1
|
Fu Y, Wang J, Su Z, Chen Q, Li J, Zhao J, Xuan W, Miao Y, Zhang J, Zhang R. Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth. THE NEW PHYTOLOGIST 2025; 245:2016-2037. [PMID: 39722601 DOI: 10.1111/nph.20370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear. By using soil systems, we studied the growth-promoting effects of Sinomonas gamaensis NEAU-HV1 on various plants. Through a combination of phenotypic analyses and microscopic observations, the effects of NEAU-HV1 on root development were evaluated. We subsequently conducted molecular and genetic experiments to reveal the mechanism promoting lateral root (LR) development. We demonstrated that NEAU-HV1 significantly promoted the growth of lettuce, wheat, maize, peanut and Arabidopsis. This effect was associated with multiple beneficial traits, including phosphate solubilization, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase production and survival ability in the rhizosphere and within the inner tissue of roots. In addition, NEAU-HV1 could secrete metabolites to promote LR development by affecting auxin transport and signaling. Importantly, we found that the influence of auxin signaling may be attributed to the remodeling interaction between SOLITARY-ROOT (SLR)/IAA14 and ARF7/19, occurring independently of the auxin receptor TIR1/AFB2. Our results indicate that NEAU-HV1-induced LR formation is dependent on direct remodeling interactions between transcription factors, providing novel insights into plant-microbe interactions.
Collapse
Affiliation(s)
- Yansong Fu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Juexuan Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziwei Su
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Qinyuan Chen
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxin Li
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youzhi Miao
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Ruifu Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Tariq M, Zahoor M, Yasmeen T, Naqqash T, Rashid MAR, Abdullah M, Rafiq AR, Zafar M, Irfan I, Rasul I. Biocontrol efficacy of Bacillus licheniformis and Bacillus amyloliquefaciens against rice pathogens. PeerJ 2025; 13:e18920. [PMID: 39897490 PMCID: PMC11786712 DOI: 10.7717/peerj.18920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Biocontrol is a cost-effective and eco-friendly approach to control plant pathogens using natural enemies. Antagonistic microorganisms or their derivatives specifically target the plant pathogens while minimizing the harm to non-target organisms. Bacterial blight and brown spot are the major rice diseases caused by Xanthomonas oryzae pv. oryzae (Xoo) and Bipolaris oryzae (Bo), respectively. This study was conducted to assess the plant growth-promoting potential and biocontrol activity of root-associated bacteria against the rice pathogens, Xoo and Bo. A total of 98 bacteria were isolated from rice roots and characterized for plant growth-promoting properties including phosphate solubilization, indole-3-acetic acid production, nitrogen fixation and biofilm formation. Based on these properties, 36 bacteria were selected and tested for biocontrol potential against rice pathogens via co-culturing antagonism assay. LE7 exhibited the maximum inhibition of 79%, while FR8, PE2, LE7, LR22 and LR28 also significantly reduced the growth of Xoo. Likewise, FR2, LR22, LR35 and LE7 significantly inhibited the growth of Bo, in which LR22 exhibited the maximum inhibition of 81%. Under controlled-conditions, LE7 and LR22 significantly reduced the disease incidence of Xoo and Bo, respectively, and improved the growth of rice. Full-length 16S rRNA gene sequencing of most potential bacterial isolates, LE7 and LR22, revealed their maximum identity with Bacillus amyloliquefaciens and Bacillus licheniformis, respectively. Application of Bacillus spp. as biocontrol agent represents enormous potential in rice farming. The most promising bacterial isolates could be used as bioinoculants for rice disease management and improved production in a sustainable manner.
Collapse
Affiliation(s)
- Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mehvish Zahoor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahira Yasmeen
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdul Rafay Rafiq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Marriam Zafar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Iqra Irfan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Shan H, Wen H, Zhang J, Wang Y, Lu L, Liu Y, Yang B, Ji W. Synergistic Role of Streptomyces Composite Inoculants in Mitigating Wheat Drought Stress Under Field Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:366. [PMID: 39942929 PMCID: PMC11820025 DOI: 10.3390/plants14030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Wheat (Triticum aestivum L.) is a globally important staple crop; however, its growth and yield are severely limited by drought stress. This study evaluated the effects of a combined microbial inoculant, Streptomyces pactum Act12 and Streptomyces rochei D74, on wheat photosynthesis, physiological traits, and yield under drought conditions. Key physiological and yield parameters were measured during the jointing, heading, and grain-filling stages. Drought stress significantly reduced chlorophyll content, maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), and antioxidant enzyme activities, while increasing malondialdehyde (MDA) levels, leading to a notable yield decline. In contrast, inoculation with Streptomyces strains alleviated these adverse effects, with the combined inoculant (Act12+D74) group demonstrating the most significant improvement. Chlorophyll content increased by up to 32.60%, Fv/Fm improved by 43.07%, and antioxidant enzyme activities were enhanced, with superoxide dismutase (SOD) activity increasing by 19.32% and peroxidase (POD) activity by 75.44%. Meanwhile, MDA levels were reduced by 61.61%. The proline content in the combined inoculant group increased by 90.44% at the jointing stage and the soluble protein content increased by 60.17% at the heading stage. Furthermore, it improved the yield by 26.19% by increasing both effective spikes and grains per spike. For the first time, this study revealed the synergistic effects of Act12 and D74 in enhancing photosynthesis, strengthening antioxidant defenses, and optimizing osmotic regulation under drought conditions. These findings provide a theoretical basis for developing environmentally friendly drought management strategies and highlight the potential applications of this inoculant in sustainable agriculture.
Collapse
Affiliation(s)
- Hao Shan
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Hongwei Wen
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Jinhui Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Yuzhi Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Lahu Lu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Yutao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;
| | - Bin Yang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (H.S.); (H.W.); (J.Z.); (Y.W.); (L.L.)
| | - Wei Ji
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
4
|
Qin Y, Wang X, Dong H, Ye T, Du N, Zhang T, Piao F, Dong X, Shen S, Guo Z. Plant Growth-Promoting Rhizobacteria Paenibacillus polymyxa HL14-3 Inoculation Enhances Drought Tolerance in Cucumber by Triggering Abscisic Acid-Mediated Stomatal Closure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:260-272. [PMID: 39731552 DOI: 10.1021/acs.jafc.4c09421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Drought limits crop growth and yield. Inoculation with plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy to protect crops against drought. However, the number of drought-tolerant PGPR is limited, and the regulation mechanisms remain elusive. Here, we screened a novel drought-tolerant PGPR strain Paenibacillus polymyxa HL14-3 with high drought-tolerance potential and efficient colonization ability. P. polymyxa HL14-3 inoculation effectively alleviated drought-induced growth inhibition and oxidative stress and improved the root system architecture in cucumber. Furthermore, P. polymyxa HL14-3 improved stomatal closure and leaf relative water content, reducing water loss in cucumber under drought stress. Importantly, P. polymyxa HL14-3 inoculation enhanced drought tolerance in cucumber by inducing abscisic acid synthesis, which was counteracted by root irrigation with the ABA synthesis inhibitor fluridone. Together, our results demonstrate that P. polymyxa HL14-3 inoculation enhances drought tolerance in cucumber by triggering ABA-mediated stomatal closure, providing an effective drought-tolerant PGPR for promoting agricultural production in arid areas.
Collapse
Affiliation(s)
- Yanping Qin
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Xiaojie Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Han Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ting Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shunshan Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China
| |
Collapse
|
5
|
Wang Y, Ou Y, Lin X, Liu X, Sun C. Novel application of cyclo(-Phe-Pro) in mitigating aluminum toxicity through oxidative stress alleviation in wheat roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125241. [PMID: 39505104 DOI: 10.1016/j.envpol.2024.125241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Microbial secondary metabolites are crucial in plant-microorganism interactions, regulating plant growth and stress responses. In this study, we found that cyclo(-Phe-Pro), a proline-based cyclic dipeptide secreted by many microorganisms, alleviated aluminum toxicity in wheat roots by increasing root growth, decreasing callose deposition, and decreasing Al accumulation. Cyclo(-Phe-Pro) also significantly reduced Al-induced reactive oxygen species (ROS) with H2O2, O2•-, and •OH levels decreasing by 19.1%, 42.8%, and 17.9% in root tips, thus protecting the plasma membrane from oxidative damage. Although Al stress increased the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) in wheat roots, cyclo(-Phe-Pro) application reduced these enzyme activities. However, compared to the Al treatment, cyclo(-Phe-Pro) application increased DPPH and FRAP activities by 16.8% and 14.9%, indicating increased non-enzymatic antioxidant capacity in wheat roots. We observed that Al caused the oxidation of ascorbate (AsA) and glutathione (GSH) to dehydroascorbate (DHA) and glutathione disulfide (GSSG), respectively. Under Al stress, cyclo(-Phe-Pro) treatment maintained reduced AsA and GSH levels, as well as high AsA/DHA and GSH/GSSG redox pair ratios in wheat roots. High AsA/DHA and GSH/GSSG ratios can reduce Al toxicity by neutralizing free radicals and restoring redox homeostasis via antioxidant properties. These results suggest that cyclo(-Phe-Pro) maintains ASA- and GSH-dependent redox homeostasis to alleviate oxidative and Al stress in wheat roots. Findings of this study establishes a theoretical foundation for using microbial metabolites to mitigate Al toxicity in acidic soils, highlighting their potential in sustainable agriculture.
Collapse
Affiliation(s)
- Yi Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiqun Ou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxia Liu
- Zhejiang Provincial Cultivated Land Quality and Fertilizer Administration Station, Hangzhou, 310020, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Pishchik VN, Chizhevskaya EP, Chebotar VK, Mirskaya GV, Khomyakov YV, Vertebny VE, Kononchuk PY, Kudryavtcev DV, Bortsova OA, Lapenko NG, Tikhonovich IA. PGPB Isolated from Drought-Tolerant Plants Help Wheat Plants to Overcome Osmotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3381. [PMID: 39683174 DOI: 10.3390/plants13233381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
The aim of this research was to study the effect of plant-growth-promoting bacteria (PGPB) isolated from the drought-tolerant plants camel thorn (Alhagi pseudoalhagi (M.Bieb.) Fisch) and white pigweed (Chenopodium album L.) on wheat (Triticum aestivum L.) plants cv. Lenigradskaya 6, growing under hydroponic conditions and osmotic stress (generated by 12% polyethylene glycol-6000 (PEG)). Based on the assumption that plants create a unique microbiome that helps them overcome various stresses, we hypothesized that bacteria isolated from drought-tolerant plants may assist cultivated wheat plants in coping with drought stress. PGPB were isolated from seeds and leaves of plants and identified as Bacillus spp. (strains Cap 07D, Cap 09D, and App 11D); Paenibacillus sp. (Cap 286); and Arthrobacter sp. (Cap 03D). All bacteria produced different phytohormones such as indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GAS3) and were capable of stimulating wheat growth under normal and osmotic stress conditions. All PGPB reduced the malondialdehyde (MDA) content, increased the total chlorophyll content by increasing chlorophyll a, and modulated wheat hormone homeostasis and CAT and POX activities under osmotic conditions. Selected strains can be promising candidates for the mitigating of the drought stress of wheat plants.
Collapse
Affiliation(s)
- Veronika N Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Hwy 3, Pushkin, 196608 Saint Petersburg, Russia
| | - Elena P Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Hwy 3, Pushkin, 196608 Saint Petersburg, Russia
| | - Vladimir K Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Hwy 3, Pushkin, 196608 Saint Petersburg, Russia
| | - Galina V Mirskaya
- Agrophysical Scientific Research Institute, Grazhdanskiy pr. 14, 195220 Saint Petersburg, Russia
| | - Yuriy V Khomyakov
- Agrophysical Scientific Research Institute, Grazhdanskiy pr. 14, 195220 Saint Petersburg, Russia
| | - Vitaliy E Vertebny
- Agrophysical Scientific Research Institute, Grazhdanskiy pr. 14, 195220 Saint Petersburg, Russia
| | - Pavel Y Kononchuk
- Agrophysical Scientific Research Institute, Grazhdanskiy pr. 14, 195220 Saint Petersburg, Russia
| | - Dmitriy V Kudryavtcev
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Hwy 3, Pushkin, 196608 Saint Petersburg, Russia
| | - Olga A Bortsova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Hwy 3, Pushkin, 196608 Saint Petersburg, Russia
| | - Nina G Lapenko
- North Caucasus Federal Agrarian Research Centre, Zootechnical Lane, 15, 355017 Stavropol, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Hwy 3, Pushkin, 196608 Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 7-9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia
| |
Collapse
|
7
|
Chakraborty N, Halder S, Keswani C, Vaca J, Ortiz A, Sansinenea E. New Aspects of the Effects of Climate Change on Interactions Between Plants and Microbiomes: A Review. J Basic Microbiol 2024; 64:e2400345. [PMID: 39205430 DOI: 10.1002/jobm.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
One of the most talked about issues of the 21st century is climate change, as it affects not just our health but also forestry, agriculture, biodiversity, the ecosystem, and the energy supply. Greenhouse gases are the primary cause of climate change, having dramatic effects on the environment. Climate change has an impact on the function and composition of the terrestrial microbial community both directly and indirectly. Changes in the prevailing climatic conditions brought about by climate change will lead to modifications in plant physiology, root exudation, signal alteration, and the quantity, makeup, and diversity of soil microbial communities. Microbiological activity is very crucial in organic production systems due to the organic origin of microorganisms. Microbes that benefit crop plants are known as plant growth-promoting microorganisms. Thus, the effects of climate change on the environment also have an impact on the abilities of beneficial bacteria to support plant growth, health, and root colonization. In this review, we have covered the effects of temperature, precipitation, drought, and CO2 on plant-microbe interactions, as well as some physiological implications of these changes. Additionally, this paper highlights the ways in which bacteria in plants' rhizosphere react to the dominant climatic conditions in the soil environment. The goal of this study is to analyze the effects of climate change on plant-microbe interactions.
Collapse
Affiliation(s)
- Nilanjan Chakraborty
- Department of Botany, Scottish Church College, University of Calcutta, Kolkata, India
| | - Sunanda Halder
- Department of Botany, Scottish Church College, University of Calcutta, Kolkata, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jessica Vaca
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
8
|
Borker SS, Sharma P, Thakur A, Kumar A, Kumar A, Kumar R. Physiological and genomic insights into a psychrotrophic drought-tolerant bacterial consortium for crop improvement in cold, semiarid regions. Microbiol Res 2024; 286:127818. [PMID: 38970906 DOI: 10.1016/j.micres.2024.127818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
The agricultural land in the Indian Himalayan region (IHR) is susceptible to various spells of snowfall, which can cause nutrient leaching, low temperatures, and drought conditions. The current study, therefore, sought an indigenous psychrotrophic plant growth-promoting (PGP) bacterial inoculant with the potential to alleviate crop productivity under cold and drought stress. Psychrotrophic bacteria preisolated from the night-soil compost of the Lahaul Valley of northwestern Himalaya were screened for phosphate (P) and potash (K) solubilization, nitrogen fixation, indole acetic acid (IAA) production, siderophore and HCN production) in addition to their tolerance to drought conditions for consortia development. Furthermore, the effects of the selected consortium on the growth and development of wheat (Triticum aestivum L.) and maize (Zea mays L.) were assessed in pot experiments under cold semiarid conditions (50 % field capacity). Among 57 bacteria with P and K solubilization, nitrogen fixation, IAA production, siderophore and HCN production, Pseudomonas protegens LPH60, Pseudomonas atacamensis LSH24, Psychrobacter faecalis LUR13, Serratia proteamaculans LUR44, Pseudomonas mucidolens LUR70, and Glutamicibacter bergerei LUR77 exhibited tolerance to drought stress (-0.73 MPa). The colonization of wheat and maize seeds with these drought-tolerant PGP strains resulted in a germination index >150, indicating no phytotoxicity under drought stress. Remarkably, a particular strain, Pseudomonas sp. LPH60 demonstrated antagonistic activity against three phytopathogens Ustilago maydis, Fusarium oxysporum, and Fusarium graminearum. Treatment with the consortium significantly increased the foliage (100 % and 160 %) and root (200 % and 133 %) biomasses of the wheat and maize plants, respectively. Furthermore, whole-genome sequence comparisons of LPH60 and LUR13 with closely related strains revealed genes associated with plant nutrient uptake, phytohormone synthesis, siderophore production, hydrogen cyanide (HCN) synthesis, volatile organic compound production, trehalose and glycine betaine transport, cold shock response, superoxide dismutase activity, and gene clusters for nonribosomal peptide synthases and polyketide synthetases. With their PGP qualities, biocontrol activity, and ability to withstand environmental challenges, the developed consortium represents a promising cold- and drought-active PGP bioinoculant for cereal crops grown in cold semiarid regions.
Collapse
Affiliation(s)
- Shruti Sinai Borker
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallavi Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Aman Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aman Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura 799022, India.
| |
Collapse
|
9
|
Kumar A, Naroju SP, Kumari N, Arsey S, Kumar D, Gubre DF, Roychowdhury A, Tyagi S, Saini P. The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Microbiol Res 2024; 286:127827. [PMID: 39002396 DOI: 10.1016/j.micres.2024.127827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024]
Abstract
Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress.
Collapse
Affiliation(s)
- Ashok Kumar
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India.
| | - Sai Prakash Naroju
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, USA
| | - Neha Kumari
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Shivani Arsey
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Deepak Kumar
- Plant Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Dilasha Fulchand Gubre
- Department of Crop Improvement, Indian Council of Agricultural Research Indian Institute of Soybean Research, Indore, Madhya Pradesh, India
| | - Abhrajyoti Roychowdhury
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Sachin Tyagi
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India
| | - Pankaj Saini
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India
| |
Collapse
|
10
|
Shelake RM, Wagh SG, Patil AM, Červený J, Waghunde RR, Kim JY. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2022. [PMID: 39124140 PMCID: PMC11313874 DOI: 10.3390/plants13152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Akshay Milind Patil
- Cotton Improvement Project, Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri 413722, India;
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Rajesh Ramdas Waghunde
- Department of Plant Pathology, College of Agriculture, Navsari Agricultural University, Bharuch 392012, India;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nulla Bio Inc., Jinju 52828, Republic of Korea
| |
Collapse
|
11
|
Zhao J, Yu X, Zhang C, Hou L, Wu N, Zhang W, Wang Y, Yao B, Delaplace P, Tian J. Harnessing microbial interactions with rice: Strategies for abiotic stress alleviation in the face of environmental challenges and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168847. [PMID: 38036127 DOI: 10.1016/j.scitotenv.2023.168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Rice, which feeds more than half of the world's population, confronts significant challenges due to environmental and climatic changes. Abiotic stressors such as extreme temperatures, drought, heavy metals, organic pollutants, and salinity disrupt its cellular balance, impair photosynthetic efficiency, and degrade grain quality. Beneficial microorganisms from rice and soil microbiomes have emerged as crucial in enhancing rice's tolerance to these stresses. This review delves into the multifaceted impacts of these abiotic stressors on rice growth, exploring the origins of the interacting microorganisms and the intricate dynamics between rice-associated and soil microbiomes. We highlight their synergistic roles in mitigating rice's abiotic stresses and outline rice's strategies for recruiting these microorganisms under various environmental conditions, including the development of techniques to maximize their benefits. Through an in-depth analysis, we shed light on the multifarious mechanisms through which microorganisms fortify rice resilience, such as modulation of antioxidant enzymes, enhanced nutrient uptake, plant hormone adjustments, exopolysaccharide secretion, and strategic gene expression regulation, emphasizing the objective of leveraging microorganisms to boost rice's stress tolerance. The review also recognizes the growing prominence of microbial inoculants in modern rice cultivation for their eco-friendliness and sustainability. We discuss ongoing efforts to optimize these inoculants, providing insights into the rigorous processes involved in their formulation and strategic deployment. In conclusion, this review emphasizes the importance of microbial interventions in bolstering rice agriculture and ensuring its resilience in the face of rising environmental challenges.
Collapse
Affiliation(s)
- Jintong Zhao
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoxia Yu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, Jiangxi 330000, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Sanya Institute, Hainan, Academy of Agricultural Sciences, Sanya 572000, China
| | - Ligang Hou
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pierre Delaplace
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Fan W, Xiao Y, Dong J, Xing J, Tang F, Shi F. Variety-driven rhizosphere microbiome bestows differential salt tolerance to alfalfa for coping with salinity stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1324333. [PMID: 38179479 PMCID: PMC10766110 DOI: 10.3389/fpls.2023.1324333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Soil salinization is a global environmental issue and a significant abiotic stress that threatens crop production. Root-associated rhizosphere microbiota play a pivotal role in enhancing plant tolerance to abiotic stresses. However, limited information is available concerning the specific variations in rhizosphere microbiota driven by different plant genotypes (varieties) in response to varying levels of salinity stress. In this study, we compared the growth performance of three alfalfa varieties with varying salt tolerance levels in soils with different degrees of salinization. High-throughput 16S rRNA and ITS sequencing were employed to analyze the rhizosphere microbial communities. Undoubtedly, the increasing salinity significantly inhibited alfalfa growth and reduced rhizosphere microbial diversity. However, intriguingly, salt-tolerant varieties exhibited relatively lower susceptibility to salinity, maintaining more stable rhizosphere bacterial community structure, whereas the reverse was observed for salt-sensitive varieties. Bacillus emerged as the dominant species in alfalfa's adaptation to salinity stress, constituting 21.20% of the shared bacterial genera among the three varieties. The higher abundance of Bacillus, Ensifer, and Pseudomonas in the rhizosphere of salt-tolerant alfalfa varieties is crucial in determining their elevated salt tolerance. As salinity levels increased, salt-sensitive varieties gradually accumulated a substantial population of pathogenic fungi, such as Fusarium and Rhizoctonia. Furthermore, rhizosphere bacteria of salt-tolerant varieties exhibited increased activity in various metabolic pathways, including biosynthesis of secondary metabolites, carbon metabolism, and biosynthesis of amino acids. It is suggested that salt-tolerant alfalfa varieties can provide more carbon sources to the rhizosphere, enriching more effective plant growth-promoting bacteria (PGPB) such as Pseudomonas to mitigate salinity stress. In conclusion, our results highlight the variety-mediated enrichment of rhizosphere microbiota in response to salinity stress, confirming that the high-abundance enrichment of specific dominant rhizosphere microbes and their vital roles play a significant role in conferring high salt adaptability to these varieties.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunber, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
13
|
Song X, Zheng R, Liu Y, Liu Z, Yu J, Li J, Zhang P, Gao Q, Li H, Li C, Liu X. Combined application of microbial inoculant and kelp-soaking wastewater promotes wheat seedlings growth and improves structural diversity of rhizosphere microbial community. Sci Rep 2023; 13:20697. [PMID: 38001242 PMCID: PMC10673839 DOI: 10.1038/s41598-023-48195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023] Open
Abstract
Industrial processing of kelp generates large amounts of kelp-soaking wastewater (KSW), which contains a large amount of nutrient-containing substances. The plant growth-promoting effect might be further improved by combined application of growth-promoting bacteria and the nutrient-containing KSW. Here, a greenhouse experiment was conducted to determine the effect of the mixture of KSW and Bacillus methylotrophicus M4-1 (MS) vs. KSW alone (SE) on wheat seedlings, soil properties and the microbial community structure in wheat rhizosphere soil. The available potassium, available nitrogen, organic matter content and urease activity of MS soil as well as the available potassium of the SE soil were significantly different (p < 0.05) from those of the CK with water only added, increased by 39.51%, 36.25%, 41.61%, 80.56% and 32.99%, respectively. The dry and fresh weight of wheat seedlings from MS plants increased by 166.17% and 50.62%, respectively, while plant height increased by 16.99%, compared with CK. Moreover, the abundance and diversity of fungi in the wheat rhizosphere soil were significantly increased (p < 0.05), the relative abundance of Ascomycetes and Fusarium spp. decreased, while the relative abundance of Bacillus and Mortierella increased. Collectively, the combination of KSW and the plant growth-promoting strain M4-1 can promote wheat seedlings growth and improve the microecology of rhizosphere microorganisms, thereby solving the problems of resource waste and environmental pollution, ultimately turning waste into economic gain.
Collapse
Affiliation(s)
- Xin Song
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China
| | - Rui Zheng
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Yue Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Zhaoyang Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Jian Yu
- Shandong Nongda Fertilizer Technology Co. Ltd, Taian, Shandong, China
| | - Jintai Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Pengcheng Zhang
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Qixiong Gao
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Huying Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Chaohui Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Xunli Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China.
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China.
| |
Collapse
|
14
|
Peng X, Wang Q, Lang D, Li Y, Zhang W, Zhang X. Bacillus cereus G2 Facilitates N Cycle in Soil, Further Improves N Uptake and Assimilation, and Accelerates Proline and Glycine Betaine Metabolisms of Glycyrrhiza uralensis Subjected to Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15485-15496. [PMID: 37828905 DOI: 10.1021/acs.jafc.3c04936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Soil salinity is a severe abiotic stress that reduces crop productivity. Recently, there has been growing interest in the application of microbes, mainly plant-growth-promoting bacteria (PGPB), as inoculants for saline land restoration and plant salinity tolerance. Herein, the effects of the plant endophyte G2 on regulating soil N cycle, plant N uptake and assimilate pathways, proline and glycine betaine biosynthesis, and catabolic pathways were investigated in Glycyrrhiza uralensis exposed to salinity. The results indicated that G2 improved the efficiency of N absorption and assimilation of plants by facilitating soil N cycling. Then, G2 promoted the synthesis substrates of proline and glycine betaine and accelerated its synthesis rate, which increased the relative water content and reduced the electrolyte leakage, eventually protecting the membrane system caused by salt stress in G. uralensis. These findings will provide a new idea from soil to plant systems in a salinity environment.
Collapse
Affiliation(s)
- Xueying Peng
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Qiuli Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Duoyong Lang
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yi Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China
| |
Collapse
|
15
|
Xiao S, Wan Y, Zheng Y, Wang Y, Fan J, Xu Q, Gao Z, Wu C. Halomonas ventosae JPT10 promotes salt tolerance in foxtail millet ( Setaria italica) by affecting the levels of multiple antioxidants and phytohormones. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:275-290. [PMID: 37822729 PMCID: PMC10564379 DOI: 10.1002/pei3.10122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 10/13/2023]
Abstract
Plant growth-promoting bacterias (PGPBs) can increase crop output under normal and abiotic conditions. However, the mechanisms underlying the plant salt tolerance-promoting role of PGPBs still remain largely unknown. In this study, we demonstrated that Halomonas ventosae JPT10 promoted the salt tolerance of both dicots and monocots. Physiological analysis revealed that JPT10 reduced reactive oxygen species accumulation by improving the antioxidant capability of foxtail millet seedlings. The metabolomic analysis of JPT10-inoculated foxtail millet seedlings led to the identification of 438 diversely accumulated metabolites, including flavonoids, phenolic acids, lignans, coumarins, sugar, alkaloids, organic acids, and lipids, under salt stress. Exogenous apigenin and chlorogenic acid increased the salt tolerance of foxtail millet seedlings. Simultaneously, JPT10 led to greater amounts of abscisic acid (ABA), indole-3-acetic acid (IAA), salicylic acid (SA), and their derivatives but lower levels of 12-oxo-phytodienoic acid (OPDA), jasmonate (JA), and JA-isoleucine (JA-Ile) under salt stress. Exogenous JA, methyl-JA, and OPDA intensified, whereas ibuprofen or phenitone, two inhibitors of JA and OPDA biosynthesis, partially reversed, the growth inhibition of foxtail millet seedlings caused by salt stress. Our results shed light on the response of foxtail millet seedlings to H. ventosae under salt stress and provide potential compounds to increase salt tolerance in foxtail millet and other crops.
Collapse
Affiliation(s)
- Shenghui Xiao
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yiman Wan
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yue Zheng
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yongdong Wang
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Jiayin Fan
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Zheng Gao
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Changai Wu
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| |
Collapse
|
16
|
Gulmez O, Aksakal O, Baris O, Bayram E. Pseudomonas stutzeri improves the tolerance of Lemna minor to Cu(OH) 2 nanopesticide by regulating the uptake of copper, antioxidant defense mechanisms, and the expression of metacaspase-1, chlorophyllase, and stress-responsive genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108002. [PMID: 37699291 DOI: 10.1016/j.plaphy.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
This study investigated the effect of Pseudomonas stutzeri inoculation on Lemna minor treated with Cu(OH)2 nanopesticide (NP). The results showed that P. stutzeri inoculation increased the relative growth rate (RGR) in NP-treated plants. Although chlorophyll and carotenoid contents decreased significantly in NP-treated plants, P. stutzeri inoculation led to an increase in chlorophyll and carotenoid contents in NP-treated plants. Copper (Cu) content increased with increasing NP concentration, but it decreased significantly in the presence of P. stutzeri. NP treatment caused increased H2O2 and TBARS levels, as well as proline levels. However, P. stutzeri inoculation led to decreased H2O2 and TBARS levels and increased SOD, POX, GST, GR, GPX, and DHAR activities. The expression of genes encoding SOD, GST, metacaspase-1, and chlorophyllase was upregulated by NP treatment alone. Additionally, when plants were inoculated with P. stutzeri, the expression of these genes was further enhanced. In conclusion, P. stutzeri inoculation had a positive effect on the growth and antioxidant system of L. minor treated with NP as it enhanced RGR, increased chlorophyll and carotenoid contents, and decreased Cu content and oxidative stress. These findings suggested that P. stutzeri has the potential to promote aquatic plant growth and counteract the negative impacts of NP on these plants.
Collapse
Affiliation(s)
- Ozlem Gulmez
- Department of Biology, Science Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Ozkan Aksakal
- Department of Biology, Science Faculty, Atatürk University, 25240, Erzurum, Turkey.
| | - Ozlem Baris
- Department of Nanoscience and Nanoengineering, Institute of Naturel and Applied Sciences, Atatürk University, 25240, Erzurum, Turkey
| | - Emrah Bayram
- Department of Criminalistics, Applied and Natural Sciences, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
17
|
Kaur R, Saxena S. Evaluation of drought-tolerant endophytic fungus Talaromyces purpureogenus as a bioinoculant for wheat seedlings under normal and drought-stressed circumstances. Folia Microbiol (Praha) 2023; 68:781-799. [PMID: 37076748 DOI: 10.1007/s12223-023-01051-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
The present work is aimed to hypothesize that fungal endophytes associated with wheat (Triticum aestivum L.) plants can play a variety of roles in biotechnology including plant growth. Out of 67 fungal isolates, five maximum drought-tolerant isolates were used to check their various plant growth-promoting traits, antioxidants, and antifungal activities under secondary screening. Fungal isolate #8TAKS-3a exhibited the maximum drought tolerance capacity and potential to produce auxin, gibberellic acid, ACC deaminase, phosphate, zinc solubilization, ammonia, siderophore, and extracellular enzyme activities followed by #6TAKR-1a isolate. In terms of antioxidant activities, #8TAKS-3a culture also showed maximum DPPH scavenging, total antioxidant, and NO-scavenging activities. However, #6TAKR-1a exhibited maximum total flavonoid content, total phenolic content, and Fe-reducing power and also the highest growth inhibition of Aspergillus niger (ITCC 6152) and Colletotrichum sp. (ITCC 6152). Based on morphological characters and multi-locus phylogenetic analysis of the nuc rDNA internal transcribed spacer region (ITS1-5.8S-ITS2 = ITS), β-tubulin (TUB 2), and RNA polymerase II second largest subunit (RPB2) genes, potent fungal isolate #8TAKS-3a was identified as Talaromyces purpureogenus. Under the in vitro conditions, T. purpureogenus (#8TAKS-3a) was used as a bioinoculant that displayed a significant increase in various physio-biochemical growth parameters under normal and stressed conditions (p < 0.05). Our results indicate that drought stress-tolerant T. purpureogenus can be further used for field testing as a growth promoter.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
18
|
Liu XR, Rong ZY, Tian X, Hashem A, Abd_Allah EF, Zou YN, Wu QS. Mycorrhizal Fungal Effects on Plant Growth, Osmolytes, and CsHsp70s and CsPIPs Expression in Leaves of Cucumber under a Short-Term Heat Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2917. [PMID: 37631129 PMCID: PMC10458863 DOI: 10.3390/plants12162917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi enhance plant stress tolerance, but it is unclear whether AM fungi affect heat tolerance in cucumbers. This study aimed to analyze how an AM fungus, Diversispora versiformis, affected growth, chlorophyll, five osmolytes, and plasma membrane intrinsic proteins (PIPs) and heat shock protein 70 (Hsp70) gene expression in cucumber leaves after a short-term (80 h) heat stress. Heat treatment significantly reduced root AM fungal colonization rate (0.26 folds). Heat treatment also distinctly suppressed plant height, stem diameter, and biomass, whereas AM fungal inoculation improved these growth variables as well as the chlorophyll index, with the benefit being more obvious under heat than under no-heat stress conditions. Heat treatment triggered differential changes in osmolytes (sucrose, fructose, and betaine) of inoculated and uninoculated cucumbers, whereas inoculation with AM fungus significantly raised leaf sucrose, fructose, glucose, betaine, and proline levels when compared to non-AM fungal inoculation. Heat treatment increased the expression of two (CsPIP1;6 and CsPIP2;1) of eight CsPIPs in inoculated and uninoculated plants, whereas AM fungal inoculation up-regulated the expression of CsPIP1;6, CsPIP2;1, and CsPIP2;6 under heat stress conditions. Hsp70s expressed differently in inoculated and uninoculated plants under heat versus no-heat stress, with 6 of 11 CsHsp70s down-regulated in inoculated plants. Under heat stress conditions, AM fungus only up-regulated CsHsp70-8 expression in 11 Hsp70s, while another eight CsHsp70s were down-regulated. Heat treatment and AM fungal inoculation both increased the expression of CsHsp70-8 and CsPIP1;6. It was concluded that AM fungus-inoculated cucumbers have high levels of growth, chlorophyll, and osmolytes under heat stress and do not require high CsPIPs and CsHsp70s expression to tolerate a short-term heat treatment.
Collapse
Affiliation(s)
- Xin-Ran Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (X.-R.L.)
| | - Zi-Yi Rong
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (X.-R.L.)
| | - Xiao Tian
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (X.-R.L.)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (X.-R.L.)
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (X.-R.L.)
| |
Collapse
|
19
|
Wei S, Fang J, Zhang T, Wang J, Cheng Y, Ma J, Xie R, Liu Z, Su E, Ren Y, Zhao X, Zhang X, Lu Z. Dynamic changes of soil microorganisms in rotation farmland at the western foot of the Greater Khingan range. Front Bioeng Biotechnol 2023; 11:1191240. [PMID: 37425359 PMCID: PMC10328388 DOI: 10.3389/fbioe.2023.1191240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Crop rotation and other tillage systems can affect soil microbial communities and functions. Few studies have reported the response of soil spatial microbial communities to rotation under drought stress. Therefore, the purpose of our study was to explore the dynamic changes of the soil space microbial community under different drought stress-rotation patterns. In this study, two water treatments were set up, control W1 (mass water content 25%-28%), and drought W2 (mass water content 9%-12%). Four crop rotation patterns were set in each water content, spring wheat continuous (R1), spring wheat-potato (R2), spring wheat-potato-rape (R3) and spring wheat-rape (R4), for a total of eight treatments (W1R1, W1R2, W1R3, W1R4, W2R1, W2R2, W2R3, W2R4). Endosphere, rhizosphere and bulk soil of spring wheat in each treatment were collected, and root space microbial community data were generated. The soil microbial community changed under different treatments and their relationship with soil factors were analyzed using a co-occurrence network, mantel test, and other methods. The results revealed that the alpha diversity of microorganisms in the rhizosphere and bulk soil did not differ significantly, but it was significantly greater than in the endosphere. The bacteria community structure was more stable, fungi alpha-diversity significant changes (p < 0.05), that were more sensitive to the response of various treatments than bacteria. The co-occurrence network between fungal species was stable under rotation patterns (R2, R3, R4), while the community stability was poor under continuous cropping pattern (R1), and interactions were strengthened. Soil organic matter (SOM), microbial biomass carbon (MBC), and pH value were the most important factors dominating the bacteria community structural changed in the endosphere, rhizosphere, and bulk soil. The dominant factor that affected the fungal community structural changed in the endosphere, rhizosphere, and bulk soil was SOM. Therefore, we conclude that soil microbial community changes under the drought stress-rotation patterns are mainly influenced by soil SOM and microbial biomass content.
Collapse
Affiliation(s)
- Shuli Wei
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| | - Jing Fang
- School of Life Science, Inner Mongolia University, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| | - Tianjiao Zhang
- School of Life Science, Inner Mongolia University, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| | - Jianguo Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| | - Yuchen Cheng
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| | - Jie Ma
- School of Life Science, Inner Mongolia University, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| | - Zhixiong Liu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Erhu Su
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yongfeng Ren
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| | - Xiangqian Zhang
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot, China
| |
Collapse
|
20
|
Kaur R, Saxena S. Penicillium citrinum, a Drought-Tolerant Endophytic Fungus Isolated from Wheat (Triticum aestivum L.) Leaves with Plant Growth-Promoting Abilities. Curr Microbiol 2023; 80:184. [PMID: 37061641 DOI: 10.1007/s00284-023-03283-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Endophytic fungi have recently garnered significant attention as next-generation bioinoculants due to their plausible role in ameliorating abiotic and biotic stresses. This adaptation is achieved via various signalling molecules and mechanisms established by these symbionts with their hosts. The present study screened 61 endophytic isolates of culturable mycobiome associated with wheat variety PBW725 during their crop cycle. Three endophytic isolates exhibited a minimum reduction in their growth and maximum biomass production during the drought stress developed using polyethylene glycol 6000. Further, these isolates also exhibited plant growth promoting properties by virtue of the production of indole acetic acid, gibberellic acid and ammonia. These isolates also exhibited the propensity to solubilise phosphate and zinc, produce siderophores and further exhibit extracellular enzymatic activities, contributing to plants' adaptability to abiotic stresses. The best isolate amongst the three was #5TAKL-3a, identified as Penicillium citrinum based on multilocus phylogenetic analysis. The isolate as a bioinoculant enhances various biochemical and physiological properties in planta. Hence our studies indicate that Penicillium citrinum #5TAKL-3a is a potential candidate bioinoculant for field trials to improve the adaptability of the wheat plant under drought stress.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
21
|
Potential of growth-promoting bacteria in maize (Zea mays L.) varies according to soil moisture. Microbiol Res 2023; 271:127352. [PMID: 36907073 DOI: 10.1016/j.micres.2023.127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Climate change has caused irregularities in water distribution, which affect the soil drying-wetting cycle and the development of economically important agricultural crops. Therefore, the use of plant growth-promoting bacteria (PGPB) emerges as an efficient strategy to mitigate negative impacts on crop yield. We hypothesized that the use of PGPB (in consortium or not) had potential to promote maize (Zea mays L.) growth under a soil moisture gradient in both non-sterile and sterile soils. Thirty PGPB strains were characterized for direct plant growth-promotion and drought tolerance induction mechanisms and were used in two independent experiments. Four soil water contents were used to simulate a severe drought (30% of field capacity [FC]), moderate drought (50% of FC), no drought (80% of FC) and, finally, a water gradient comprising the three mentioned soil water contents (80%, 50%, and 30% of FC). Two bacteria strains (BS28-7 Arthrobacter sp. and BS43 Streptomyces alboflavus), in addition to three consortia (BC2, BC4 and BCV) stood out in maize growth performance in experiment 1 and were used in experiment 2. Overall, under moderate drought, inoculation with BS43 surpassed the control treatment in root dry mass and nutrient uptake. Considering the water gradient treatment (80-50-30% of FC), the greatest total biomass was found in the uninoculated treatment when compared to BS28-7, BC2, and BCV. The greatest development of Z. mays L. was only observed under constant water stress conditions in the presence of PGPB. This is the first report that demonstrated the negative effect of individual inoculation of Arthrobacter sp. and the consortium of this strain with Streptomyces alboflavus on the growth of Z. mays L. based on a soil moisture gradient; however, future studies are needed for further validation.
Collapse
|
22
|
Ali N, Swarnkar MK, Veer R, Kaushal P, Pati AM. Temperature-induced modulation of stress-tolerant PGP genes bioprospected from Bacillus sp. IHBT-705 associated with saffron ( Crocus sativus) rhizosphere: A natural -treasure trove of microbial biostimulants. FRONTIERS IN PLANT SCIENCE 2023; 14:1141538. [PMID: 36923125 PMCID: PMC10009223 DOI: 10.3389/fpls.2023.1141538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
There is a renewed interest in sustainable agriculture wherein novel plant growth-promoting rhizobacteria (PGPR) are being explored for developing efficient biostimulants. The key requirement of a microbe to qualify as a good candidate for developing a biostimulant is its intrinsic plant growth-promoting (PGP) characteristics. Though numerous studies have been conducted to assess the beneficial effects of PGPRs on plant growth under normal and stressed conditions but not much information is available on the characterization of intrinsic traits of PGPR under stress. Here, we focused on understanding how temperature stress impacts the functionality of key stress tolerant and PGP genes of Bacillus sp. IHBT-705 isolated from the rhizosphere of saffron (Crocus sativus). To undertake the study, Bacillus sp. IHBT-705 was grown under varied temperature regimes, their PGP traits were assessed from very low to very high-temperature range and the expression trend of targeted stress tolerant and PGP genes were analyzed. The results illustrated that Bacillus sp. IHBT-705 is a stress-tolerant PGPR as it survived and multiplied in temperatures ranging from 4°C-50°C, tolerated a wide pH range (5-11), withstood high salinity (8%) and osmolarity (10% PEG). The PGP traits varied under different temperature regimes indicating that temperature influences the functionality of PGP genes. This was further ascertained through whole genome sequencing followed by gene expression analyses wherein certain genes like cspB, cspD, hslO, grpE, rimM, trpA, trpC, trpE, fhuC, fhuD, acrB5 were found to be temperature sensitive while, cold tolerant (nhaX and cspC), heat tolerant (htpX) phosphate solubilization (pstB1), siderophore production (fhuB and fhuG), and root colonization (xerC1 and xerC2) were found to be highly versatile as they could express well both under low and high temperatures. Further, the biostimulant potential was checked through a pot study on rice (Oryza sativa), wherein the application of Bacillus sp. IHBT-705 improved the length of shoots, roots, and number of roots over control. Based on the genetic makeup, stress tolerance potential, retention of PGP traits under stress, and growth-promoting potential, Bacillus sp. IHBT-705 could be considered a good candidate for developing biostimulants.
Collapse
Affiliation(s)
- Nilofer Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Raj Veer
- Incubatee at Chief Minister Startup Scheme, Shimla, India
| | - Priya Kaushal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
A Potential Application of Pseudomonas psychrotolerans IALR632 for Lettuce Growth Promotion in Hydroponics. Microorganisms 2023; 11:microorganisms11020376. [PMID: 36838341 PMCID: PMC9962264 DOI: 10.3390/microorganisms11020376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Controlled environment agriculture hydroponic systems grow plants year-round without restriction from outside environmental conditions. In order to further improve crop yield, plant growth-promoting bacteria were tested on hydroponically grown lettuce (Lactuca sativa) plants. From our bacterial endophyte library, we found one bacterium, Pseudomonas psychrotolerans IALR632, that is promising in promoting lettuce growth in multiple hydroponic systems. When Green Oakleaf lettuce seeds were inoculated with IALR632 during germination, IALR632 significantly increased lateral root development by 164%. When germinated seedlings were inoculated with IALR632 and then transplanted to different hydroponic systems, shoot and root fresh weights of Green Oakleaf increased by 55.3% and 17.2% in a nutrient film technique (NFT) system in the greenhouse, 13.5% and 13.8% in an indoor vertical NFT system, and 15.3% and 13.6% in a deep water cultivation (DWC) system, respectively. IALR632 also significantly increased shoot fresh weights of Rex by 33.9%, Red Oakleaf by 21.0%, Red Sweet Crisp by 15.2%, and Nancy by 29.9%, as well as Red Rosie by 8.6% (no significant difference). Inoculation of IALR632-GFP and subsequent analysis by confocal microscopy demonstrated the endophytic nature and translocation from roots to shoots. The results indicate that P. psychrotolerans IALR632 has a potential application in hydroponically grown lettuce plants.
Collapse
|
24
|
Lastochkina OV, Allagulova CR. The Mechanisms of the Growth Promotion and Protective Effects of Endophytic PGP Bacteria in Wheat Plants Under the Impact of Drought (Review). APPL BIOCHEM MICRO+ 2023; 59:14-32. [DOI: 10.1134/s0003683823010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 06/23/2023]
|
25
|
Contrasting genome patterns of two pseudomonas strains isolated from the date palm rhizosphere to assess survival in a hot arid environment. World J Microbiol Biotechnol 2022; 38:207. [PMID: 36008694 DOI: 10.1007/s11274-022-03392-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
The plant growth-promoting rhizobacteria (PGPRs) improve plant growth and fitness by multiple direct (nitrogen fixation and phosphate solubilization) and indirect (inducing systematic resistance against phytopathogens, soil nutrient stabilization, and maintenance) mechanisms. Nevertheless, the mechanisms by which PGPRs promote plant growth in hot and arid environments remain poorly recorded. In this study, a comparative genome analysis of two phosphate solubilizing bacteria, Pseudomonas atacamensis SM1 and Pseudomonas toyotomiensis SM2, isolated from the rhizosphere of date palm was performed. The abundance of genes conferring stress tolerance (chaperones, heat shock genes, and chemotaxis) and supporting plant growth (plant growth hormone, root colonization, nitrogen fixation, and phosphate solubilization) were compared among the two isolates. This study further evaluated their functions, metabolic pathways, and evolutionary relationship. Results show that both bacterial strains have gene clusters required for plant growth promotion (phosphate solubilization and root colonization), but it is more abundant in P. atacamensis SM1 than in P. toyotomiensis SM2. Genes involved in stress tolerance (mcp, rbs, wsp, and mot), heat shock, and chaperones (hslJ and hslR) were also more common in P. atacamensis SM1. These findings suggest that P. atacamensis SM1could have better adaptability to the hot and arid environment owing to a higher abundance of chaperone genes and heat shock proteins. It may promote plant growth owing to a higher load of root colonization and phosphate solubilization genes and warrants further in vitro study.
Collapse
|
26
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
27
|
Koza NA, Adedayo AA, Babalola OO, Kappo AP. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms 2022; 10:1528. [PMID: 36013946 PMCID: PMC9415082 DOI: 10.3390/microorganisms10081528] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Crops aimed at feeding an exponentially growing population are often exposed to a variety of harsh environmental factors. Although plants have evolved ways of adjusting their metabolism and some have also been engineered to tolerate stressful environments, there is still a shortage of food supply. An alternative approach is to explore the possibility of using rhizosphere microorganisms in the mitigation of abiotic stress and hopefully improve food production. Several studies have shown that rhizobacteria and mycorrhizae organisms can help improve stress tolerance by enhancing plant growth; stimulating the production of phytohormones, siderophores, and solubilizing phosphates; lowering ethylene levels; and upregulating the expression of dehydration response and antioxidant genes. This article shows the secretion of secondary metabolites as an additional mechanism employed by microorganisms against abiotic stress. The understanding of these mechanisms will help improve the efficacy of plant-growth-promoting microorganisms.
Collapse
Affiliation(s)
- Ntombikhona Appear Koza
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Afeez Adesina Adedayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology Group, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
28
|
Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing temperature leads to intensive water evaporation, contributing to global warming and consequently leading to drought stress. These events are likely to trigger modifications in plant physiology and microbial functioning due to the altered availability of nutrients. Plants exposed to drought have developed different strategies to cope with stress by morphological, physiological, anatomical, and biochemical responses. First, visible changes influence plant biomass and consequently limit the yield of crops. The presented review was undertaken to discuss the impact of climate change with respect to drought stress and its impact on the performance of plants inoculated with plant growth-promoting microorganisms (PGPM). The main challenge for optimal performance of horticultural plants is the application of selected, beneficial microorganisms which actively support plants during drought stress. The most frequently described biochemical mechanisms for plant protection against drought by microorganisms are the production of phytohormones, antioxidants and xeroprotectants, and the induction of plant resistance. Rhizospheric or plant surface-colonizing (rhizoplane) and interior (endophytic) bacteria and fungi appear to be a suitable alternative for drought-stress management. Application of various biopreparations containing PGPM seems to provide hope for a relatively cheap, easy to apply and efficient way of alleviating drought stress in plants, with implications in productivity and food condition.
Collapse
|