1
|
Dan-Dan W, Jia-Jun N, Rui-Bian Z, Jie L, Yuan-Xu W, Liu Y, Fei-Fei C, Yue-Min P. A novel Burkholderia pyrrocinia strain effectively inhibits Fusarium graminearum growth and deoxynivalenol (DON) production. PEST MANAGEMENT SCIENCE 2024; 80:4883-4896. [PMID: 38817082 DOI: 10.1002/ps.8200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/13/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Fusarium graminearum is a devastating fungal pathogen that poses a significant threat to global wheat production and quality. Control of this toxin-producing pathogen remains a major challenge. This study aimed to isolate strains with antagonistic activity against F. graminearum and at the same time to analyze the synthesis of deoxynivalenol (DON), in order to provide a new basis for the biological control of FHB. RESULTS Total of 69 microorganisms were isolated from the soil of a wheat-corn crop rotation field, and an antagonistic bacterial strain F12 was identified as Burkholderia pyrrocinia by molecular biology and carbon source utilization. F. graminearum control by strain F12 showed excellent biological activities under laboratory conditions (95.8%) and field testing (63.09%). Meanwhile, the DON content of field-treated wheat grains was detected the results showed that F12 have significantly inhibited of DON, which was further verified by qPCR that F12 produces secondary metabolites that inhibit the expression of DON and pigment-related genes. In addition, the sterile fermentation broth of F12 not only inhibited mycelial growth and spore germination, but also prevented mycelia from producing spores. CONCLUSION In this study B. pyrrocinia was reported to have good control of FHB and inhibition of DON synthesis. This novel B. pyrrocinia F12 is a promising biological inoculant, providing possibilities for controlling FHB, and a theoretical basis for the development of potential biocontrol agents and biofertilizers for agricultural use. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wang Dan-Dan
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Laboratory of Mycology and Plant Fungal Diseases, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Nie Jia-Jun
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zhao Rui-Bian
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Laboratory of Mycology and Plant Fungal Diseases, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lu Jie
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wei Yuan-Xu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Laboratory of Mycology and Plant Fungal Diseases, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yu Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chen Fei-Fei
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Laboratory of Mycology and Plant Fungal Diseases, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Pan Yue-Min
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Laboratory of Mycology and Plant Fungal Diseases, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Lázaro Á, Vila-Donat P, Manyes L. Emerging mycotoxins and preventive strategies related to gut microbiota changes: probiotics, prebiotics, and postbiotics - a systematic review. Food Funct 2024; 15:8998-9023. [PMID: 39229841 DOI: 10.1039/d4fo01705f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Recent research has focused on the involvement of the gut microbiota in various diseases, where probiotics, prebiotics, synbiotics, and postbiotics (PPSP) exert beneficial effects through modulation of the microbiome. This systematic review aims to provide insight into the interplay among emerging mycotoxins, gut microbiota, and PPSP. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In this review, unregulated yet highly recurrent mycotoxins are classified as emerging mycotoxins. The most frequently observed mycotoxins included those from the Fusarium genus-enniatins (n = 11) and beauvericin (n = 11)-and the Alternaria genus-alternariol monomethyl ether, altertoxin, and tentoxin (n = 10). Among probiotics, the most studied genera were Lactobacillus, Bifidobacterium, and the yeast Saccharomyces cerevisiae. Inulin and cellulose were the most found prebiotics. Data on synbiotics and postbiotics are scarce. Studies have shown that both the gut microbiota and PPSP can detoxify and mitigate the harmful effects of emerging mycotoxins. PPSP not only reduced mycotoxin bioaccessibility, but also counteracted their detrimental effects by activating health-promoting pathways such as short-chain fatty acid production, genoprotection, and reduction of oxidative stress. However, both quantitative and qualitative data remain limited, indicating a need for further in vivo and long-term studies. The formulation of PPSP as functional foods, feeds, or nutraceuticals should be considered a preventive strategy against the toxicity of emerging mycotoxins, for which, there is no established regulatory framework.
Collapse
Affiliation(s)
- Álvaro Lázaro
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| | - Pilar Vila-Donat
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| | - Lara Manyes
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| |
Collapse
|
3
|
Du Y, Wang T, Lv C, Yan B, Wan X, Wang S, Kang C, Guo L, Huang L. Whole Genome Sequencing Reveals Novel Insights about the Biocontrol Potential of Burkholderia ambifaria CF3 on Atractylodes lancea. Microorganisms 2024; 12:1043. [PMID: 38930425 PMCID: PMC11205678 DOI: 10.3390/microorganisms12061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Root rot caused by Fusarium spp. is the most destructive disease on Atractylodes lancea, one of the large bulks and most common traditional herbal plants in China. In this study, we isolated a bacterial strain, CF3, from the rhizosphere soil of A. lancea and determined its inhibitory effects on F. oxysporum in both in vitro and in vivo conditions. To deeply explore the biocontrol potential of CF3, we sequenced the whole genome and investigated the key pathways for the biosynthesis of many antibiotic compounds. The results revealed that CF3 is a member of Burkholderia ambifaria, harboring two chromosomes and one plasmid as other strains in this species. Five antibiotic compounds were found that could be synthesized due to the existence of the bio-synthesis pathways in the genome. Furthermore, the synthesis of antibiotic compounds should be confirmed by in vitro experiments and novel compounds should be purified and characterized in further studies.
Collapse
Affiliation(s)
- Yongxi Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Tielin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Chaogeng Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Binbin Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Chuanzhi Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Luqi Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| |
Collapse
|
4
|
Vinacour M, Moiana M, Forné I, Jung K, Bertea M, Calero Valdayo PM, Nikel PI, Imhof A, Palumbo MC, Fernández Do Porto D, Ruiz JA. Genetic dissection of the degradation pathways for the mycotoxin fusaric acid in Burkholderia ambifaria T16. Appl Environ Microbiol 2023; 89:e0063023. [PMID: 38054732 PMCID: PMC10734416 DOI: 10.1128/aem.00630-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Fusaric acid (FA) is an important virulence factor produced by several Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin reduces the survival and competition abilities of bacterial species able to antagonize Fusarium spp., due to its negative effects on viability and the production of antibiotics effective against these fungi. FA biodegradation is not a common characteristic among bacteria, and the determinants of FA catabolism have not been identified so far in any microorganism. In this study, we identified genes, enzymes, and metabolic pathways involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our results provide insights into the catabolism of a pyridine-derivative involved in plant pathogenesis by a rhizosphere bacterium.
Collapse
Affiliation(s)
- Matias Vinacour
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauro Moiana
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Faculty Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Micaela Bertea
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia M. Calero Valdayo
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pablo I. Nikel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Miranda C. Palumbo
- Instituto de Cálculo (IC), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario Fernández Do Porto
- Instituto de Cálculo (IC), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena A. Ruiz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Faculty Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Iqbal N, Czékus Z, Ördög A, Poór P. Fusaric acid-evoked oxidative stress affects plant defence system by inducing biochemical changes at subcellular level. PLANT CELL REPORTS 2023; 43:2. [PMID: 38108938 PMCID: PMC10728271 DOI: 10.1007/s00299-023-03084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/05/2023] [Indexed: 12/19/2023]
Abstract
Fusaric acid (FA) is one of the most harmful phytotoxins produced in various plant-pathogen interactions. Fusarium species produce FA as a secondary metabolite, which can infect many agronomic crops at all stages of development from seed to fruit, and FA production can further compromise plant survival because of its phytotoxic effects. FA exposure in plant species adversely affects plant growth, development and crop yield. FA exposure in plants leads to the generation of reactive oxygen species (ROS), which cause cellular damage and ultimately cell death. Therefore, FA-induced ROS accumulation in plants has been a topic of interest for many researchers to understand the plant-pathogen interactions and plant defence responses. In this study, we reviewed the FA-mediated oxidative stress and ROS-induced defence responses of antioxidants, as well as hormonal signalling in plants. The effects of FA phytotoxicity on lipid peroxidation, physiological changes and ultrastructural changes at cellular and subcellular levels were reported. Additionally, DNA damage, cell death and adverse effects on photosynthesis have been explained. Some possible approaches to overcome the harmful effects of FA in plants were also discussed. It is concluded that FA-induced ROS affect the enzymatic and non-enzymatic antioxidant system regulated by phytohormones. The effects of FA are also associated with other photosynthetic, ultrastructural and genotoxic modifications in plants.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
6
|
Tang X, Cai YF, Yu XM, Zhou WW. Detoxification of aflatoxin B1 by Bacillus aryabhattai through conversion of double bond in terminal furan. J Appl Microbiol 2023; 134:lxad192. [PMID: 37634085 DOI: 10.1093/jambio/lxad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
AIMS This study aimed to screen a bacterial strain with high detoxifying capability for aflatoxin B1 (AFB1), verify its biotransformation efficiency, and detoxification process. METHODS AND RESULTS A total of 350 samples collected from different environmental niche were screened using coumarin as the sole carbon source. High Performance Liquid Chromatography (HPLC) was used to detect residues of AFB1, and 16S rRNA sequencing was performed on the isolated strain with the highest AFB1 removal ratio for identification. The detoxified products of this strain were tested for toxicity in Escherichia coli as well as LO2, Caco-2, and HaCaT human cell lines. HPLC-MS was applied to further confirm the AFB1 removal and detoxification process. CONCLUSIONS We identified a strain from plant leaf designated as DT with high AFB1-detoxifying ability that is highly homologous to Bacillus aryabhattai. The optimum detoxification conditions of this strain were 37°C and pH 8.0, resulting in 82.92% removal ratio of 2 μg mL-1 AFB1 in 72 h. The detoxified products were nontoxic for E. coli and significantly less toxic for the LO2, Caco-2, and HaCaT human cell lines. HPLC-MS analysis also confirmed the significant drop of the AFB1 characteristic peak. Two possible metabolic products, C19H15O8 (m/z 371) and C19H19O8 (m/z 375), were observed by mass spectrometry. Potential biotransformation pathway was based on the cleavage of double bond in the terminal furan of AFB1. These generated components had different chemical structures with AFB1, manifesting that the attenuation of AFB1 toxicity would be attributed to the destruction of lactone structure of AFB1 during the conversion process.
Collapse
Affiliation(s)
- Xi Tang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yi-Fan Cai
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiao-Mei Yu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
7
|
Zhu Q, Fei YJ, Wu YB, Luo DL, Chen M, Sun K, Zhang W, Dai CC. Endophytic Fungus Reshapes Spikelet Microbiome to Reduce Mycotoxin Produced by Fusarium proliferatum through Altering Rice Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466504 DOI: 10.1021/acs.jafc.3c02616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rice spikelet rot disease (RSRD) caused by Fusarium proliferatum seriously reduces rice yield and produces mycotoxins that threaten human health. The root symbiotic endophytic fungus Phomopsis liquidambaris reduces RSRD incidence and fumonisins accumulation in grain by 21.5 and 9.3%, respectively, while the mechanism of disease resistance remains largely elusive. Here, we found that B3 significantly reduced the abundance of pathogen from 79.91 to 2.84% and considerably enriched resistant microbes Pseudomonas and Proteobacteria in the spikelet microbial community. Further study revealed that B3 altered the metabolites of spikelets, especially hordenine and l-aspartic acid, which played a key role in reshaping the microbiome and supporting the growth of the functional core microbe Pseudomonas, and inhibited the pathogen growth and mycotoxin production. This study provided a feasibility of regulating the function of aboveground microbial communities by manipulating plant subsurface tissues to control disease and mycotoxin pollutants in agricultural production.
Collapse
Affiliation(s)
- Qiang Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yan-Jun Fei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yi-Bo Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - De-Lin Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Man Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
8
|
Deng Y, You L, Wang X, Wu W, Kuca K, Wu Q, Wei W. Deoxynivalenol: Emerging Toxic Mechanisms and Control Strategies, Current and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437258 DOI: 10.1021/acs.jafc.3c02020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Deoxynivalenol (DON) is the most frequently present mycotoxin contaminant in food and feed, causing a variety of toxic effects in humans and animals. Currently, a series of mechanisms involved in DON toxicity have been identified. In addition to the activation of oxidative stress and the MAPK signaling pathway, DON can activate hypoxia-inducible factor-1α, which further regulates reactive oxygen species production and cancer cell apoptosis. Noncoding RNA and signaling pathways including Wnt/β-catenin, FOXO, and TLR4/NF-κB also participate in DON toxicity. The intestinal microbiota and the brain-gut axis play a crucial role in DON-induced growth inhibition. In view of the synergistic toxic effect of DON and other mycotoxins, strategies to detect DON and control it biologically and the development of enzymes for the biodegradation of various mycotoxins and their introduction in the market are the current and future research hotspots.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
9
|
Guo Q, Li S, Dong L, Su Z, Wang P, Liu X, Ma P. Screening Biocontrol Agents for Cash Crop Fusarium Wilt Based on Fusaric Acid Tolerance and Antagonistic Activity against Fusarium oxysporum. Toxins (Basel) 2023; 15:381. [PMID: 37368682 DOI: 10.3390/toxins15060381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum, is one of the most notorious diseases of cash crops. The use of microbial fungicides is an effective measure for controlling Fusarium wilt, and the genus Bacillus is an important resource for the development of microbial fungicides. Fusaric acid (FA) produced by F. oxysporum can inhibit the growth of Bacillus, thus affecting the control efficacy of microbial fungicides. Therefore, screening FA-tolerant biocontrol Bacillus may help to improve the biocontrol effect on Fusarium wilt. In this study, a method for screening biocontrol agents against Fusarium wilt was established based on tolerance to FA and antagonism against F. oxysporum. Three promising biocontrol bacteria, named B31, F68, and 30833, were obtained to successfully control tomato, watermelon, and cucumber Fusarium wilt. Strains B31, F68, and 30833 were identified as B. velezensis by phylogenetic analysis of the 16S rDNA, gyrB, rpoB, and rpoC gene sequences. Coculture assays revealed that strains B31, F68, and 30833 showed increased tolerance to F. oxysporum and its metabolites compared with B. velezensis strain FZB42. Further experiments confirmed that 10 µg/mL FA completely inhibited the growth of strain FZB42, while strains B31, F68, and 30833 maintained normal growth at 20 µg/mL FA and partial growth at 40 µg/mL FA. Compared with strain FZB42, strains B31, F68, and 30833 exhibited significantly greater tolerance to FA.
Collapse
Affiliation(s)
- Qinggang Guo
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Shixin Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Lihong Dong
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Zhenhe Su
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Peipei Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Xiaomeng Liu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Ping Ma
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| |
Collapse
|
10
|
Mohd Din ARJ, Othman NZ. Genome sequence data of Burkholderia sp. IMCC1007 isolated from maize rhizosphere: A potential strain in fusaric acid mycotoxin biodegradation. Data Brief 2023; 48:109204. [PMID: 37383771 PMCID: PMC10293998 DOI: 10.1016/j.dib.2023.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/30/2023] Open
Abstract
Burkholderia sp. IMCC1007 is a gram-negative, aerobic bacterium affiliated with class Betaproteobacteria, which was successfully isolated from maize rhizospheric soil sample in UTM research plot, Pagoh, Malaysia by using enrichment method. Strain IMCC1007 utilized 50 mgL-1 fusaric acid as its carbon source and degraded it completely within 14 h. Genome sequencing was performed using Illumina NovaSeq platform. The assembled genome was annotated using RAST (Rapid Annotation Subsystem Technology) server. The genome size was approximately 8,568,405 base pairs (bp) in 147 contigs with a G+C content of 66.04%. The genome includes 8,733 coding sequences and 68 RNAs. The genome sequence has been deposited at GenBank with the accession number of JAPVQY000000000. In the pairwise genome-to-genome comparisons, the strain IMCC1007 had an average nucleotide identity (ANI) of 91.9% and digital DNA-DNA hybridization (dDDH) value of 55.2% with Burkholderia anthina DSM 16086T respectively. Interestingly, fusaric acid resistance gene (fusC) and nicABCDFXT gene clusters (hydroxylation of pyridine compound) were found in the genome. Additionally, preliminary genome annotation analysis of strain IMCC1007 identified tryptophan halogenase (prnA) gene responsible for antifungal pyrrolnitrin biosynthesis. This dataset herein provides further insights into the fusaric acid degradation mechanism of the genus Burkholderia.
Collapse
Affiliation(s)
- Abd Rahman Jabir Mohd Din
- Innovation Centre in Agritechnology for Advanced Bioprocess (ICA), Universiti Teknologi Malaysia, Pagoh Education Hub, 84600 Muar, Johor, Malaysia
| | - Nor Zalina Othman
- Innovation Centre in Agritechnology for Advanced Bioprocess (ICA), Universiti Teknologi Malaysia, Pagoh Education Hub, 84600 Muar, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| |
Collapse
|
11
|
Zhang J, Tang X, Cai Y, Zhou WW. Mycotoxin Contamination Status of Cereals in China and Potential Microbial Decontamination Methods. Metabolites 2023; 13:metabo13040551. [PMID: 37110209 PMCID: PMC10143121 DOI: 10.3390/metabo13040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The presence of mycotoxins in cereals can pose a significant health risk to animals and humans. China is one of the countries that is facing cereal contamination by mycotoxins. Treating mycotoxin-contaminated cereals with established physical and chemical methods can lead to negative effects, such as the loss of nutrients, chemical residues, and high energy consumption. Therefore, microbial detoxification techniques are being considered for reducing and treating mycotoxins in cereals. This paper reviews the contamination of aflatoxins, zearalenone, deoxynivalenol, fumonisins, and ochratoxin A in major cereals (rice, wheat, and maize). Our discussion is based on 8700 samples from 30 provincial areas in China between 2005 and 2021. Previous research suggests that the temperature and humidity in the highly contaminated Chinese cereal-growing regions match the growth conditions of potential antagonists. Therefore, this review takes biological detoxification as the starting point and summarizes the methods of microbial detoxification, microbial active substance detoxification, and other microbial inhibition methods for treating contaminated cereals. Furthermore, their respective mechanisms are systematically analyzed, and a series of strategies for combining the above methods with the treatment of contaminated cereals in China are proposed. It is hoped that this review will provide a reference for subsequent solutions to cereal contamination problems and for the development of safer and more efficient methods of biological detoxification.
Collapse
Affiliation(s)
- Jing Zhang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xi Tang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yifan Cai
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Potential of Burkholderia sp. IMCC1007 as a biodetoxification agent in mycotoxin biotransformation evaluated by mass spectrometry and phytotoxicity analysis. World J Microbiol Biotechnol 2023; 39:101. [PMID: 36792836 DOI: 10.1007/s11274-023-03544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Microbial degradation is considered as an attractive method to eliminate exposure to mycotoxin that cause a serious threat in agriculture global industry and severe human health problems. Compared with other more prominent mycotoxin compounds, fusaric acid (FA) biodegradation has not been widely investigated. In this study, a fusaric acid-degrading bacterium Burkholderia sp. IMCC1007 was identified by 16 S rRNA gene sequencing and its detoxification characteristics were evaluated. This strain able to utilize FA as sole energy and carbon source with growth rate (µ) of 0.18 h- 1. Approximately 93% from the initial substrate FA concentration was almost degraded to the residual about 4.87 mg L- 1 after 12 h of incubation. The optimal degradation conditions for pH and temperature were recorded at 6.0 with 30 °C respectively. An efficient FA degradation of strain IMCC1007 suggested its potential significance to detoxification development. Accroding to LC-MS/Q-TOF analysis, FA was bio-transformed to 4-hydroxybenzoic acid (C7H6O3) and other possible metabolites. Plant treated with detoxified FA products exhibited reduction of wilting index, mitigating against FA phytoxicity effect on plant growth and photosynthesis activity. Phytotoxicity bioassay suggested that degradation product of IMCC1007 was not a potent harmful compound towards plants as compared to the parent compound, FA. As a conslusion, our study provides a new insight into the practical application of biodetoxifcation agent in controlling mycotoxin contamination.
Collapse
|
13
|
Rodríguez-Cisneros M, Morales-Ruíz LM, Salazar-Gómez A, Rojas-Rojas FU, Estrada-de los Santos P. Compilation of the Antimicrobial Compounds Produced by Burkholderia Sensu Stricto. Molecules 2023; 28:1646. [PMID: 36838633 PMCID: PMC9958762 DOI: 10.3390/molecules28041646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Due to the increase in multidrug-resistant microorganisms, the investigation of novel or more efficient antimicrobial compounds is essential. The World Health Organization issued a list of priority multidrug-resistant bacteria whose eradication will require new antibiotics. Among them, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae are in the "critical" (most urgent) category. As a result, major investigations are ongoing worldwide to discover new antimicrobial compounds. Burkholderia, specifically Burkholderia sensu stricto, is recognized as an antimicrobial-producing group of species. Highly dissimilar compounds are among the molecules produced by this genus, such as those that are unique to a particular strain (like compound CF66I produced by Burkholderia cepacia CF-66) or antimicrobials found in a number of species, e.g., phenazines or ornibactins. The compounds produced by Burkholderia include N-containing heterocycles, volatile organic compounds, polyenes, polyynes, siderophores, macrolides, bacteriocins, quinolones, and other not classified antimicrobials. Some of them might be candidates not only for antimicrobials for both bacteria and fungi, but also as anticancer or antitumor agents. Therefore, in this review, the wide range of antimicrobial compounds produced by Burkholderia is explored, focusing especially on those compounds that were tested in vitro for antimicrobial activity. In addition, information was gathered regarding novel compounds discovered by genome-guided approaches.
Collapse
Affiliation(s)
- Mariana Rodríguez-Cisneros
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Leslie Mariana Morales-Ruíz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Anuar Salazar-Gómez
- Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
| | - Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
| | - Paulina Estrada-de los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| |
Collapse
|
14
|
Chen W, Li J, Yuan H, You L, Wang T, Cao Z. Microbial diversity, culture conditions, and application effect of YSJ: A composite microbial system for degradation of Yanshan ginger branches and leaves. PLoS One 2022; 17:e0278701. [PMID: 36459519 PMCID: PMC9718388 DOI: 10.1371/journal.pone.0278701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Yanshan ginger (Alpinia zerumbet) is a perennial herb used as a medicine and spice, and is beneficial for soil and water conservation in karst areas. Given the widespread utilization of Yanshan ginger in China and continuing expansion of the planting area, disposal of waste materials is problematic. The branches and leaves of Yanshan ginger contain a variety of potent antibacterial compounds, such as volatile oils, phenols, and diterpenoids, which hinder their rapid degradation by microorganisms. In this study, we screened and constructed a composite microbial system to provide a technical reference for production of organic fertilizer from the branches and leaves of Yanshan ginger. METHODS A composite microbial system, "YanShan Jun" (YSJ), was developed by screening for efficient detoxification and degradation of the branches and leaves of Yanshan ginger. High-throughput sequencing technology was used to investigate the stability and diversity of YSJ subcultures. The culture conditions for YSJ were optimized by sequential single-factor experiments and response surface analysis. Yanshan ginger leaves and branches were inoculated with YSJ to study its effects on composting efficiency. RESULTS The microbial composition of YSJ was stable and rich in diversity through continuous subculture. Through response surface analysis, the optimized culture conditions for YSJ were determined as follows: peptone 8.0 g/L, sodium chloride 9.0 g/L, calcium carbonate 5.2 g/L, yeast powder 1.6 g/L, cultivation temperature 56.1°C, and culture duration 6 d. Under these conditions, the degradation rate of Yanshan ginger was 58.32%, which was 14.22% higher than that before optimization. The ability of YSJ to degrade the antibacterial compounds of ginger after optimization was significantly enhanced. Inoculation of Yanshan ginger compost with YSJ increased the fermentation temperature, prolonged the high-temperature period, and reduced the water content and pH of the compost in the early stage. CONCLUSIONS Inoculation of plant compost with YSJ bacteria improves the nutritional environment of the compost, promotes the composting reaction, promotes the rapid formation of a strong indigenous microflora, forms a beneficial microecological environment, and increases the composting efficiency. This study provides a theoretical basis for practical application of YSJ for organic fertilizer production from Yanshan ginger.
Collapse
Affiliation(s)
- Wenhao Chen
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, Sichuan Province, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, China
| | - Juan Li
- Faculty of Economics and Business Administration of Yibin University, Yibin, Sichuan Province, China
| | - Huawei Yuan
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, Sichuan Province, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
| | - Ling You
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, Sichuan Province, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
| | - Tao Wang
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, Sichuan Province, China
| | - Zongjin Cao
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, Sichuan Province, China
| |
Collapse
|
15
|
Din ARJM, Shadan NH, Rosli MA, Musa NF, Othman NZ. Potential of Burkholderia sp. IMCC1007 as a biodetoxification agent in mycotoxin biotransformation evaluated by mass spectrometry and phytotoxicity analysis.. [DOI: 10.21203/rs.3.rs-2149358/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Microbial degradation is considered as an attractive method to eliminate exposure to mycotoxin that cause a serious threat in agriculture global industry and severe human health problems. Compared with other more prominent mycotoxin compounds, fusaric acid (FA) biodegradation has not been widely investigated. In this study, a fusaric acid-degrading bacterium Burkholderia sp. IMCC1007 was identified by 16S rRNA gene sequencing and its detoxification characteristics were evaluated. This strain able to utilize FA as sole energy and carbon source with growth rate (µ) of 0.18 h− 1. Approximately 93% from the initial substrate FA concentration was almost degraded to the residual about 4.87 mg L− 1 after 12 h of incubation. The optimal degradation conditions for pH and temperature were recorded at 6.0 with 30°C respectively. An efficient FA degradation of strain IMCC1007 suggested its potential significance to detoxification development. Accroding to LC-MS/Q-TOF analysis, FA was bio-transformed to 4-hydroxybenzoic acid (C7H6O3) and other possible metabolites. Plant treated with detoxified FA products exhibited reduction of wilting index, mitigating against FA phytoxicity effect on plant growth and photosynthesis activity. Phytotoxicity bioassay suggested that degradation product of IMCC1007 was not a potent harmful compound towards plants as compared to the parent compound, FA. As a conslusion, our study provides a new insight into the practical application of biodetoxifcation agent in controlling mycotoxin contamination.
Collapse
|
16
|
Graziano S, Caldara M, Gullì M, Bevivino A, Maestri E, Marmiroli N. A Metagenomic and Gene Expression Analysis in Wheat (T. durum) and Maize (Z. mays) Biofertilized with PGPM and Biochar. Int J Mol Sci 2022; 23:ijms231810376. [PMID: 36142289 PMCID: PMC9499264 DOI: 10.3390/ijms231810376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Commodity crops, such as wheat and maize, are extremely dependent on chemical fertilizers, a practice contributing greatly to the increase in the contaminants in soil and water. Promising solutions are biofertilizers, i.e., microbial biostimulants that when supplemented with soil stimulate plant growth and production. Moreover, the biofertilizers can be fortified when (i) provided as multifunctional consortia and (ii) combined with biochar with a high cargo capacity. The aim of this work was to determine the molecular effects on the soil microbiome of different biofertilizers and delivery systems, highlight their physiological effects and merge the data with statistical analyses. The measurements of the physiological parameters (i.e., shoot and root biomass), transcriptomic response of genes involved in essential pathways, and characterization of the rhizosphere population were analyzed. The results demonstrated that wheat and maize supplemented with different combinations of selected microbial consortia and biochar have a positive effect on plant growth in terms of shoot and root biomass; the treatments also had a beneficial influence on the biodiversity of the indigenous rhizo-microbial community, reinforcing the connection between microbes and plants without further spreading contaminants. There was also evidence at the transcriptional level of crosstalk between microbiota and plants.
Collapse
Affiliation(s)
- Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mariolina Gullì
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, Italy
| | - Elena Maestri
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- National Interuniversity Consortium for Environmental Sciences (CINSA), 30123 Venice, Italy
- Correspondence:
| |
Collapse
|
17
|
Genome mining of Burkholderia ambifaria strain T16, a rhizobacterium able to produce antimicrobial compounds and degrade the mycotoxin fusaric acid. World J Microbiol Biotechnol 2022; 38:114. [PMID: 35578144 DOI: 10.1007/s11274-022-03299-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Burkholderia ambifaria T16 is a bacterium isolated from the rhizosphere of barley plants that showed a remarkable antifungal activity. This strain was also able to degrade fusaric acid (5-Butylpyridine-2-carboxylic acid) and detoxify this mycotoxin in inoculated barley seedlings. Genes and enzymes responsible for fusaric acid degradation have an important biotechnological potential in the control of fungal diseases caused by fusaric acid producers, or in the biodegradation/bio catalysis processes of pyridine derivatives. In this study, the complete genome of B. ambifaria T16 was sequenced and analyzed to identify genes involved in survival and competition in the rhizosphere, plant growth promotion, fungal growth inhibition, and degradation of aromatic compounds. The genomic analysis revealed the presence of several operons for the biosynthesis of antimicrobial compounds, such as pyrrolnitrin, ornibactin, occidiofungin and the membrane-associated AFC-BC11. These compounds were also detected in bacterial culture supernatants by mass spectrometry analysis. In addition, this strain has multiple genes contributing to its plant growth-promoting profile, including those for acetoin, 2,3-butanediol and indole-3-acetic acid production, siderophores biosynthesis, and solubilisation of organic and inorganic phosphate. A pan-genomic analysis demonstrated that the genome of strain T16 possesses large gene clusters that are absent in the genomes of B. ambifaria reference strains. According to predictions, most of these clusters would be involved in aromatic compounds degradation. One genomic region, encoding flavin-dependent monooxygenases of unknown function, is proposed as a candidate responsible for fusaric acid degradation.
Collapse
|
18
|
Heo AY, Koo YM, Choi HW. Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. BIOLOGY 2022; 11:biology11040619. [PMID: 35453817 PMCID: PMC9028202 DOI: 10.3390/biology11040619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Burkholderia contaminans belongs to B. cepacia complex (Bcc), those of which are found in various environmental conditions. In this study, a novel strain AY001 of B. contaminans (AY001) was identified from the rhizosphere soil sample. AY001 showed (i) various plant growth-promoting rhizobacteria (PGPR)-related traits, (ii) antagonistic activity against different plant pathogenic fungi, (iii) suppressive activity against tomato Fusarium wilt disease, (iv) induced systemic acquired resistance (ISR)-triggering activity, and (v) production of various antimicrobial and plant immune-inducing secondary metabolites. These results suggest that AY001 is, indeed, a successful PGPR, and it can be practically used in tomato cultivation to alleviate biotic and abiotic stresses. However, further safety studies on the use of AY001 will be needed to ensure its safe use in the Agricultural system. Abstract Plant growth promoting rhizobacteria (PGPR) is not only enhancing plant growth, but also inducing resistance against a broad range of pathogens, thus providing effective strategies to substitute chemical products. In this study, Burkholderia contaminans AY001 (AY001) is isolated based on its broad-spectrum antifungal activity. AY001 not only inhibited fungal pathogen growth in dual culture and culture filtrate assays, but also showed various PGPR traits, such as nitrogen fixation, phosphate solubilization, extracellular protease production, zinc solubilization and indole-3-acetic acid (IAA) biosynthesis activities. Indeed, AY001 treatment significantly enhanced growth of tomato plants and enhanced resistance against two distinct pathogens, F. oxysporum f.sp. lycopersici and Pseudomonas syringae pv. tomato. Real-time qPCR analyses revealed that AY001 treatment induced jasmonic acid/ethylene-dependent defense-related gene expression, suggesting its Induced Systemic Resistance (ISR)-eliciting activity. Gas chromatography–mass spectrometry (GC-MS) analysis of culture filtrate of AY001 revealed production of antimicrobial compounds, including di(2-ethylhexyl) phthalate and pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl). Taken together, our newly isolated AY001 showed promising PGPR and ISR activities in tomato plants, suggesting its potential use as a biofertilizer and biocontrol agent.
Collapse
Affiliation(s)
- A Yeong Heo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Division of Forest Insect Pests & Diseases, National Institute of Forest Science, Seoul 02455, Korea
| | - Young Mo Koo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
| | - Hyong Woo Choi
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Correspondence: ; Tel.: +82-54-820-5509
| |
Collapse
|
19
|
Pellegrini M, Ercole C, Gianchino C, Bernardi M, Pace L, Del Gallo M. Fusarium Oxysporum f. sp. Cannabis Isolated from Cannabis Sativa L.: In Vitro and In Planta Biocontrol by a Plant Growth Promoting-Bacteria Consortium. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112436. [PMID: 34834799 PMCID: PMC8623994 DOI: 10.3390/plants10112436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Industrial hemp (Cannabis sativa L.) is a multipurpose plant used in several fields. Several phytopathogens attack hemp crops. Fusarium oxysporum is a common fungal pathogen that causes wilt disease in nurseries and in field cultivation and causes high losses. In the present study, a pathogenic strain belonging to F. oxysporum f. sp. cannabis was isolated from a plant showing Fusarium wilt. After isolation, identification was conducted based on morphological and molecular characterizations and pathogenicity tests. Selected plant growth-promoting bacteria with interesting biocontrol properties-Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and Burkholderia ambifaria-were tested against this pathogen. In vitro antagonistic activity was determined by the dual culture method. Effective strains (in vitro inhibition > of 50%) G. diazotrophicus, H. seropedicae and B. ambifaria were combined in a consortium and screened for in planta antagonistic activity in pre-emergence (before germination) and post-emergence (after germination). The consortium counteracted Fusarium infection both in pre-emergence and post-emergence. Our preliminary results show that the selected consortium could be further investigated as an effective biocontrol agent for the management of this pathogen.
Collapse
|
20
|
Ballesteros HGF, Rosman AC, Carvalho TLG, Grativol C, Hemerly AS. Cell wall formation pathways are differentially regulated in sugarcane contrasting genotypes associated with endophytic diazotrophic bacteria. PLANTA 2021; 254:109. [PMID: 34705112 DOI: 10.1007/s00425-021-03768-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Differences in cell wall components between two BNF-contrasting sugarcane genotypes might result from genetic variations particular to the genotype and from the efficiency in diazotrophic bacteria association. Sugarcane is a plant of the grass family (Poaceae) that is highly cultivated in Brazil, as an important energy resource. Commercial sugarcane genotypes may be successfully associated with beneficial endophytic nitrogen-fixing bacteria, which can influence several plant metabolic pathways, such as cell division and growth, synthesis of hormones, and defense compounds. In this study, we investigated how diazotrophic bacteria associated with sugarcane plants could be involved in the regulation of cell wall formation pathways. A molecular and structural characterization of the cell wall was compared between two genotypes of sugarcane with contrasting rates of Biological Nitrogen Fixation (BNF): SP70-1143 (high BNF) and Chunee (low BNF). Differentially expressed transcripts were identified in transcriptomes generated from SP70-1143 and Chunee. Expression profiles of cellulose and lignin genes, which were more expressed in SP70-1134, and callose genes, which were more expressed in Chunee, were validated by RT-qPCR and microscopic analysis of cell wall components in tissue sections. A similar expression profile in both BNF-contrasting genotypes was observed in naturally colonized plants and in plants inoculated with G. diazotrophicus. Cell walls of the high BNF genotype have a greater cellulose content, which might contribute to increase biomass. In parallel, callose was concentrated in the vascular tissues of the low BNF genotype and could possibly represent a barrier for an efficient bacterial colonization and dissemination in sugarcane tissues. Our data show a correlation between the gene profiles identified in the BNF-contrasting genotypes and a successful association with endophytic diazotrophic bacteria.
Collapse
Affiliation(s)
- Helkin Giovani F Ballesteros
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Aline C Rosman
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Thais Louise G Carvalho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
- Departamento de Biologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Clicia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Adriana Silva Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
21
|
Barrera-Galicia GC, Peniche-Pavía HA, Peña-Cabriales JJ, Covarrubias SA, Vera-Núñez JA, Délano-Frier JP. Metabolic Footprints of Burkholderia Sensu Lato Rhizosphere Bacteria Active against Maize Fusarium Pathogens. Microorganisms 2021; 9:microorganisms9102061. [PMID: 34683382 PMCID: PMC8538949 DOI: 10.3390/microorganisms9102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Consistent with their reported abundance in soils, several Burkholderia sensu lato strains were isolated from the rhizosphere of maize plants cultivated at different sites in central México. Comparative analysis of their 16S rRNA gene sequences permitted their separation into three distinctive clades, which were further subdivided into six other clusters by their close resemblance to (1) Trinickia dinghuensis; (2) Paraburkholderia kirstenboschensis, P. graminis, P. dilworthii and P. rhynchosiae; (3) B. gladioli; (4) B. arboris; (5) B. contaminans, or (6) B. metallica representative species. Direct confrontation assays revealed that these strains inhibited the growth of pathogenic Fusarium oxysporum f. sp. radicis-lycopersici, and F. verticillioides within a roughly 3-55% inhibition range. The use of a DIESI-based non-targeted mass spectroscopy experimental strategy further indicated that this method is an option for rapid determination of the pathogen inhibitory capacity of Burkholderia sensu lato strains based solely on the analysis of their exometabolome. Furthermore, it showed that the highest anti-fungal activity observed in B. contaminans and B. arboris was associated with a distinctive abundance of certain m/z ions, some of which were identified as components of the ornbactin and pyochelin siderophores. These results highlight the chemical diversity of Burkholderia sensu lato bacteria and suggest that their capacity to inhibit the Fusarium-related infection of maize in suppressive soils is associated with siderophore synthesis.
Collapse
Affiliation(s)
- Guadalupe C. Barrera-Galicia
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Héctor A. Peniche-Pavía
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Juan José Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Sergio A. Covarrubias
- Área de Ciencias de la Salud, Ciudad Universitaria Campus Siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Zacatecas, Mexico; (S.A.C.); (J.A.V.-N.)
| | - José A. Vera-Núñez
- Área de Ciencias de la Salud, Ciudad Universitaria Campus Siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Zacatecas, Mexico; (S.A.C.); (J.A.V.-N.)
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
- Correspondence: ; Tel.: +52-462-623-9600
| |
Collapse
|
22
|
Zhu Q, Tang MJ, Yang Y, Sun K, Tian LS, Lu F, Hao AY, Dai CC. Endophytic fungus Phomopsis liquidambaris B3 induces rice resistance to RSRD caused by Fusarium proliferatum and promotes plant growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4059-4075. [PMID: 33349945 DOI: 10.1002/jsfa.11042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Rice spikelet rot disease (RSRD) is an emerging disease that significantly reduces rice yield and quality. In this study, we evaluated the potential use of the broad-spectrum endophytic fungus Phomopsis liquidambaris B3 as a biocontrol agent against RSRD. We also compared the control effects of different treatments, including chemical fungicides and treatment with multiple strains and single strains in combination or individually, against RSRD. The objective of this study was to find an effective and environmentally friendly control strategy to reduce the occurrence of RSRD and improve the rice yield. RESULTS In pot experiments, the effect of B3 alone was better than that of fungicide or combined measures. The results showed that root colonization by B3 significantly reduced the incidence and disease index of RSRD by 41.0% and 53.8%, respectively. This was related to enhanced superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activity, and to significantly upregulated expression levels of OsAOX, OsLOX, OsPAL, and OsPR10 in rice. Moreover, B3 improved the diversity of the bacterial community rather than the fungal community in the rice rhizosphere. It also led to a decrease in Fusarium proliferatum colonization and fumonisin content in the grain. Finally, root development was markedly promoted after B3 inoculation, and the yield improved by 48.60%. The result of field experiments showed that the incidence of RSRD and the fumonisin content were observably reduced in rice receiving B3, by 24.41% and 37.87%, respectively. CONCLUSION The endophytic fungus Phomopsis liquidambaris B3 may become an effective tool to relieve rice spikelet rot disease. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yang Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lin-Shuang Tian
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ai-Yue Hao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
23
|
Nisrina L, Effendi Y, Pancoro A. Revealing the role of Plant Growth Promoting Rhizobacteria in suppressive soils against Fusarium oxysporum f.sp. cubense based on metagenomic analysis. Heliyon 2021; 7:e07636. [PMID: 34401567 PMCID: PMC8353484 DOI: 10.1016/j.heliyon.2021.e07636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/23/2020] [Accepted: 07/19/2021] [Indexed: 02/04/2023] Open
Abstract
Fusarium oxysporum f.sp. cubense (Foc) is a soil-borne pathogen causing fusarium wilt banana disease. Management of soil-borne disease generally required the application of toxic pesticides or fungicides strongly affect the soil microbiomes ecosystem. Suppressive soil is a promising method for controlling soil-borne pathogens in which soil microbiomes may affect the suppressiveness. The comparative analysis of microbial diversity was conducted from suppressive and conducive soils by analyzing whole shotgun metagenomic DNA data. Two suppressive soil samples and two conducive soil samples were collected from a banana plantation in Sukabumi, West Java, Indonesia. Each soil sample was prepared by mixing the soil samples collected from three points sampling sites with 20 cm depth. Analysis of microbial abundance, diversity, co-occurrence network using Metagenome Analyzer 6 (MEGAN6) and functional analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. Data showed the abundance of Actinobacteria, Betaproteobacteria, Rhizobiales, Burkholderiales, Bradyrhizobiaceae, Methylobacteriaceae, Rhodopseudomonas palustris, and Methylobacterium nodulans were higher in the suppressive than conducive soils. Interestingly, those bacteria groups are known functionally as members of Plant Growth Promoting Rhizobacteria (PGPR). The co-occurrence analysis showed Pseudomonas, Burkholderia, and Streptomyces were present in the suppressive soils, while Bacillus and more Streptomyces were found in the conducive soils. Furthermore, the relative abundance of Pseudomonas, Burkholderia, Bacillus, and Streptomyces was performed. The analysis showed that the relative abundance of Pseudomonas and Burkholderia was higher in the suppressive than conducive soils. Therefore, it assumed Pseudomonas and Burkholderia play a role in suppressing Foc based on co-occurrence and abundance analysis. Functional analysis of Pseudomonas and Burkholderia showed that the zinc/manganese transport system was higher in the suppressive than conducive soils. In contrast, the phosphate transport system was not found in conducive soils. Both functions are may be responsible for the synthesis of a siderophore and phosphate solubilization. In conclusion, this study provides information that PGPR may be contributing to Foc growth suppressing by releasing secondary metabolites.
Collapse
Affiliation(s)
- Lulu' Nisrina
- School of Life Sciences and Technology, Bandung Institute of Technology, Jalan Ganesha 10, 40132, Bandung, Indonesia
| | - Yunus Effendi
- Department of Biology, Al-Azhar Univerisity of Indonesia, Jalan Sisimangaraja 2, 12110, Jakarta, Indonesia
| | - Adi Pancoro
- School of Life Sciences and Technology, Bandung Institute of Technology, Jalan Ganesha 10, 40132, Bandung, Indonesia
| |
Collapse
|
24
|
Daucus carota L. Seed Inoculation with a Consortium of Bacteria Improves Plant Growth, Soil Fertility Status and Microbial Community. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work aimed to study suitability of a consortium of Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, and Burkholderia ambifaria as biofertilizers. Strains were assayed for plant growth-promoting characteristics (i.e., auxins production, phosphate solubilizing capability, and 1-aminocyclopropane-1-carboxylate deaminase activity). The consortium of four bacteria was then inoculated on carrot seeds and tested in an open field experiment. During the open field experiment, plant growth (morphological parameters, chlorophylls, and carotenoids), soil chemical analysis, and molecular and physiological profiles of soils were investigated. Each strain produced different amounts of indole-3acetic acid and several indole-derivates molecules. All strains showed phosphate solubilization capability, while 1-aminocyclopropane-1-carboxylate deaminase activity was only detected in H. seropedicae and B. ambifaria. The bacterial consortium of the four strains gave interesting results in the open field cultivation of carrot. Plant development was positively affected by the presence of the consortium, as was soil fertility and microbial community structure and diversity. The present work allowed for deepening our knowledge on four bacteria, already known for years for having several interesting characteristics, but whose interactions were almost unknown, particularly in view of their use as a consortium in a valid fertilization strategy, in substitution of agrochemicals for a sustainable agriculture.
Collapse
|
25
|
Discovery of a Novel Lineage Burkholderia cepacia ST 1870 Endophytically Isolated from Medicinal Polygala paniculata Which Shows Potent In Vitro Antileishmanial and Antimicrobial Effects. Int J Microbiol 2021; 2021:6618559. [PMID: 33679984 PMCID: PMC7904367 DOI: 10.1155/2021/6618559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/29/2021] [Indexed: 02/02/2023] Open
Abstract
In this study, we report the isolation and identification of an endophytic strain of Burkholderia cepacia (COPS strain) associated with Polygala paniculata roots. Polygala plants are rich sources of promising microbiomes, of which the literature reports several pharmacological effects, such as trypanocidal, antinociceptive, anesthetic, anxiolytics, and anticonvulsant activities. B. cepacia COPS belongs to a new sequence type (ST 1870) and harbors a genome estimated in 8.3 Mbp which exhibits the aminoglycosides and beta-lactams resistance genes aph(3′)-IIa and blaTEM-116, respectively. Analysis performed using MLST, average nucleotide identity, and digital DNA-DNA hybridization support its species-level identification and reveals its novel housekeeping genes alleles gyrB, lepA, and phaC. The root endophyte B. cepacia COPS drew our attention from a group of 14 bacterial isolates during the primary screening for being potentially active against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Micrococcus luteus ATCC 9341, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 and exhibited the broad-spectrum activity against phytopathogenic fungi. In addition, COPS strain showed production of protease, lipase, and esterase in solid media, and its natural product extract showed potent inhibition against fungal plant pathogens, such as Moniliophthora perniciosa, whose antagonism index (89.32%) exceeded the positive control (74.17%), whereas Sclerotinia sclerotiorum and Ceratocystis paradoxa showed high percentages of inhibition (85.53% and 82.69%, respectively). COPS crude extract also significantly inhibited S. epidermidis ATCC 35984, E. faecium ATCC 700221 (MIC values of 32 μg/mL for both), E. faecalis ATCC 29212 (64 μg/mL), and S. aureus ATCC 25923 (128 μg/mL). We observed moderate antagonistic activity against A. baumannii ATCC 19606 and E. coli ATCC 25922 (both at 512 μg/mL), as well as potent cytotoxic effects on Leishmania infantum and Leishmania major promastigote forms with 78.25% and 57.30% inhibition. In conclusion, this study presents for the first time the isolation of an endophytic B. cepacia strain associated with P. paniculata and enough evidence that these plants may be considered a rich source of microbes for the fight against neglected diseases.
Collapse
|
26
|
Castronovo LM, Vassallo A, Mengoni A, Miceli E, Bogani P, Firenzuoli F, Fani R, Maggini V. Medicinal Plants and Their Bacterial Microbiota: A Review on Antimicrobial Compounds Production for Plant and Human Health. Pathogens 2021; 10:pathogens10020106. [PMID: 33498987 PMCID: PMC7911374 DOI: 10.3390/pathogens10020106] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Medicinal plants (MPs) have been used since antiquity in traditional and popular medicine, and they represent a very important source of bioactive molecules, including antibiotic, antiviral, and antifungal molecules. Such compounds are often of plant origin, but in some cases, an origin or a modification from plant microbiota has been shown. Actually, the research continues to report the production of bioactive molecules by plants, but the role of plant–endophytic interaction is emerging. Classic examples are mainly concerned with fungal endophytes; however, it has been recently shown that bacterial endophytes can also play an important role in influencing the plant metabolism related to the synthesis of bioactive compounds. In spite of this, a deep investigation on the power of MP bacterial endophytes is lacking. Here, an overview of the studies on MP bacterial microbiota and its role in the production of plant antimicrobial compounds contributing to prime host defense system and representing a huge resource for biotech and therapeutic applications is provided.
Collapse
Affiliation(s)
- Lara Mitia Castronovo
- Department of Biology, University of Florence, 50019 Florence, Italy; (L.M.C.); (A.V.); (A.M.); (E.M.); (P.B.)
| | - Alberto Vassallo
- Department of Biology, University of Florence, 50019 Florence, Italy; (L.M.C.); (A.V.); (A.M.); (E.M.); (P.B.)
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Florence, Italy; (L.M.C.); (A.V.); (A.M.); (E.M.); (P.B.)
| | - Elisangela Miceli
- Department of Biology, University of Florence, 50019 Florence, Italy; (L.M.C.); (A.V.); (A.M.); (E.M.); (P.B.)
| | - Patrizia Bogani
- Department of Biology, University of Florence, 50019 Florence, Italy; (L.M.C.); (A.V.); (A.M.); (E.M.); (P.B.)
| | - Fabio Firenzuoli
- CERFIT, Research and Innovation Center in Phytotherapy and Integrated Medicine, Tuscany Region, Careggi University Hospital, 50141 Florence, Italy;
| | - Renato Fani
- Department of Biology, University of Florence, 50019 Florence, Italy; (L.M.C.); (A.V.); (A.M.); (E.M.); (P.B.)
- Correspondence: (R.F.); (V.M.); Tel.: +39-0554574742 (R.F.); +39-0554574731 (V.M.)
| | - Valentina Maggini
- Department of Biology, University of Florence, 50019 Florence, Italy; (L.M.C.); (A.V.); (A.M.); (E.M.); (P.B.)
- CERFIT, Research and Innovation Center in Phytotherapy and Integrated Medicine, Tuscany Region, Careggi University Hospital, 50141 Florence, Italy;
- Correspondence: (R.F.); (V.M.); Tel.: +39-0554574742 (R.F.); +39-0554574731 (V.M.)
| |
Collapse
|
27
|
Álvarez SP, Ardisana EFH. Biotechnology of Beneficial Bacteria and Fungi Useful in Agriculture. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Pellegrini M, Ercole C, Di Zio C, Matteucci F, Pace L, Del Gallo M. In vitro and in planta antagonistic effects of plant growth-promoting rhizobacteria consortium against soilborne plant pathogens of Solanum tuberosum and Solanum lycopersicum. FEMS Microbiol Lett 2020; 367:5860279. [PMID: 32562424 DOI: 10.1093/femsle/fnaa099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 01/07/2023] Open
Abstract
Potatoes (Solanum tuberosum L.) and tomatoes (Solanum lycopersicum L.), among the main crops belonging to the Solanaceae family, are attacked by several pathogens. Among them Fusarium oxysporum f. sp. radicis-lycopersici and Rhizoctonia solani are very common and cause significant losses. Four plant growth-promoting rhizobacteria, Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and Burkholderia ambifaria were tested against these pathogens. In vitro antagonistic activities of single strains were assessed through dual culture plates. Strains showing antagonistic activity (G. diazotrophicus, H. seropedicae and B. ambifaria) were combined and, after an in vitro confirmation, the consortium was applied on S. lycopersicum and S. tuberosum in a greenhouse pot experiment. The bioprotection was assessed in pre-emergence (infection before germination) and post-emergence (infection after germination). The consortium was able to successfully counteract the infection of both F. oxysporum and R. solani, allowing a regular development of plants. The biocontrol of the fungal pathogens was highlighted both in pre-emergence and post-emergence conditions. This selected consortium could be a valid alternative to agrochemicals and could be exploited as biocontrol agent to counteract losses due to these pathogenic fungi.
Collapse
Affiliation(s)
- Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67010 Coppito, L'Aquila, Italy
| | - Claudia Ercole
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67010 Coppito, L'Aquila, Italy
| | - Chiara Di Zio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67010 Coppito, L'Aquila, Italy
| | - Federica Matteucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67010 Coppito, L'Aquila, Italy
| | - Loretta Pace
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67010 Coppito, L'Aquila, Italy
| | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67010 Coppito, L'Aquila, Italy
| |
Collapse
|
29
|
Zhu H, Zhu L, Ding N. Genomic Insights into the Aquatic Fusarium spp. QHM and BWC1 and Their Application in Phenol Degradation. Curr Microbiol 2020; 77:2279-2286. [PMID: 32488406 DOI: 10.1007/s00284-020-02050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/23/2020] [Indexed: 11/25/2022]
Abstract
Fusarium species are widely distributed in ecosystems with wide pH ranges and play pivotal roles in aquatic communities through xenobiotic degradation. It is necessary to explore genomic insights for the application of Fusarium species. In this study, the aquatic Fusarium strains QHM and BWC1 were isolated from a coal mine and a subterranean river, respectively, cultured under acidic conditions and sequenced genomically. Phylogenetic analysis of the isolates was conducted based on the sequences of internal transcripts and sequences encoding β-microtubulin, translation elongation factors and the second large subunit of the RNA polymerase. Fusarium QHM demonstrates close relationships to the type strains of Fusarium ramigenum and Fusarium napiforme in Fusarium fujikuroi species complex. Fusarium BWC1 is predicted to be Fusarium subglutinans. A total of 479 and 2352 scaffolds, corresponding to 14,814 and 15,295 genes, were obtained for Fusarium spp. QHM and BWC1, respectively. Genomic analyses revealed that they harbored biodegradation pathways for aromatic compounds. Phenol stress experiments indicated that Fusarium spp. QHM and BWC1 exhibited optimal degradation at a density of 300 mg/L to achieve a phenol degradation rate of 39.91-43.65% at pH 3.5-4.0. Fusarium spp. QHM and BWC1 were applied to mock phenol-water, and an average phenol degradation rate of 51.71-65.55% indicated the feasibility of these species. The findings of this study have important implications for Fusarium spp. QHM and BWC1 applied to phenol wastewater in acidic or neutral pH environments.
Collapse
Affiliation(s)
- Hongfei Zhu
- College of Environmental Science and Engineering, Liaoning Technical University, No. 47 Zhonghua Road, Xihe District, Fuxin City, 123000, Liaoning, China.
| | - Long Zhu
- College of Environmental Science and Engineering, Liaoning Technical University, No. 47 Zhonghua Road, Xihe District, Fuxin City, 123000, Liaoning, China
| | - Ning Ding
- College of Environmental Science and Engineering, Liaoning Technical University, No. 47 Zhonghua Road, Xihe District, Fuxin City, 123000, Liaoning, China
| |
Collapse
|
30
|
Ma Y, Li L, Awasthi MK, Tian H, Lu M, Megharaj M, Pan Y, He W. Time-course transcriptome analysis reveals the mechanisms of Burkholderia sp. adaptation to high phenol concentrations. Appl Microbiol Biotechnol 2020; 104:5873-5887. [PMID: 32415321 DOI: 10.1007/s00253-020-10672-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
Microbial tolerance to phenolic pollutants is the key to their efficient biodegradation. However, the metabolic mechanisms that allow some microorganisms to adapt to high phenol concentrations remain unclear. In this study, to reveal the underlying mechanisms of how Burkholderia sp. adapt to high phenol concentrations, the strain's tolerance ability and time-course transcriptome in combination with cell phenotype were evaluated. Surprisingly, Burkholderia sp. still grew normally after a long adaptation to a relatively high phenol concentration (1500 mg/L) and exhibited some time-dependent changes compared to unstressed cells prior to the phenol addition. Time-course transcriptome analysis results revealed that the mechanism of adaptations to phenol was an evolutionary process that transitioned from tolerance to positive degradation through precise gene regulation at appropriate times. Specifically, basal stress gene expression was upregulated and contributed to phenol tolerance, which involved stress, DNA repair, membrane, efflux pump and antioxidant protein-coding genes, while a phenol degradation gene cluster was specifically induced. Interestingly, both the catechol and protocatechuate branches of the β-ketoadipate pathway contributed to the early stage of phenol degradation, but only the catechol branch was used in the late stage. In addition, pathways involving flagella, chemotaxis, ATP-binding cassette transporters and two-component systems were positively associated with strain survival under phenolic stress. This study provides the first insights into the specific response of Burkholderia sp. to high phenol stress and shows potential for application in remediation of polluted environments. KEY POINTS: • Shock, DNA repair and antioxidant-related genes contributed to phenol tolerance. • β-Ketoadipate pathway branches differed at different stages of phenol degradation. • Adaptation mechanisms transitioned from negative tolerance to positive degradation.
Collapse
Affiliation(s)
- Yinghui Ma
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China.,College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Lijun Li
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Haixia Tian
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Meihuan Lu
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Yalei Pan
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Wenxiang He
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
31
|
Morya R, Salvachúa D, Thakur IS. Burkholderia: An Untapped but Promising Bacterial Genus for the Conversion of Aromatic Compounds. Trends Biotechnol 2020; 38:963-975. [PMID: 32818444 DOI: 10.1016/j.tibtech.2020.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022]
Abstract
Burkholderia, a bacterial genus comprising more than 120 species, is typically reported to inhabit soil and water environments. These Gram-negative bacteria harbor a variety of aromatic catabolic pathways and are thus potential organisms for bioremediation of sites contaminated with aromatic pollutants. However, there are still substantial gaps in our knowledge of these catabolic processes that must be filled before these pathways and organisms can be harnessed for biotechnological applications. This review presents recent discoveries on the catabolism of monoaromatic and polycyclic aromatic hydrocarbons, as well as of heterocyclic compounds, by a diversity of Burkholderia strains. We also present a perspective on the beneficial features of Burkholderia spp. and future directions for their potential utilization in the bioremediation and bioconversion of aromatic compounds.
Collapse
Affiliation(s)
- Raj Morya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Davinia Salvachúa
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
32
|
Venkatesh N, Keller NP. Mycotoxins in Conversation With Bacteria and Fungi. Front Microbiol 2019; 10:403. [PMID: 30941105 PMCID: PMC6433837 DOI: 10.3389/fmicb.2019.00403] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
An important goal of the mycotoxin research community is to develop comprehensive strategies for mycotoxin control and detoxification. Although significant progress has been made in devising such strategies, yet, there are barriers to overcome and gaps to fill in order to design effective mycotoxin management techniques. This is in part due to a lack of understanding of why fungi produce these toxic metabolites. Here we present cumulative evidence from the literature that indicates an important ecological role for mycotoxins, with particular focus on Fusarium mycotoxins. Further, we suggest that understanding how mycotoxin levels are regulated by microbial encounters can offer novel insights for mycotoxin control in food and feed. Microbial degradation of mycotoxins provides a wealth of chemical information that can be harnessed for large-scale mycotoxin detoxification efforts.
Collapse
Affiliation(s)
- Nandhitha Venkatesh
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
33
|
Esmaeel Q, Jacquard C, Clément C, Sanchez L, Ait Barka E. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.). World J Microbiol Biotechnol 2019; 35:40. [DOI: 10.1007/s11274-019-2613-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
|
34
|
Liu S, Wu B, Lv S, Shen Z, Li R, Yi G, Li C, Guo X. Genetic Diversity in FUB Genes of Fusarium oxysporum f. sp. cubense Suggests Horizontal Gene Transfer. FRONTIERS IN PLANT SCIENCE 2019; 10:1069. [PMID: 31552071 PMCID: PMC6738028 DOI: 10.3389/fpls.2019.01069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 08/07/2019] [Indexed: 05/02/2023]
Abstract
Fusaric acid (FA) is an important secondary metabolite of many Fusarium species and involved in the wilt symptoms caused in banana by Fusarium oxysporum f. sp. cubense (Foc). To investigate the evolution characteristics of the 12 Foc FA biosynthetic genes (FUB), coding sequences of the 12 FUB genes and three housekeeping genes, EF-1α/RPB1/RPB2 (translation elongation factor-1α/RNA polymerase II subunit I/RNA polymerase II subunit II), were subjected to genetic diversity analysis, phylogenetic analysis, recombination detection, and selective pressure analysis. The results of selective pressure analysis showed that the 15 genes were mainly subjected to negative selection. However, a significantly higher number of silent mutations, which could not be simply explained by selective pressure difference, were observed in the 12 FUB genes in Foc than in the three housekeeping genes. Infraspecies phylogeny and recombination detection analysis showed that significantly more horizontal gene transfer (HGT) events (normalized) had occurred in the FUB genes than in the three housekeeping genes. In addition, many of these events involved outgroup isolates and significantly increased the genetic diversity of FUB genes in Foc. The infraspecies phylogenetic analysis suggested that the polyphyletic phylogeny proposed for Foc requires further discussion, and the divergence of race 1, race 4, and the common ancestor of several F. oxysporum (Fo) isolates pathogenic to nonbanana plants should have diverged over a short period. Finally, our results suggest that the FUB genes in Fo should have benefited from HGT to gain a relatively high genetic diversity to respond to different host plants and environments despite mainly being subject to negative selection.
Collapse
Affiliation(s)
- Siwen Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Bo Wu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuxia Lv
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zongzhuan Shen
- Jiangsu Key Lab for Solid Organic Waste Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rong Li
- Jiangsu Key Lab for Solid Organic Waste Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ganjun Yi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Chunyu Li, ; Xiuwu Guo,
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Chunyu Li, ; Xiuwu Guo,
| |
Collapse
|
35
|
Song D, Chen G, Liu S, Khaskheli MA, Wu L. Complete genome sequence of Burkholderia sp. JP2-270, a rhizosphere isolate of rice with antifungal activity against Rhizoctonia solani. Microb Pathog 2018; 127:1-6. [PMID: 30458254 DOI: 10.1016/j.micpath.2018.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/02/2023]
Abstract
Burkholderia sp. JP2-270, a bacterium with a strong ability to inhibit the growth of Rhizoctonia solani, was isolated from the rhizosphere of rice. The phylogenetic analysis based on 16S rRNA gene revealed that JP2-270 belonged to Burkholderia cepacia complex. Here, we present the complete genome sequence of Burkholderia sp. JP2-270, which consists of three circular chromosomes (Chr1 3,723,585 bp, Chr2 3,274,969 bp, Chr3 1,483,367 bp) and two plasmids (Plas1 15,126 bp, Plas2 428,263 bp). A total of 8193 protein coding genes were predicted in the genome, including 67 tRNA genes, 18 rRNA genes and 4 ncRNA genes. In addition, mutation analysis of Burkholderia sp. JP2-270 revealed that the gene bysR (DM992_17470), encoding a lysR-type transcriptional regulator, was essential for the antagonistic activity of Burkholderia sp. JP2-270 against R. solani GD118 in vitro and in vivo. Identification of regulatory gene associated with antagonistic activity will contribute to understand the antagonistic mechanism of Burkholderia sp. JP2-270.
Collapse
Affiliation(s)
- Dawei Song
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Sihui Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Maqsood Ahmed Khaskheli
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lijuan Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| |
Collapse
|
36
|
Rodrigues AA, Araújo MVF, Soares RS, Oliveira BFRDE, Ribeiro IDA, Sibov ST, Vieira JDG. Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management. AN ACAD BRAS CIENC 2018; 90:3813-3829. [PMID: 30379271 DOI: 10.1590/0001-3765201820180319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/27/2018] [Indexed: 11/22/2022] Open
Abstract
Microorganisms associated with organic management are essential in nutrient transformation and release for plant use. The present study aimed to isolate, identify and characterize plant growth promoting diazotrophic rhizobacteria associated with sugarcane under organic management. Rhizospheres of organic sugarcane varieties IAC 911099 and CTC4 were sampled and inoculated onto nitrogen free NFb and Burk media. The isolated microorganisms were screened in vitro concerning their ability to produce plant growth promoting factors. Eighty-one bacteria were isolated; 45.6% were positive for the nifH gene and produced at least one of the evaluated plant growth promotion factors. The production of indole-3-acetic acid was observed in 46% of the isolates, while phosphate solubilization was observed in 86.5%. No isolates were hydrogen cyanide producers, while 81% were ammonia producers, 19% produced cellulases and 2.7%, chitinases. Microorganisms belonging to the Burkholderia genus were able to inhibit Fusarium moniliforme growth in vitro. Plant growth promoting microorganisms associated with organic sugarcane, especially belonging to Burkholderia, Sphingobium, Rhizobium and Enterobacter genera, can be environmentally friendly alternatives to improve sugarcane production.
Collapse
Affiliation(s)
- Ariana A Rodrigues
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Marcus Vinícius F Araújo
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Renan S Soares
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Bruno F R DE Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco, 373, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Igor D A Ribeiro
- Centro de Microbiologia Agrícola, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91540-000 Porto Alegre, RS, Brazil
| | - Sergio T Sibov
- Laboratório de Cultura de Tecidos, Departamento de Genética e Melhoramento de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Av. Esperança, s/n, 74690-900 Goiânia, GO, Brazil
| | - José Daniel G Vieira
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| |
Collapse
|
37
|
Ma Y, Li L, Tian H, Lu M, Megharaj M, He W. Transcriptional analysis of the laccase-like gene from Burkholderia cepacia BNS and expression in Escherichia coli. Appl Microbiol Biotechnol 2018; 103:747-760. [DOI: 10.1007/s00253-018-9468-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/25/2022]
|