1
|
Jonani B, Bwire HR, Kasule CE, Mboowa G. Lack of Candida africana in Ugandan pregnant women: results from a pilot study using MALDI-ToF. BMC Res Notes 2024; 17:321. [PMID: 39449135 PMCID: PMC11506244 DOI: 10.1186/s13104-024-06973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Candida africana is an emergent variant that has been listed as a new species or variety within the Candida albicans complex since 2001. It has a worldwide intra-albicans complex pooled prevalence of 1.67% and varies between 0 and 8% depending on geographical region. We present the results of a pilot study on its prevalence in Uganda. METHODOLOGY We conducted a cross-sectional study between March and June 2023. We recruited 4 pregnant women from Mulago Specialized Women and Neonatal Hospital, 102 from Kawempe National Referral Hospital, and 48 from Sebbi Hospital. Vaginal swabs were tested using microscopy, culture and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). RESULTS The prevalence of C. africana was zero. Out of the 103 isolates, the majority (81.553%) were identified as Candida albicans, followed by Nakeseomyces glabrata (13.592%) and Pichia kudriavzevii (1.942%). Cyberlindnera jadinii, Candida tropicalis, and Candida parapsilosis each accounted for 0.971% of the isolates. CONCLUSION The prevalence of C. africana in Uganda is zero. However, large-scale cross-sectional studies, including studies involving the collection of vaginal samples from both urban and rural settings in Uganda and the use of both MALDI-TOF- and PCR-based laboratory methods, are needed to fully describe the public health burden of C. africana infections.
Collapse
Affiliation(s)
- Bwambale Jonani
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda.
- Laboratory Department, Sebbi Hospital, P.O. Box 101602, Kampala, Uganda.
| | | | | | - Gerald Mboowa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, Makerere, Kampala, Uganda
| |
Collapse
|
2
|
Acosta-Mosquera Y, Tapia JC, Armas-González R, Cáceres-Valdiviezo MJ, Fernández-Cadena JC, Andrade-Molina D. Prevalence and Species Distribution of Candida Clinical Isolates in a Tertiary Care Hospital in Ecuador Tested from January 2019 to February 2020. J Fungi (Basel) 2024; 10:304. [PMID: 38786659 PMCID: PMC11122525 DOI: 10.3390/jof10050304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
The incidence of candidemia in healthcare centers is associated with high morbidity and mortality. Frequency varies significantly among regions, with some species being more prevalent than others in Latin America. In this study, 191 clinical Candida isolates were collected from a major hospital in Ecuador from January 2019 to February 2020 aiming to assess their prevalence and distribution. After data processing, 168 isolates characterized by the VITEK 2 system were subsequently identified by ITS sequencing. Results showed diverse Candida species distributions, with C. albicans and C. tropicalis being the most prevalent across different clinical sources. In hospitalized individuals, C. tropicalis (38%) and C. albicans (37%) were the most prevalent, followed by, C. parapsilosis (16%), C. glabrata (5%), and other non-Candida albicans (NCA) species (6%). Conversely, C. parapsilosis (48%), C. albicans (20%), and C. glabrata (14%), associated with candidemia, were the most common in blood and CSF. Additionally, uncommon NCA species such as C. haemulonii, C. kefyr, and C. pelliculosa were identified in Ecuador for the first time. Discrepancies in species identification were observed between the VITEK 2 system and ITS sequencing, coinciding at 85%. This highlights the need for ongoing surveillance and identification efforts in Ecuador's clinical and epidemiological settings.
Collapse
Affiliation(s)
| | - Juan Carlos Tapia
- Omics Science Laboratory, Faculty of Health Science, Universidad Espíritu Santo, Samborondon 092301, Ecuador; (J.C.T.); (M.J.C.-V.)
| | - Rubén Armas-González
- Instituto Interamericano de Cooperación para la Agricultura (IICA), Representación Ecuador-Proyecto-5CN-1RBT, Quito 170518, Ecuador;
- Faculty of Health Science, Universidad Espíritu Santo, Samborondon 092301, Ecuador
| | - María José Cáceres-Valdiviezo
- Omics Science Laboratory, Faculty of Health Science, Universidad Espíritu Santo, Samborondon 092301, Ecuador; (J.C.T.); (M.J.C.-V.)
| | - Juan Carlos Fernández-Cadena
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Derly Andrade-Molina
- Omics Science Laboratory, Faculty of Health Science, Universidad Espíritu Santo, Samborondon 092301, Ecuador; (J.C.T.); (M.J.C.-V.)
| |
Collapse
|
3
|
Gómez-Gaviria M, García-Carnero LC, Baruch-Martínez DA, Mora-Montes HM. The Emerging Pathogen Candida metapsilosis: Biological Aspects, Virulence Factors, Diagnosis, and Treatment. Infect Drug Resist 2024; 17:171-185. [PMID: 38268929 PMCID: PMC10807450 DOI: 10.2147/idr.s448213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Fungal infections represent a constant and growing menace to public health. This concern is due to the emergence of new fungal species and the increase in antifungal drug resistance. Mycoses caused by Candida species are among the most common nosocomial infections and are associated with high mortality rates when the infection affects deep-seated organs. Candida metapsilosis is part of the Candida parapsilosis complex and has been described as part of the oral microbiota of healthy individuals. Within the complex, this species is considered the least virulent; however, the prevalence has been increasing in recent years, as well as an increment in the resistance to some antifungal drugs. One of the main concerns of candidiasis caused by this species is the wide range of clinical manifestations, ranging from tissue colonization to superficial infections, and in more severe cases it can spread, which makes diagnosis and treatment difficult. The study of virulence factors of this species is limited, however, proteomic comparisons between species indicate that virulence factors in this species could be similar to those already described for C. albicans. However, differences may exist, taking into account changes in the lifestyle of the species. Here, we provide a detailed review of the current literature about this organism, the caused disease, and some sharing aspects with other members of the complex, focusing on its biology, virulence factors, the host-fungus interaction, the identification, diagnosis, and treatment of infection.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Dario A Baruch-Martínez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| |
Collapse
|
4
|
Borman AM, Johnson EM. Changes in fungal taxonomy: mycological rationale and clinical implications. Clin Microbiol Rev 2023; 36:e0009922. [PMID: 37930182 PMCID: PMC10732072 DOI: 10.1128/cmr.00099-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 11/07/2023] Open
Abstract
Numerous fungal species of medical importance have been recently subjected to and will likely continue to undergo nomenclatural changes as a result of the application of molecular approaches to fungal classification together with abandonment of dual nomenclature. Here, we summarize those changes affecting key groups of fungi of medical importance, explaining the mycological (taxonomic) rationale that underpinned the changes and the clinical relevance/importance (where such exists) of the key nomenclatural revisions. Potential mechanisms to mitigate unnecessary taxonomic instability are suggested, together with approaches to raise awareness of important changes to minimize potential clinical confusion.
Collapse
Affiliation(s)
- Andrew M. Borman
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| | - Elizabeth M. Johnson
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Mohammadi F, Charkhchian M, Mirzadeh M. Phenotypic and genotypic characterization of virulence markers and antifungal susceptibility of oral Candida species from diabetic and non-diabetic hemodialysis patients. BMC Oral Health 2023; 23:261. [PMID: 37143002 PMCID: PMC10157964 DOI: 10.1186/s12903-023-02970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Patients with chronic kidney disease undergoing hemodialysis are often colonized by Candida species with high possibility of fungal infections. The purposes of this study were to determine the prevalence of Candida species, evaluate antifungal susceptibility profile, biofilm formation, proteinase and phospholipase activities, and the frequency of virulence genes in the Candida species isolated from the oral mucosa of hemodialysis diabetic (DM) and non-diabetic (non-DM) patients. METHODS This study identified several species of Candida isolated from 69 DM and 58 non-DM patients on hemodialysis using phenotypic methods and PCR-RFLP technique. The identification of C. albicans and C. glabrata complex was performed by HWP1 gene and four oligonucleotides (UNI-5.8S, GLA-f, BRA-f, and NIV-f), respectively. Antifungal susceptibility to amphotericin B, fluconazole, itraconazole, voriconazole, and caspofungin was assessed according to CLSI M27-A3/S4. The biomass, metabolic activity of biofilm, proteinase (Prz), phospholipase (Pz), and molecular study for virulence genes were assessed using crystal violet, XTT assay, agar-based hydrolytic enzyme, and PCR technique, respectively. RESULTS Candida prevalence was 44.9% with 47.8% and 41.4% among DM and non-DM patients, respectively (P = .045). The species identified were C. albicans (49.5%), C. glabrata (16.5%), C. tropicalis (12%), C. kefyr (8.8%), C. parapsilosis (6.6%), C. dubliniensis (3.3%), and C. lusitaniae (3.3%). The antifungal susceptibility profile showed that all Candida isolates were sensitive to amphotericin B, itraconazole, voriconazole, and caspofungin whereas fluconazole resistance was observed in 6.3% (MIC ≥ 64 μg/mL) of C. albicans and 6.6% of C. glabrata (MIC ≥ 64 μg/mL). The susceptible- dose-dependent rate was found in 10.5% of C. albicans. The Prz values of C. albicans ranged from 0.37 to 0.66 for the DM and 0.44-0.73 for the non-DM group (P < 0.05). The non-albicans Candida (NAC) species produced higher degree of biomass and metabolic activity compared to C. albicans (P < 0.05). Furthermore, significant (p < 0.05) correlations were detected between the biofilm formation with Prz values and fluconazole MICs. The most detected virulence factors were ALS3 and Sap5. CONCLUSIONS These results showed the importance of prevalence of NAC species in hemodialysis patients. Investigating antifungal susceptibility profile made a better understanding of the role of virulence markers in the pathogenesis of Candida strains.
Collapse
Affiliation(s)
- Faezeh Mohammadi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
- Department of Medical Parasitology and Mycology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Maliheh Charkhchian
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Monirsadat Mirzadeh
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
6
|
Mnichowska-Polanowska M, Adamowicz M, Wojciechowska-Koszko I, Kisiel A, Wojciuk B, Jarosz K, Dołęgowska B. Molecular Investigation of the Fatal Bloodstream Candida orthopsilosis Infection Case following Gastrectomy. Int J Mol Sci 2023; 24:ijms24076541. [PMID: 37047514 PMCID: PMC10094972 DOI: 10.3390/ijms24076541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Candida orthopsilosis represents a closely related cryptic genospecies of Candida parapsilosis complex-misidentified in routine diagnostic assays. This is emerging in settings where central venous catheters, invasive medical interventions, and echinocandin treatments are most likely to be used. A 59-year-old, non-neutropenic male patient, was admitted to an intensive care unit (ICU) due to respiratory distress syndrome, following a partial gastrectomy. As a result of duodenal stump leakage, re-laparotomy was required, abdominal drains were provided and central line catheters were exchanged. Multiple isolates of Candida orthopsilosis drawn from consecutive blood cultures were identified, despite ongoing echinocandin therapy and confirmed in vitro echinocandins susceptibility of the isolated strain. Species identification was verified via ITS region sequencing. Herein, we report the well-documented—per clinical data and relevant laboratory diagnosis—first case of a bloodstream infection caused by Candida orthopsilosis in Poland.
Collapse
|
7
|
Codreanu SI, Ciurea CN. Candida spp. DNA Extraction in the Age of Molecular Diagnosis. Microorganisms 2023; 11:microorganisms11040818. [PMID: 37110241 PMCID: PMC10143247 DOI: 10.3390/microorganisms11040818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
The standard procedure for the detection of candidemia is blood culture, a method that might require 3-5 days for a positive result. Compared with culturing, molecular diagnosis techniques can provide faster diagnosis. The current paper aimed to present the main strengths and constraints of current molecular techniques for Candida spp. DNA extraction, analyzing their efficiency from a time, price, and ease of usage point of view. A comprehensive search was conducted using the PubMed NIH database for peer-reviewed full-text articles published before October 2022. The studies provided adequate data on the diagnosis of the infection with the Candida spp. DNA extraction is a relevant step in yielding pure qualitative DNA to be amplified in molecular diagnostic techniques. The most used fungal DNA extraction strategies are: mechanical (bead beating, ultrasonication, steel-bullet beating), enzymatic (proteinase K, lysozyme, lyticase), and chemical extraction (formic acid, liquid nitrogen, ammonium chloride). More clinical studies are needed to formulate adequate guidelines for fungal DNA extraction as the current paper highlighted discrepancies in the reported outcome.
Collapse
Affiliation(s)
- Smaranda Ioana Codreanu
- Faculty of Medicine, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | - Cristina Nicoleta Ciurea
- Department of Microbiology, Faculty of Medicine, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| |
Collapse
|
8
|
Klesiewicz K, Mrowiec P, Kania K, Skiba-Kurek I, Białecka J, Namysł M, Małek M. Prevalence of Closely Related Candida albicans Species among Patients with Vulvovaginal Candidiasis in Southern Poland Based on the hwp1 Gene Amplification. Pol J Microbiol 2023; 72:69-77. [PMID: 36929889 DOI: 10.33073/pjm-2023-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Candida albicans remains the most common species isolated from women with vulvovaginal candidiasis. However, closely related species such as Candida africana and Candida dubliniensis may also occur, although they are often misidentified. The aim of the study was to confirm the phenotypic identification of C. albicans and its closely related species isolated from women with genital tract infections by amplification of the hwp1 (hyphal wall protein 1) gene in a PCR assay. We report a detailed molecular identification of C. albicans and its closely related species among 326 patients in the Małopolska region, Poland. Initial phenotypic identifications were confirmed by amplification of the hwp1 gene. Based on molecular analysis, we revealed 307 strains (94.17%) as C. albicans and 17 as C. dubliniensis (5.22%). No strain of C. africana was detected. Two patients h ad co-infection with C. albicans and C. dubliniensis (0.61%). A PCR assay targeting the hwp1 gene was reliable for correctly identifying species among the C. albicans complex.
Collapse
Affiliation(s)
- Karolina Klesiewicz
- 1Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Cracow, Poland
| | - Paulina Mrowiec
- 1Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Kania
- 1Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Cracow, Poland
| | - Iwona Skiba-Kurek
- 1Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Cracow, Poland
| | - Joanna Białecka
- 1Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Cracow, Poland
- 2Centre of Microbiological Research and Autovaccines, Cracow, Poland
| | | | - Marianna Małek
- 1Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
9
|
Khaksar Baniasadi A, Ayatollahi Mosavi SA, Sharifi I, Bamorovat M, Salari S, Ahmadi A, Amanizadeh A, Agha Kuchak Afshari S. Vulvovaginal candidiasis in Iranian women: Molecular identification and antifungal susceptibility pattern. J Obstet Gynaecol Res 2022; 48:3292-3303. [PMID: 36184563 DOI: 10.1111/jog.15442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
AIM Vulvovaginal candidiasis (VVC), is a common fungal infection that remains a global concern. The objectives of this study were molecular identification and assessment of the antifungal susceptibility profile of Candida species, causing VVC in southeast Iran. METHODS A cross-sectional investigation was carried out on 119 nonpregnant females suspected of VVC between February 2019 and May 2021. Yeast samples were characterized to the species level by conventional and molecular methods. All Candida isolates were examined for in vitro susceptibility profile to six conventional antifungal drugs using Clinical and Laboratory Standards Institute guidelines. RESULTS Out of 119 subjects, 52 (43.7%) cases were affected by VVC, out of whom 11 (21.15%) cases had recurrent vulvovaginal candidiasis (RVVC). The species distribution was as follows; Candida albicans (n = 21; 40.4%), C. glabrata (n = 11; 21.2%), C. tropicalis (n = 9; 17.3%), C. parapsilosis (n = 5; 9.7%), C. africana (n = 3; 5.7%), C. famata (n = 1; 1.9%), C. lusitaniae (n = 1; 1.9%), and C. dubliniensis (n = 1; 1.9%). The resistance rate of Candida isolates to fluconazole, itraconazole, and voriconazole were 15.38%, 11.5%, and 3.8%, respectively. Resistance to fluconazole was obtained in 46% (5/11) of RVVC cases but only in 7% (3/41) of VVC cases. CONCLUSION This study demonstrated that the majority of VVC cases were caused by non-albicans Candida species which also were resistant to some antifungal agents. Hence, our findings revealed the importance of conducting periodical epidemiological studies to determine changes in species distribution. Moreover, for effective management of treatment and infection, it is imperative to evaluate the susceptibility profiles of Candida species isolated from VVC patients.
Collapse
Affiliation(s)
- Ali Khaksar Baniasadi
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyyed Amin Ayatollahi Mosavi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Parasitology and Mycology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Samira Salari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Parasitology and Mycology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Atefeh Ahmadi
- Nursing Research Center, Department of Counseling in Midwifery, Razi Faculty of Nursing and Midwifery, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Amanizadeh
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Parasitology and Mycology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Setareh Agha Kuchak Afshari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Parasitology and Mycology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Soliman MF, Shetaia YM, Tayel AA, Munshi AM, Alatawi FA, Alsieni MA, Al-Saman MA. Exploring the Antifungal Activity and Action of Saussurea costus Root Extracts against Candida albicans and Non-albicans Species. Antibiotics (Basel) 2022; 11:antibiotics11030327. [PMID: 35326790 PMCID: PMC8944531 DOI: 10.3390/antibiotics11030327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/27/2022] Open
Abstract
The isolation and assessment of the active constituents in polar and non-polar crude extracts of Saussurea costus roots as antifungal agents, against Candida albicans and non-C. albicans (NAC) species, was the aim of this current investigation. The SEM “Scanning electron microscopy” imaging provided potential action modes of n-hexane extract (nhhE) toward Candida spp., whereas the TLC-DB “Thin layer chromatography-direct bioautography” was employed for detecting the anticandidal compounds. nhhE had the greatest biocidal activity against all strains and clinical isolates of Candida spp. with maximum zones of inhibition. SEM revealed the occurrence of irregular, dense inclusions of C. albicans cell walls after treatment with nhhE for 12 h. Complete morphological distortions with lysed membranes and deterioration signs appeared in most treated cells of C. parapsilosis. The most effectual compound with anticandidal activity was isolated using TLC-BD and identified as sesquiterpene by GC/MS analysis. The infra-red analysis revealed the presence of lactone ring stretching vibrations at 1766.72 cm−1. The anticandidal activity of nhhE of S. costus roots was confirmed from the results, and the treated cotton fabrics with nhhE of S. costus possessed observable activity against C. albicans. Data could recommend the practical usage of S. costus extracts, particularly nhhE, as influential natural bioactive sources for combating pathogenic Candida spp.
Collapse
Affiliation(s)
- Melad F. Soliman
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USsC), Sadat City 22857, Egypt; (M.F.S.); (M.A.A.-S.)
| | - Youssria M. Shetaia
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Ahmed A. Tayel
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: or
| | - Alaa M. Munshi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Mecca 24243, Saudi Arabia;
| | - Fuad A. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Mohammed A. Alsieni
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mahmoud A. Al-Saman
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USsC), Sadat City 22857, Egypt; (M.F.S.); (M.A.A.-S.)
| |
Collapse
|
11
|
Synthetic approaches for BF2-containing adducts of outstanding biological potential. A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Shokoohi G, Javidnia J, Mirhendi H, Rasekh-Jahromi A, Rezaei-Matehkolaei A, Ansari S, Maryami F, Goodarzi S, Romeo O. Molecular identification and antifungal susceptibility profiles of Candida dubliniensis and Candida africana isolated from vulvovaginal candidiasis: A single-centre experience in Iran. Mycoses 2021; 64:771-779. [PMID: 33811780 PMCID: PMC8251901 DOI: 10.1111/myc.13280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Background Vulvovaginal candidiasis (VVC) is a common and debilitating long‐term illness affecting million women worldwide. This disease is caused mainly by Candida albicans and a lesser extent by other species, including the two phylogenetically closely related pathogens Candida africana and Candida dubliniensis. Objectives In this study, we report detailed molecular epidemiological data about the occurrence of these two pathogenic yeasts in Iranian patients affected by VVC, or its chronic recurrent form (RVVC), and provide, for the first time, data on the antifungal activity of two new drugs, efinaconazole (EFN) and luliconazole (LUL). Methods A total of 133 vaginal yeast isolates, presumptively identified as Calbicans by phenotypic and restriction analysis of rDNA, were further analysed by using a specific molecular method targeting the HWP1 gene. All Cafricana and Cdubliniensis isolates were also tested for their in vitro susceptibility to a panel of modern and classical antifungal drugs. Results and Conclusions Based on the molecular results, among 133 germ‐tube positive isolates, we identify 119 Calbicans (89.47%), 11 Cafricana (8.27%) and 3 Cdubliniensis (2.26%) isolates. Cafricana and Cdubliniensis showed low MIC values for most of the antifungal drugs tested, especially for EFN and LUL, which exhibited a remarkable antifungal activity. High MIC values were observed only for nystatin and terbinafine. Although Calbicans remains the most common Candida species recovered from Iranian VVC/RVVC patients, our data show that its prevalence may be slightly overestimated due to the presence of difficult‐to‐identify closely related yeast, especially Cafricana.
Collapse
Affiliation(s)
- Gholamreza Shokoohi
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Zoonosis Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Javad Javidnia
- Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Athar Rasekh-Jahromi
- Department of Obstetrician and Gynecology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Rezaei-Matehkolaei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saham Ansari
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faeze Maryami
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Zoonosis Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Sahand Goodarzi
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Zoonosis Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
13
|
MALDI-TOF MS Overcomes Misidentification of the Uncommon Human Pathogen Candida famata by Routine Phenotypic Identification Methods. Curr Microbiol 2021; 78:1636-1642. [PMID: 33687510 DOI: 10.1007/s00284-021-02411-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Candida famata has been associated with the identifiable Candida infections that takes place in human and the identification error of this species possibly will result in misinterpretation of antifungal susceptibility and improper diagnosis; which will have a major effect on the prognosis and therapy of patients. Our objective is to correctly identify Candida spp. collected from patients at the intensive care units, New Cairo University teaching hospital in Cairo-Egypt using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Hundred clinically isolated yeast strains were identified using API 20C AUX obtained from patients receiving care at intensive care units. ATB FUNGUS 3 strips were used to detect the minimum inhibitory concentration. Thirty-three non duplicate strains identified as C. famata were subjected to re-identification by MALDI-TOF MS. Our results revealed that isolates were initially identified as C. famata 33%, C. tropicalis 15%, C. albicans 12% and C. parapsillosis 10% using the phenotypic techniques. MALDI-TOF MS analyses results showed that the 33 C. famata isolates are C. tropicalis (n = 29), Trichosporon asahii (n = 2), C. parapsilosis (n = 1), and Aeromonas sobria (n = 1). Antifungal resistance was low in the Candida species, except for reduced susceptibility to itraconazole among C. krusei strains. This report shows that misidentification of C. famata is frequent when using conventional phenotypic methods of identification which result in challenges in treating fungal infections. MALDI-TOF MS is an accurate convenient substitute to classical approaches for fungal identification. In general, antifungal multidrug resistance is uncommon in our studied Candida species and yeast isolates.
Collapse
|
14
|
Vulvovaginal Candidiasis: Epidemiology and Risk Factors, Pathogenesis, Resistance, and New Therapeutic Options. CURRENT FUNGAL INFECTION REPORTS 2021. [DOI: 10.1007/s12281-021-00415-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020; 11:14. [PMID: 32714773 PMCID: PMC7353689 DOI: 10.1186/s43008-020-00033-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
| | - M. Catherine Aime
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| | - Andrew N. Miller
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820-6970 USA
| | - Hiran A. Ariyawansa
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipe City, Taiwan
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Gianluigi Cardinali
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
| | - Pedro W. Crous
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Irina S. Druzhinina
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - David M. Geiser
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David L. Hawksworth
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ UK
- Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Kevin D. Hyde
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, 650201 Yunnan China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Rai, 50150 Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter R. Johnston
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Avenida da Engenharia, s/n Cidade Universitária, Recife, PE 50.740-600 Brazil
| | - Tom W. May
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004 Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia
| | - Vincent Robert
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60439 Frankfurt (Main); Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Andrey M. Yurkov
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| | - Conrad L. Schoch
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
16
|
abedzadeh hajar A, dakhili M, saghazadeh M, aghaei SS, Nazari R. Synergistic Antifungal Effect of Fluconazole Combined with ZnO Nanoparticles against Candida albicans Strains from Vaginal Candidiasis. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.3.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
17
|
Shi Y, Zhu Y, Fan S, Liu X, Liang Y, Shan Y. Molecular identification and antifungal susceptibility profile of yeast from vulvovaginal candidiasis. BMC Infect Dis 2020; 20:287. [PMID: 32393342 PMCID: PMC7216708 DOI: 10.1186/s12879-020-04985-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accurate identification Candida is important for successful therapy and epidemiology study. The aim of research is to study API 20C yeast identification system identification rate by using molecular identification as gold standard and tested the antifungal susceptibility of Candida from patients with vulvovaginal candidiasis (VVC). METHODS In total, 3574 yeast isolates were obtained from patients with VVC. API 20C yeast identification, molecular identification and in vitro antifungal susceptibility were performed. RESULTS C. albicans was the predominant Candida species [2748 isolates, 76.9%] in VVC. The isolates from vaginal samples represented 22 species based on molecular identification. The API 20C system identifies only 11 of the species encountered during the study period. Based on the API 20C system, 3273 (91.78%) isolates were correctly identified to the species level. The correct identification rate of the API 20C system for rare yeast was 15.29% (26/170 isolates). Antifungal susceptibility was tested in a total of 1844 isolates of Candida from patients with VVC. C. albicans was susceptible to most of the tested antifungals. The MICs of azoles for C. glabrata were higher than those for C. albicans. The MICs of echinocandins for C. parapsilosis were higher than those for C. albicans. CONCLUSIONS The API 20C yeast identification system can be used to reliably identify the most common Candida species while molecular methods are necessary for the identification of closely related, emerging, and rare yeast species. The results from this study suggest that much of the previous studies on the epidemiology of VVC should be re-thought. C. albicans was susceptible to most of the tested antifungals.
Collapse
Affiliation(s)
- Yu Shi
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.,Shenzhen Key Laboratory of Gynecological Diagnostic Technology Research, Shenzhen, 518036, China.,Anhui Medical University, Hefei, 230022, China
| | - Yuxia Zhu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.,Shenzhen Key Laboratory of Gynecological Diagnostic Technology Research, Shenzhen, 518036, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China. .,Shenzhen Key Laboratory of Gynecological Diagnostic Technology Research, Shenzhen, 518036, China. .,Anhui Medical University, Hefei, 230022, China.
| | - Xiaoping Liu
- Department of Laboratory Science, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yiheng Liang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.,Shenzhen Key Laboratory of Gynecological Diagnostic Technology Research, Shenzhen, 518036, China
| | - Yingying Shan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.,Shenzhen Key Laboratory of Gynecological Diagnostic Technology Research, Shenzhen, 518036, China
| |
Collapse
|
18
|
Solidago virgaurea L. Plant Extract Targeted Against Candida albicans to Reduce Oral Microbial Biomass: a Double Blind Randomized Trial on Healthy Adults. Antibiotics (Basel) 2020; 9:antibiotics9040137. [PMID: 32218125 PMCID: PMC7235725 DOI: 10.3390/antibiotics9040137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Oral microbiome plays an important part on oral health and endogenous bacteria and fungi should not be eradicated. However, their proliferation must be controlled by oral hygiene care. In vitro, Solidago virgaurea ssp. virgaurea L. (SV) plant extract inhibits the adherence and hyphal formation of a fungus, Candida albicans. It reduces the biomass of Candida-bacterial biofilms but not fungal or bacterial growth. Unlike chemical antiseptics, like triclosan and chlorhexidine for instance, SV is a plant extract easily biodegradable. The purpose of this study was to assess the in vivo effectiveness of SV extract in reducing oral biomass. A randomized, double-blind clinical study, with dental plaque evaluation designed to assess the effectiveness of a fluorinated toothpaste containing SV (Bucovia™, Givaudan, Vernier, Switzerland) was conducted. Sixty-six subjects (SV group n = 33 vs. control n = 33) brushed their teeth twice a day for a 4-week period. Supragingival dental plaque was sampled. Total bacterial load (broad spectral bacterial quantitative Polymerase Chain Reaction (qPCR)), C. albicans and seven bacterial species were quantified by qPCR. In the Intervention group, there was a decrease of Total bacterial load (ΔD0D28 p = 0.005 and ΔD14D28 p = 0.026), Streptococcus mutans (ΔD0D14 p = 0.024) and C. albicans (ΔD0D28 p = 0.022). In the Control group Total bacterial load tended to decrease from baseline to day 28 (ΔD0D28 p = 0.062 and ΔD14D28 p = 0.009). Plaque Index and Gingival Index improved in both groups.
Collapse
|
19
|
Differentiation of Candida albicans Species Complex by Tobacco Agar Obtained from Different Cigarette Brands Available in Colombia. Int J Microbiol 2020; 2020:5438967. [PMID: 32280345 PMCID: PMC7114770 DOI: 10.1155/2020/5438967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/18/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction. The Candida albicans complex is formed by Candida albicans, Candida dubliniensis, and a biovar of C. albicans named Candida africana. These yeasts are recognized as globally distributed clinical pathogens and share most phenotypic characteristics, which makes their discrimination by conventional methods difficult. Aim. To evaluate the efficacy of different brands of cigarettes in the preparation of tobacco agar, for the differentiation of these related yeasts. Methodology. Tobacco agar was prepared using six brands and four varieties of cigarettes, and 125 clinical isolates previously identified by PCR and Maldi-Tof were used. To determine whether the results of the microbiological tests were associated with similarities in the chemical components of cigarettes, thin-layer chromatography was performed. Results. Candida dubliniensis colonies presented hue differences according to the incubation temperature and the brand or variety of cigarette used, except in the tobacco agar produced with Marlboro Xpress cigarette, where its differentiation was not possible. The chromatograms showed few differences among apolar and medium polarity extract components. Conclusions. Tobacco agar is a low-cost tool used for the differentiation of Candida dubliniensis; however, incubation temperature and cigarette brand affect the performance of the media. No relationship was found between the microbiological results and the chemical similarity of the extracts of the cigarettes by chromatography.
Collapse
|
20
|
Cai S, Xu J, Shao Y, Gong J, Zhao F, He L, Shan X. Rapid identification of the Candida glabrata species complex by high-resolution melting curve analysis. J Clin Lab Anal 2020; 34:e23226. [PMID: 32048348 PMCID: PMC7307358 DOI: 10.1002/jcla.23226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/02/2023] Open
Abstract
Background Candida glabrata is a common pathogen that causes invasive candidiasis. Among non‐albicans Candida infections, C glabrata infections are associated with the highest fatality rates. Candida glabrata sensu stricto, Candida nivariensis, and Candida bracarensis have been identified and together form the C glabrata species complex. It is difficult to detect the two rare species by traditional laboratory methods. This study established a method for the rapid identification of members of the C glabrata species complex based on high‐resolution melting curve (HRM) analysis and evaluated its practical application. Methods The internal transcribed spacer (ITS) region was used as target gene region to design specific primers. HRM analysis was performed with three subspecies of the C glabrata species complex and negative controls to test its specificity and sensitivity. To evaluate its practical application, the HRM technique was tested with clinical isolates, and the results were compared with the DNA sequencing results. Results Differences were detected among the melting profiles of the members of the C glabrata species complex. The negative controls were not amplified, indicating the high specificity of the method. The minimum detection limits of C glabrata sensu stricto, C nivariensis, and C bracarensis were approximately 1 × 101 copies/µL or less. The results of the HRM analysis of the clinical isolates were consistent with the DNA sequencing results. Conclusions The HRM method is sensitive and can be used to rapidly identify the members of the C glabrata species complex. The method can allow early and targeted treatment of patients with invasive candidiasis.
Collapse
Affiliation(s)
- Shuqian Cai
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Zhejiang, China.,State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Public Health, Wuhan University of Science and Technology, Hubei, China
| | - Yakun Shao
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jie Gong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fei Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lihua He
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyun Shan
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Zhejiang, China
| |
Collapse
|
21
|
Salazar SB, Simões RS, Pedro NA, Pinheiro MJ, Carvalho MFNN, Mira NP. An Overview on Conventional and Non-Conventional Therapeutic Approaches for the Treatment of Candidiasis and Underlying Resistance Mechanisms in Clinical Strains. J Fungi (Basel) 2020; 6:E23. [PMID: 32050673 PMCID: PMC7151124 DOI: 10.3390/jof6010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Fungal infections and, in particular, those caused by species of the Candida genus, are growing at an alarming rate and have high associated rates of mortality and morbidity. These infections, generally referred as candidiasis, range from common superficial rushes caused by an overgrowth of the yeasts in mucosal surfaces to life-threatening disseminated mycoses. The success of currently used antifungal drugs to treat candidiasis is being endangered by the continuous emergence of resistant strains, specially among non-albicans Candida species. In this review article, the mechanisms of action of currently used antifungals, with emphasis on the mechanisms of resistance reported in clinical isolates, are reviewed. Novel approaches being taken to successfully inhibit growth of pathogenic Candida species, in particular those based on the exploration of natural or synthetic chemicals or on the activity of live probiotics, are also reviewed. It is expected that these novel approaches, either used alone or in combination with traditional antifungals, may contribute to foster the identification of novel anti-Candida therapies.
Collapse
Affiliation(s)
- Sara B. Salazar
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Rita S. Simões
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Nuno A. Pedro
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Maria Joana Pinheiro
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| | - Maria Fernanda N. N. Carvalho
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Nuno P. Mira
- Department of Bioengineering, Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (S.B.S.); (R.S.S.); (N.A.P.); (M.J.P.)
| |
Collapse
|
22
|
Identification of Cryptic Species of Four Candida Complexes in a Culture Collection. J Fungi (Basel) 2019; 5:jof5040117. [PMID: 31861048 PMCID: PMC6958398 DOI: 10.3390/jof5040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 01/11/2023] Open
Abstract
Candida spp. are one of the most common causes of fungal infections worldwide. The taxonomy of Candida is controversial and has undergone recent changes due to novel genetically related species. Therefore, some complexes of cryptic species have been proposed. In clinical settings, the correct identification of Candida species is relevant since some species are associated with high resistance to antifungal drugs and increased virulence. This study aimed to identify the species of four Candida complexes (C. albicans, C. glabrata, C. parapsilosis, and C. haemulonii) by molecular methods. This is the first report of six cryptic Candida species in Honduras: C. dubliniensis, C. africana, C. duobushaemulonii, C. orthopsilosis, and C. metapsilosis, and it is also the first report of the allele hwp1-2 of C. albicans sensu stricto. It was not possible to demonstrate the existence of C. auris among the isolates of the C. haemulonii complex. We also propose a simple method based on PCR-RFLP for the discrimination of the multi-resistant pathogen C. auris within the C. haemulonii complex.
Collapse
|
23
|
Hooks KB, O'Malley MA. Contrasting Strategies: Human Eukaryotic Versus Bacterial Microbiome Research. J Eukaryot Microbiol 2019; 67:279-295. [PMID: 31583780 PMCID: PMC7154641 DOI: 10.1111/jeu.12766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022]
Abstract
Most discussions of human microbiome research have focused on bacterial investigations and findings. Our target is to understand how human eukaryotic microbiome research is developing, its potential distinctiveness, and how problems can be addressed. We start with an overview of the entire eukaryotic microbiome literature (578 papers), show tendencies in the human‐based microbiome literature, and then compare the eukaryotic field to more developed human bacterial microbiome research. We are particularly concerned with problems of interpretation that are already apparent in human bacterial microbiome research (e.g. disease causality, probiotic interventions, evolutionary claims). We show where each field converges and diverges, and what this might mean for progress in human eukaryotic microbiome research. Our analysis then makes constructive suggestions for the future of the field.
Collapse
Affiliation(s)
- Katarzyna B Hooks
- CBiB, University of Bordeaux, Bordeaux, 33076, France.,CNRS/LaBRI, University of Bordeaux, Talence, 33405, France
| | - Maureen A O'Malley
- School of History and Philosophy of Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
24
|
Arastehfar A, Fang W, Al-Hatmi AMS, Afsarian MH, Daneshnia F, Bakhtiari M, Sadati SK, Badali H, Khodavaisy S, Hagen F, Liao W, Pan W, Zomorodian K, Boekhout T. Unequivocal identification of an underestimated opportunistic yeast species, Cyberlindnera fabianii, and its close relatives using a dual-function PCR and literature review of published cases. Med Mycol 2019; 57:833-840. [PMID: 30649481 PMCID: PMC6739237 DOI: 10.1093/mmy/myy148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/12/2018] [Accepted: 12/02/2018] [Indexed: 12/26/2022] Open
Abstract
Although Cyberlindnera fabinaii is a rare opportunist yeast species, its ability to cause septicemia, produce biofilm, and rapid acquisition of resistance to fluconazole and voriconazole, reinforced the urge for its identification from its closely related species. Widely used biochemical assays mainly identify Cyberlindnera fabinaii as Cyberlindnera jadinii and Wickerhamomyces anomalus, resulting in underestimation of this yeast in clinical settings. Moreover, the urge for a reliable molecular means of identification remains unsolved for 28 years. In order to unequivocally differentiate Cy. fabianii, Cy. mississipiensis, Cy. jadinii, and W. anomalus, we designed a dual-function multiplex polymerase chain reaction (PCR) assay. Challenging our dual-function multiplex PCR assay with 30 most clinically important yeast species, proved its specificity. Although conventional PCR could differentiate four target species, the real-time PCR counterpart due to Tm overlap misidentified Cy. mississipiensis as Cy. jadinii. Alongside of presenting a comprehensive literature review of published cases of Cy. fabianii from 1990 to 2018, we collected various clinical isolates from Tehran, Shiraz, and Fasa (July 1, 2017, to December 31, 2017) to find a passive relative distribution of these closely-related species in Iran. Subjecting our Iranian collection of yeast isolates to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS and LSU and ITS rDNA sequencing revealed six isolates of Cy. fabianii (central venous catheter n = 2 and vaginal swabs n = 4) and one isolate of Cy. jadinii (vaginal swabs). Due to the use of biochemical assays in global ARTEMIS study, we encourage reidentification of clinical isolates of Cy. jadinii and Cy. jadinii using MALDI-TOF or Sanger sequencing that might lead to correcting the distribution of this fungus.
Collapse
Affiliation(s)
- Amir Arastehfar
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Wenjie Fang
- Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Abdullah M S Al-Hatmi
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- Ministry of Health, Directorate General of Health Services, Ibri, Oman
| | | | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Mina Bakhtiari
- Basic Sciences in Infectious Diseases Research Center, and Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Khanjari Sadati
- Basic Sciences in Infectious Diseases Research Center, and Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Department of Medical Mycology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Wanqing Liao
- Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, and Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Arikan-Akdagli S, Gülmez D, Doğan Ö, Çerikçioğlu N, Doluca Dereli M, Birinci A, Yıldıran ŞT, Ener B, Öz Y, Metin DY, Hilmioğlu-Polat S, Kalkancı A, Koç N, Erturan Z, Fındık D. First multicentre report of in vitro resistance rates in candidaemia isolates in Turkey. J Glob Antimicrob Resist 2019; 18:230-234. [DOI: 10.1016/j.jgar.2019.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022] Open
|
26
|
Franco-Duarte R, Černáková L, Kadam S, Kaushik KS, Salehi B, Bevilacqua A, Corbo MR, Antolak H, Dybka-Stępień K, Leszczewicz M, Relison Tintino S, Alexandrino de Souza VC, Sharifi-Rad J, Coutinho HDM, Martins N, Rodrigues CF. Advances in Chemical and Biological Methods to Identify Microorganisms-From Past to Present. Microorganisms 2019; 7:E130. [PMID: 31086084 PMCID: PMC6560418 DOI: 10.3390/microorganisms7050130] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
Fast detection and identification of microorganisms is a challenging and significant feature from industry to medicine. Standard approaches are known to be very time-consuming and labor-intensive (e.g., culture media and biochemical tests). Conversely, screening techniques demand a quick and low-cost grouping of bacterial/fungal isolates and current analysis call for broad reports of microorganisms, involving the application of molecular techniques (e.g., 16S ribosomal RNA gene sequencing based on polymerase chain reaction). The goal of this review is to present the past and the present methods of detection and identification of microorganisms, and to discuss their advantages and their limitations.
Collapse
Affiliation(s)
- Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal.
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - Snehal Kadam
- Ramalingaswami Re-entry Fellowship, Department of Biotechnology, Government of India, India.
| | - Karishma S Kaushik
- Ramalingaswami Re-entry Fellowship, Department of Biotechnology, Government of India, India.
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 14665-354, Iran.
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, 71121 Foggia, Italy.
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, 71121 Foggia, Italy.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Katarzyna Dybka-Stępień
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Martyna Leszczewicz
- Laboratory of Industrial Biotechnology, Bionanopark Ltd, Dubois 114/116, 93-465 Lodz, Poland.
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, 63105-000 Crato, Brazil.
| | | | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, 63105-000 Crato, Brazil.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Célia F Rodrigues
- LEPABE⁻Dep. of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
27
|
Arastehfar A, Daneshnia F, Kord M, Roudbary M, Zarrinfar H, Fang W, Hashemi SJ, Najafzadeh MJ, Khodavaisy S, Pan W, Liao W, Badali H, Rezaie S, Zomorodian K, Hagen F, Boekhout T. Comparison of 21-Plex PCR and API 20C AUX, MALDI-TOF MS, and rDNA Sequencing for a Wide Range of Clinically Isolated Yeast Species: Improved Identification by Combining 21-Plex PCR and API 20C AUX as an Alternative Strategy for Developing Countries. Front Cell Infect Microbiol 2019; 9:21. [PMID: 30828570 PMCID: PMC6385604 DOI: 10.3389/fcimb.2019.00021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/22/2019] [Indexed: 12/31/2022] Open
Abstract
Occurrence of non-Candida albicans Candida (NCAC) species that are associated with elevated MIC values and therapeutic failures are increasing. As a result, timely and accurate means of identification to the species level is becoming an essential part of diagnostic practices in clinical settings. In this study, 301 clinically isolated yeast strains recovered from various anatomical sites [Blood (n = 145), other sites (n = 156)] were used to assess the accuracy and practicality of API 20C AUX and 21-plex PCR compared to MALDI-TOF MS and large subunit rDNA (LSU rDNA). MALDI-TOF MS correctly identified 98.33% of yeast isolates, 100% of top five Candida species, 95.7% of rare yeast species, while 1.3% of isolates were misidentified. API 20C AUX correctly identified 83.7% of yeast isolates, 97.2% of top five Candida species, 61.8% of rare yeast species, while 16.2% of yeast isolates were misidentified. The 21-plex PCR, accurately identified 87.3% of yeast isolates, 100% of top five Candida species, 72% of rare yeast species, but it misidentified 1.3% of rare yeast species while 9.9% of whole yeast isolates were not identified. The combination of rapidity of 21-plex PCR and comprehensiveness of API 20C AUX, led to correct identification of 92% of included yeast isolates. Due to expensiveness of MALDI-TOF MS and sequencing, this combination strategy could be the most accurate and inexpensive alternative identification strategy for developing countries. Moreover, by the advent and development of cost-effective, reliable, and rapid PCR machines that cost 130 US dollars, 21-plex could be integrated in routine laboratories of developing and resource-limited countries to specifically identify 95% causative agents of yeast-related infections in human. Databases of MALDI-TOF MS, API 20C AUX, and the number of target species identified by 21-plex require further improvement to keep up with the diverse spectrum of yeast species.
Collapse
Affiliation(s)
- Amir Arastehfar
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Farnaz Daneshnia
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Mohammad Kord
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Roudbary
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Sayed Jamal Hashemi
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran.,Zoonoses Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hamid Badali
- Department of Medical Mycology, Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sassan Rezaie
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ferry Hagen
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Teun Boekhout
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,Yeast Biodiversity Department, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Małek M, Mrowiec P, Klesiewicz K, Skiba-Kurek I, Szczepański A, Białecka J, Żak I, Bogusz B, Kędzierska J, Budak A, Karczewska E. Prevalence of human pathogens of the clade Nakaseomyces in a culture collection-the first report on Candida bracarensis in Poland. Folia Microbiol (Praha) 2018; 64:307-312. [PMID: 30361876 PMCID: PMC6529382 DOI: 10.1007/s12223-018-0655-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Human pathogens belonging to the Nakaseomyces clade include Candida glabrata sensu stricto, Candida nivariensis and Candida bracarensis. Their highly similar phenotypic characteristics often lead to misidentification by conventional laboratory methods. Therefore, limited information on the true epidemiology of the Candida glabrata species complex is available. Due to life-threatening infections caused by these species, it is crucial to supplement this knowledge. The aim of the study was to estimate the prevalence of C. bracarensis and C. nivariensis in a culture collection of C. glabrata complex isolates. The study covered 353 isolates identified by biochemical methods as C. glabrata, collected from paediatric and adult patients hospitalised at four medical centres in Southern Poland. The multiplex PCR was used to identify the strains. Further species confirmation was performed via sequencing and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) analysis. One isolate was recognised as C. bracarensis (0.28%). To our knowledge, it is the first isolate in Poland. C. glabrata sensu stricto species has been confirmed for all the remaining isolates. No C. nivariensis was found. Our study has shown that the prevalence of C. nivariensis and C. bracarensis strains is infrequent. However, it should be emphasised that the incidence of these strains may differ locally and depend on environmental factors and the population.
Collapse
Affiliation(s)
- Marianna Małek
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| | - Paulina Mrowiec
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| | - Karolina Klesiewicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Iwona Skiba-Kurek
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Adrian Szczepański
- Department of Microbiology, University Hospital in Kraków, Kraków, Poland
| | - Joanna Białecka
- Centre for Microbiological Research and Autovaccines, Kraków, Poland
| | - Iwona Żak
- Department of Microbiology, University Children's Hospital of Kraków, Kraków, Poland
| | - Bożena Bogusz
- Department of Microbiology, Ludwik Rydygier Memorial Hospital in Kraków, Kraków, Poland
| | - Jolanta Kędzierska
- Department of Microbiology, University Hospital in Kraków, Kraków, Poland
| | - Alicja Budak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Elżbieta Karczewska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| |
Collapse
|
29
|
Arastehfar A, Fang W, Pan W, Liao W, Yan L, Boekhout T. Identification of nine cryptic species of Candida albicans, C. glabrata, and C. parapsilosis complexes using one-step multiplex PCR. BMC Infect Dis 2018; 18:480. [PMID: 30253748 PMCID: PMC6156947 DOI: 10.1186/s12879-018-3381-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 09/13/2018] [Indexed: 01/24/2023] Open
Abstract
Background Candida albicans, Candida glabrata, and Candida parapsilosis are three prevalent causes of candidiasis, worldwide. These species are considered as nine medically important complex species. Limited knowledge about these newly recognized species prompted us to develop a one-step, multiplex PCR to detect and identify them in clinical settings. Methods Primers targeting Hyphal Wall Protein I gene for the C. albicans, C. dubliniensis, C. africana, Intergenic Spacer for the C. glabrata, C. nivariensis, C. bracarensis, and Intein and ITS rDNA for the C. parapsilosis, C. orthopsilosis, and C. metapsilosis were designed. Using 168 CBS reference strains and 280 clinical isolates, the specificity and reproducibility of the developed assay were evaluated. Results Our developed assay successfully identified and distinguished all the nine species. No cross-reaction with closely- and distantly-related yeast species, Aspergillus species and human DNA was observed, resulting in 100% specificity. The ambiguous results obtained by MALDI-TOF for C. albicans and C. africana were corrected by our 9-plex PCR assay. This assay identified all the cryptic complex species from two test sets from Iran and China, correctly. Conclusions Our developed multiplex assay is accurate, specific, cost/time-saving, and works without the tedious DNA extraction steps. It could be integrated into routine clinical laboratories and as a reliable identification tool and has the potential to be implemented into epidemiological studies to broaden the limited knowledge of cryptic species complexes. Electronic supplementary material The online version of this article (10.1186/s12879-018-3381-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amir Arastehfar
- Westerdijk Fungal Biodiversity Institute, Utrecht, 3584, the Netherlands
| | - Wenjie Fang
- Westerdijk Fungal Biodiversity Institute, Utrecht, 3584, the Netherlands.,Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Liang Yan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, 3584, the Netherlands. .,Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China. .,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, 1012 WX, the Netherlands.
| |
Collapse
|
30
|
Arastehfar A, Fang W, Pan W, Lackner M, Liao W, Badiee P, Zomorodian K, Badali H, Hagen F, Lass-Flörl C, Boekhout T. YEAST PANEL multiplex PCR for identification of clinically important yeast species: stepwise diagnostic strategy, useful for developing countries. Diagn Microbiol Infect Dis 2018; 93:112-119. [PMID: 30377018 DOI: 10.1016/j.diagmicrobio.2018.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022]
Abstract
Identification of opportunistic yeasts in developing countries is mainly performed by phenotypic assays, which are time-consuming and prone to errors. Wrong species identification may result in suboptimal treatment and inaccurate epidemiological data. To improve rapidity and accuracy of species identification, a diagnostic strategy using a stepwise "YEAST PANEL multiplex PCR assays" targeting 21 clinically important yeast species of Candida, Trichosporon, Rhodotorula, Cryptococcus, and Geotrichum was designed. Four hundred CBS reference strains were used for optimization and specificity testing. Eight hundred clinical species were prepared in blinded sets for multiplex polymerase chain reaction (PCR) and matrix-assisted laser desorption time of flight mass spectrophotometry (MALDI-TOF MS) investigation. Results obtained from YEAST PANEL multiplex PCR assay were 100% consistent with those of MALDI-TOF MS. Utilization of pure colony testing showed distinct amplicons for each species, thus eliminating the need for DNA extraction. The targeted yeast species of this assay are responsible for 95% of the yeast infections. In conclusion, due to the high accuracy and coverage of a broad range of yeasts, this assay could be useful for identification in routine laboratories and epidemiological studies.
Collapse
Affiliation(s)
- Amir Arastehfar
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Wenjie Fang
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wanqing Liao
- Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Parisa Badiee
- Prof. Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, and Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China; Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
[Identification of Candida yeasts: Conventional methods and MALDI-TOF MS]. Rev Iberoam Micol 2018; 35:151-154. [PMID: 30078526 DOI: 10.1016/j.riam.2018.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Invasive fungal infections are increasing, and Candida yeasts are the main cause. Species other than Candida albicans are becoming more frequent, and some of them may have variable patterns of susceptibility to antifungal agents, making it important to identify them correctly. Conventional identification methods used by most laboratories may present with drawbacks. Mass spectrometry (MALDI-TOF MS) has emerged as an alternative method. AIMS The aim of this study was to evaluate the concordance of the identification, at species level, by conventional methods (API) and MALDI-TOF MS. METHODS The following species and number of isolates were studied: Candida parapsilosis (28), Candida glabrata (34), Candida krusei (24), Candida tropicalis (45), Candida guilliermondii (30), C. albicans (28), Candida dubliniensis (6), Candida kefyr (1), and Candida lipolytica (1) from the strain collection of Autonomous City of Buenos Aires Mycology Network (RMCABA). The strains C. parapsilosis 22019, C. glabrata 90030, C. krusei 6258 and C. albicans 68548 from the American Type Culture Collection (ATCC) were also included. Discrepancies were resolved by genotyping. RESULTS AND CONCLUSIONS The direct concordance between the conventional identification method and MALDI-TOF MS was 92.5% (186/201).
Collapse
|
32
|
Identification of Candida Species Isolated from Vulvovaginal Candidiasis Patients by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) in Yasuj Southwestern Iran. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.65359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Romo JA, Pierce CG, Esqueda M, Hung CY, Saville SP, Lopez-Ribot JL. In Vitro Characterization of a Biaryl Amide Anti-virulence Compound Targeting Candida albicans Filamentation and Biofilm Formation. Front Cell Infect Microbiol 2018; 8:227. [PMID: 30042929 PMCID: PMC6048184 DOI: 10.3389/fcimb.2018.00227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022] Open
Abstract
We have previously identified a small molecule compound, N-[3-(allyloxy)-phenyl]-4-methoxybenzamide (9029936), that exerts potent inhibitory activity against filamentation and biofilm formation by the Candida albicans SC5314 strain and represents a lead candidate for the development of anti-virulence approaches against C. albicans infections. Here we present data from a series of experiments to further characterize its in vitro activity and drug-like characteristics. We demonstrate the activity of this compound against a panel of C. albicans clinical isolates, including several displaying resistance to current antifungals; as well as against a set of C. albicans gain of function strains in key transcriptional regulators of antifungal drug resistance. The compound also inhibits filamentation and biofilm formation in the closely related species C. dubliniensis, but not C. glabrata or C. tropicalis. Combinatorial studies reveal the potential of compound 9029936 to be used together with currently available conventional antifungals. Results of serial passage experiments indicate that repeated exposure to this compound does not elicit resistance. Viability staining of C. albicans in the presence of high concentrations of compound 9029936 confirms that the compound is not toxic to fungal cells, and cytological staining using image flow cytometry analysis reveals that treatment with the lead compound affects hyphal length, with additional effects on cell wall and integrity of the membrane system. In vitro pharmacological profiling provides further evidence that the lead compound displays a safe profile, underscoring its excellent “drug-like” characteristics. Altogether these results confirm the potential of this compound to be further developed as a true anti-virulence agent for the treatment of C. albicans infections, including those refractory to treatment with conventional antifungal agents.
Collapse
Affiliation(s)
- Jesus A Romo
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Christopher G Pierce
- Department of Biology, University of the Incarnate Word, San Antonio, TX, United States
| | - Marisol Esqueda
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Chiung-Yu Hung
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Stephen P Saville
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Jose L Lopez-Ribot
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
34
|
Cordeiro RA, Sales JA, Ponte YBD, Mendes PBL, Serpa R, Evangelista AJ, Alencar LPD, Pereira-Neto WDA, Brilhante RSN, Sidrim JJC, Castelo-Branco DSCM, Rocha MFG. Phenotype-driven strategies for screening Candida parapsilosis complex for molecular identification. Braz J Microbiol 2018; 49 Suppl 1:193-198. [PMID: 29548715 PMCID: PMC6328843 DOI: 10.1016/j.bjm.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/12/2017] [Accepted: 11/16/2017] [Indexed: 11/21/2022] Open
Abstract
In this study, phenotypic methods presented >80% agreement with the molecular identification of 59 Candida parapsilosis complex. Growth at 15% NaCl or pH 7.0 significantly reduced cfu-counts of Candida orthopsilosis, suggesting these conditions may support the development of phenotypic methods for the differentiation of the cryptic species of C. parapsilosis complex.
Collapse
Affiliation(s)
- Rossana A Cordeiro
- Universidade Federal do Ceará, Departmento de Patologia e Medicina Legal, Programa de Pós-Graduação em Microbiologia Médica, Centro Médico Especializado em Micologia, Fortaleza, CE, Brazil
| | - Jamille A Sales
- Universidade Estatual do Ceará, Escola de Medicina Veterinária, Programa de Pós-Graduação em Ciências Veterinárias, Fortaleza, CE, Brazil
| | - Yago B de Ponte
- Universidade Estatual do Ceará, Escola de Medicina Veterinária, Programa de Pós-Graduação em Ciências Veterinárias, Fortaleza, CE, Brazil
| | - Patrícia B L Mendes
- Universidade Federal do Ceará, Departmento de Patologia e Medicina Legal, Programa de Pós-Graduação em Microbiologia Médica, Centro Médico Especializado em Micologia, Fortaleza, CE, Brazil
| | - Rosana Serpa
- Universidade Federal do Ceará, Departmento de Patologia e Medicina Legal, Programa de Pós-Graduação em Microbiologia Médica, Centro Médico Especializado em Micologia, Fortaleza, CE, Brazil
| | - Antônio J Evangelista
- Universidade Federal do Ceará, Departmento de Patologia e Medicina Legal, Programa de Pós-Graduação em Microbiologia Médica, Centro Médico Especializado em Micologia, Fortaleza, CE, Brazil
| | - Lucas P de Alencar
- Universidade Federal do Ceará, Departmento de Patologia e Medicina Legal, Programa de Pós-Graduação em Microbiologia Médica, Centro Médico Especializado em Micologia, Fortaleza, CE, Brazil
| | - Waldemiro de A Pereira-Neto
- Universidade Federal do Ceará, Departmento de Patologia e Medicina Legal, Programa de Pós-Graduação em Microbiologia Médica, Centro Médico Especializado em Micologia, Fortaleza, CE, Brazil
| | - Raimunda S N Brilhante
- Universidade Federal do Ceará, Departmento de Patologia e Medicina Legal, Programa de Pós-Graduação em Microbiologia Médica, Centro Médico Especializado em Micologia, Fortaleza, CE, Brazil.
| | - José J C Sidrim
- Universidade Federal do Ceará, Departmento de Patologia e Medicina Legal, Programa de Pós-Graduação em Microbiologia Médica, Centro Médico Especializado em Micologia, Fortaleza, CE, Brazil
| | - Débora S C M Castelo-Branco
- Universidade Federal do Ceará, Departmento de Patologia e Medicina Legal, Programa de Pós-Graduação em Microbiologia Médica, Centro Médico Especializado em Micologia, Fortaleza, CE, Brazil
| | - Marcos F G Rocha
- Universidade Federal do Ceará, Departmento de Patologia e Medicina Legal, Programa de Pós-Graduação em Microbiologia Médica, Centro Médico Especializado em Micologia, Fortaleza, CE, Brazil; Universidade Estatual do Ceará, Escola de Medicina Veterinária, Programa de Pós-Graduação em Ciências Veterinárias, Fortaleza, CE, Brazil
| |
Collapse
|
35
|
Durantini AM, Heredia DA, Durantini JE, Durantini EN. BODIPYs to the rescue: Potential applications in photodynamic inactivation. Eur J Med Chem 2017; 144:651-661. [PMID: 29289888 DOI: 10.1016/j.ejmech.2017.12.068] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
Abstract
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives have been proposed in several potential biomedical applications. BODIPYs absorb strongly in blue-green region with high fluorescence emission, properties that convert them in effective fluorophores in the field of biological labeling. However, BODIPY structures can be conveniently modified by heavy atoms substitution to obtain photosensitizers with applications in photodynamic therapy. Also, external heavy atoms effect can be used to increase the photodynamic activity of these compounds. In recent years, BODIPYs have been proposed as phototherapeutic agents for the photodynamic inactivation of microorganisms. Therefore, BODIPY structures need to be optimized to produce an efficient photocytotoxic activity. In this way, amphiphilic cationic BODIPYs can selectively bind to microbial cells, inducing an effective photokilling of pathogenic microbial cells. This review summarizes the attributes of BODIPY derivatives for applications as antimicrobial photosensitizing agents.
Collapse
Affiliation(s)
- Andrés M Durantini
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Daniel A Heredia
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Javier E Durantini
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
36
|
Ameen F, Moslem M, Al Tami M, Al-Ajlan H, Al-Qahtani N. Identification of Candida species in vaginal flora using conventional and molecular methods. J Mycol Med 2017; 27:364-368. [DOI: 10.1016/j.mycmed.2017.04.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/23/2017] [Accepted: 04/30/2017] [Indexed: 01/26/2023]
|
37
|
Scanone AC, Gsponer NS, Alvarez MG, Durantini EN. Photodynamic properties and photoinactivation of microorganisms mediated by 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin covalently linked to silica-coated magnetite nanoparticles. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.06.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, Billmyre RB, Bragulat MR, Cabañes FJ, Carbia M, Chakrabarti A, Chaturvedi S, Chaturvedi V, Chen M, Chowdhary A, Colom MF, Cornely OA, Crous PW, Cuétara MS, Diaz MR, Espinel-Ingroff A, Fakhim H, Falk R, Fang W, Herkert PF, Ferrer Rodríguez C, Fraser JA, Gené J, Guarro J, Idnurm A, Illnait-Zaragozi MT, Khan Z, Khayhan K, Kolecka A, Kurtzman CP, Lagrou K, Liao W, Linares C, Meis JF, Nielsen K, Nyazika TK, Pan W, Pekmezovic M, Polacheck I, Posteraro B, de Queiroz Telles F, Romeo O, Sánchez M, Sampaio A, Sanguinetti M, Sriburee P, Sugita T, Taj-Aldeen SJ, Takashima M, Taylor JW, Theelen B, Tomazin R, Verweij PE, Wahyuningsih R, Wang P, Boekhout T. Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the Cryptococcus Genus. mSphere 2017; 2:e00238-17. [PMID: 28875175 PMCID: PMC5577652 DOI: 10.1128/msphere.00238-17] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii. In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature "C. neoformans species complex" and "C. gattii species complex." Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances.
Collapse
Affiliation(s)
- Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | | | - Hamid Badali
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran
| | - Sebastien Bertout
- Unité Mixte Internationale Recherches Translationnelles sur l’Infection à VIH et les Maladies Infectieuses, Laboratoire de Parasitologie et Mycologie Médicale, UFR Pharmacie, Université Montpellier, Montpellier, France
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - M. Rosa Bragulat
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - F. Javier Cabañes
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mauricio Carbia
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Min Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Oliver A. Cornely
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Clinical Trials, University Hospital Cologne, Cologne, Germany
| | - Pedro W. Crous
- Phytopathology Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Maria S. Cuétara
- Department of Microbiology, Hospital Severo Ochoa, Madrid, Spain
| | - Mara R. Diaz
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, Florida, USA
- Rosentiel School of Marine and Atmospheric Science, Division of Marine Biology and Fisheries, University of Miami, Miami, Florida, USA
| | | | - Hamed Fakhim
- Department of Medical Parasitology and Mycology/Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir-David, Israel
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Patricia F. Herkert
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | | | - James A. Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Josepa Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Alexander Idnurm
- School of BioSciences, BioSciences 2, University of Melbourne, Melbourne, Australia
| | | | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Anna Kolecka
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Katrien Lagrou
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Carlos Linares
- Medical School, Universidad Miguel Hernández, Alicante, Spain
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tinashe K. Nyazika
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- Malawi-Liverpool-Wellcome Trust, College of Medicine, University of Malawi, Blantyre, Malawi
- School of Tropical Medicine, Liverpool, United Kingdom
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Flavio de Queiroz Telles
- Department of Communitarian Health, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Manuel Sánchez
- Medical School, Universidad Miguel Hernández, Alicante, Spain
| | - Ana Sampaio
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta dos Prados, Vila Real, Portugal
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Pojana Sriburee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo, Japan
| | - Saad J. Taj-Aldeen
- Mycology Unit, Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Koyadai, Tsukuba, Ibaraki, Japan
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Rok Tomazin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Paul E. Verweij
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, School of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Ping Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Teun Boekhout
- Institute of Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
39
|
Hazirolan G, Altun HU, Gumral R, Gursoy NC, Otlu B, Sancak B. Prevalence of Candida africana and Candida dubliniensis, in vulvovaginal candidiasis: First Turkish Candida africana isolates from vulvovaginal candidiasis. J Mycol Med 2017. [PMID: 28641919 DOI: 10.1016/j.mycmed.2017.04.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Candida africana and C. dubliniensis are closely related species of C. albicans. Current phenotypic methods are not suitable to accurately distinguish all the species belonging to the C. albicans complex. Several molecular-based methods have recently been designed for discriminating among closely related Candida species. The aim of this study was to establish the prevalence of C. dubliniensis and C. africana in vulvovaginal samples with phenotypic and genotypic methods. MATERIALS AND METHODS We re-examined 376 vulvovaginal C. albicans complex isolates. All the isolates were identified with morphological features and HWP1 gene polymorphisms. ITS and D1/D2 sequencing, carbohydrate assimilation, MALDI-TOF MS profiles and antifungal susceptibilities were evaluated for C. africana and C. dubliniensis isolates. RESULTS Of the 376 isolates, three C. africana and three C. dubliniensis isolates (0.8% and 0.8% prevalence, respectively) were identified by molecular methods (HPW1, ITS and D1/D2) Phenotypically, C. africana differed from C. albicans and C. dubliniensis by formation of no/rare pseudohyphae, absence of chlamydospores and, the development of turquoise green colonies on CHROMagar. MALDI-TOF MS and API ID 32C could not revealed C. africana isolates. C. africana and C. dubliniensis isolates showed very low MIC values for all the tested antifungals. DISCUSSION This first report of C. africana from Turkey provides additional data for epidemiological, phenotypic features and antimicrobial susceptibility profiles. This study also highlights the importance of using genotypic methods in combination with phenotypic methods.
Collapse
Affiliation(s)
- G Hazirolan
- Department of microbiology, Ankara Numune training and research hospital, Ulku Mahallesi Talatpasa Bulvari No:5 Altindag, 06100 Ankara, Turkey.
| | - H U Altun
- Department of medical microbiology, Turgut Ozal university faculty of medicine, Ayvalı Mah.,Gazze Cad No:7, 06010 Etlik-Keçiören-Ankara, Turkey
| | - R Gumral
- Department of microbiology, Gulhane military medical academy, GATA, 06010 Keçiören-Ankara, Turkey
| | - N C Gursoy
- Department of microbiology, faculty of medicine, university of Inönü, 44000 Üzümlü-Malatya Merkez-Malatya, Turkey
| | - B Otlu
- Department of microbiology, faculty of medicine, university of Inönü, 44000 Üzümlü-Malatya Merkez-Malatya, Turkey
| | - B Sancak
- Department of microbiology, faculty of medicine, university of Hacettepe, Hacettepe university medicine, faculty Sıhhiye, 06100, Ankara, Turkey
| |
Collapse
|
40
|
Mucci MJ, Cuestas ML, Landanburu MF, Mujica MT. Prevalence of Candida albicans, Candida dubliniensis and Candida africana in pregnant women suffering from vulvovaginal candidiasis in Argentina. Rev Iberoam Micol 2017; 34:72-76. [PMID: 28385421 DOI: 10.1016/j.riam.2016.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 05/23/2016] [Accepted: 09/13/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Vulvovaginal candidiasis (VVC) is a vulvovaginitis commonly diagnosed in gynecology care. In recent years, the taxonomy of the most important pathogenic Candida species, such as Candida albicans have undergone significant changes. AIMS This study examined the prevalence of C. albicans, Candida africana, and Candida dubliniensis in vaginal specimens from 210 pregnant women suffering from vulvovaginitis or having asymptomatic colonization. METHODS Phenotypic and molecular methods were used for the identification of the species. RESULTS During the studied period, 55 isolates of Candida or other yeasts were obtained from specimens collected from 52 patients suffering from vulvovaginitis (24.8%). C. albicans was the predominant Candida species in 42 isolates (80.7%), either alone or in combination with other species of the genus (5.7%, n=3). Additionally, nine isolates of C. albicans (50%) were obtained from asymptomatic patients (n=18). C. dubliniensis was the causative agent in 2 (3.8%) cases of VVC, and was also isolated in one asymptomatic patient. Molecular assays were carried out using specific PCR to amplify the ACT1-associated intron sequence of C. dubliniensis. The amplification of the HWP1 gene also correctly identified isolates of the species C. albicans and C. dubliniensis. No C. africana was isolated in this work. Some C. albicans isolates were either homozygous or heterozygous at the HWP1 locus. The distribution of heterozygous and homozygous C. albicans isolates at the HWP1 locus was very similar among patients suffering from VVC and asymptomatic patients (p=0.897). CONCLUSIONS The presence of C. albicans and C. dubliniensis, and the absence of C. africana in pregnant is noteworthy.
Collapse
Affiliation(s)
- María Josefina Mucci
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, CP 1246 Buenos Aires, Argentina
| | - María Luján Cuestas
- Instituto of Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Paraguay 2155, piso 11, CP 1121ABG Buenos Aires, Argentina
| | - María Fernanda Landanburu
- Instituto of Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Paraguay 2155, piso 11, CP 1121ABG Buenos Aires, Argentina
| | - María Teresa Mujica
- Instituto of Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Paraguay 2155, piso 11, CP 1121ABG Buenos Aires, Argentina.
| |
Collapse
|
41
|
Agazzi ML, Ballatore MB, Reynoso E, Quiroga ED, Durantini EN. Synthesis, spectroscopic properties and photodynamic activity of two cationic BODIPY derivatives with application in the photoinactivation of microorganisms. Eur J Med Chem 2017; 126:110-121. [DOI: 10.1016/j.ejmech.2016.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/19/2016] [Accepted: 10/01/2016] [Indexed: 10/20/2022]
|
42
|
Abastabar M, Hosseinpoor S, Hedayati MT, Shokohi T, Valadan R, Mirhendi H, Mohammadi R, Aghili SR, Rahimi N, Aslani N, Haghani I, Gholami S. Hyphal wall protein 1 gene: A potential marker for the identification of different Candida species and phylogenetic analysis. Curr Med Mycol 2016; 2:1-8. [PMID: 28959789 PMCID: PMC5611690 DOI: 10.18869/acadpub.cmm.2.4.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Hyphal wall protein 1 (HWP1) is an important adhesin which usually is expressed on the germ tube and hyphal surface produced by different Candida species. The hyphal wall protein-coding gene (HWP1) was evaluated as a novel identification and phylogenetic marker in Candida tropicalis, C. orthopsilosis, C. parapsilosis and C. glabrata. MATERIALS AND METHODS Initially, four specific primer pairs were designed, and the target was amplified and finally sequenced. A total of 77 Candida isolates from four different species were included in the study. Consensus sequences were used for the evaluation of phylogenetic tree using the CLC Genome Workbench, GENEIOUS, and MEGA softwares and the levels of nucleotide and amino acid polymorphism were assessed. RESULTS According to the results, the specific amplified fragments of HWP1 gene were useful for the differentiation of four species. Intra-species variation was observed only in C. tropicalis with two DNA types. The phylogenetic tree of Candida species based on the HWP1 gene showed consistency in topology with those inferred from other gene sequences. CONCLUSION We found that HWP1 gene was an excellent marker for the identification of non-albicansCandida species as well as the phylogenetic analysis of the most clinically significant Candida species.
Collapse
Affiliation(s)
- M Abastabar
- Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - S Hosseinpoor
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - M T Hedayati
- Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - T Shokohi
- Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - R Valadan
- Molecular and Cell Biology Research Center (MCBRC), Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran.,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - H Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S R Aghili
- Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - N Rahimi
- Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - N Aslani
- Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - I Haghani
- Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - S Gholami
- Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
43
|
Identification of cryptic Candida species by MALDI-TOF mass spectrometry, not all MALDI-TOF systems are the same: focus on the C. parapsilosis species complex. Diagn Microbiol Infect Dis 2016; 86:385-386. [DOI: 10.1016/j.diagmicrobio.2016.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/25/2016] [Accepted: 08/31/2016] [Indexed: 11/19/2022]
|
44
|
Małek M, Paluchowska P, Bogusz B, Budak A. Molecular characterization of Candida isolates from intensive care unit patients, Krakow, Poland. Rev Iberoam Micol 2016; 34:10-16. [PMID: 27864011 DOI: 10.1016/j.riam.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/16/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Over the last decades, Candida species have emerged as important pathogens in immunocompromised patients. Nosocomial infections are mainly of endogenous origin. Nevertheless, some cases of exogenous candidiasis have also been reported. AIMS The aim of this study was to evaluate the genetic relatedness between Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei and Candida kefyr isolates recovered from intensive care unit (ICU) patients. METHODS A total of 132 Candida clinical isolates (62 C. albicans, 40 C. glabrata, 13 C. tropicalis, 11 C. krusei, 6 C. kefyr), obtained from specimens of endotracheal aspirate, urine and blood taken from patients of a tertiary hospital in Poland, were included in the study. Species identification was performed by PCR method and genetic relatedness was assessed by randomly amplified polymorphic DNA assay (RAPD) with five primers. RESULTS The RAPD analysis revealed high genetic diversity among the studied Candida isolates, indicating that most of the strains were from endogenous sources. Only two clonal strains of C. glabrata isolated from different patients were observed, suggesting a possible cross-transmission of these pathogens. CONCLUSIONS Our study confirmed the high discriminatory power of the RAPD assay. This genotyping method can be applied to local epidemiological studies of Candida species.
Collapse
Affiliation(s)
- Marianna Małek
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Paulina Paluchowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| | - Bożena Bogusz
- Microbiological Laboratory, Department of Laboratory Diagnostics, Ludwik Rydygier Memorial Hospital in Krakow, Poland
| | - Alicja Budak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
45
|
Neji S, Trabelsi H, Hadrich I, Cheikhrouhou F, Sellami H, Makni F, Ayadi A. Molecular study of the Candida parapsilosis complex in Sfax, Tunisia. Med Mycol 2016; 55:137-144. [PMID: 27555560 DOI: 10.1093/mmy/myw063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 03/04/2016] [Accepted: 06/25/2016] [Indexed: 11/14/2022] Open
Abstract
Candida parapsilosis, which was previously considered to be a complex of three genetically distinct groups, has emerged as a significant agent of nosocomial infections. Recently, this complex was separated into three species: C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis In Tunisia, data pertaining to these fungi are limited. Thus, the purpose of our study was to determine by BanI PCR-RFLP and ITS sequencing, the occurrence of Candida parapsilosis complex among 182 isolates identified as C. parapsilosis by phenotypical methods. C. parapsilosis sensu stricto represented 94.5% of all isolates, while C. metapsilosis and. C. orthopsilosis were identified in 3.3% and 2.2%, respectively. Sequence analysis of internal transcribed spacer region confirmed and revealed only one genotype among the C. parapsilosis sensu stricto strains, three genotypes among six C. metapsilosis strains and two genotypes among four C. orthopsilosis strains.
Collapse
Affiliation(s)
- Sourour Neji
- Laboratory of Parasitology-Mycology, Habib Bourguiba, University Hospital, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Tunisia
| | - Houaida Trabelsi
- Laboratory of Parasitology-Mycology, Habib Bourguiba, University Hospital, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Tunisia
| | - Ines Hadrich
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Tunisia
| | - Fatma Cheikhrouhou
- Laboratory of Parasitology-Mycology, Habib Bourguiba, University Hospital, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Tunisia
| | - Hayet Sellami
- Laboratory of Parasitology-Mycology, Habib Bourguiba, University Hospital, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Tunisia
| | - Fattouma Makni
- Laboratory of Parasitology-Mycology, Habib Bourguiba, University Hospital, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Tunisia
| | - Ali Ayadi
- Laboratory of Parasitology-Mycology, Habib Bourguiba, University Hospital, Sfax, Tunisia .,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Tunisia
| |
Collapse
|
46
|
Pemán J, Quindós G. Aspectos actuales de las enfermedades invasoras causadas por Candida y otros hongos levaduriformes. Rev Iberoam Micol 2016; 33:133-9. [DOI: 10.1016/j.riam.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/16/2015] [Indexed: 01/12/2023] Open
|
47
|
Recent Progress in the Diagnosis of Pathogenic Candida Species in Blood Culture. Mycopathologia 2016; 181:363-9. [PMID: 27003437 DOI: 10.1007/s11046-016-0003-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/13/2016] [Indexed: 01/23/2023]
Abstract
Candidemia has become an emerging invasive fungal disease. Prompt treatment with appropriate antifungal agent is crucial to reduce the mortality of candidemia. The conventional blood culture method, which is considered the gold standard for candidemia diagnosis, has a low sensitivity and is time-consuming to perform. Recently, several novel advanced diagnostic methods that have a higher sensitivity and a shorter turnaround time than the conventional blood culture method have been developed for the early detection of Candida in blood samples or in blood culture broth. Most of these newer methods were developed using various molecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, peptide nucleic acid fluorescence in situ hybridization, and a number of DNA-based techniques including in-house and commercial polymerase chain reactions. In this article, we review and summarize the novel molecular methods that have been recently used for the detection and identification of Candida organisms in blood specimens.
Collapse
|
48
|
Durantini EN. New insights into the antimicrobial blue light inactivation of Candida albicans. Virulence 2016; 7:493-4. [PMID: 26950053 DOI: 10.1080/21505594.2016.1160194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Edgardo N Durantini
- a Departamento de Química , Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Río Cuarto, Córdoba , Argentina
| |
Collapse
|
49
|
Chillemi V, Lo Passo C, van Diepeningen AD, Rharmitt S, Delfino D, Cascio A, Nnadi NE, Cilo BD, Sampaio P, Tietz HJ, Pemán J, Criseo G, Romeo O, Scordino F. Multilocus microsatellite analysis of European and African Candida glabrata isolates. Eur J Clin Microbiol Infect Dis 2016; 35:885-92. [DOI: 10.1007/s10096-016-2610-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/15/2016] [Indexed: 01/12/2023]
|
50
|
Ferreyra DD, Reynoso E, Cordero P, Spesia MB, Alvarez MG, Milanesio ME, Durantini EN. Synthesis and properties of 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl] chlorin as potential broad-spectrum antimicrobial photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:243-51. [PMID: 26994333 DOI: 10.1016/j.jphotobiol.2016.02.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 11/16/2022]
Abstract
A novel 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin (TAPC) was synthesized by reduction of the corresponding porphyrin TAPP with p-toluenesulfonhydrazide, followed by selective oxidation with o-chloranil. Spectroscopic properties and the photodynamic activity of these photosensitizers were compared in N,N-dimethylformamide. An increase in the absorption band at 650nm was found for the chlorin derivative with respect to TAPP. These photosensitizers emit red fluorescence with quantum yields of 0.15. Both compounds were able to photosensitize singlet molecular oxygen with quantum yields of about 0.5. Also, the formation of superoxide anion radical was detected in the presence of TAPC or TAPP and NADH. Photodynamic inactivation was investigated on a Gram-positive bacterium Staphylococcus aureus, a Gram-negative bacterium Escherichia coli and a fungal yeast Candida albicans cells. In vitro experiments showed that TAPC or TAPP were rapidly bound to microbial cells at short incubation periods. These photosensitizers, without intrinsic positive charges, contain four basic amino groups. These substituents can be protonated at physiological pH, increasing the interaction with the cell envelopment. Photosensitized inactivation improved with an increase of both photosensitizer concentrations and irradiation times. After 15min irradiation, a 7 log reduction of S. aureus was found for treated with 1μM photosensitizer. Similar result was obtained with E. coli after using 5μM photosensitizer and 30min irradiation. Also, the last conditions produced a decrease of 5 log in C. albicans cells. Therefore, TAPC was highly effective as a broad-spectrum antimicrobial photosensitizer.
Collapse
Affiliation(s)
- Darío D Ferreyra
- Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Eugenia Reynoso
- Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Paula Cordero
- Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Mariana B Spesia
- Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - M Gabriela Alvarez
- Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - M Elisa Milanesio
- Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|