1
|
Hao L, Fragoso-Saavedra M, Liu Q. Upregulation of porcine epidemic diarrhea virus (PEDV) RNA translation by the nucleocapsid protein. Virology 2025; 602:110306. [PMID: 39603168 DOI: 10.1016/j.virol.2024.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The role of coronaviral nucleocapsid (N) protein in regulating viral translation remains poorly understood. Here, we showed that the N protein of porcine epidemic diarrhea virus (PEDV) enhances the translation of both virus-like genomic RNA (gRNA) and messenger RNA. Further characterization of the gRNA translation upregulation showed that the N-terminal domain (NTD) + Linker region plays a major role. The stem-loop 1 in the 5' untranslated region (UTR) and the budged stem loop in the 3'UTR are required for viral translation upregulation by PEDV N protein. The signaling kinase Akt exists in three isoforms. We found that Akt1 enhances viral gRNA translation upregulation by the N protein dependent on its kinase activity. We further showed an interaction between Akt1 and PEDV N, that is abolished by the NTD + Linker region. This suggested that the enhancing effect of Akt1 on translation upregulation by the N protein does not require interaction between these two proteins.
Collapse
Affiliation(s)
- Lin Hao
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mario Fragoso-Saavedra
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
2
|
Liu Y, Tan J, Zhang N, Qu Z, Li W, Wu Y, Yin H, Liu G, Fu B. Trichinella spiralis excretory/secretory antigens ameliorate porcine epidemic diarrhea virus-induced mucosal damage in porcine intestinal oganoids by alleviating inflammation and promoting tight junction. Int J Parasitol 2024:S0020-7519(24)00228-5. [PMID: 39725260 DOI: 10.1016/j.ijpara.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Trichinella spiralis and porcine epidemic diarrhea virus (PEDV) are two infectious swine pathogens. Parasite excretory/secretory antigens play critical roles in various disease processes. To explore the coexistence mechanism of two pathogens infecting the same host, the intestinal organoid was utilized to reproduce these biological processes. In this study, we investigated the effects of T. spiralis excretory/secretory antigens (TsES) on PEDV-induced inflammatory regulation, lesion recovery, and mucosal barrier repair in porcine intestinal organoids. The results showed that PEDV effectively infected the porcine intestinal organoids. Next, TsES inhibited pro-inflammatory cytokines and increased the anti-inflammatory cytokines produced by PEDV-infected porcine intestinal organoids. Further, four-dimensional (4D) label-free quantitative proteomics and western blotting confirmed that TsES regulate the inflammation caused by PEDV infection through the nuclear factor kappa-B (NF-κB) pathway. In addition, TsES promoted cell proliferation, inhibited apoptosis, and reduced PEDV-induced lesions in intestinal organoids. The elevated secretory immunoglobulin A (sIgA) levels caused by PEDV infection were downregulated by TsES treatment in intestinal organoids. TsES treatment reversed the mucosal barrier damage caused by PEDV infection in intestinal organoids. Finally, PEDV replication increased after TsES treatment in organoids. We highlight the potential of TsES to ameliorate PEDV-induced inflammation, mucosal lesions, and barrier damage in porcine intestinal organoids. TsES also contribute to PEDV replication. This study presents a novel research model for research on host-virus-parasite interactions, while also providing a theoretical foundation to consider parasite derivatives as a potential adjunctive therapy for intestinal inflammation.
Collapse
Affiliation(s)
- Yinju Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou,730046, China
| | - Jinlong Tan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou,730046, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
| | - Nianzhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou,730046, China.
| | - Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou,730046, China
| | - Wenhui Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou,730046, China
| | - Yaodong Wu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou,730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou,730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, 225009, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou,730046, China
| | - Baoquan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou,730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Pashaie F, Hoornweg TE, Bikker FJ, Veenendaal T, Broere F, Veldhuizen EJA. Antiviral activity of cathelicidins against porcine epidemic diarrhea virus (PEDV): Mechanisms, and efficacy. Virus Res 2024; 350:199496. [PMID: 39528011 PMCID: PMC11607671 DOI: 10.1016/j.virusres.2024.199496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a harmful coronavirus infecting pigs, which is resulting in substantial financial losses in the global pig industry. The lack of effective vaccines or treatments underscores the pressing need for new antiviral strategies. Antimicrobial peptides (AMPs), specifically cathelicidins such as LL-37, have demonstrated promising activity against a range of viruses. This study aims to elucidate the antiviral mechanisms of cathelicidins by examining their inhibitory capabilities against PEDV in vitro. Four pig-derived antimicrobial peptides (PMAP-36, PMAP-23, PR-39, and PG-1), together with chicken-derived CATH-B1 and human-derived LL-37 were analyzed for their anti-PEDV activity. Flow cytometry and fluorescent microscopy confirmed that LL-37 and CATH-B1 had strong inhibitory effects at non-toxic concentrations of 5 and 10 µM, significantly reducing GFP-PEDV infection of Vero cells both in co- and pre-incubation setups. In contrast, none of the porcine peptides exhibited any inhibitory effects, even at higher doses. Fluorogenic LL-37 was shown to enter VERO cells, indicative of a possible immunomodulatory antiviral mode of action. However, transmission electron microscopy clearly indicated that both LL-37 and CATH-B1 affected virus morphology and caused aggregation of viral particles, showing that peptide-virus interaction caused reduced virus infectivity. In conclusion, this analysis highlights the potential of LL-37 and CATH-B1 as inhibitors against PEDV, suggesting promising directions for innovative therapeutic antiviral strategies.
Collapse
Affiliation(s)
- Fatemeh Pashaie
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Tabitha E Hoornweg
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam 1081 LA, the Netherlands
| | - Tineke Veenendaal
- Cell Microscopy Core, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CX, the Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands.
| |
Collapse
|
4
|
Lv Y, Tong Z, Liu J, Zhang Z, Wang C, Zeng Y, Liu P, Zong X, Chen G, Chen H, Tan C. Molecular Characterization and Pathogenicity Analysis of Porcine Rotavirus A. Viruses 2024; 16:1842. [PMID: 39772152 PMCID: PMC11680200 DOI: 10.3390/v16121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Porcine rotavirus A (RVA) is one of the major etiological agents of diarrhea in piglets and constitutes a significant threat to the swine industry. A molecular epidemiological investigation was conducted on 2422 diarrhea samples from Chinese pig farms to enhance our understanding of the molecular epidemiology and evolutionary diversity of RVA. The findings revealed an average RVA positivity rate of 42% (943/2422), and the study included data from 26 provinces, primarily in the eastern, southern and southwestern regions. Genetic evolutionary analysis revealed that G9 was the predominant genotype among the G-type genotypes, accounting for 25.32% of the total. The VP4 genotypes were P[7] (36.49%) and P[23] (36.49%). The predominant genotypic combinations of RVA were G9P[23] and G9P[7]. Eleven RVA strains were obtained via MA104 cell isolation. A rat model was established to assess the pathogenicity of these strains, with three strains exhibiting high pathogenicity in the model. Specifically, the RVA Porcine CHN HUBEI 2022 (Q-1), RVA Porcine CHN SHANXI 2022 (3.14-E), and RVA Porcine CHN HUBEI 2022 (5.11-U) strains were shown to cause diarrhea in the rats and damage the intestinal villi during the proliferation phase of the infection, leading to characteristic lesions in the small intestine. These data indicate that continuous monitoring of RVA can provide essential data for the prevention and control of this virus.
Collapse
Affiliation(s)
- Yaning Lv
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ze Tong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiaqi Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yan Zeng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pingxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xin Zong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guosheng Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
5
|
Huang S, Du L, Liu S, Yang Q, Lei C, Wang H, Yang L, Yang X. Development and Validation of RAA-CRISPR/Cas12a-Based Assay for Detecting Porcine Rotavirus. Animals (Basel) 2024; 14:3387. [PMID: 39682353 DOI: 10.3390/ani14233387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Piglet diarrhea poses significant economic losses to the pig industry, posing a worldwide challenge that urgently needs to be addressed in pig breeding practices. Porcine rotavirus (PoRV) is an important viral diarrhea pathogen in piglets, with a high incidence rate and a tendency to cause growth retardation. To enhance the sensitivity and specificity of PoRV detection, we sequenced the NSP3 gene of G5 and G9 genotypes of rotavirus A (RVA), enabling simultaneous detection of the two serotypes. Subsequently, we developed a rapid PoRV detection method using a combination of recombinase-aided amplification (RAA) and CRISPR/Cas12a. In this method, Cas12a binds to RAA amplification products, guided by CRISPR-derived RNA (crRNA), which activates its cleavage activity and releases fluorescence by cutting FAM-BHQ-labeled single-stranded DNA (ssDNA). In the optimized reaction system, the recombinant plasmid PoRV can achieve a highly sensitive reaction within 30 min at 37 °C, with a detection limit as low as 2.43 copies/μL, which is ten times higher in sensitivity compared to the qPCR method. Results from specificity testing indicate that no cross-reactivity was observed between the RAA-CRISPR/Cas12a analysis of PoRV and other viral pathogens, including PoRV G3, PoRV G4, porcine epidemic diarrhea virus (PEDV), porcine epidemic diarrhea (PDCoV), and porcine reproductive and respiratory syndrome virus (PRRSV). In the clinical sample detection using the RAA-CRISPR/Cas12a method and qPCR, Cohen's Kappa value reached as high as 0.952. Furthermore, this approach eliminates the need for large-scale instrumentation, offering a visual result under an ultraviolet lamp through fluorescence signal output.
Collapse
Affiliation(s)
- Siyu Huang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Longhuan Du
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Song Liu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qingcheng Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Liu Yang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Jiao XQ, Liu Y, Chen XM, Wang CY, Cui JT, Zheng LL, Ma SJ, Chen HY. Construction and Immunogenicity of a Recombinant Porcine Pseudorabies Virus (PRV) Expressing the Major Neutralizing Epitope Regions of S1 Protein of Variant PEDV. Viruses 2024; 16:1580. [PMID: 39459914 PMCID: PMC11512226 DOI: 10.3390/v16101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea and high mortality in neonatal piglets. Pseudorabies causes acute and often fatal infections in young piglets, respiratory disorders in growing pigs, and reproductive failure in sows. In late 2011, pseudorabies virus (PRV) variants occurred in Bartha-K61-vaccine-immunized swine herds, resulting in economic losses to the global pig industry. Therefore, it is essential to develop a safe and effective vaccine against both PEDV and PRV infections. In this study, we constructed a recombinant virus rPRV-PEDV S1 expressing the major neutralizing epitope region (COE, SS2, and SS6) of the PEDV S1 protein by homologous recombination technology and CRISPR/Cas9 gene editing technology, and then evaluated its biological characteristics in vitro and immunogenicity in pigs. The recombinant virus rPRV-PEDV S1 had similar growth kinetics in vitro to the parental rPRV NY-gE-/gI-/TK- strain, and was proven genetically stable in swine testicle (ST) cells and safe for piglets. PEDV S1-specific antibodies were detected in piglets immunized with rPRV-PEDV S1 on the 7th day post-immunization (dpi), and the antibody level increased rapidly at 14-21 dpi. Moreover, the immunized piglets receiving the recombinant virus exhibited alleviated clinical signs and reduced viral load compared to the unvaccinated group following a virulent PEDV HN2021 strain challenge. Also, piglets immunized with rPRV-PEDV S1 developed a PRV-specific humoral immune response and elicited complete protection against a lethal PRV NY challenge. These data indicate that the recombinant rPRV-PEDV S1 is a promising vaccine candidate strain for the prevention and control of PEDV and PRV infections.
Collapse
MESH Headings
- Animals
- Porcine epidemic diarrhea virus/immunology
- Porcine epidemic diarrhea virus/genetics
- Swine
- Herpesvirus 1, Suid/immunology
- Herpesvirus 1, Suid/genetics
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Epitopes/immunology
- Epitopes/genetics
- Coronavirus Infections/prevention & control
- Coronavirus Infections/veterinary
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Pseudorabies/prevention & control
- Pseudorabies/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Xian-Qin Jiao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Ying Liu
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Xi-Meng Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Cheng-Yuan Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Jian-Tao Cui
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
- Animal Health Supervision Institute, Honghu 433200, China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Hong-Ying Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| |
Collapse
|
7
|
Han W, Ma Z, Li Z, Chang C, Yuan Y, Li Y, Feng R, Zheng C, Shi Z, Tian H, Zheng H, Xiao S. A novel double antibody sandwich quantitative ELISA for detecting porcine epidemic diarrhea virus infection. Appl Microbiol Biotechnol 2024; 108:482. [PMID: 39377803 PMCID: PMC11461564 DOI: 10.1007/s00253-024-13321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
Porcine epidemic diarrhea (PED), a contagious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV), has caused significant economic losses to the global pig farming industry due to its rapid course and spread and its high mortality among piglets. In this study, we prepared rabbit polyclonal antibody and monoclonal antibody 6C12 against the PEDV nucleocapsid (N) protein using the conserved and antigenic PEDV N protein as an immunogen. A double-antibody sandwich quantitative enzyme-linked immunosorbent assay (DAS-qELISA) was established to detect PEDV using rabbit polyclonal antibodies as capture antibodies and horseradish peroxidase (HRP)-labeled 6C12 as the detection antibody. Using DAS-qELISA, recombinant PEDV N protein, and virus titer detection limits were approximately 0.05 ng/mL and 103.02 50% tissue culture infective dose per mL (TCID50/mL), respectively. There was no cross-reactivity with porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (PoRV), porcine pseudorabies virus (PRV), porcine deltacoronavirus (PDCoV), or porcine circovirus (PCV). The reproducibility of DAS-qELISA was verified, and the coefficient of variation (CV) for intra- and inter-batch replicates was less than 10%, indicating good reproducibility. When testing anal swab samples from PEDV-infected piglets using DAS-qELISA, the coincidence rate was 92.55% with a kappa value of 0.85 when using reverse transcription-polymerase chain reaction (RT-PCR) and 94.29% with a kappa value of 0.88 when using PEDV antigen detection test strips, demonstrating the reliability of the method. These findings provide fundamental material support for both fundamental and practical studies on PEDV and offer a crucial diagnostic tool for clinical applications. KEY POINTS: • A new anti-PEDV N protein monoclonal antibody strain was prepared • Establishment of a more sensitive double antibody sandwich quantitative ELISA • DAS-qELISA was found to be useful for controlling the PEDV spread.
Collapse
Affiliation(s)
- Weiguo Han
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Chuanzhe Chang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yue Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yongqi Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ran Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Congsen Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhengwang Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shuqi Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
8
|
Sembada AA, Theda Y, Faizal A. Duckweeds as edible vaccines in the animal farming industry. 3 Biotech 2024; 14:222. [PMID: 39247453 PMCID: PMC11379843 DOI: 10.1007/s13205-024-04074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Animal diseases are among the most debilitating issues in the animal farming industry, resulting in decreased productivity and product quality worldwide. An emerging alternative to conventional injectable vaccines is edible vaccines, which promise increased delivery efficiency while maintaining vaccine effectiveness. One of the most promising platforms for edible vaccines is duckweeds, due to their high growth rate, ease of transformation, and excellent nutritional content. This review explores the potential, feasibility, and advantages of using duckweeds as platforms for edible vaccines. Duckweeds have proven to be superb feed sources, as evidenced by numerous improvements in both quantity (e.g., weight gain) and quality (e.g., yolk pigmentation). In terms of heterologous protein production, duckweeds, being plants, are capable of expressing proteins with complex structures and post-translational modifications. Research efforts have focused on the development of duckweed-based edible vaccines, including those against avian influenza, tuberculosis, Newcastle disease, and mastitis, among others. As with any emerging technology, the development of duckweeds as a platform for edible vaccines is still in its early stages compared to well-established injectable vaccines. It is evident that more proof-of-concept studies are required to bring edible vaccines closer to the current standards of conventional vaccines. Specifically, the duckweed expression system needs further development in areas such as yield and growth rate, especially when compared to bacterial and mammalian expression systems. Continued efforts in this field could lead to breakthroughs that significantly improve the resilience of the animal farming industry against disease threats.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Research Center for New and Renewable Energy, Bandung Institute of Technology, Bandung, 40132 Indonesia
- Forestry Technology Research Group, School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, 40132 Indonesia
| | - Yohanes Theda
- Department of Biochemical Engineering, University College London, London, WC1E 6BT UK
| | - Ahmad Faizal
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, 40132 Indonesia
| |
Collapse
|
9
|
Ma X, Zheng H, Chen H, Ma S, Wei Z. Porcine epidemic diarrhea virus: A review of detection, inhibition of host gene expression and evasion of host innate immune. Microb Pathog 2024; 195:106873. [PMID: 39173850 DOI: 10.1016/j.micpath.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
As one of the most important swine enteropathogenic coronavirus, porcine epidemic diarrhea virus (PEDV) is the causative agent of an acute and devastating enteric disease that causes lethal watery diarrhea in suckling piglets. Recent progress in studying PEDV has revealed many intriguing findings on its prevalence and genetic evolution, rapid diagnosis, suppression of host gene expression, and suppression of the host innate immune system. Due to the continuous mutation of the PEDV genome, viral evasions from innate immune defenses and mixed infection with other coronaviruses, the spread of the virus is becoming wider and faster, making it even more necessary to prevent the infections caused by wild-type PEDV variants. It has also been reported that PEDV nsp1 is an essential virulence determinant and is critical for inhibiting host gene expression by structural and biochemical analyses. The inhibition of host protein synthesis employed by PEDV nsp1 may contribute to the regulation of host cell proliferation and immune evasion-related biological functions. In this review, we critically evaluate the recent studies on these aspects of PEDV and assess prospects in understanding the function of PEDV proteins in regulating host innate immune response and viral virulence.
Collapse
Affiliation(s)
- Xiao Ma
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihua Zheng
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, China
| | - Hongying Chen
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Shijie Ma
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Zhanyong Wei
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Li S, Bai X, Wang C. Epitopes screening and vaccine molecular design of PEDV S protein based on immunoinformatics. Sci Rep 2024; 14:19537. [PMID: 39174674 PMCID: PMC11341743 DOI: 10.1038/s41598-024-70579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a serious disease that poses a significant threat to the pig industry. This study focused on analyzing the Spike protein of PEDV, which harbors crucial antigenic determinants, in identifying dominant epitopes. Immunoinformatics tools were used to screen for B-cell, CD4+ and CD8+ predominance epitopes. These epitopes were then connected to the N-terminal of ferritin to form a self-assembled nanoparticle vaccine. Various physical and chemical properties of the candidate vaccine were analyzed, including secondary structure prediction, tertiary structure modeling, molecular docking, immune response simulation and computer cloning. The results demonstrated that the candidate vaccine was antigenic, soluble, stable, non-allergic, and formed a stable complex with the target receptor TLR-3. Immune simulation analysis showed that the candidate vaccine effectively stimulated both cellular and humoral reactions, leading to increased related cytokines production. Furthermore, efficient and stable expression of the candidate vaccine was achieved through reverse translation in the Escherichia coli K12 expression system following codon optimization and in silico cloning. The developed nanoparticle candidate vaccine in this study holds promise as an effective PEDV vaccine candidate, offering a new approach for the research, development and improvement of vaccines targeting porcine enteric diarrhea coronavirus.
Collapse
Affiliation(s)
- Shinian Li
- ShanghaiMedicilonInc., Shanghai, 201299, China
| | - Xue Bai
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
- Xinjiang Western Animal Husbandry Co., Ltd, Shihezi, 832000, China
| | - Chaoli Wang
- Xinjiang Western Animal Husbandry Co., Ltd, Shihezi, 832000, China.
| |
Collapse
|
11
|
Sun L, Li D, Yan C, Wu C, Han F, Bo Z, Shen M, Sun Y, Wang L, Zheng H, Wang M, Zhang Z. Phylogenetic and Genetic Variation Analysis of Porcine Epidemic Diarrhea Virus in East Central China during 2020-2023. Animals (Basel) 2024; 14:2185. [PMID: 39123710 PMCID: PMC11311003 DOI: 10.3390/ani14152185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major causative pathogen of a highly contagious, acute enteric viral disease. This study evaluated the emergence of nine variants in Jiangsu and Anhui provinces of China from 2020 to 2023. S gene-based phylogenetic analysis indicated that three variants belong to the G1c subgroup, while the other six strains are clustered within the G2c subgroup. Recombination analyses supported that three variants of the G1c subgroup were likely derived from recombination of parental variants FR0012014 and a donor variant AJ1102. In addition, there are novel mutations on amino acid 141-148 and these likely resulted in changes in antigenicity in the three variants. These results illustrated that the study provides novel insights into the epidemiology, evolution, and transmission of PEDV in China.
Collapse
Affiliation(s)
- Liumei Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Duo Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Caijie Yan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chengyue Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Feng Han
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Manman Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yiwei Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Liyan Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haoqin Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Mengdong Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhendong Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.S.); (D.L.); (C.Y.); (C.W.); (F.H.); (M.S.); (Y.S.); (L.W.); (H.Z.); (M.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Shi K, Li B, Shi Y, Feng S, Yin Y, Long F, Pan Y, Wei Y. Phylogenetic and Evolutionary Analysis of Porcine Epidemic Diarrhea Virus in Guangxi Province, China, during 2020 and 2024. Viruses 2024; 16:1126. [PMID: 39066288 PMCID: PMC11281377 DOI: 10.3390/v16071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The variant porcine epidemic diarrhea virus (PEDV) has caused considerable economic losses to the global pig industry since 2010. In this study, a total of 5859 diarrhea samples were collected from different pig farms in China's Guangxi province during January 2020 and March 2024 and tested for PEDV using RT-qPCR. The positivity rate of PEDV was 11.90% (697/5859). Ninety-two PEDV-positive samples were selected based on sampling time, and the sampling region for amplification, sequencing, and analysis of the S1, M, and N genes. Phylogenetic analysis of the S1 gene revealed that all strains from Guangxi province were distributed in three subgroups, i.e., 81.5% (75/92) in the G2a subgroup, 4.3% (4/92) in the G2b subgroup, and 14.1% (13/92) in the G2c subgroup. The sequence analysis revealed that the S1 gene sequences from Guangxi province had higher homology with the variant strains than with the classical strains, showing as high as 99.2% with the variant strain AJ1102 and only 94.3% with the classical strain CV777. Recombination analysis revealed that the GX-BS08-2023 strain (G2c) from Guangxi province originated from inter-lineage recombination between the GX-BS09-2023 (G2a) and CH-JN547228-2011 (G1a) strains. In addition, the S1 gene of the G2a and G2b subgroup strains shared many mutations and insertions. There were common mutations of N143D and P235L in the G2a subgroup. Evolutionary analysis revealed that all Guangxi strains belonged to the G2 genotype. These strains have spread rapidly since the PEDV variant strains that emerged in 2010, weakened until 2021, and then remained stable. In conclusion, the results revealed the latest genetic evolution of circulating PEDV strains in Guangxi province in recent years, providing important information for preventing and controlling PEDV infection. Currently, the G2a subgroup strains are the predominant strains circulating in pig herds in Guangxi province, southern China.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Biao Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yingyi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
13
|
Kim DM, Moon SH, Kim SC, Cho HS, Tark D. Genetic and Pathogenic Analysis of a Novel Porcine Epidemic Diarrhea Virus Strain Isolated in the Republic of Korea. Viruses 2024; 16:1108. [PMID: 39066270 PMCID: PMC11281356 DOI: 10.3390/v16071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Porcine epidemic diarrhea (PED), caused by the porcine epidemic diarrhea virus (PEDV), emerges annually in several Asian countries. Its major symptoms include watery diarrhea, vomiting, anorexia, and dehydration. PED outbreaks incur significant economic losses. The efficacy of vaccines is limited by viral mutations and insufficient intestinal mucosal immunity. Therefore, new vaccines against these recent variants are urgently needed. Herein, we isolated and genetically characterized a novel Korean PEDV strain using NGS. Comparative genomic analysis demonstrated that the CKK1-1 strain belonged to genogroup 2. The isolated strain was cultured in sodium-glycochenodeoxycholic acid for 180 passages. Typically, PEDV isolation and passage require proteases, such as trypsin. However, the CKK1-1 strain adapted to this atypical culture condition, achieving a high titer of 8.83 ± 0.14 log TCID50/mL. In vitro biological analysis revealed no cell syncytium formation without trypsin; however, a cell-lysis-type cytopathic effect was noted. Notably, pathogenicity evaluation showed that CKK1-1 p0 exhibited naturally weakened virulence in five-day-old piglets, while piglets administered with CKK1-1 p180 exhibited 100% survival and reduced clinical symptoms. Collectively, our data demonstrate that this Korean PEDV strain, attenuated through atypical culture conditions with Na-glycochenodeoxycholic acid, has potential as a vaccine candidate, providing valuable insights into the genetic variation in and pathogenicity of PEDV.
Collapse
Affiliation(s)
- Dae-Min Kim
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
| | - Sung-Hyun Moon
- College of Veterinary Medicine, Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-H.M.); (S.-C.K.); (H.-S.C.)
| | - Seung-Chai Kim
- College of Veterinary Medicine, Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-H.M.); (S.-C.K.); (H.-S.C.)
| | - Ho-Seong Cho
- College of Veterinary Medicine, Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea; (S.-H.M.); (S.-C.K.); (H.-S.C.)
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
| |
Collapse
|
14
|
Tian Y, Wang Z, Sun J, Gu J, Xu X, Cai X. Surface display of the COE antigen of porcine epidemic diarrhoea virus on Bacillus subtilis spores. Microb Biotechnol 2024; 17:e14518. [PMID: 38953907 PMCID: PMC11218686 DOI: 10.1111/1751-7915.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Porcine epidemic diarrhoea virus (PEDV) infects pigs of all ages by invading small intestine, causing acute diarrhoea, vomiting, and dehydration with high morbidity and mortality among newborn piglets. However, current PEDV vaccines are not effective to protect the pigs from field epidemic strains because of poor mucosal immune response and strain variation. Therefore, it is indispensable to develop a novel oral vaccine based on epidemic strains. Bacillus subtilis spores are attractive delivery vehicles for oral vaccination on account of the safety, high stability, and low cost. In this study, a chimeric gene CotC-Linker-COE (CLE), comprising of the B. subtilis spore coat gene cotC fused to the core neutralizing epitope CO-26 K equivalent (COE) of the epidemic strain PEDV-AJ1102 spike protein gene, was constructed. Then recombinant B. subtilis displaying the CLE on the spore surface was developed by homologous recombination. Mice were immunized by oral route with B. subtilis 168-CLE, B. subtilis 168, or phosphate-buffered saline (PBS) as control. Results showed that the IgG antibodies and cytokine (IL-4, IFN-γ) levels in the B. subtilis 168-CLE group were significantly higher than the control groups. This study demonstrates that B. subtilis 168-CLE can generate specific systemic immune and mucosal immune responses and is a potential vaccine candidate against PEDV infection.
Collapse
Affiliation(s)
- Yanhong Tian
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| | - Zhichao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| | - Ju Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| | - Jiayun Gu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| | - Xiaojuan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| | - Xuwang Cai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhanChina
| |
Collapse
|
15
|
Lang Q, Huang N, Guo J, Ge L, Yang X. High-affinity monoclonal antibodies against the porcine epidemic diarrhea virus S1 protein. BMC Vet Res 2024; 20:239. [PMID: 38831363 PMCID: PMC11145877 DOI: 10.1186/s12917-024-04091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.
Collapse
Affiliation(s)
- Qiaoli Lang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China
| | - Nan Huang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China
| | - Jincao Guo
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China.
| | - Xi Yang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China.
| |
Collapse
|
16
|
Tang Q, Lan T, Zhou C, Gao J, Wu L, Wei H, Li W, Tang Z, Tang W, Diao H, Xu Y, Peng X, Pang J, Zhao X, Sun Z. Nutrition strategies to control post-weaning diarrhea of piglets: From the perspective of feeds. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:297-311. [PMID: 38800731 PMCID: PMC11127239 DOI: 10.1016/j.aninu.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024]
Abstract
Post-weaning diarrhea (PWD) is a globally significant threat to the swine industry. Historically, antibiotics as well as high doses of zinc oxide and copper sulfate have been commonly used to control PWD. However, the development of bacterial resistance and environmental pollution have created an interest in alternative strategies. In recent years, the research surrounding these alternative strategies and the mechanisms of piglet diarrhea has been continually updated. Mechanically, diarrhea in piglets is a result of an imbalance in intestinal fluid and electrolyte absorption and secretion. In general, enterotoxigenic Escherichia coli (ETEC) and diarrheal viruses are known to cause an imbalance in the absorption and secretion of intestinal fluids and electrolytes in piglets, resulting in diarrhea when Cl- secretion-driven fluid secretion surpasses absorptive capacity. From a perspective of feedstuffs, factors that contribute to imbalances in fluid absorption and secretion in the intestines of weaned piglets include high levels of crude protein (CP), stimulation by certain antigenic proteins, high acid-binding capacity (ABC), and contamination with deoxynivalenol (DON) in the diet. In response, efforts to reduce CP levels in diets, select feedstuffs with lower ABC values, and process feedstuffs using physical, chemical, and biological approaches are important strategies for alleviating PWD in piglets. Additionally, the diet supplementation with additives such as vitamins and natural products can also play a role in reducing the diarrhea incidence in weaned piglets. Here, we examine the mechanisms of absorption and secretion of intestinal fluids and electrolytes in piglets, summarize nutritional strategies to control PWD in piglets from the perspective of feeds, and provide new insights towards future research directions.
Collapse
Affiliation(s)
- Qingsong Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Tianyi Lan
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Chengyu Zhou
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jingchun Gao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Liuting Wu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haiyang Wei
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenxue Li
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Yibin Academy of Southwest University, Yibin 644005, China
| |
Collapse
|
17
|
Yang D, Su M, Guo D, Zhao F, Wang M, Liu J, Zhou J, Sun Y, Yang X, Qi S, Li Z, Zhu Q, Xing X, Li C, Cao Y, Feng L, Sun D. Combination of S1-N-Terminal and S1-C-Terminal Domain Antigens Targeting Double Receptor-Binding Domains Bolsters Protective Immunity of a Nanoparticle Vaccine against Porcine Epidemic Diarrhea Virus. ACS NANO 2024; 18:12235-12260. [PMID: 38696217 DOI: 10.1021/acsnano.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Meijiao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Jiaying Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Jingxuan Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Ying Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Zhen Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P. R. China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P. R. China
| |
Collapse
|
18
|
Masiuk DM, Kokariev AV, Buzoianu SG, Firth AM, Nedzvetsky VS. An isotonic protein solution favorably modulated the porcine intestinal immune response and cellular adhesion markers and reduced PEDV shedding in vivo. Vet Immunol Immunopathol 2024; 271:110753. [PMID: 38608406 DOI: 10.1016/j.vetimm.2024.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes immensely large economic losses worldwide in the swine industry. PEDV attacks the intestine, disrupts intestinal epithelium morphology and barrier integrity, and results in profound diarrhea and high mortality. A commercially available isotonic protein solution (IPS) (Tonisity Px) has anecdotally been reported to be effective in supportive treatment of piglets with active PEDV infections. This study evaluated the effects of supplementing (or not) the drinking water of 14 day old PEDV-infected piglets with the IPS on the content of E-cadherin, fibronectin, interferon-alpha (IFN-α), and matrix metalloproteinase 9 (MMP-9) in duodenal tissue. The content of PEDV DNA in feces was also measured. Though both groups had similar PEDV shedding at day 1, IPS piglets had significantly lower PEDV shedding at day 5, 14 and 21. The IPS group also had a shorter duration of PEDV virus shedding. Levels of E-cadherin and fibronectin, both of which are structural proteins in the intestine, remained unchanged from baseline in the IPS group, whereas the same molecules decreased significantly in the control group. IFN-α, an antiviral cytokine, and MMP-9, an enzyme that aids in tissue remodeling, were increased at days 5 and 14 post infection, and then decreased at day 21 post-infection in the IPS group compared to control. Overall, the IPS used in this study enhanced epithelial intercellular adhesion (E-cadherin) and extracellular matrix structure (fibronectin), resulted in significantand favorable changes in MMP-9 activity, and favorably modulated IFN-α production. This is the first report of this panel of biomarkers, especially MMP-9 and IFN-α, in the face of in vivo PEDV infection. This is also the first report to investigate a commercially available swine product that does not need to be administered in solid feed, and that is already registered for use throughout Asia, Europe, South America, and North America. Overall, the results of this study serve to clarify the behavior of 4 key biomarkers in the presence of in vivo PEDV infection. The results also indicate that IPS (Tonisity Px) supplementation is a viable intervention to modulate the porcine intestinal immune response with favorable effects on the intestine.
Collapse
Affiliation(s)
- Dmytro M Masiuk
- Dnipro State Agrarian and Economic University (DSAEU), Serhii Efremov Str., 25, Dnipro 49600, Ukraine
| | - Andrii V Kokariev
- Dnipro State Agrarian and Economic University (DSAEU), Serhii Efremov Str., 25, Dnipro 49600, Ukraine
| | - Stefan G Buzoianu
- Tonisity International Ltd., Tonisity International Ltd, 27-30 Merchants Quay, Dublin 8 D08 K3KD, Ireland
| | - Ava M Firth
- Tonisity International Ltd., Tonisity International Ltd, 27-30 Merchants Quay, Dublin 8 D08 K3KD, Ireland
| | - Victor S Nedzvetsky
- Dnipro State Agrarian and Economic University (DSAEU), Serhii Efremov Str., 25, Dnipro 49600, Ukraine.
| |
Collapse
|
19
|
Wei MZ, Chen L, Zhang R, Chen Z, Shen YJ, Zhou BJ, Wang KG, Shan CL, Zhu EP, Cheng ZT. Overview of the recent advances in porcine epidemic diarrhea vaccines. Vet J 2024; 304:106097. [PMID: 38479492 DOI: 10.1016/j.tvjl.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Vaccination is the most effective means of preventing and controlling porcine epidemic diarrhea (PED). Conventional vaccines developed from porcine epidemic diarrhea virus (PEDV) GI-a subtypes (CV777 and SM98) have played a vital role in preventing classical PED. However, with the emergence of PEDV mutants in 2010, conventional PEDV GI-a subtype-targeting vaccines no longer provide adequate protection against PEDV GII mutants, thereby making novel-type PED vaccine development an urgent concern to be addressed. Novel vaccines, including nucleic acid vaccines, genetically engineered subunit vaccines, and live vector vaccines, are associated with several advantages, such as high safety and stability, clear targeting, high yield, low cost, and convenient usage. These vaccines can be combined with corresponding ELISA kits to differentiate infected from vaccinated animals, which is beneficial for disease confirmation. This review provides a detailed overview of the recent advancements in PED vaccines, emphasizing on the research and application evaluation of novel PED vaccines. It also considers the future directions and challenges in advancing these vaccines to widespread use in clinics.
Collapse
Affiliation(s)
- Miao-Zhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Rong Zhang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ze Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yan-Juan Shen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bi-Jun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Kai-Gong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chun-Lan Shan
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Er-Peng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Zhen-Tao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
20
|
Song W, Feng Y, Zhang J, Kong D, Fan J, Zhao M, Hua L, Xiang J, Tang X, Xiao S, Peng Z, Wu B. Development of a multiplex reverse transcription-quantitative PCR (qPCR) method for detecting common causative agents of swine viral diarrhea in China. Porcine Health Manag 2024; 10:12. [PMID: 38444040 PMCID: PMC10916220 DOI: 10.1186/s40813-024-00364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Diarrheal diseases caused by viral agents have led to a great morbidity, mortality, and economic loss in global pig industry. Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and group A porcine rotavirus (RVA) are main causative agents of swine viral diarrhea with similar clinical signs on Chinese farms and their co-infection is also common. However, it is still lack of a convenient method to detect these four agents. METHODS A TaqMan multiplex qPCR method was developed to detect PEDV, TGEV, PDCoV, and RVA, simultaneously. This method was then applied to investigate 7,342 swine fecal samples or rectal swabs, as well as 1,246 swine intestinal samples collected from 2075 farms in China in 2022. RESULTS Minimum detection limits of this method were 3 copies/µL for PEDV, 4 copies/µL for TGEV, 8 copies/µL for RVA, and 8 copies/µL for PDCoV, suggesting a good sensitivity. No signals were observed by using this method detecting other viral agents commonly prevalent in pigs, which is suggestive of a good specificity. Application of this method on investigating clinical samples demonstrated a relatively high positive rate for PEDV (22.21%, 1907/8588) and RVA (44.00%, 3779/8588). In addition, co-infection between PEDV and RVA was observed on 360 investigated farms, accounting for 17.35% (360/2075) of the farms where co-infection events were screened. CONCLUSIONS A TaqMan multiplex qPCR method targeting PEDV, TGEV, PDCoV, and RVA was developed in this study. This method demonstrated a good specificity and sensitivity on investigating these four common viruses responsible for viral diarrhea on Chinese pig farms, which represents a convenient method for the monitoring and differential diagnosis of swine viral diarrhea.
Collapse
Affiliation(s)
- Wenbo Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, 430070, Wuhan, China
| | - Yixue Feng
- Animal Disease Diagnosis Center of Wuhan Keqian Biology Co., Ltd, 430070, Wuhan, China
| | - Jiali Zhang
- Animal Disease Diagnosis Center of Wuhan Keqian Biology Co., Ltd, 430070, Wuhan, China
| | - Danni Kong
- Animal Disease Diagnosis Center of Wuhan Keqian Biology Co., Ltd, 430070, Wuhan, China
| | - Jie Fan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, 430070, Wuhan, China
| | - Mengfei Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, 430070, Wuhan, China
| | - Lin Hua
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, 430070, Wuhan, China
| | - Jinmei Xiang
- Hubei Vocational College of Bio-Technology, 430070, Wuhan, China
| | - Xibiao Tang
- Animal Disease Diagnosis Center of Wuhan Keqian Biology Co., Ltd, 430070, Wuhan, China
- Hubei Vocational College of Bio-Technology, 430070, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, 430070, Wuhan, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China.
- Hubei Hongshan Laboratory, 430070, Wuhan, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, 430070, Wuhan, China.
| | - Bin Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, 430070, Wuhan, China.
| |
Collapse
|
21
|
Bai W, Zhu Q, Wang J, Jiang L, Guo D, Li C, Xing X, Sun D. Licorice extract inhibits porcine epidemic diarrhea virus in vitro and in vivo. J Gen Virol 2024; 105:001964. [PMID: 38471043 PMCID: PMC10999743 DOI: 10.1099/jgv.0.001964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and even death in piglets, resulting in significant economic losses to the pig industry. Because of the ongoing mutation of PEDV, there might be variations between the vaccine strain and the prevailing strain, causing the vaccine to not offer full protection against different PEDV variant strains. Therefore, it is necessary to develop anti-PEDV drugs to compensate for vaccines. This study confirmed the anti-PEDV effect of licorice extract (Le) in vitro and in vivo. Le inhibited PEDV replication in a dose-dependent manner in vitro. By exploring the effect of Le on the life cycle of PEDV, we found that Le inhibited the attachment, internalization, and replication stages of the virus. In vivo, all five piglets in the PEDV-infected group died within 72 h. In comparison, the Le-treated group had a survival rate of 80 % at the same time, with significant relief of clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Our results suggested that Le can exert anti-PEDV effects in vitro and in vivo. Le is effective and inexpensive; therefore it has the potential to be developed as a new anti-PEDV drug.
Collapse
Affiliation(s)
- Wenfei Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Limin Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| |
Collapse
|
22
|
Zhang XZ, Wang J, Tian WJ, You JL, Chi XJ, Wang XJ. Phospho-eIF4E stimulation regulates coronavirus entry by selective expression of cell membrane-residential factors. J Virol 2024; 98:e0194823. [PMID: 38299843 PMCID: PMC10878034 DOI: 10.1128/jvi.01948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.
Collapse
Affiliation(s)
- Xiu-Zhong Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen-Jun Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing-Ling You
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Jia Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Chen H, Wan J, Wei M, Liu P, Kong L, Xin X. Expression and immunogenicity of non-structural protein 8 of porcine epidemic diarrhea virus. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:65-73. [PMID: 38465319 PMCID: PMC10924293 DOI: 10.30466/vrf.2023.2009322.3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/05/2023] [Indexed: 03/12/2024]
Abstract
The non-structural protein (nsp) 8 of the porcine epidemic diarrhea virus (PEDV) is highly stable across different PEDV strains and plays an important role in PEDV virulence. In current study, nsp8 prokaryotic expression vectors were constructed based on parental vectors pMAL-c2x-maltose binding protein (MBP) and pET-28a (+). Subsequently, the optimization of expression conditions in Escherichia coli, including induced temperature, time and isopropyl β-D-thiogalactopyranoside concentration were performed to obtain a stable expression of MBP-nsp8 and nsp8. The nsp8 fused with MBP increased the water solubility of the expressed products. Target proteins were further purified from E. coli culture and their immunogenicities were evaluated in vivo by mice. The antibody titers of serum from nsp8 immunized mice were up to 1:7,750,000 when measured by indirect enzyme-linked immunosorbent assay; meanwhile, the mice immunized with MBP-nsp8 gave an antibody titer reaching 1:1,000,000. In all, the expression and purification system of PEDV nsp8 and MBP-nsp8 were successfully established in this work and a strong immune response was elicited in mice by both purified nsp8 and MBP-nsp8, providing a basis for the study of the structure and function of PEDV nsp8.
Collapse
Affiliation(s)
- Hong Chen
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Jiawu Wan
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Meihua Wei
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Ping Liu
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Lingbao Kong
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| | - Xiu Xin
- Institute of Pathogenic Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China;
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
24
|
Zhao Y, Fan B, Song X, Gao J, Guo R, Yi C, He Z, Hu H, Jiang J, Zhao L, Zhong T, Li B. PEDV-spike-protein-expressing mRNA vaccine protects piglets against PEDV challenge. mBio 2024; 15:e0295823. [PMID: 38231557 PMCID: PMC10865985 DOI: 10.1128/mbio.02958-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes severe diarrhea in neonatal piglets, which is associated with a high mortality rate. Thus, developing effective and safe vaccines remains a top priority for controlling PEDV infection. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines encoding either the full-length PEDV spike (S) protein or a multiepitope chimeric spike (Sm) protein. We found that the S mRNA-LNP vaccine was superior to the Sm mRNA-LNP vaccine at inducing antibody and cellular immune responses in mice. Evaluation of the immunogenicity and efficacy of the S mRNA vaccine in piglets confirmed that it induced robust PEDV-specific humoral and cellular immune responses in vivo. Importantly, the S mRNA-LNP vaccine not only protected actively immunized piglets against PEDV but also equipped neonatal piglets with effective passive anti-PEDV immunity in the form of colostrum-derived antibodies after the immunization of sows. Our findings suggest that the PEDV-S mRNA-LNP vaccine is a promising candidate for combating PEDV infection.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) continues to harm the global swine industry. It is important to develop a highly effective vaccine to control PEDV infection. Here, we report a PEDV spike (S) mRNA vaccine that primes a potent antibody response and antigen-specific T-cell responses in immunized piglets. Active and passive immunization can protect piglets against PED following the virus challenge. This study highlights the efficiency of the PEDV-S mRNA vaccine and represents a viable approach for developing an efficient PEDV vaccine.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jie Gao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Cheng Yi
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Zhaoming He
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Hongpeng Hu
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Jianhao Jiang
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Lixiang Zhao
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Tianyi Zhong
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
25
|
Li M, Wang M, Xi Y, Qiu S, Zeng Q, Pan Y. Isolation and Identification of a Tibetan Pig Porcine Epidemic Diarrhoea Virus Strain and Its Biological Effects on IPEC-J2 Cells. Int J Mol Sci 2024; 25:2200. [PMID: 38396878 PMCID: PMC10889329 DOI: 10.3390/ijms25042200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhoea virus (PEDV) is a coronavirus that can cause severe watery diarrhoea in piglets, with high morbidity and mortality rates, seriously hindering the healthy development of the global swine industry. In this study, we isolated a strain of PEDV from Tibetan pigs and named it CH/GS/2022. Subsequently, we screened the apoptosis signals of PEDV-infected IPEC-J2 cells and studied the correlation between apoptosis signals and cell apoptosis. The results showed that different infections of PEDV induced different degrees of apoptosis in cells, and PEDV-induced cell apoptosis was dose-dependent. We then detected the expression of the p53, p38, JNK, Bax, and Bcl-2 genes in the apoptosis signal pathway. The results showed that 24 h after PEDV infection, the expression of the p53, p38, JNK, and Bax genes in IPEC-J2 cells increased significantly, while the expression of the Bcl-2 gene decreased significantly (p < 0.05). Subsequently, we used Western blot to detect the protein levels of these five genes, and the results showed that PEDV infection upregulated the expression of p53, p38, JNK, and Bax proteins (p < 0.05) while downregulating the expression of Bcl-2 protein (p < 0.05). Thus, it was initially inferred that PEDV infection could regulate cell apoptosis by activating the p53, p38, and JNK signalling pathways. Finally, we further investigated the apoptosis of the cells through the use of inhibitors. The results indicated that the p53 inhibitor Pifithrin-α has a significant inhibitory effect on the expression of the p53 protein after PEDV infection and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p53 is involved in PEDV-induced cell apoptosis. Similarly, the p38 MAPK inhibitor SB203580 has an inhibitory effect on the expression of the p38 protein and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p38 is also involved in PEDV-induced cell apoptosis. On the other hand, the JNK inhibitor SP600125 has no inhibitory effect on the expression of the JNK protein after PEDV infection, but the expression levels of Bax and Bcl-2 proteins have changed. Furthermore, it is noteworthy that SP600125 can inhibit the activity of apoptotic proteins but not their levels, resulting in reduced cell apoptosis. These preliminary results indicated that JNK may be involved in PEDV-induced IPEC-J2 cell apoptosis.
Collapse
Affiliation(s)
- Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Yao Xi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou 730070, China
| |
Collapse
|
26
|
Guo W, Wang C, Song X, Xu H, Zhao S, Gu J, Zou Z, Li J, Qian J, Zhang X, Guo R, Li J, Li L, Hu Z, Ren L, Fan B, Li B. Immunogenicity and protective efficacy of a trimeric full-length S protein subunit vaccine for porcine epidemic diarrhea virus. Vaccine 2024; 42:828-839. [PMID: 38220489 DOI: 10.1016/j.vaccine.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused serious economic losses to the pig husbandry worldwide, and the effects of existing commercialized vaccines are suboptimal. Therefore, research to develop an efficacious vaccine for prevention and control of PEDV is essential. In this study, we designed and produced trimerized proteins of full-length PEDV spike (S) protein, S1 subunit, and a tandem of multiple epitopes of S protein using an efficient mammalian expression vector system in HEK 293F cells. The immunogenicity of two commercial adjuvants, M401 and M103, was also evaluated in mice. Enzyme-linked immunosorbent assays demonstrated that all immunized mice generated highly systemic PEDV S-specific IgG and IgA antibodies. Mice in S/M103-immunized group generated the highest neutralizing antibody titer with 1:96. Compared with control group, the subunit vaccines elicited multifunctional CD3+CD4+ and CD3+CD8+ T cells, B220+CD19+ B cells, and CD3-CD49b+ natural killer cells in the spleen. PEDV S/M103 vaccine, which had the best immune effect, was selected for further evaluation in piglets. Immunization with S/M103 vaccine induced high levels of S-specific IgG, IgA, and neutralizing antibodies, and increased the proliferation of peripheral blood mononuclear cells and the expression levels of interferon-γ and interleukin-4 in peripheral blood of piglets. Virus challenge test results showed significantly lower diarrheal index scores and fecal viral loads, and less pathological damage to the intestines in S/M103-immunized piglets than in controls, indicating that S/M103 provides good protection against the virulent virus challenge. Our findings suggest that trimeric PEDV S/M103 has potential as a clinical vaccine candidate.
Collapse
Affiliation(s)
- Weilu Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 210009, Jiangsu, China; Taizhou Polytechnic College, Taizhou 225300, Jiangsu, China
| | - Chuanhong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Hong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuqing Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jun Gu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhikun Zou
- Chengdu Yisikang Biotechnology LLC, Chendou 610095, China
| | - Jing Li
- Chengdu Yisikang Biotechnology LLC, Chendou 610095, China
| | - Jiali Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xue Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Li Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhaoyang Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lili Ren
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 210009, Jiangsu, China.
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China.
| |
Collapse
|
27
|
Li X, Wu Y, Yan Z, Li G, Luo J, Huang S, Guo X. A Comprehensive View on the Protein Functions of Porcine Epidemic Diarrhea Virus. Genes (Basel) 2024; 15:165. [PMID: 38397155 PMCID: PMC10887554 DOI: 10.3390/genes15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is one of the main pathogens causing diarrhea in piglets and fattening pigs. The clinical signs of PED are vomiting, acute diarrhea, dehydration, and mortality resulting in significant economic losses and becoming a major challenge in the pig industry. PEDV possesses various crucial structural and functional proteins, which play important roles in viral structure, infection, replication, assembly, and release, as well as in escaping host innate immunity. Over the past few years, there has been progress in the study of PEDV pathogenesis, revealing the crucial role of the interaction between PEDV viral proteins and host cytokines in PEDV infection. At present, the main control measure against PEDV is vaccine immunization of sows, but the protective effect for emerging virus strains is still insufficient, and there is no ideal safe and efficient vaccine. Although scientists have persistently delved their research into the intricate structure and functionalities of the PEDV genome and viral proteins for years, the pathogenic mechanism of PEDV remains incompletely elucidated. Here, we focus on reviewing the research progress of PEDV structural and nonstructural proteins to facilitate the understanding of biological processes such as PEDV infection and pathogenesis.
Collapse
Affiliation(s)
- Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Yiwan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| |
Collapse
|
28
|
Yang S, Huang X, Li S, Wang C, Jansen CA, Savelkoul HFJ, Liu G. Linoleic acid: a natural feed compound against porcine epidemic diarrhea disease. J Virol 2023; 97:e0170023. [PMID: 38009930 PMCID: PMC10734519 DOI: 10.1128/jvi.01700-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a pig coronavirus that causes severe diarrhea and high mortality in piglets, but as no effective drugs are available, this virus threatens the pig industry. Here, we found that the intestinal contents of specific pathogen-free pigs effectively blocked PEDV invasion. Through proteomic and metabolic analyses of the intestinal contents, we screened 10 metabolites to investigate their function and found that linoleic acid (LA) significantly inhibited PEDV replication. Further investigations revealed that LA inhibited viral replication and release mainly by binding with PEDV NSP5 to regulate the PI3K pathway and, in particular, inhibiting AKT phosphorylation. In vivo experiments illustrated that orally administered LA protected pigs from PEDV challenge and severe diarrhea. These findings provide strong support for exploring antiviral drugs for coronavirus treatment.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xin Huang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Shuxian Li
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Caiying Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
29
|
Liu P, Zhang Q, Yang C, Wang X, Li Y, Li J, Yang Q. Feeding with 4,4'-diaponeurosporene-producing Bacillus subtilis enhances the lactogenic immunity of sow. BMC Vet Res 2023; 19:280. [PMID: 38115003 PMCID: PMC10729370 DOI: 10.1186/s12917-023-03846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Specific antibodies produced sow by oral porcine epidemic diarrhea virus (PEDV) vaccines would transfer to newborn piglets via colostrum, and it is an effective strategy to prevent porcine epidemic diarrhea (PED). However, there is a lag in the development of corresponding vaccines due to the rapid mutation of PEDV, which could increase the difficulty of PED prevention and control in pig farms. Hence, congenital lactogenic immunity was assessed by feeding 4,4'-diaponeurosporene-producing Bacillus subtilis (B.S-Dia) to sow on the 80th day of gestation in order to protect newborn piglets from PEDV infection. Firstly, we found that the quantities of T lymphocytes and monocytes in the blood and colostrum after oral administration of B.S-Dia were significantly increased as observed by flow cytometry, whereas the proliferative activity of T lymphocytes in colostrum was also markedly increased. Furthermore, enzyme-linked immunosorbent assay (ELISA) results revealed that levels of TGF (Transforming growth factor) -β, Interleukin (IL) -6, lysozyme and lactoferrin were significantly increased. Finally, it was found in the piglets' challenge protection test that offspring pigs of the sows feeding B.S-Dia during pregnancy did not develop diarrhea symptoms and intestinal pathological changes at 48 h after infection with PEDV, and PEDV load in the jejunum and ileum was significantly reduced, but offspring pigs of the sows taking orally PBS during pregnancy developed pronounced diarrhea symptoms and extensive PEDV colonization was noted both in the jejunum and ileum. In summary, sow by oral administration of B.S-Dia substantially increased congenital lactogenic immunity, thereby preventing newborn piglets from being infected with PEDV.
Collapse
Affiliation(s)
- Peng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Qi Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Chengjie Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Xiuyu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Jianda Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China.
| |
Collapse
|
30
|
Liu S, Yu Q, Li S, Li M, Yang L, Wang Q, Tu Z, Tao F, Yang P, Kong L, Xin X. Expression and immunogenicity of recombinant porcine epidemic diarrhea virus Nsp9. Virology 2023; 587:109861. [PMID: 37572518 DOI: 10.1016/j.virol.2023.109861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, and high mortality in newborn piglets, which leads to significant economic losses. Coronavirus nonstructural protein 9 (Nsp9) is an essential RNA binding protein for coronavirus replication, which renders it a promising candidate for developing antiviral drugs and diagnosis targeting PEDV. In this study, PEDV Nsp9 protein fused with MBP protein and His-tag were expressed and purified in Escherichia coli. Furthermore, immunization of MBP-Nsp9 enhances both humoral and cellular immunity responses as compared with that of His-Nsp9 protein. Finally, the swine immunization showed that Nsp9 protein could stimulate the swine immunity system to carry out humoral immunity, and the generated antibody could inhibit the proliferation of PEDV in Vero cells. Altogether, our data provide direct evidence for the immunogenicity of PEDV Nsp9, which sheds light on the future developments of anti-PEDV drugs and vaccines for PED prevention.
Collapse
Affiliation(s)
- Shiguo Liu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qijia Yu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sha Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Quansheng Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zewen Tu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Feifei Tao
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Pingping Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
31
|
Yu H, Chen G, Zhang T, Huang X, Lu Y, Li M, Li S, Wang C, Li B, Zhang Y, Liu G, Fu Y. PEDV promotes the differentiation of CD4 +T cells towards Th1, Tfh, and Treg cells via CD103 +DCs. Virology 2023; 587:109880. [PMID: 37696054 DOI: 10.1016/j.virol.2023.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) can infect all ages of pigs, particularly newborn piglets with a mortality almost reaching to 80-100%, causing significant economic losses to the global pig industry. The mucosal immune response is crucial for PEDV prevention, in which specific dendritic cells (DCs) and differentiated T cells play vital roles. In this study, CD103+DCs were differentiated successfully with retinoic acid (RA) treatment in vitro. PEDV could not replicate efficiently in differentiated CD103+DCs but could promote maturation of CD103+DCs by up-regulating the expression of SLA-DR, CD1a, CD86, and cytokines of IL-1β and IL-10. In addition, PEDV-infected CD103+DCs and CD4+T cells were co-cultured, and the results showed that the differentiation of CD4+T cells toward Th1, Tfh, and Treg, but not Th2. These results demonstrate that PEDV-infected CD103+DCs could promote the differentiation of CD4+T cells, which provided the basis for further study of mucosal response induced by PEDV via CD103+DCs.
Collapse
Affiliation(s)
- Haoyuan Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Guohui Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tao Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xin Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - YaBin Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Maolin Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shuxian Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Baoyu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yunhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
32
|
Li Z, Ma Z, Han W, Chang C, Li Y, Guo X, Zheng Z, Feng Y, Xu L, Zheng H, Wang X, Xiao S. Deletion of a 7-amino-acid region in the porcine epidemic diarrhea virus envelope protein induces higher type I and III interferon responses and results in attenuation in vivo. J Virol 2023; 97:e0084723. [PMID: 37681956 PMCID: PMC10537754 DOI: 10.1128/jvi.00847-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 09/09/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) leads to enormous economic losses for the pork industry. However, the commercial vaccines failed to fully protect against the epidemic strains. Previously, the rCH/SX/2016-SHNXP strain with the entire E protein and the rCH/SX/2015 strain with the deletion of 7-amino-acid (7-aa) at positions 23-29 in E protein were constructed and rescued. The pathogenicity assay indicated that rCH/SX/2015 is an attenuated strain, but rCH/SX/2016-SHNXP belongs to the virulent strains. Then, the recombination PEDV (rPEDV-EΔaa23-aa29)strain with a 7-aa deletion in the E protein was generated, using the highly virulent rCH/SX/2016-SHNXP strain (rPEDV-Ewt) as the backbone. Compared with the rPEDV-Ewt strain, the release and infectivity of the rPEDV-EΔaa23-aa29 strain were significantly reduced in vitro, but stronger interferon (IFN) responses were triggered both in vitro and in vivo. The pathogenicity assay showed that the parental strain resulted in severe diarrhea (100%) and death (100%) in all piglets. Compared with the parental strain group, rPEDV-EΔaa23-aa29 caused lower mortality (33%) and diminished fecal PEDV RNA shedding. At 21 days, all surviving pigs were challenged orally with rPEDV-Ewt. No pigs died in the two groups. Compared with the mock group, significantly delayed and milder diarrhea and reduced fecal PEDV RNA shedding were detected in the rPEDV-EΔaa23-aa29 group. In conclusion, the deletion of a 7-aa fragment in the E protein (EΔaa23-aa29) attenuated PEDV but retained its immunogenicity, which can offer new ideas for the design of live attenuated vaccines and provide new insights into the attenuated mechanism of PEDV. IMPORTANCE Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets and remains a large challenge to the pork industry. Unfortunately, no safe and effective vaccines are available yet. The pathogenesis and molecular basis of the attenuation of PEDV remain unclear, which seriously hinders the development of PEDV vaccines. This study found that the rPEDV carrying EΔaa23-aa29 mutation in the E protein induced significantly higher IFN responses than the parental virus, partially attenuated, and remained immunogenic in piglets. For the first time, PEDV E was verified as an IFN antagonist in the infection context and identified as a virulence factor of PEDV. Our data also suggested that EΔaa23-aa29 mutation can be a good target for the development of live attenuated vaccines for PEDV and also provide new perspectives for the attenuated mechanism of PEDV.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Weiguo Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanzhe Chang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xuyang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zifang Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lele Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
33
|
Su K, Wang Y, Yuan C, Zhang Y, Li Y, Li T, Song Q. Intranasally inoculated bacterium-like particles displaying porcine epidemic diarrhea virus S1 protein induced intestinal mucosal immune response in mice. Front Immunol 2023; 14:1269409. [PMID: 37790942 PMCID: PMC10544335 DOI: 10.3389/fimmu.2023.1269409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute watery diarrhea and high mortality in newborn piglets. Activation of intestinal mucosal immunity is crucial to anti-PEDV infection. To develop a vaccine capable of stimulating intestinal mucosal immunity, we prepared a bacterium (Lactococcus lactis)-like particle (BLP) vaccine (S1-BLPs) displaying the S1 protein, a domain of PEDV spike protein (S), based on gram-positive enhancer matrix (GEM) particle display technology. We further compared the effects of different vaccination routes on mucosal immune responses in mice induced by S1-BLPs. The specific IgG titer in serum of intramuscularly immunized mice with S1-BLPs was significantly higher than that of the intranasally administered. The specific IgA antibody was found in the serum and intestinal lavage fluid of mice vaccinated intranasally, but not intramuscularly. Moreover, the intranasally inoculated S1-BLPs induced higher levels of IFN-γ and IL-4 in serum than the intramuscularly inoculated. In addition, the ratio of serum IgG2a/IgG1 of mice inoculated intramuscularly was significantly higher with S1-BLPs compared to that of with S1 protein, suggesting that the immune responses induced by S1-BLPs was characterized by helper T (Th) cell type 1 immunity. The results indicated that S1-BLPs induced systemic and local immunity, and the immunization routes significantly affected the specific antibody classes and Th immune response types. The intranasally administered S1-BLPs could effectively stimulate intestinal mucosal specific secretory IgA response. S1-BLPs have the potential to be developed as PEDV mucosal vaccine.
Collapse
Affiliation(s)
- Kai Su
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Yawen Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Chen Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Yanan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Yanrui Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Tanqing Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| | - Qinye Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, Hebei, China
| |
Collapse
|
34
|
Hou W, Wu H, Wang S, Wang W, Wang B, Wang H. Designing a multi-epitope vaccine to control porcine epidemic diarrhea virus infection using immunoinformatics approaches. Front Microbiol 2023; 14:1264612. [PMID: 37779715 PMCID: PMC10538973 DOI: 10.3389/fmicb.2023.1264612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a continuously evolving pathogen, causes severe diarrhea in piglets with high mortality rates. However, current vaccines cannot provide complete protection against PEDV, so vaccine development is still necessary and urgent. Here, with the help of immunoinformatics approaches, we attempted to design a multi-epitope vaccine named rPMEV to prevent and control PEDV infection. The epitopes of rPMEV were constructed by 9 cytotoxic T lymphocyte epitopes (CTLs), 11 helper T lymphocyte epitopes (HTLs), 6 linear B cell epitopes (LBEs), and 4 conformational B cell epitopes (CBEs) based on the S proteins from the four representative PEDV G2 strains. To enhance immunogenicity, porcine β-defensin-2 (PBD-2) was adjoined to the N-terminal of the vaccine as an adjuvant. All of the epitopes and PBD-2 were joined by corresponding linkers and recombined into the multivalent vaccine, which is stable, antigenic, and non-allergenic. Furthermore, we adopted molecular docking and molecular dynamics simulation methods to analyze the interaction of rPMEV with the Toll-like receptor 4 (TLR4): a stable interaction between them created by 13 hydrogen bonds. In addition, the results of the immune simulation showed that rPMEV could stimulate both cellular and humoral immune responses. Finally, to raise the expression efficiency, the sequence of the vaccine protein was cloned into the pET28a (+) vector after the codon optimization. These studies indicate that the designed multi-epitope vaccine has a potential protective effect, providing a theoretical basis for further confirmation of its protective effect against PEDV infection in vitro and in vivo studies.
Collapse
Affiliation(s)
- Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Heqiong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Sibei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wenting Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
35
|
Wei R, Shang R, Cheng K, Wang S, Yuan X, Wu J, Yu Z. Phylogenetic analysis and molecular characterization of the co-infection of the new variant of the porcine epidemic diarrhea virus and the novel porcine kobuvirus isolated from piglets with diarrhea. Braz J Microbiol 2023; 54:2527-2534. [PMID: 37344656 PMCID: PMC10484880 DOI: 10.1007/s42770-023-01025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a virus that can cause diarrhea in pigs, resulting in significant economic losses to the pig industry. The mutation of the virus and its co-infection with other enteroviruses leads to poor control of PEDV infection. In this study, we found that the diarrhea outbreak in a pig farm in Shandong Province was mainly caused by PEDV infection. Through high-throughput sequencing, we also detected one other diarrhea-related virus (porcine kobuvirus). In the phylogenetic analysis and molecular characterization of the detected PEDV S gene and PKV, it was found that the S gene of the PEDV strain detected in this study (named SD22-2) had more mutations than the CV777 strain. The highest homology between PKV (named SD/2022/China) detected in this study and other strains was only 89.66%. Based on polyprotein, we divided SD/2022/China strains into a new grouping (designated group 4) and detected recombination signals. In summary, SD22-2 detected in this study is a new PEDV variant strain, and SD/2022/China strain might be a novel PKV strain. We also found the co-infection of the new PEDV variant and the novel PKV isolated from piglets with diarrhea. Our data suggested the importance of continuous surveillance of PEDV and PKV.
Collapse
Affiliation(s)
- Ran Wei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Rui Shang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Kaihui Cheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Song Wang
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, China
| | - Xiaoyuan Yuan
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jiaqiang Wu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zhijun Yu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
36
|
Zhu T, Qian J, Shen Z, Shao H, Qian K, Jin W, Qin A. Vector-delivered artificial miRNA effectively inhibits Porcine epidemic diarrhea virus replication. Virol J 2023; 20:164. [PMID: 37488599 PMCID: PMC10364413 DOI: 10.1186/s12985-023-02129-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is an α-coronavirus that causes highly contagious intestinal infectious disease, involving clinically characterized by diarrhea, dehydration, vomiting, and high mortality to suckling piglets. As a strategy for antiviral therapy, artificial microRNA (amiRNA) mediated suppression of viral replication has recently become increasingly important. In this study, we evaluated the advantages of using an amiRNA vector against PEDV. METHODS In this study, we evaluated the advantages of using an amiRNA vector against PEDV. We designed two single amiRNA sequences for different conserved sequences of the PEDV S and N genes, and tested their inhibitory effects on PEDV in Vero cells. RESULTS It was obvious from the CCK-8 results that the transient transfection of amiRNA was non-toxic to the cells. In addition, our results showed that the transient expression of two amiRNAs (amiRNA-349 and amiRNA-1447) significantly reduced the expression of viral RNA and protein in the cells. The TCID50 results showed that the release of virus particles into the culture supernatant was significantly reduced, with an effect as high as 90%. To avoid virus mutation escape, the above two single amiRNA sequences were tandem in this study (amiRNA-349 + 1447), enabling a single microRNA to be expressed simultaneously. The real-time PCR and Western blot results showed that the inhibitory effect was significantly enhanced in each of the different time periods. The TCID50 results showed that the release of virus particles in the culture supernatant was significantly reduced at the different time periods. CONCLUSIONS In summary, these results suggest that an RNAi based on amiRNA targeting the conserved region of the virus is an effective method to improve PEDV nucleic acid inhibitors and provide a novel treatment strategy for PEDV infection.
Collapse
Affiliation(s)
- Tingfan Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Jinhan Qian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Zijun Shen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Hongxia Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu Province, China
- Ministry of Education Key Laboratory of Poultry Preventive Medicine, Yangzhou, 225009, Jiangsu Province, China
| | - Kun Qian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu Province, China
- Ministry of Education Key Laboratory of Poultry Preventive Medicine, Yangzhou, 225009, Jiangsu Province, China
| | - Wenjie Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu Province, China.
- Ministry of Education Key Laboratory of Poultry Preventive Medicine, Yangzhou, 225009, Jiangsu Province, China.
| | - Aijian Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu Province, China
- Ministry of Education Key Laboratory of Poultry Preventive Medicine, Yangzhou, 225009, Jiangsu Province, China
| |
Collapse
|
37
|
Huang N, Lang Q, Li L, Ge L, Yang X. Characterization of monoclonal antibodies against porcine epidemic diarrhea virus S1/S2 junction protein. AMB Express 2023; 13:74. [PMID: 37436550 DOI: 10.1186/s13568-023-01573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/18/2023] [Indexed: 07/13/2023] Open
Abstract
Pig producers have faced considerable economic losses due to porcine epidemic diarrhea virus (PEDV) infection, emphasizing the need for PEDV antibody development. The S1/S2 junction (S1S2J) cleavage site of the S protein of PEDV is one of the major determinants of coronavirus infection success. In this study, we specifically selected the S1S2J protein of PEDV-AJ1102 (a representative strain of the G2 type) as a target protein to immunize mice and generated monoclonal antibodies (mAbs) using hybridoma technology. Three mAbs with high-binding activities to the S1S2J protein and were obtained and further analyzed. To reveal the characterization of these mAbs, variable region genes of antibodies were studied by using DNA sequencing, thereby revealing differences in their CDR3 amino acid sequences. We then developed a new method to identify the isotypes of these three mAbs. Results showed that these three antibodies were of the IgM type. As for the functions of these three mAbs, indirect immunofluorescence assay confirmed their good binding ability to Vero E6 cells infected with the PEDV-SP-C strain (G1 type). Epitope analysis showed linear epitopes for all three mAbs. These antibodies were also used to detect infected cells via flow cytometry analysis. In summary, we prepared and examined three mAbs against PEDV-S1S2J. These mAbs can be employed as detection antibodies for diagnostic reagents and further developed for other applications. We also designed a novel technique for easy and cost-saving identification of isotypes of mouse mAbs. Our results lay a good foundation for the development of research on PEDV.
Collapse
Affiliation(s)
- Nan Huang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China
| | - Qiaoli Lang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China
| | - Liping Li
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.
| | - Xi Yang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.
| |
Collapse
|
38
|
Mei X, Guo J, Fang P, Ma J, Li M, Fang L. The Characterization and Pathogenicity of a Recombinant Porcine Epidemic Diarrhea Virus Variant ECQ1. Viruses 2023; 15:1492. [PMID: 37515178 PMCID: PMC10383920 DOI: 10.3390/v15071492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a re-emerging enteropathogenic coronavirus, has become the predominant causative agent of lethal diarrhea in piglets, resulting in huge economic losses in many countries. Furthermore, the rapid variability of this virus has increased the emergence of novel variants with different pathogenicities. In this study, 633 fecal samples collected from diarrheic piglets in China during 2017-2019 were analyzed, and 50.08% (317/633) of these samples were PEDV-positive. The full-length spike (S) genes of 36 samples were sequenced, and a genetic evolution analysis was performed. The results showed that thirty S genes belonged to the GII-a genotype and six S genes belonged to the GII-b genotype. From the PEDV-positive samples, one strain, designated ECQ1, was successfully isolated, and its full-length genome sequence was determined. Interestingly, ECQ1 is a recombinant PEDV between the GII-a (major parent) and GII-b (minor parent) strains, with recombination occurring in the S2 domain of the S gene. The pathogenicity of ECQ1 was assessed in 5-day-old piglets and compared with that of the strain EHuB2, a representative of GII-a PEDV. Although both PEDV strains induced similar fecal viral shedding in the infected piglets, ECQ1 exhibited lower pathogenicity than did EHuB2, as evidenced by reduced mortality and less severe pathological changes in the intestines. These data suggest that PEDV strain ECQ1 is a potential live virus vaccine candidate against porcine epidemic diarrhea.
Collapse
Affiliation(s)
- Xiaowei Mei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jun Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mingxiang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
39
|
Li M, Pan Y, Xi Y, Wang M, Zeng Q. Insights and progress on epidemic characteristics, genotyping, and preventive measures of PEDV in China: A review. Microb Pathog 2023; 181:106185. [PMID: 37269880 DOI: 10.1016/j.micpath.2023.106185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Porcine Epidemic Diarrhoea (PED) is an acute, extremely infectious intestinal disease of pigs caused by the Porcine Epidemic Diarrhoea Virus (PEDV). The virus can affect pigs of all breeds and age groups and shows varying degrees of symptoms, with piglets, in particular, being infected with mortality rates of up to 100%. PEDV was first identified in China in the 1980s and in October 2010 a large-scale PED outbreak caused by a variant of PEDV occurred in China, resulting in huge economic losses. Initially, vaccination can effectively prevent the classical strain, but since December 2010, the PEDV variant has caused "persistent diarrhoea" with severe vomiting, watery diarrhoea, and high morbidity and mortality in newborn piglets as the dominant clinical features, with a significant increase in morbidity and mortality. This indicates that PEDV strains have mutated during evolution and that traditional vaccines no longer provide effective cross-immune protection, so it is necessary to optimize immunization programs and find effective treatments through epidemiological surveys of PEDV to reduce the economic losses caused by infections with mutated strains. This article reviews the progress of research on the aetiology, epidemiological characteristics, genotyping, pathogenesis, transmission routes, and comprehensive control of PEDV infection in China.
Collapse
Affiliation(s)
- Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Yao Xi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
40
|
Ge Y, Jiang F, Wang S, Wu H, Liu Y, Wang B, Hou W, Yu X, Wang H. Natural Evolution of Porcine Epidemic Diarrhea Viruses Isolated from Maternally Immunized Piglets. Animals (Basel) 2023; 13:1766. [PMID: 37889642 PMCID: PMC10252125 DOI: 10.3390/ani13111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 10/29/2023] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) can cause severe piglet diarrhea or death in some herds. Genetic recombination and mutation facilitate the continuous evolution of the virus (PEDV), posing a great challenge for the prevention and control of porcine epidemic diarrhea (PED). Disease materials of piglets with PEDV vaccination failure in some areas of Shanxi, Henan and Hebei provinces of China were collected and examined to understand the prevalence and evolutionary characteristics of PEDV in these areas. Forty-seven suspicious disease materials from different litters on different farms were tested by multiplex PCR and screened by hematoxylin-eosin staining and immunohistochemistry. PEDV showed a positivity rate of 42.6%, infecting the small and large intestine and mesenteric lymph node tissues. The isolated strains infected Vero, PK-15 and Marc-145 multihost cells and exhibited low viral titers in all three cell types, as indicated by their growth kinetic curves. Possible putative recombination events in the isolates were identified by RDP4.0 software. Sequencing and phylogenetic analysis showed that compared with the classical vaccine strain, PEDV SX6 contains new insertion and mutations in the S region and belongs to genotype GIIa. Meanwhile, ORF3 has the complete amino acid sequence with aa80 mutated wild strains, compared to vaccine strains CV777, AJ1102, AJ1102-R and LW/L. These results will contribute to the development of new PEDV vaccines based on prevalent wild strains for the prevention and control of PED in China.
Collapse
Affiliation(s)
- Yufang Ge
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Feiyang Jiang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Sibei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Heqiong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yuan Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
41
|
Nguyen TL, Le TPT, Dinh TT, Nguyen-Ho HV, Mai QG, Vo-Nguyen HV, Tran TL, Tran HX, Tran-Van H. Investigation of variants in genetics and virulence of Porcine Epidemic Diarrhea Virus after serial passage on Vero cells. J Virol Methods 2023:114755. [PMID: 37244432 DOI: 10.1016/j.jviromet.2023.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal virus. However, the current PEDV vaccine, which is produced from classical strain G1, offers low protection against recently emerged strain G2. This study aims to develop a better vaccine strain by propagating the PS6 strain, a G2b subgroup originating from Vietnam, on Vero cells until the 100th passage. As the virus was propagated, its titer increased, and its harvest time decreased. Analysis of the nucleotide and amino acid variation of the PS6 strain showed that the P100PS6 had 11, 4, and 2 amino acid variations in the 0 domain, B domain, and ORF3 protein, respectively, compared to the P7PS6 strain. Notably, the ORF3 gene was truncated due to a 16-nucleotide deletion mutation, resulting in a stop codon. The PS6 strain's virulence was evaluated in 5-day-old piglets, with P7PS6 and P100PS6 chosen for comparison. The results showed that P100PS6-inoculated piglets exhibited mild clinical symptoms and histopathological lesions, with a 100% survival rate. In contrast, P7PS6-inoculated piglets showed rapid and typical clinical symptoms of PEDV infection, and the survival rate was 0%. Additionally, the antibodies (IgG and IgA) produced from inoculated piglets with P100PS6 bound to both the P7PS6 and P100PS6 antigens. This finding suggested that the P100PS6 strain was attenuated and could be used to develop a live-attenuated vaccine against highly pathogenic and prevalent G2b-PEDV strains.
Collapse
Affiliation(s)
- Tan-Liem Nguyen
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Thu-Phuong Thi Le
- National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Thuan-Thien Dinh
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Vietnam National University Hochiminh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Hai-Vy Nguyen-Ho
- National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Quoc-Gia Mai
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Vietnam National University Hochiminh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Hai-Vy Vo-Nguyen
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Vietnam National University Hochiminh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Thuoc Linh Tran
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Vietnam National University Hochiminh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Hanh Xuan Tran
- National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Hieu Tran-Van
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Vietnam National University Hochiminh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam.
| |
Collapse
|
42
|
Si F, Song S, Yu R, Li Z, Wei W, Wu C. Coronavirus accessory protein ORF3 biology and its contribution to viral behavior and pathogenesis. iScience 2023; 26:106280. [PMID: 36945252 PMCID: PMC9972675 DOI: 10.1016/j.isci.2023.106280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Coronavirus porcine epidemic diarrhea virus (PEDV) is classified in the genus Alphacoronavirus, family Coronaviridae that encodes the only accessory protein, ORF3 protein. However, how ORF3 contributes to viral pathogenicity, adaptability, and replication is obscure. In this review, we summarize current knowledge and identify gaps in many aspects of ORF3 protein in PEDV, with emphasis on its unique biological features, including membrane topology, Golgi retention mechanism, potential intrinsic disordered property, functional motifs, protein glycosylation, and codon usage phenotypes related to genetic evolution and gene expression. In addition, we propose intriguing questions related to ORF3 protein that we hope to stimulate further studies and encourage collaboration among virologists worldwide to provide constructive knowledge about the unique characteristics and biological functions of ORF3 protein, by which their potential role in clarifying viral behavior and pathogenesis can be possible.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, and Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou 510640, P.R. China
| | - Ruisong Yu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Zhen Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Chao Wu
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
43
|
Yang X, Li L, Su X, Li J, Liao J, Yang J, Xiao Z, Wen P, Wang H. Development of an Indirect Enzyme-Linked Immunosorbent Assay Based on the Yeast-Expressed CO-26K-Equivalent Epitope-Containing Antigen for Detection of Serum Antibodies against Porcine Epidemic Diarrhea Virus. Viruses 2023; 15:v15040882. [PMID: 37112862 PMCID: PMC10144300 DOI: 10.3390/v15040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a severe contagious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV), which leads to high mortality in piglets. In this study, by analyzing a total of 53 full-length spike genes and COE domain regions of PEDVs, the conserved COE fragment of the spike protein from the dominant strain SC1402 was chosen as the target protein and expressed successfully in Pichia pastoris (P. pastoris). Furthermore, an indirect enzyme-linked immunosorbent assay (iELISA) based on the recombinant COE protein was developed for the detection of anti-PEDV antibodies in pig sera. The results showed that under the optimized conditions, the cut-off value of COE-based indirect ELISA (COE-iELISA) was determined to be 0.12. Taking the serum neutralization test as standard, the relative sensitivity of the COE-iELISA was 94.4% and specificity 92.6%. Meanwhile, no cross-reactivity to other porcine pathogens was noted with this assay. The intra-assay and inter-assay coefficients of variation were less than 7%. Moreover, 164 vaccinated serum samples test showed that overall agreement between COE-iELISA and the actual diagnosis result was up to 99.4%. More importantly, the developed iELISA exhibited a 95.08% agreement rate with the commercial ELISA kit (Kappa value = 0.88), which suggested that the expressed COE protein was an effective antigen in serologic tests and the established COE-iELISA is reliable for monitoring PEDV infection in pigs or vaccine effectiveness.
Collapse
|
44
|
Zeng W, Ren J, Yang G, Jiang C, Dong L, Sun Q, Hu Y, Li W, He Q. Porcine Epidemic Diarrhea Virus and Its nsp14 Suppress ER Stress Induced GRP78. Int J Mol Sci 2023; 24:ijms24054936. [PMID: 36902365 PMCID: PMC10003387 DOI: 10.3390/ijms24054936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the α-coronavirus genus, can cause vomiting, diarrhea, and dehydration in piglets. Neonatal piglets infected with PEDV have a mortality rate as high as 100%. PEDV has caused substantial economic losses to the pork industry. Endoplasmic reticulum (ER) stress, which can alleviate the accumulation of unfolded or misfolded proteins in ER, involves in coronavirus infection. Previous studies have indicated that ER stress could inhibit the replication of human coronaviruses, and some human coronaviruses in turn could suppress ER stress-related factors. In this study, we demonstrated that PEDV could interact with ER stress. We determined that ER stress could potently inhibit the replication of GⅠ, GⅡ-a, and GⅡ-b PEDV strains. Moreover, we found that these PEDV strains can dampen the expression of the 78 kDa glucose-regulated protein (GRP78), an ER stress marker, while GRP78 overexpression showed antiviral activity against PEDV. Among different PEDV proteins, PEDV non-structural protein 14 (nsp14) was revealed to play an essential role in the inhibition of GRP78 by PEDV, and its guanine-N7-methyltransferase domain is necessary for this role. Further studies show that both PEDV and its nsp14 negatively regulated host translation, which could account for their inhibitory effects against GRP78. In addition, we found that PEDV nsp14 could inhibit the activity of GRP78 promotor, helping suppress GRP78 transcription. Our results reveal that PEDV possesses the potential to antagonize ER stress, and suggest that ER stress and PEDV nsp14 could be the targets for developing anti-PEDV drugs.
Collapse
Affiliation(s)
- Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingping Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Gan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changsheng Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaofang Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
45
|
Li R, Wen Y, Yang L, Qian QS, Chen XX, Zhang JQ, Li X, Xing BS, Qiao S, Zhang G. Development of an enzyme-linked immunosorbent assay based on viral antigen capture by anti-spike glycoprotein monoclonal antibody for detecting immunoglobulin A antibodies against porcine epidemic diarrhea virus in milk. BMC Vet Res 2023; 19:46. [PMID: 36765329 PMCID: PMC9921583 DOI: 10.1186/s12917-023-03605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED), caused by PED virus (PEDV), is a severe enteric disease burdening the global swine industry in recent years. Especially, the mortality of PED in neonatal piglets approaches 100%. Maternal antibodies in milk, particularly immunoglobulin A (IgA) antibodies, are of great importance for protection neonatal suckling piglets against PEDV infection as passive lactogenic immunity. Therefore, appropriate detection methods are required for detecting PEDV IgA antibodies in milk. In the current study, we prepared monoclonal antibodies (mAbs) against PEDV spike (S) glycoprotein. An enzyme-linked immunosorbent assay (ELISA) was subsequently developed based on PEDV antigen capture by a specific anti-S mAb. RESULTS The developed ELISA showed high sensitivity (the maximum dilution of milk samples up to 1:1280) and repeatability (coefficient of variation values < 10%) in detecting PEDV IgA antibody positive and negative milk samples. More importantly, the developed ELISA showed a high coincidence rate with a commercial ELISA kit for PEDV IgA antibody detection in clinical milk samples. CONCLUSIONS The developed ELISA in the current study is applicable for PEDV IgA antibody detection in milk samples, which is beneficial for evaluating vaccination efficacies and neonate immune status against the virus.
Collapse
Affiliation(s)
- Rui Li
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Ying Wen
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Lei Yang
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Qi-sheng Qian
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Xin-xin Chen
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Jia-qing Zhang
- grid.495707.80000 0001 0627 4537Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Xuewu Li
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Bao-song Xing
- grid.495707.80000 0001 0627 4537Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
46
|
Characterization and epitope mapping of monoclonal antibodies against PEDV N protein. Virology 2023; 579:29-37. [PMID: 36592554 DOI: 10.1016/j.virol.2022.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets. The nucleocapsid (N) protein of PEDV is a highly conserved protein with strong immunogenicity and palys an important role in PEDV diagnosis. However, epitopes on the PEDV N protein have not yet been well characterized. Here, 32 monoclonal antibodies (mAbs) against the PEDV N protein were produced and identified. Six new epitopes were first identified by using a high-throughput epitope mapping method named AbMap. Sequence analysis revealed that among the six epitopes five epitopes were highly conserved among different PEDV strains. We also confirmed that the mAbs derived from the six epitopes of PEDV N protein, have no cross-reactivity with transmissible gastro enteritis virus or porcine delta coronavirus. These mAbs and their defined epitopes will help to understand the N protein structure and immunological characteristics, and to develop a rapid, accurate PEDV diagnosis method.
Collapse
|
47
|
Yang S, Li S, Lu Y, Jansen CA, Savelkoul HFJ, Liu G. Oral administration of Lactic acid bacteria inhibits PEDV infection in young piglets. Virology 2023; 579:1-8. [PMID: 36584644 DOI: 10.1016/j.virol.2022.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Since the emergence of the highly pathogenic porcine epidemic diarrhea virus (PEDV) strain in 2010, the prevention of porcine epidemic diarrhea (PED) in pig farms remains problematic. To find the reasons behind the high mortality in young piglets, the relative mRNA expression of inflammation-related factors in infected pigs of different ages as well as uninfected pigs were detected by RT-qPCR. The results showed that the mRNA expression of these factors including IL-6 and TNF-α was more increased in infected younger piglets than infected older pigs. To clarify the relationship between these inflammation related factors, the pairwise linear correlation between the relative expression of these factors were analyzed and showed as network mapping with different correlation coefficients. A strong positive correlation was observed between the expression of various factors in 1-week-old piglets. Combined with the difference in mortality of PEDV infection in pigs of different ages, we hypothesized that lactic acid bacteria (LAB) could inhibit PEDV infection in newborn piglets, and an in vivo experiment was carried out. The results of survival rate and wet/dry ratio showed that LAB alleviated PEDV indued mortality and diarrhea. The detection of viral copies and tissue section staining showed less observed viruses in LAB treated pig. RT-qPCR results of gene expression in intestines showed that LAB modulated the gene expression of various host barrier genes, indicating that LAB is potential to inhibit PEDV infection by regulating the host intestinal barrier. However, to use LAB as therapy, how to improve the efficiency on inhibiting PEDV infection needs further studies.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Shuxian Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yabin Lu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| |
Collapse
|
48
|
Wang F, Zhang Q, Zhang F, Zhang E, Li M, Ma S, Guo J, Yang Z, Zhu J. Adenovirus vector-mediated single chain variable fragments target the nucleocapsid protein of porcine epidemic diarrhea virus and protect against viral infection in piglets. Front Immunol 2023; 14:1058327. [PMID: 36761768 PMCID: PMC9902916 DOI: 10.3389/fimmu.2023.1058327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) mainly infects the intestinal epithelial cells of pigs, causing porcine epidemic diarrhea (PED). In particular, the virus causes severe diarrhea, dehydration, and death in neonatal piglets. Maternal immunity effectively protects neonatal piglets from PEDV infection; however, maternal antibodies can only prevent PEDV attachment and entry into target cells, but have no effects on intracellular viruses. Intracellular antibodies targeting virus-encoded proteins are effective in preventing viral infection. We previously identified four single chain variable fragments (scFvs), ZW1-16, ZW3-21, ZW1-41, and ZW4-16, which specifically targeted the PEDV N protein and significantly inhibited PEDV replication and up-regulated interferon-λ1 (IFN-λ1) expression in host cells. In our current study, the four scFvs were subcloned into replication-defective adenovirus vectors to generate recombinant adenoviruses rAdV-ZW1-16, rAdV-ZW3-21, rAdV-ZW1-41, and rAdV-ZW4-16. ScFvs were successfully expressed in Human Embryonic Kidney 293 (HEK293) cells and intestinal porcine epithelial cell line J2 (IPEC-J2) and were biosafe for piglets as indicated by body temperature and weight, scFv excretion in feces, IFN-γ and interleukin-4 (IL-4) expression in jejunum, and pathological changes in porcine tissue after oral administration. Western blotting, immunofluorescence, and immunohistochemical analyses showed that scFvs were expressed in porcine jejunum. The prophylactic effects of rAdV-ZW, a cocktail of the four rAdV-scFvs, on piglet diarrhea caused by PEDV was investigated. Clinical symptoms in piglets orally challenged with PEDV, following a two-time treatment with rAdV-ZW, were significantly reduced when compared with PEDV-infected piglets treated with phosphate buffered saline (PBS) or rAdV-wild-type. Also, no death and jejunal lesions were observed. ScFv co-localization with the PEDV N protein in vivo was also observed. Next, the expression of pro-inflammatory serum cytokines such as tumor necrosis factor-α (TNF-α), IL-6, IL-8, IL-12, and IFN-λ was assessed by enzyme-linked immunosorbent assay (ELISA), which showed that scFvs significantly suppressed PEDV-induced pro-inflammatory cytokine expression and restored PEDV-inhibited IFN-λ expression. Therefore, our study supported a promising role for intracellular scFvs targeting the PEDV N protein to prevent and treat diarrhea in PEDV-infected piglets.
Collapse
Affiliation(s)
- Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Qing Zhang, ; Jianguo Zhu,
| | - Fanqing Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - En Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianming Guo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Qing Zhang, ; Jianguo Zhu,
| |
Collapse
|
49
|
Li M, Zhang Y, Fang Y, Xiao S, Fang P, Fang L. Construction and immunogenicity of a trypsin-independent porcine epidemic diarrhea virus variant. Front Immunol 2023; 14:1165606. [PMID: 37033982 PMCID: PMC10080105 DOI: 10.3389/fimmu.2023.1165606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteropathogenic coronavirus that causes high mortality in neonatal piglets. The addition of trypsin plays a crucial role in the propagation of PEDV, but also increases the complexity of vaccine production and increases its cost. Previous studies have suggested that the S2' site and Y976/977 of the PEDV spike (S) protein might be the determinants of PEDV trypsin independence. In this study, to achieve a recombinant trypsin-independent PEDV strain, we used trypsin-dependent genotype 2 (G2) PEDV variant AJ1102 to generate three recombinant PEDVs with mutations in S (S2' site R894G and/or Y976H). The three recombinant PEDVs were still trypsin dependent, suggesting that the S2' site R894 and Y976 of AJ1102 S are not key sites for PEDV trypsin dependence. Therefore, we used AJ1102 and the classical trypsin-independent genotype 1 (G1) PEDV strain JS2008 to generate a recombinant PEDV carrying a chimeric S protein, and successfully obtained trypsin-independent PEDV strain rAJ1102-S2'JS2008, in which the S2 (amino acids 894-1386) domain was replaced with the corresponding JS2008 sequence. Importantly, immunization with rAJ1102-S2'JS2008 induced neutralizing antibodies against both AJ1102 and JS2008. Collectively, these results suggest that rAJ1102-S2'JS2008 is a novel vaccine candidate with significant advantages, including no trypsin requirement for viral propagation to high titers and the potential provision of protection for pigs against G1 and G2 PEDV infections.
Collapse
Affiliation(s)
- Mingxiang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yiye Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuxin Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Puxian Fang, ; Liurong Fang,
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Puxian Fang, ; Liurong Fang,
| |
Collapse
|
50
|
Death Receptor DR5 as a Proviral Factor for Viral Entry and Replication of Coronavirus PEDV. Viruses 2022; 14:v14122724. [PMID: 36560727 PMCID: PMC9783156 DOI: 10.3390/v14122724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of Coronaviridae, causes high mortality in newborn piglets, and has caused significant economic losses in the pig industry. PEDV infection can induce apoptosis, both caspase-dependent and caspase-independent, but the details of apoptosis remain clarified. This study investigated the effect of death receptor DR5 on PEDV infection and its relationship with PEDV-induced apoptosis. We found that DR5 knockdown reduced viral mRNA and protein levels of PEDV, and the viral titer decreased from 104.5 TCID50 to 103.4 TCID50 at 12 hpi. Overexpression of DR5 significantly increased the viral titer. Further studies showed that DR5 facilitates viral replication by regulating caspase-8-dependent apoptosis, and the knockdown of DR5 significantly reduced PEDV-induced apoptosis. Interestingly, we detected a biphasic upregulation expression of DR5 in both Vero cells and piglets in response to PEDV infection. We found that DR5 also facilitates viral entry of PEDV, especially, incubation with DR5 antibody can reduce the PEDV binding to Vero cells. Our study improves the understanding of the mechanism by which PEDV induces apoptosis and provides new insights into the biological function of DR5 in PEDV infection.
Collapse
|