPE), Recife, PE, Brazil.
| | - René Duarte Martins
- Espaço Farmácia Viva, Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Márcia Vanusa da Silva
- Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil.,Núcleo de Bioprospecção da Caatinga, Instituto Nacional do Semiárido, Paraíba, Brazil
| |
Collapse
|
25
|
Bhat SV, Price JDW, Dahms TES. AFM-Based Correlative Microscopy Illuminates Human Pathogens. Front Cell Infect Microbiol 2021; 11:655501. [PMID: 34026660 PMCID: PMC8138568 DOI: 10.3389/fcimb.2021.655501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
Microbes have an arsenal of virulence factors that contribute to their pathogenicity. A number of challenges remain to fully understand disease transmission, fitness landscape, antimicrobial resistance and host heterogeneity. A variety of tools have been used to address diverse aspects of pathogenicity, from molecular host-pathogen interactions to the mechanisms of disease acquisition and transmission. Current gaps in our knowledge include a more direct understanding of host-pathogen interactions, including signaling at interfaces, and direct phenotypic confirmation of pathogenicity. Correlative microscopy has been gaining traction to address the many challenges currently faced in biomedicine, in particular the combination of optical and atomic force microscopy (AFM). AFM, generates high-resolution surface topographical images, and quantifies mechanical properties at the pN scale under physiologically relevant conditions. When combined with optical microscopy, AFM probes pathogen surfaces and their physical and molecular interaction with host cells, while the various modes of optical microscopy view internal cellular responses of the pathogen and host. Here we review the most recent advances in our understanding of pathogens, recent applications of AFM to the field, how correlative AFM-optical microspectroscopy and microscopy have been used to illuminate pathogenicity and how these methods can reach their full potential for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Supriya V Bhat
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Jared D W Price
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
26
|
Sánchez SV, Navarro N, Catalán-Figueroa J, Morales JO. Nanoparticles as Potential Novel Therapies for Urinary Tract Infections. Front Cell Infect Microbiol 2021; 11:656496. [PMID: 33954121 PMCID: PMC8089393 DOI: 10.3389/fcimb.2021.656496] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infection (UTI) is one of the most common reasons for antibiotic treatment. Nevertheless, uropathogens are steadily becoming resistant to currently available therapies. In this context, nanotechnology emerges as an innovative and promising approach among diverse strategies currently under development. In this review we deeply discuss different nanoparticles (NPs) used in UTI treatment, including organic NPs, nanodiamonds, chemical and green synthesized inorganic NPs, and NPs made of composite materials. In addition, we compare the effects of different NPs against uropathogens in vivo and in vitro and discuss their potential impact the in the near future.
Collapse
Affiliation(s)
- Sofía V Sánchez
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.,Center of New Drugs for Hypertension (CENDHY), Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Nicolás Navarro
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.,Center of New Drugs for Hypertension (CENDHY), Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Johanna Catalán-Figueroa
- Departamento Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología experimental de Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Medicina, Escuela de Química y Farmacia, Universidad Católica del Maule, Talca, Chile
| | - Javier O Morales
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.,Center of New Drugs for Hypertension (CENDHY), Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| |
Collapse
|
27
|
Sun PP, Lai CS, Hung CJ, Dhaiveegan P, Tsai ML, Chiu CL, Fang JM. Subchronic oral toxicity evaluation of gold nanoparticles in male and female mice. Heliyon 2021; 7:e06577. [PMID: 33855242 PMCID: PMC8027780 DOI: 10.1016/j.heliyon.2021.e06577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/17/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
Gold nanoparticles (AuNPs) are biocompatible nanomaterials with potential application in the food industry. The safety of AuNPs oral consumption remains inconclusive, and information on possible long-term toxicity is limited. The current study aimed to evaluate the subchronic oral toxicity of AuNPs in male and female Institute of Cancer Research (ICR) mice. Citrate-coated spherical AuNPs with 53 nm diameters were prepared and orally administered to the mice. No mortality or clinical abnormalities were observed following daily administration of AuNPs at the dosages of 0.2, 2, and 20 mg/kg for 90 days. There was no significant difference in body weight or the relative organs' weights between the control and AuNPs-treated mice. No gross abnormalities or histopathological changes were observed except that the male mice treated with high dose (20 mg/kg AuNPs) showed minor infiltration in the kidneys, and female mice showed a reduced A/G ratio and elevated platelet indices. Overall, the 90-day long-term oral consumption of AuNPs did not cause significant toxicity in mice.
Collapse
Affiliation(s)
- Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Chung-Jung Hung
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan 32656, Taiwan
| | - Periyathambi Dhaiveegan
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan 32656, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Chun-Lun Chiu
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan 32656, Taiwan
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10607, Taiwan
| |
Collapse
|
28
|
Ricardo SIC, Anjos IIL, Monge N, Faustino CMC, Ribeiro IAC. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infect Dis 2020; 6:3109-3130. [PMID: 33245664 DOI: 10.1021/acsinfecdis.0c00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary and intravascular catheters are two of the most used invasive medical devices; however, microbial colonization of catheter surfaces is responsible for most healthcare-associated infections (HAIs). Several antimicrobial-coated catheters are available, but recurrent antibiotic therapy can decrease their potential activity against resistant bacterial strains. The aim of this Review is to question the actual effectiveness of currently used (coated) catheters and describe the progress and promise of alternative antimicrobial coatings. Different strategies have been reviewed with the common goal of preventing biofilm formation on catheters, including release-based approaches using antibiotics, antiseptics, nitric oxide, 5-fluorouracil, and silver as well as contact-killing approaches employing quaternary ammonium compounds, chitosan, antimicrobial peptides, and enzymes. All of these strategies have given proof of antimicrobial efficacy by modifying the physiology of pathogens or disrupting their structural integrity. The aim for synergistic approaches using multitarget processes and the combination of both antifouling and bactericidal properties holds potential for the near future. Despite intensive research in biofilm preventive strategies, laboratorial studies still present some limitations since experimental conditions usually are not the same and also differ from biological conditions encountered when the catheter is inserted in the human body. Consequently, in most cases, the efficacy data obtained from in vitro studies is not properly reflected in the clinical setting. Thus, further well-designed clinical trials and additional cytotoxicity studies are needed to prove the efficacy and safety of the developed antimicrobial strategies in the prevention of biofilm formation at catheter surfaces.
Collapse
Affiliation(s)
- Susana I. C. Ricardo
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês I. L. Anjos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Célia M. C. Faustino
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel A. C. Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
29
|
Malaekeh-Nikouei B, Fazly Bazzaz BS, Mirhadi E, Tajani AS, Khameneh B. The role of nanotechnology in combating biofilm-based antibiotic resistance. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Abdalla SSI, Katas H, Azmi F, Busra MFM. Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: Mechanism of Action, Toxicity and Current Status. Curr Drug Deliv 2020; 17:88-100. [DOI: 10.2174/1567201817666191227094334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023]
Abstract
Fast progress in nanoscience and nanotechnology has contributed to the way in which people diagnose, combat, and overcome various diseases differently from the conventional methods. Metal nanoparticles, mainly silver and gold nanoparticles (AgNPs and AuNPs, respectively), are currently developed for many applications in the medical and pharmaceutical area including as antibacterial, antibiofilm as well as anti-leshmanial agents, drug delivery systems, diagnostics tools, as well as being included in personal care products and cosmetics. In this review, the preparation of AgNPs and AuNPs using different methods is discussed, particularly the green or bio- synthesis method as well as common methods used for their physical and chemical characterization. In addition, the mechanisms of the antimicrobial and anti-biofilm activity of AgNPs and AuNPs are discussed, along with the toxicity of both nanoparticles. The review will provide insight into the potential of biosynthesized AgNPs and AuNPs as antimicrobial nanomaterial agents for future use.
Collapse
Affiliation(s)
- Sundos Suleman Ismail Abdalla
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mohd Fauzi Mh Busra
- Tissue Engineering Centre, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Bioinspired morphology-controlled silver nanoparticles for antimicrobial application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110421. [DOI: 10.1016/j.msec.2019.110421] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023]
|
32
|
de Oliveira Júnior NG, Franco OL. Promising strategies for future treatment of Klebsiella pneumoniae biofilms. Future Microbiol 2020; 15:63-79. [PMID: 32048525 DOI: 10.2217/fmb-2019-0180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogenic bacterium that has the ability to aggregate as biofilm, representing one of the main agents in hospital infections, showing high rates of resistance to antibiotics. The K. pneumoniae biofilm aggregates are composed mainly of extracellular polysaccharides, eDNA and proteins. Besides, biofilms can attach to medical devices, such as endotracheal tubes and catheters, but are most dangerous on body surfaces. Here, we discuss the recent findings about the resistance mechanisms of K. pneumoniae biofilms, including genes and protein involved in 'classic', multidrug-resistant and hypervirulent strains, and also virulence factors. In addition, we also explore new strategies for possible treatment of these biofilms, and recently discovered molecules which may lead to future treatments.
Collapse
Affiliation(s)
- Nelson G de Oliveira Júnior
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117-900, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117-900, Brazil
| |
Collapse
|
33
|
Shafiq M, Anjum S, Hano C, Anjum I, Abbasi BH. An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry. Foods 2020; 9:E148. [PMID: 32028580 PMCID: PMC7074443 DOI: 10.3390/foods9020148] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 12/31/2022] Open
Abstract
The efficient progress in nanotechnology has transformed many aspects of food science and the food industry with enhanced investment and market share. Recent advances in nanomaterials and nanodevices such as nanosensors, nano-emulsions, nanopesticides or nanocapsules are intended to bring about innovative applications in the food industry. In this review, the current applications of nanotechnology for packaging, processing, and the enhancement of the nutritional value and shelf life of foods are targeted. In addition, the functionality and applicability of food-related nanotechnologies are also highlighted and critically discussed in order to provide an insight into the development and evaluation of the safety of nanotechnology in the food industry.
Collapse
Affiliation(s)
- Mehwish Shafiq
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France;
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
34
|
|
35
|
Siddiqui A, Anwar H, Ahmed SW, Naqvi S, Shah MR, Ahmed A, Ali SA. Synthesis and sensitive detection of doxycycline with sodium bis 2-ethylhexylsulfosuccinate based silver nanoparticle. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117489. [PMID: 31476646 DOI: 10.1016/j.saa.2019.117489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/23/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
The monitoring of residual antibiotics in the environment has gained a significant importance for the effective control, because of the high risk to human health. A simple strategy was designed for the green synthesis and detection of doxycycline (Dox) by using anionic surfactant sodium bis 2-ethylhexylsulfosuccinate based silver nanoparticles (AOT-AgNPs). The chemical reduction and capping of Ag+1 ions was achieved by sulfonyl and carbonyl functional groups of AOT molecule. The AOT-AgNPs were found to have excellent stability at variable environmental parameters (i.e. temperature, storage period, salt concentration and pH) possibly due to the strong emulsifying nature of the surfactant. Mechanism of interaction between the AOT-AgNPs and Dox was established with UV/visible, Fourier transform infrared (FTIR) spectroscopy, Atomic force microscopy (AFM) and Dynamic light scattering (DLS) techniques, which suggests the interaction via aggregates formation. The synthesize probe could detect the Dox within 15 min over a wide range of concentrations from 0.1 to 140μM with limit of detection (LOD) of 0.2 μM. As proof of strategy, we have illustrated that the AOT-AgNPs also detect Dox in biological and environmental samples with negligible interference and very significant recovery rates. Moreover, non-toxic nature against various tested cell lines (i.e. normal mouse fibroblast (NIH-3 T3) and cancerous non-small lung carcinoma (NCI-H460)) and significant antimicrobial, antibiofilm and biofilm eradicating potential of AOT-AgNPs were provide ideal nanomaterial for further applications.
Collapse
Affiliation(s)
- Asma Siddiqui
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Campus Karachi, Karachi, Pakistan
| | - Humera Anwar
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Campus Karachi, Karachi, Pakistan
| | - Syed Waseem Ahmed
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Campus Karachi, Karachi, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sumra Naqvi
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Campus Karachi, Karachi, Pakistan
| | - Muhammed Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
36
|
Bekhit M, Abu El-Naga MN, Sokary R, Fahim RA, El-Sawy NM. Radiation-induced synthesis of tween 80 stabilized silver nanoparticles for antibacterial applications. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1210-1217. [PMID: 32614255 DOI: 10.1080/10934529.2020.1784656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Recently, Silver nanoparticles (AgNPs) have become widely applied nanomaterial in human contacting areas such as cosmetics, food and medicine due to their antibacterial property. On the other hand, surfactants are essential ingredient of several industrial and consumer formulations. Based on these important applications, the current research was aimed to carry out the synthesis and characterization of Tween 80 capped silver nanoparticles (T80-AgNPs) using gamma radiation reduction method. Characterization of T80-AgNPs was occurred by using UV-Vis, XRD, FTIR and TEM techniques. UV-Visible spectra showed surface plasmon resonance (SPR) peak in the range of 420 nm signifying the synthesis of colloidal AgNPs. TEM confirmed the formation of spherical and uniformly distributed AgNPs with average size of 18 nm. XRD analysis illustrated the formation of pure crystalline AgNPs. The FTIR analysis provides evidence for the stabilization of AgNPs by Tween 80. The synthesized T80-AgNPs were evaluated for antibacterial activity against both Escherichia coli (E. coli) as gram negative (G -ve) bacteria and Staphylococcus aureus (S. aureus) as gram positive (G + ve) bacteria and anti-biofilm activity to P. aeruginosa. The results show that T80-AgNPs exhibits excellent antibacterial and antibiofilm activities.
Collapse
Affiliation(s)
- Mohamad Bekhit
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed N Abu El-Naga
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rehab Sokary
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ramy Amer Fahim
- Radiation Protection and Dosimetry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Naeem M El-Sawy
- Radiation Research of Polymer chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
37
|
Environmental persistence and disinfectant susceptibility of Klebsiella pneumoniae recovered from pinnipeds stranded on the California Coast. Vet Microbiol 2019; 241:108554. [PMID: 31928701 DOI: 10.1016/j.vetmic.2019.108554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023]
Abstract
Hypermucoviscous K. pneumoniae (HMV) are emergent zoonotic pathogens associated with increased invasiveness and pathogenicity in terrestrial and marine mammals. In this study, HMV and non-HMV isolates recovered from stranded pinnipeds were used to investigate: 1) their persistence in sea and fresh water microcosms at 10 and 20°C, 2) their capacity to form biofilms, and 3) the biocide efficacy of four disinfectants on their planktonic and biofilm phenotypes. Results indicated that although HMV isolates were significantly more mucoviscous, non-HMV isolates displayed significantly greater capacity to form biofilms (p < 0.05). Additionally, non-HMV isolates persisted in greater numbers in both sea- and freshwater, particularly at 20°C. These two phenomena could be associated with the greater growth observed for non-HMV isolates in in-vitro growth-curve assays (p < 0.05). Similar susceptibility to disinfectants was detected in HMV and non-HMV isolates when exposed for 24 h; however, the minimal biofilm disinfectant eradication concentration for HMV isolates was significantly higher than that for non-HMV when exposed to disinfectants for 0.5 h. This information should be taken into consideration when developing biosecurity protocols in facilities holding marine mammals in captivity.
Collapse
|
38
|
Shah SR, Shah Z, Khan A, Ahmed A, Sohani, Hussain J, Csuk R, Anwar MU, Al-Harrasi A. Sodium, Potassium, and Lithium Complexes of Phenanthroline and Diclofenac: First Report on Anticancer Studies. ACS OMEGA 2019; 4:21559-21566. [PMID: 31867552 PMCID: PMC6921677 DOI: 10.1021/acsomega.9b03314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 08/05/2023]
Abstract
Diclofenac or 2-[(2',6'-dichlorophenyl)amino]phenyl}acetic acid (dcf) is a nonsteroidal anti-inflammatory drug, and 1,10-phenanthroline (phen) is a well-known enzyme inhibitor. In this study, three new alkali metal complexes (1-3) containing both phen and dcf were prepared, and their structures were characterized by a variety of analytical techniques including infrared and UV-vis spectroscopy, 1H NMR and 13C NMR elemental analysis, mass spectrometry, and single-crystal X-ray diffraction analysis. In these complexes, phen binds via a N,N'-chelate pocket, while the monoanionic dcf-ligand remains either uncoordinated (in the case of 1 and 3) or coordinated in a bidentate fashion (in the case of 2). All three complexes crystallize in the triclinic space group P-1. [Na2(phen)2 (H2O)4][dcf]2 (1) is a dinuclear sodium complex, where two crystallographically identical Na+ cations adopt a distorted five-coordinate spherical square-pyramidal geometry, with a [N2O3] donor set. [K2(phen)2(dcf)2(H2O)4] (2) is also a dinuclear complex where the crystallographically unique K+ cation adopts a distorted seven-coordinate geometry comprising a [N2O5] donor set. [Li(phen)(H2O)2][dcf] (3) is a mononuclear lithium complex where the Li+ cation adopts a four-coordinate distorted tetrahedral geometry comprising a [N2O2] donor set. The complexes were evaluated for their anticancer activity against lung and oral cancer cell lines as well as for their antibacterial potential. The prepared complexes displayed very good antibacterial and anticancer activities with an excellent bioavailability.
Collapse
Affiliation(s)
- Syed Raza Shah
- Natural
and Medical Sciences Research Centre, Department of Biological Sciences
and Chemistry, University of Nizwa, Birkat Almouz 616, Oman
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan
| | - Zarbad Shah
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- Natural
and Medical Sciences Research Centre, Department of Biological Sciences
and Chemistry, University of Nizwa, Birkat Almouz 616, Oman
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research,
International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sohani
- Department of Chemistry, Bacha Khan University Charsadda, Charsadda-24420, Khyber Pakhtunkhwa, Pakistan
| | - Javid Hussain
- Natural
and Medical Sciences Research Centre, Department of Biological Sciences
and Chemistry, University of Nizwa, Birkat Almouz 616, Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, d-06120, Halle (Saale), Germany
| | - Muhammad U. Anwar
- Natural
and Medical Sciences Research Centre, Department of Biological Sciences
and Chemistry, University of Nizwa, Birkat Almouz 616, Oman
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Centre, Department of Biological Sciences
and Chemistry, University of Nizwa, Birkat Almouz 616, Oman
| |
Collapse
|
39
|
Rajkumari J, Meena H, Gangatharan M, Busi S. Green synthesis of anisotropic gold nanoparticles using hordenine and their antibiofilm efficacy against Pseudomonas aeruginosa. IET Nanobiotechnol 2019; 11:987-994. [PMID: 29155399 DOI: 10.1049/iet-nbt.2017.0069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is a notorious pathogen that causes biofilm aided infections in patients with cystic fibrosis and burn wounds, resulting in significant mortality in immunocompromised individuals. This study reports a novel one-step biosynthesis of gold nanoparticles using phytocompound, hordenine (HD), as a reducing and capping agent. The synthesis of the anisotropic hordenine-fabricated gold nanoparticles (HD-AuNPs) with an average particle size of 136.87 nm was achieved within 12 h of incubation at room temperature. Both HD and HD-AuNPs exhibited significant antibiofilm activity against P. aeruginosa PAO1, although greater biofilm inhibition was observed for the nanoparticles as compared to hordenine alone. In the microtitre plate assay and tube method, the nanoparticles significantly inhibited the biofilm formation by 73.69 and 78.41%, respectively. The exopolysaccharide production by the test pathogen was arrested by 68.46% on treatment with the nanoparticles. Further, the effect of HD and HD-AuNPs on the biofilm architecture of P. aeruginosa was revealed by light and confocal laser-scanning microscopy micrographs. The overall results of this study suggested the synergistic antibiofilm effect of AuNPs and HD for the treatment of chronic bacterial infections caused by biofilms forming pathogens.
Collapse
Affiliation(s)
- Jobina Rajkumari
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Himani Meena
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Muralitharan Gangatharan
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
40
|
Dykman LA, Khlebtsov NG. Gold nanoparticles in chemo-, immuno-, and combined therapy: review [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:3152-3182. [PMID: 31467774 PMCID: PMC6706047 DOI: 10.1364/boe.10.003152] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 05/19/2023]
Abstract
Functionalized gold nanoparticles (GNPs) with controlled geometrical and optical properties have been the subject of intense research and biomedical applications. This review summarizes recent data and topical problems in nanomedicine that are related to the use of variously sized, shaped, and structured GNPs. We focus on three topical fields in current nanomedicine: (1) use of GNP-based nanoplatforms for the targeted delivery of anticancer and antimicrobial drugs and of genes; (2) GNP-based cancer immunotherapy; and (3) combined chemo-, immuno-, and phototherapy. We present a summary of the available literature data and a short discussion of future work.
Collapse
Affiliation(s)
- L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
41
|
Farooq U, Ahmad T, Khan A, Sarwar R, Shafiq J, Raza Y, Ahmed A, Ullah S, Ur Rehman N, Al-Harrasi A. Rifampicin conjugated silver nanoparticles: a new arena for development of antibiofilm potential against methicillin resistant Staphylococcus aureus and Klebsiella pneumoniae. Int J Nanomedicine 2019; 14:3983-3993. [PMID: 31213810 PMCID: PMC6549787 DOI: 10.2147/ijn.s198194] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Infections caused by drug resistant bacteria are a major health concern worldwide and have prompted scientists to carry out efforts to overcome this challenge. Researchers and pharmaceutical companies are trying to develop new kinds of antimicrobial agents by using different physical and chemical methods to overcome these problems. Materials and methods: In the present study, rifampicin conjugated silver (Rif-Ag) nanoparticles have successfully been synthesized using a chemical method. Characterization of the nanoparticles was performed using a UV-Vis spectrophotometer, FTIR, SEM, TEM, and AFM. Results: The AFM, SEM, and TEM results showed that the average particle size of Rif-Ag nanoparticles was about 15-18±4 nm. The FTIR spectra revealed the conjugation of -NH2 and -OH functional moiety with silver nanoparticles surface. Considering the penetrating power of rifampicin, the free drug is compared with synthesized nanoparticle for antimicrobial, biofilm inhibition, and eradication potential. Synthesized nanoparticles were found to be significantly active as compared to drug alone. Conclusion: This study has shown greater biofilm inhibitory and eradicating potential against methicillin resistant Staphylococcus aureus and Klebsiella pneumoniae, as evident by crystal violet, MTT staining, and microscopic analysis. So, it will be further modified, and studies for the mechanism of action are needed.
Collapse
Affiliation(s)
- Umar Farooq
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Touqeer Ahmad
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Jazib Shafiq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Yasir Raza
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Safi Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
42
|
Khan F, Manivasagan P, Lee JW, Pham DTN, Oh J, Kim YM. Fucoidan-Stabilized Gold Nanoparticle-Mediated Biofilm Inhibition, Attenuation of Virulence and Motility Properties in Pseudomonas aeruginosa PAO1. Mar Drugs 2019; 17:E208. [PMID: 30987163 PMCID: PMC6520775 DOI: 10.3390/md17040208] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic resistance in Pseudomonas aeruginosa due to biofilm formation has transformed this opportunistic pathogen into a life-threatening one. Biosynthesized nanoparticles are increasingly being recognized as an effective anti-biofilm strategy to counter P. aeruginosa biofilms. In the present study, gold nanoparticles (AuNPs) were biologically synthesized and stabilized using fucoidan, which is an active compound sourced from brown seaweed. Biosynthesized fucoidan-stabilized AuNPs (F-AuNPs) were subjected to characterization using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission transmission electron microscopy (FE-TEM), dynamic light scattering (DLS), and energy dispersive X-ray diffraction (EDX). The biosynthesized F-AuNPs were then evaluated for their inhibitory effects on P. aeruginosa bacterial growth, biofilm formation, virulence factor production, and bacterial motility. Overall, the activities of F-AuNPs towards P. aeruginosa were varied depending on their concentration. At minimum inhibitory concentration (MIC) (512 µg/mL) and at concentrations above MIC, F-AuNPs exerted antibacterial activity. In contrast, the sub-inhibitory concentration (sub-MIC) levels of F-AuNPs inhibited biofilm formation without affecting bacterial growth, and eradicated matured biofilm. The minimum biofilm inhibition concentration (MBIC) and minimum biofilm eradication concentration (MBEC) were identified as 128 µg/mL. Furthermore, sub-MICs of F-AuNPs also attenuated the production of several important virulence factors and impaired bacterial swarming, swimming, and twitching motilities. Findings from the present study provide important insights into the potential of F-AuNPs as an effective new drug for controlling P. aeruginosa-biofilm-related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | | | - Jang-Won Lee
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea.
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
43
|
Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, Kumar V, Tripathi DK, Sharma S. Nanomaterials and microbes' interactions: a contemporary overview. 3 Biotech 2019; 9:68. [PMID: 30729092 DOI: 10.1007/s13205-019-1576-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 01/12/2019] [Indexed: 12/17/2022] Open
Abstract
Use of nanomaterials in the field of science and technology includes different fields in food industry, medicine, agriculture and cosmetics. Nanoparticle-based sensors have wide range of applications in food industry for identification and detection of chemical contaminants, pathogenic bacteria, toxins and fungal toxins from food materials with high specificity and sensitivity. Nanoparticle-microbe interactions play a significant role in disease treatment in the form of antimicrobial agents. The inhibitory mechanism of nanoparticles against different bacteria and fungi includes release of metal ions that interacts with cellular components through various pathways including reactive oxygen species (ROS) generation, pore formation in cell membranes, cell wall damage, DNA damage, and cell cycle arrest and ultimately inhibits the growth of cells. Nanoparticle-based therapies are growing to study the therapeutic treatments of plant diseases and to prevent the growth of phytopathogens leading to the growing utilization of engineered nanomaterials. Hence, with this background, the present review focuses thoroughly on detailed actions and responses of nanomaterials against different bacteria and fungi as well as food sensing and storage.
Collapse
Affiliation(s)
- Jaspreet Singh
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004 India
| | - Kanchan Vishwakarma
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004 India
| | - Naleeni Ramawat
- 2Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida, 201313 India
| | - Padmaja Rai
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004 India
| | - Vivek Kumar Singh
- 3Department of Physics, Shri Mata Vaishno Devi University, Katra, Jammu And Kashmir 182320 India
| | - Rohit Kumar Mishra
- Department of Microbiology, Swami Vivekanand University, Sagar, Madhya Pradesh India
| | - Vivek Kumar
- 5Himalayan Institute of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, India
| | - Durgesh Kumar Tripathi
- 2Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida, 201313 India
| | - Shivesh Sharma
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004 India
| |
Collapse
|
44
|
Anwar A, Siddiqui R, Khan NA. Importance of Theranostics in Rare Brain-Eating Amoebae Infections. ACS Chem Neurosci 2019; 10:6-12. [PMID: 30149693 DOI: 10.1021/acschemneuro.8b00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pathogenic free-living amoebae including Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri cause infections of the central nervous system (CNS), which almost always prove fatal. The mortality rate is high with the CNS infections caused by these microbes despite modern developments in healthcare and antimicrobial chemotherapy. The low awareness, delayed diagnosis, and lack of effective drugs are major hurdles to overcome these challenges. Nanomaterials have emerged as vital tools for concurrent diagnosis and therapy, which are commonly referred to as theranostics. Nanomaterials offer highly sensitive diagnostic systems and viable therapeutic effects as a single modality. There has been good progress to develop nanomaterials based efficient theranostic systems against numerous kinds of tumors, but this field is yet immature in the context of infectious diseases, particularly parasitic infections. Herein, we describe the potential value of theranostic applications of nanomaterials against brain infections due to pathogenic amoebae.
Collapse
Affiliation(s)
- Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor 47500, Malaysia
| |
Collapse
|
45
|
Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK. Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 2018; 26:1201-1214. [PMID: 30249319 PMCID: PMC9298566 DOI: 10.1016/j.jfda.2018.06.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
The rapid development of nanotechnology has transformed many domains of food science, especially those that involve the processing, packaging, storage, transportation, functionality, and other safety aspects of food. A wide range of nanostructured materials (NSMs), from inorganic metal, metal oxides, and their nanocomposites to nano-organic materials with bioactive agents, has been applied to the food industry. Despite the huge benefits nanotechnology has to offer, there are emerging concerns regarding the use of nanotechnology, as the accumulation of NSMs in human bodies and in the environment can cause several health and safety hazards. Therefore, safety and health concerns as well as regulatory policies must be considered while manufacturing, processing, intelligently and actively packaging, and consuming nano-processed food products. This review aims to provide a basic understanding regarding the applications of nanotechnology in the food packaging and processing industries and to identify the future prospects and potential risks associated with the use of NSMs.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea
| | - Dipendra Kumar Mahato
- Department of Agriculture and Food Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Pranjal Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Seung Kyu Hwang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea.
| |
Collapse
|
46
|
Ahmed D, Anwar A, Khan AK, Ahmed A, Shah MR, Khan NA. Size selectivity in antibiofilm activity of 3-(diphenylphosphino)propanoic acid coated gold nanomaterials against Gram-positive Staphylococcus aureus and Streptococcus mutans. AMB Express 2017; 7:210. [PMID: 29164404 PMCID: PMC5698236 DOI: 10.1186/s13568-017-0515-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/15/2017] [Indexed: 01/28/2023] Open
Abstract
Biofilm formation by pathogenic bacteria is one of the major threats in hospital related infections, hence inhibiting and eradicating biofilms has become a primary target for developing new anti-infection approaches. The present study was aimed to develop novel antibiofilm agents against two Gram-positive bacteria; Staphylococcus aureus (ATCC 43300) and Streptococcus mutans (ATCC 25175) using gold nanomaterials conjugated with 3-(diphenylphosphino)propionic acid (Au-LPa). Gold nanomaterials with different sizes as 2–3 nm small and 9–90 nm (50 nm average size) large were stabilized by LPa via different chemical synthetic strategies. The nanomaterials were fully characterized using atomic force microscope (AFM), transmission electron microscope, ultraviolet–visible absorption spectroscopy, and Fourier transformation infrared spectroscopy. Antibiofilm activity of Au-LPa nanomaterials was tested using LPa alone, Au-LPa and unprotected gold nanomaterials against the both biofilm-producing bacteria. The results showed that LPa alone did not inhibit biofilm formation to a significant extent below 0.025 mM, while conjugation with gold nanomaterials displayed manifold enhanced antibiofilm potential against both strains. Moreover, it was also observed that the antibiofilm potency of the Au-LPa nanomaterials varies with size variations of nanomaterials. AFM analysis of biofilms further complemented the assay results and provided morphological aspects of the antibiofilm action of Au-LPa nanomaterials.
Collapse
|
47
|
Khan AK, Ahmed A, Hussain M, Khan IA, Ali SA, Farooq AD, Faizi S. Antibiofilm potential of 16-oxo-cleroda-3, 13(14) E-diene-15 oic acid and its five new γ-amino γ-lactone derivatives against methicillin resistant Staphylococcus aureus and Streptococcus mutans. Eur J Med Chem 2017; 138:480-490. [DOI: 10.1016/j.ejmech.2017.06.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
|
48
|
Zaidi S, Misba L, Khan AU. Nano-therapeutics: A revolution in infection control in post antibiotic era. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2281-2301. [PMID: 28673854 DOI: 10.1016/j.nano.2017.06.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
With the arrival of antibiotics 70 years ago, meant a paradigm shift in overcoming infectious diseases. For decades, drugs have been used to treat different infections. However, with time bacteria have become resistant to multiple antibiotics, making some diseases difficult to fight. Nanoparticles (NPs) as antibacterial agents appear to have potential to overcome such problems and to revolutionize the diagnosis and treatment of bacterial infections. Therefore, there is significant interest in the use of NPs to treat variety of infections, particularly caused by multidrug-resistant (MDR) strains. This review begins with illustration of types of NPs followed by the literature of current research addressing mechanisms of NPs antibacterial activity, steps involved in NP mediated drug delivery as well as areas where NPs use has potential to improve the treatment, like NP enabled vaccination. Besides, recently emerged innovative NP platforms have been highlighted and their progress made in each area has been reviewed.
Collapse
Affiliation(s)
- Sahar Zaidi
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Lama Misba
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
49
|
Hamedi S, Shojaosadati SA, Mohammadi A. Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:36-44. [DOI: 10.1016/j.jphotobiol.2016.12.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
50
|
Zabielska J, Tyfa A, Kunicka-Styczyńska A. Methods for eradication of the biofilms formed by opportunistic pathogens using novel techniques – A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/fobio-2016-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The inconvenient environmental conditions force microorganisms to colonize either abiotic surfaces or animal and plant tissues and, therefore, form more resistant structures – biofilms. The phenomenon of microbial adherence, opportunistic pathogens in particular, is of a great concern. Colonization of medical devices and biofilm formation on their surface, may lead to severe infections mainly in humans with impaired immune system. Although, current research consider various methods for prevention of microbial biofilms formation, still, once a biofilm is formed, its elimination is almost impossible. This study focuses on the overview of novel methods applied for eradication of mature opportunistic pathogens' biofilms. Among various techniques the following: cold plasma, electric field, ultrasounds, ozonated water treatment, phagotherapy, matrix targeting enzymes, bacteriocins, synthetic chemicals and natural origin compounds used for biofilm matrix disruption were briefly described.
Collapse
|