1
|
Yan C, Jin G, Li L. Spinal scoliosis: insights into developmental mechanisms and animal models. Spine Deform 2024:10.1007/s43390-024-00941-9. [PMID: 39164474 DOI: 10.1007/s43390-024-00941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
Spinal scoliosis, a prevalent spinal deformity impacting both physical and mental well-being, has a significant genetic component, though the exact pathogenic mechanisms remain elusive. This review offers a comprehensive exploration of current research on embryonic spinal development, focusing on the genetic and biological intricacies governing axial elongation and straightening. Zebrafish, a vital model in developmental biology, takes a prominent role in understanding spinal scoliosis. Insights from zebrafish studies illustrate genetic and physiological aspects, including notochord development and cerebrospinal fluid dynamics, revealing the anomalies contributing to scoliosis. In this review, we acknowledge existing challenges, such as deciphering the unique dynamics of human spinal development, variations in physiological curvature, and disparities in cerebrospinal fluid circulation. Further, we emphasize the need for caution when extrapolating findings to humans and for future research to bridge current knowledge gaps. We hope that this review will be a beneficial frame of reference for the guidance of future studies on animal models and genetic research for spinal scoliosis.
Collapse
Affiliation(s)
- Chongnan Yan
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Guoxin Jin
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Lei Li
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
2
|
Lee MS, Han HJ, Choi TI, Lee KH, Baasankhuu A, Kim HT, Kim CH. IFT46 gene promoter-driven ciliopathy disease model in zebrafish. Front Cell Dev Biol 2023; 11:1200599. [PMID: 37363725 PMCID: PMC10285392 DOI: 10.3389/fcell.2023.1200599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Ciliopathies are human genetic disorders caused by abnormal formation and dysfunction of cellular cilia. Cilia are microtubule-based organelles that project into the extracellular space and transduce molecular and chemical signals from the extracellular environment or neighboring cells. Intraflagellar transport (IFT) proteins are required for the assembly and maintenance of cilia by transporting proteins along the axoneme which consists of complexes A and B. IFT46, a core IFT-B protein complex, is required for cilium formation and maintenance during vertebrate embryonic development. Here, we introduce transgenic zebrafish lines under the control of ciliated cell-specific IFT46 promoter to recapitulate human ciliopathy-like phenotypes. We generated a Tg(IFT46:GAL4-VP16) line to temporo-spatially control the expression of effectors including fluorescent reporters or nitroreductase based on the GAL4/UAS system, which expresses GAL4-VP16 chimeric transcription factors in most ciliated tissues during embryonic development. To analyze the function of IFT46-expressing ciliated cells during zebrafish development, we generated the Tg(IFT46:GAL4-VP16;UAS;nfsb-mCherry) line, a ciliated cell-specific injury model induced by nitroreductase (NTR)/metrodinazole (MTZ). Conditionally, controlled ablation of ciliated cells in transgenic animals exhibited ciliopathy-like phenotypes including cystic kidneys and pericardial and periorbital edema. Altogether, we established a zebrafish NTR/MTZ-mediated ciliated cell injury model that recapitulates ciliopathy-like phenotypes and may be a vertebrate animal model to further investigate the etiology and therapeutic approaches to human ciliopathies.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
- Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
| | - Hye-Jeong Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Republic of Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Amartuvshin Baasankhuu
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Republic of Korea
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Zhu P, Zheng P, Kong X, Wang S, Cao M, Zhao C. Rassf7a promotes spinal cord regeneration and controls spindle orientation in neural progenitor cells. EMBO Rep 2023; 24:e54984. [PMID: 36408859 PMCID: PMC9827555 DOI: 10.15252/embr.202254984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) can cause long-lasting disability in mammals due to the lack of axonal regrowth together with the inability to reinitiate spinal neurogenesis at the injury site. Deciphering the mechanisms that regulate the proliferation and differentiation of neural progenitor cells is critical for understanding spinal neurogenesis after injury. Compared with mammals, zebrafish show a remarkable capability of spinal cord regeneration. Here, we show that Rassf7a, a member of the Ras-association domain family, promotes spinal cord regeneration after injury. Zebrafish larvae harboring a rassf7a mutation show spinal cord regeneration and spinal neurogenesis defects. Live imaging shows abnormal asymmetric neurogenic divisions and spindle orientation defects in mutant neural progenitor cells. In line with this, the expression of rassf7a is enriched in neural progenitor cells. Subcellular analysis shows that Rassf7a localizes to the centrosome and is essential for cell cycle progression. Our data indicate a role for Rassf7a in modulating spindle orientation and the proliferation of neural progenitor cells after spinal cord injury.
Collapse
Affiliation(s)
- Panpan Zhu
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Pengfei Zheng
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Xinlong Kong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of PathophysiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuo Wang
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of PathophysiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chengtian Zhao
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| |
Collapse
|
4
|
Xie H, Li M, Kang Y, Zhang J, Zhao C. Zebrafish: an important model for understanding scoliosis. Cell Mol Life Sci 2022; 79:506. [PMID: 36059018 PMCID: PMC9441191 DOI: 10.1007/s00018-022-04534-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023]
Abstract
Scoliosis is a common spinal deformity that considerably affects the physical and psychological health of patients. Studies have shown that genetic factors play an important role in scoliosis. However, its etiopathogenesis remain unclear, partially because of the genetic heterogeneity of scoliosis and the lack of appropriate model systems. Recently, the development of efficient gene editing methods and high-throughput sequencing technology has made it possible to explore the underlying pathological mechanisms of scoliosis. Owing to their susceptibility for developing scoliosis and high genetic homology with human, zebrafish are increasingly being used as a model for scoliosis in developmental biology, genetics, and clinical medicine. Here, we summarize the recent advances in scoliosis research on zebrafish and discuss the prospects of using zebrafish as a scoliosis model.
Collapse
Affiliation(s)
- Haibo Xie
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Li
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yunsi Kang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China. .,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China. .,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
5
|
Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1236-1280. [PMID: 33893979 DOI: 10.1007/s11427-020-1915-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology, or Evo-Devo for short, has become an established field that, broadly speaking, seeks to understand how changes in development drive major transitions and innovation in organismal evolution. It does so via integrating the principles and methods of many subdisciplines of biology. Although we have gained unprecedented knowledge from the studies on model organisms in the past decades, many fundamental and crucially essential processes remain a mystery. Considering the tremendous biodiversity of our planet, the current model organisms seem insufficient for us to understand the evolutionary and physiological processes of life and its adaptation to exterior environments. The currently increasing genomic data and the recently available gene-editing tools make it possible to extend our studies to non-model organisms. In this review, we review the recent work on the regulatory signaling of developmental and regeneration processes, environmental adaptation, and evolutionary mechanisms using both the existing model animals such as zebrafish and Drosophila, and the emerging nonstandard model organisms including amphioxus, ascidian, ciliates, single-celled phytoplankton, and marine nematode. In addition, the challenging questions and new directions in these systems are outlined as well.
Collapse
|
6
|
Corkins ME, Krneta-Stankic V, Kloc M, Miller RK. Aquatic models of human ciliary diseases. Genesis 2021; 59:e23410. [PMID: 33496382 PMCID: PMC8593908 DOI: 10.1002/dvg.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/06/2022]
Abstract
Cilia are microtubule-based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes & Development, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston Texas 77030
| |
Collapse
|
7
|
Wang X, Wang S, Meng Z, Zhao C. Adrb1 and Adrb2b are the major β-adrenergic receptors regulating body axis straightening in zebrafish. J Genet Genomics 2020; 47:781-784. [PMID: 33558126 DOI: 10.1016/j.jgg.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/05/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Xiaoyu Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Shuo Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Zhaojun Meng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Chengtian Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Nesmith JE, Hostelley TL, Leitch CC, Matern MS, Sethna S, McFarland R, Lodh S, Westlake CJ, Hertzano R, Ahmed ZM, Zaghloul NA. Genomic knockout of alms1 in zebrafish recapitulates Alström syndrome and provides insight into metabolic phenotypes. Hum Mol Genet 2020; 28:2212-2223. [PMID: 31220269 DOI: 10.1093/hmg/ddz053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Alström syndrome (OMIM #203800) is an autosomal recessive obesity ciliopathy caused by loss-of-function mutations in the ALMS1 gene. In addition to multi-organ dysfunction, such as cardiomyopathy, retinal degeneration and renal dysfunction, the disorder is characterized by high rates of obesity, insulin resistance and early-onset type 2 diabetes mellitus (T2DM). To investigate the underlying mechanisms of T2DM phenotypes, we generated a loss-of-function deletion of alms1 in the zebrafish. We demonstrate conservation of hallmark clinical characteristics alongside metabolic syndrome phenotypes, including a propensity for obesity and fatty livers, hyperinsulinemia and glucose response defects. Gene expression changes in β-cells isolated from alms1-/- mutants revealed changes consistent with insulin hypersecretion and glucose sensing failure, which were corroborated in cultured murine β-cells lacking Alms1. We also found evidence of defects in peripheral glucose uptake and concomitant hyperinsulinemia in the alms1-/- animals. We propose a model in which hyperinsulinemia is the primary and causative defect underlying generation of T2DM associated with alms1 deficiency. These observations support the alms1 loss-of-function zebrafish mutant as a monogenic model for mechanistic interrogation of T2DM phenotypes.
Collapse
Affiliation(s)
- Jessica E Nesmith
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Timothy L Hostelley
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmen C Leitch
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maggie S Matern
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saumil Sethna
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca McFarland
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sukanya Lodh
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Marquette University, Department of Biological Sciences, Milwaukee, WI, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Membrane Trafficking and Signaling Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Norann A Zaghloul
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Xie H, Kang Y, Wang S, Zheng P, Chen Z, Roy S, Zhao C. E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genet 2020; 16:e1008655. [PMID: 32196499 PMCID: PMC7112233 DOI: 10.1371/journal.pgen.1008655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/01/2020] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
Abstract
E2f5 is a member of the E2f family of transcription factors that play essential roles during many cellular processes. E2f5 was initially characterized as a transcriptional repressor in cell proliferation studies through its interaction with the Retinoblastoma (Rb) protein for inhibition of target gene transcription. However, the precise roles of E2f5 during embryonic and post-embryonic development remain incompletely investigated. Here, we report that zebrafish E2f5 plays critical roles during spermatogenesis and multiciliated cell (MCC) differentiation. Zebrafish e2f5 mutants develop exclusively as infertile males. In the mutants, spermatogenesis is arrested at the zygotene stage due to homologous recombination (HR) defects, which finally leads to germ cell apoptosis. Inhibition of cell apoptosis in e2f5;tp53 double mutants rescued ovarian development, although oocytes generated from the double mutants were still abnormal, characterized by aberrant distribution of nucleoli. Using transcriptome analysis, we identified dmc1, which encodes an essential meiotic recombination protein, as the major target gene of E2f5 during spermatogenesis. E2f5 can bind to the promoter of dmc1 to promote HR, and overexpression of dmc1 significantly increased the fertilization rate of e2f5 mutant males. Besides gametogenesis defects, e2f5 mutants failed to develop MCCs in the nose and pronephric ducts during early embryonic stages, but these cells recovered later due to redundancy with E2f4. Moreover, we demonstrate that ion transporting principal cells in the pronephric ducts, which remain intercalated with the MCCs, do not contain motile cilia in wild-type embryos, while they generate single motile cilia in the absence of E2f5 activity. In line with this, we further show that E2f5 activates the Notch pathway gene jagged2b (jag2b) to inhibit the acquisition of MCC fate as well as motile cilia differentiation by the neighboring principal cells. Taken together, our data suggest that E2f5 can function as a versatile transcriptional activator and identify novel roles of the protein in spermatogenesis as well as MCC differentiation during zebrafish development.
Collapse
Affiliation(s)
- Haibo Xie
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yunsi Kang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Shuo Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Pengfei Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Zhe Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chengtian Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
10
|
Hau HTA, Ogundele O, Hibbert AH, Monfries CAL, Exelby K, Wood NJ, Nevarez-Mejia J, Carbajal MA, Fleck RA, Dermit M, Mardakheh FK, Williams-Ward VC, Pipalia TG, Conte MR, Hughes SM. Maternal Larp6 controls oocyte development, chorion formation and elevation. Development 2020; 147:dev187385. [PMID: 32054660 PMCID: PMC7055395 DOI: 10.1242/dev.187385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
La-related protein 6 (Larp6) is a conserved RNA-binding protein found across eukaryotes that has been suggested to regulate collagen biogenesis, muscle development, ciliogenesis, and various aspects of cell proliferation and migration. Zebrafish have two Larp6 family genes: larp6a and larp6b Viable and fertile single and double homozygous larp6a and larp6b zygotic mutants revealed no defects in muscle structure, and were indistinguishable from heterozygous or wild-type siblings. However, larp6a mutant females produced eggs with chorions that failed to elevate fully and were fragile. Eggs from larp6b single mutant females showed minor chorion defects, but chorions from eggs laid by larp6a;larp6b double mutant females were more defective than those from larp6a single mutants. Electron microscopy revealed defective chorionogenesis during oocyte development. Despite this, maternal zygotic single and double mutants were viable and fertile. Mass spectrometry analysis provided a description of chorion protein composition and revealed significant reductions in a subset of zona pellucida and lectin-type proteins between wild-type and mutant chorions that paralleled the severity of the phenotype. We conclude that Larp6 proteins are required for normal oocyte development, chorion formation and egg activation.
Collapse
Affiliation(s)
- Hoi Ting A Hau
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Oluwaseun Ogundele
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Andrew H Hibbert
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Clinton A L Monfries
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Katherine Exelby
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Natalie J Wood
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Jessica Nevarez-Mejia
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Maria Dermit
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Victoria C Williams-Ward
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Tapan G Pipalia
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| |
Collapse
|
11
|
Estrada-Cuzcano A, Etard C, Delvallée C, Stoetzel C, Schaefer E, Scheidecker S, Geoffroy V, Schneider A, Studer F, Mattioli F, Chennen K, Sigaudy S, Plassard D, Poch O, Piton A, Strahle U, Muller J, Dollfus H. Novel IQCE variations confirm its role in postaxial polydactyly and cause ciliary defect phenotype in zebrafish. Hum Mutat 2019; 41:240-254. [PMID: 31549751 DOI: 10.1002/humu.23924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
Abstract
Polydactyly is one of the most frequent inherited defects of the limbs characterized by supernumerary digits and high-genetic heterogeneity. Among the many genes involved, either in isolated or syndromic forms, eight have been implicated in postaxial polydactyly (PAP). Among those, IQCE has been recently identified in a single consanguineous family. Using whole-exome sequencing in patients with uncharacterized ciliopathies, including PAP, we identified three families with biallelic pathogenic variations in IQCE. Interestingly, the c.895_904del (p.Val301Serfs*8) was found in all families without sharing a common haplotype, suggesting a recurrent mechanism. Moreover, in two families, the systemic phenotype could be explained by additional pathogenic variants in known genes (TULP1, ATP6V1B1). RNA expression analysis on patients' fibroblasts confirms that the dysfunction of IQCE leads to the dysregulation of genes associated with the hedgehog-signaling pathway, and zebrafish experiments demonstrate a full spectrum of phenotypes linked to defective cilia: Body curvature, kidney cysts, left-right asymmetry, misdirected cilia in the pronephric duct, and retinal defects. In conclusion, we identified three additional families confirming IQCE as a nonsyndromic PAP gene. Our data emphasize the importance of taking into account the complete set of variations of each individual, as each clinical presentation could finally be explained by multiple genes.
Collapse
Affiliation(s)
- Alejandro Estrada-Cuzcano
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Christelle Etard
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Clarisse Delvallée
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Corinne Stoetzel
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Aline Schneider
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Fouzia Studer
- Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Francesca Mattioli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Kirsley Chennen
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Complex Systems and Translational Bioinformatics, ICube UMR 7357, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Sabine Sigaudy
- Département de Génétique Médicale, Hôpital de la Timone, Marseille, France
| | | | - Olivier Poch
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Uwe Strahle
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Jean Muller
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Functional analysis of new human Bardet-Biedl syndrome loci specific variants in the zebrafish model. Sci Rep 2019; 9:12936. [PMID: 31506453 PMCID: PMC6736949 DOI: 10.1038/s41598-019-49217-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
The multiple genetic approaches available for molecular diagnosis of human diseases have made possible to identify an increasing number of pathogenic genetic changes, particularly with the advent of next generation sequencing (NGS) technologies. However, the main challenge lies in the interpretation of their functional impact, which has resulted in the widespread use of animal models. We describe here the functional modelling of seven BBS loci variants, most of them novel, in zebrafish embryos to validate their in silico prediction of pathogenicity. We show that target knockdown (KD) of known BBS (BBS1, BB5 or BBS6) loci leads to developmental defects commonly associated with ciliopathies, as previously described. These KD pleiotropic phenotypes were rescued by co-injecting human wild type (WT) loci sequence but not with the equivalent mutated mRNAs, providing evidence of the pathogenic effect of these BBS changes. Furthermore, direct assessment of cilia located in Kupffer's vesicle (KV) showed a reduction of ciliary length associated with all the studied variants, thus confirming a deleterious effect. Taken together, our results seem to prove the pathogenicity of the already classified and unclassified new BBS variants, as well as highlight the usefulness of zebrafish as an animal model for in vivo assays in human ciliopathies.
Collapse
|
13
|
Xie S, Jin J, Xu Z, Huang Y, Zhang W, Zhao L, Lo LJ, Peng J, Liu W, Wang F, Shu Q, Zhou T. Centrosomal protein FOR20 is essential for cilia-dependent development in zebrafish embryos. FASEB J 2018; 33:3613-3622. [PMID: 30475641 DOI: 10.1096/fj.201801235rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Centrosomal proteins play critical roles in ciliogenesis. Mutations in many centrosomal proteins have been documented to contribute to developmental defects and cilium-related diseases. Centrosomal protein fibroblast growth factor receptor 1 oncogene partner-related protein of 20 kDa (FOR20) is crucial for ciliogenesis in mammalian cells and the unicellular eukaryote Paramecium; however, the biologic significance of FOR20 in vertebrate development remains unclear. We cloned the zebrafish homolog of the for20 gene and found that for20 mRNA is enriched in ciliated tissues during early zebrafish development. Knockdown of for20 by morpholino oligonucleotides in zebrafish results in multiple ciliary phenotypes, including curved body, hydrocephaly, pericardial edema, kidney cysts, and left-right asymmetry defects. for20 morphants show reduced number and length of cilia in Kupffer's vesicle and pronephric ducts. High-speed video microscopy reveals that cilia in most for20 morphants are consistently paralyzed or beat arrhythmically. To confirm the ciliary phenotypes of for20 morphants, we used the CRISPR/Cas9 system to disrupt for20 gene in zebrafish. for20 mutants exhibit multiple ciliary phenotypes resembling the defects in for20 morphants. All of these phenotypes in for20 morphants and mutants are significantly reversed by exogenous expression of for20 mRNA. Taken together, these data suggest that FOR20 is required for cilium-mediated processes during zebrafish embryogenesis.-Xie, S., Jin, J., Xu, Z., Huang, Y., Zhang, W., Zhao, L., Lo, L. J., Peng, J., Liu, W., Wang, F., Shu, Q., Zhou, T. Centrosomal protein FOR20 is essential for cilia-dependent development in zebrafish embryos.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Jin
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhangqi Xu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuliang Huang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Zhao
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jan Lo
- Ministry of Education (MOE) Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China; and
| | - Jinrong Peng
- Ministry of Education (MOE) Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China; and
| | - Wei Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.,Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, China
| |
Collapse
|
14
|
Han X, Xie H, Wang Y, Zhao C. Radial spoke proteins regulate otolith formation during early zebrafish development. FASEB J 2018; 32:3984-3992. [PMID: 29475374 DOI: 10.1096/fj.201701359r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radial spokes are structurally conserved, macromolecular complexes that are essential for the motility of 9 + 2 motile cilia. In Chlamydomonas species, mutations in radial spoke proteins result in ciliary motility defects. However, little is known about the function of radial spoke proteins during embryonic development. Here, we investigated the role of a novel radial spoke protein, leucine-rich repeat containing protein 23 (Lrrc23), during zebrafish embryonic development. Mutations in lrrc23 resulted in a selective otolith formation defect during early ear development. Similar otolith defects were also present in the radial spoke head 3 homolog ( rsph3) and radial spoke head 4 homolog A ( rsph4a) radial spoke mutants. Notably, the radial spoke protein mutations specifically affected ciliary motility in the otic vesicle (OV), whereas motile cilia in other organs functioned normally. Via high-speed video microscopy, we found that motile cilia formation was stochastic and transient in the OV. Importantly, all the motile cilia in the OV beat circularly, in contrast to the planar beating pattern of typical 9 + 2 motile cilia. We identified the key time frame for motile cilia formation during OV development. Finally, we showed that the functions of radial spoke proteins were conserved between zebrafish and Tetrahymena. Together, our results suggest that radial spoke proteins are essential for ciliary motility in the OV and that radial spoke-regulated OV motile cilia represent a unique type of cilia during early zebrafish embryonic development.-Han, X., Xie, H., Wang, Y., Zhao, C. Radial spoke proteins regulate otolith formation during early zebrafish development.
Collapse
Affiliation(s)
- Xiao Han
- Institute of Evolution and Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Haibo Xie
- Institute of Evolution and Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Yadong Wang
- Institute of Evolution and Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
van Rooijen E, van de Hoek G, Logister I, Ajzenberg H, Knoers NVAM, van Eeden F, Voest EE, Schulte-Merker S, Giles RH. The von Hippel-Lindau Gene Is Required to Maintain Renal Proximal Tubule and Glomerulus Integrity in Zebrafish Larvae. Nephron Clin Pract 2018; 138:310-323. [PMID: 29342457 DOI: 10.1159/000484096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/09/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND von Hippel-Lindau (VHL) disease is characterized by the development of benign and malignant tumours in many organ systems, including renal cysts and clear cell renal cell carcinoma. It is not completely understood what underlies the development of renal pathology, and the use of murine Vhl models has been challenging due to limitations in disease conservation. We previously described a zebrafish model bearing inactivating mutations in the orthologue of the human VHL gene. METHODS We used histopathological and functional assays to investigate the pronephric and glomerular developmental defects in vhl mutant zebrafish, supported by human cell culture assays. RESULTS Here, we report that vhl is required to maintain pronephric tubule and glomerulus integrity in zebrafish embryos. vhl mutant glomeruli are enlarged, cxcr4a+ capillary loops are dilated and the Bowman space is widened. While we did not observe pronephric cysts, the cells of the proximal convoluted and anterior proximal straight tubule are enlarged, periodic acid schiff (PAS) and Oil Red O positive, and display a clear cytoplasm after hematoxylin and eosine staining. Ultrastructural analysis showed the vhl-/- tubule to accumulate large numbers of vesicles of variable size and electron density. Microinjection of the endocytic fluorescent marker AM1-43 in zebrafish embryos revealed an accumulation of endocytic vesicles in the vhl mutant pronephric tubule, which we can recapitulate in human cells lacking VHL. CONCLUSIONS Our data indicates that vhl is required to maintain pronephric tubule and glomerulus integrity during zebrafish development, and suggests a role for VHL in endocytic vesicle trafficking.
Collapse
Affiliation(s)
- Ellen van Rooijen
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands
| | - Glenn van de Hoek
- Department Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ive Logister
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands
| | - Henry Ajzenberg
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nine V A M Knoers
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Freek van Eeden
- Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands
| | - Emile E Voest
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands.,Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany.,CiM Cluster of Excellence (EXC1003-CiM), Münster, Germany
| | - Rachel H Giles
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
16
|
Hofmeister W, Pettersson M, Kurtoglu D, Armenio M, Eisfeldt J, Papadogiannakis N, Gustavsson P, Lindstrand A. Targeted copy number screening highlights an intragenic deletion of WDR63 as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Hum Mutat 2018; 39:495-505. [PMID: 29285825 DOI: 10.1002/humu.23388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/21/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023]
Abstract
Congenital malformations affecting the neural tube can present as isolated malformations or occur in association with other developmental abnormalities and syndromes. Using high-resolution copy number screening in 66 fetuses with neural tube defects, we identified six fetuses with likely pathogenic mutations, three aneuploidies (one trisomy 13 and two trisomy 18) and three deletions previously reported in NTDs (one 22q11.2 deletion and two 1p36 deletions) corresponding to 9% of the cohort. In addition, we identified five rare deletions and two duplications of uncertain significance including a rare intragenic heterozygous in-frame WDR63 deletion in a fetus with occipital encephalocele. Whole genome sequencing verified the deletion and excluded known pathogenic variants. The deletion spans exons 14-17 resulting in the expression of a protein missing the third and fourth WD-repeat domains. These findings were supported by CRISPR/Cas9-mediated somatic deletions in zebrafish. Injection of two different sgRNA-pairs targeting relevant intronic regions resulted in a deletion mimicking the human deletion and a concomitant increase of abnormal embryos with body and brain malformations (41%, n = 161 and 62%, n = 224, respectively), including a sac-like brain protrusion (7% and 9%, P < 0.01). Similar results were seen with overexpression of RNA encoding the deleted variant in zebrafish (total abnormal; 46%, n = 255, P < 0.001) compared with the overexpression of an equivalent amount of wild-type RNA (total abnormal; 3%, n = 177). We predict the in-frame WDR63 deletion to result in a dominant negative or gain-of-function form of WDR63. These are the first findings supporting a role for WDR63 in encephalocele formation.
Collapse
Affiliation(s)
- Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Deniz Kurtoglu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Armenio
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Nikos Papadogiannakis
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Zhu P, Sieben CJ, Xu X, Harris PC, Lin X. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum Mol Genet 2017; 26:158-172. [PMID: 28007903 DOI: 10.1093/hmg/ddw376] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2. It is one of the most common heritable human diseases with eventual development of renal failure; however, effective treatment is lacking. While inhibition of mechanistic target of rapamycin (mTOR) effectively slows cyst expansions in animal models, results from clinical studies are controversial, prompting further mechanistic studies of mTOR-based therapy. Here, we aim to establish autophagy, a downstream pathway of mTOR, as a new therapeutic target for PKD. We generated zebrafish mutants for pkd1 and noted cystic kidney and mTOR activation in pkd1a mutants, suggesting a conserved ADPKD model. Further assessment of the mutants revealed impaired autophagic flux, which was conserved in kidney epithelial cells derived from both Pkd1-null mice and ADPKD patients. We found that inhibition of autophagy by knocking down the core autophagy protein Atg5 promotes cystogenesis, while activation of autophagy using a specific inducer Beclin-1 peptide ameliorates cysts in the pkd1a model. Treatment with compound autophagy activators, including mTOR-dependent rapamycin as well as mTOR-independent carbamazepine and minoxidil, markedly attenuated cyst formation and restored kidney function. Finally, we showed that combination treatment with low doses of rapamycin and carbamazepine was able to attenuate cyst formation as effectively as a single treatment with a high dose of rapamycin alone. In summary, our results suggested a modifying effect of autophagy on ADPKD, established autophagy activation as a novel therapy for ADPKD, and presented zebrafish as an efficient vertebrate model for developing PKD therapeutic strategies.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Cynthia J Sieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Feng D, Chen Z, Yang K, Miao S, Xu B, Kang Y, Xie H, Zhao C. The cytoplasmic tail of rhodopsin triggers rapid rod degeneration in kinesin-2 mutants. J Biol Chem 2017; 292:17375-17386. [PMID: 28855254 DOI: 10.1074/jbc.m117.784017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/24/2017] [Indexed: 11/06/2022] Open
Abstract
Photoreceptor degeneration can lead to blindness and represents the most common form of neural degenerative disease worldwide. Although many genes involved in photoreceptor degeneration have been identified, the underlying mechanisms remain to be elucidated. Here we examined photoreceptor development in zebrafish kif3a and kif3b mutants, which affect two subunits of the kinesin-2 complex. In both mutants, rods degenerated quickly, whereas cones underwent a slow degeneration process. Notably, the photoreceptor defects were considerably more severe in kif3a mutants than in kif3b mutants. In the cone photoreceptors of kif3a mutants, opsin proteins accumulated in the apical region and formed abnormal membrane structures. In contrast, rhodopsins were enriched in the rod cell body membrane and represented the primary reason for rapid rod degeneration in these mutants. Moreover, removal of the cytoplasmic tail of rhodopsin to reduce its function, but not decreasing rhodopsin expression levels, prevented rod degeneration in both kif3a and kif3b mutants. Of note, overexpression of full-length rhodopsin or its cytoplasmic tail domain, but not of rhodopsin lacking the cytoplasmic tail, exacerbated rod degeneration in kif3a mutants, implying an important role of the cytoplasmic tail in rod degeneration. Finally, we showed that the cytoplasmic tail of rhodopsin might trigger rod degeneration through activating the downstream calcium signaling pathway, as drug treatment with inhibitors of intracellular calcium release prevented rod degeneration in kif3a mutants. Our results demonstrate a previously unknown function of the rhodopsin cytoplasmic domain during opsin-triggered photoreceptor degeneration and may open up new avenues for managing this disease.
Collapse
Affiliation(s)
- Dong Feng
- From the Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhe Chen
- From the Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Kuang Yang
- From the Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Shanshan Miao
- From the Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Bolin Xu
- From the Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- From the Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Haibo Xie
- From the Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Chengtian Zhao
- From the Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China, .,the Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China, and.,the Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
19
|
Duboué ER, Halpern ME. Genetic and Transgenic Approaches to Study Zebrafish Brain Asymmetry and Lateralized Behavior. LATERALIZED BRAIN FUNCTIONS 2017. [DOI: 10.1007/978-1-4939-6725-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
20
|
Prieto D, Zolessi FR. Functional Diversification of the Four MARCKS Family Members in Zebrafish Neural Development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:119-138. [PMID: 27554589 DOI: 10.1002/jez.b.22691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
Myristoylated alanin-rich C-kinase substrate (MARCKS) and MARCKS-like 1, each encoded by a different gene, comprise a very small family of actin-modulating proteins with essential roles in mammalian neural development. We show here that four genes (two marcks and two marcksl1) are present in teleosts including zebrafish, while ancient actinopterigians, sarcopterigian fishes, and chondrichtyans only have two. No marcks genes were found in agnaths or invertebrates. All four zebrafish genes are expressed during development, and we show here how their early knockdown causes defects in neural development, with some phenotypical differences. Knockdown of marcksa generated embryos with smaller brain and eyes, while marcksb caused different morphogenetic defects, such as larger hindbrain ventricle and folded retina. marcksl1a and marcksl1b morpholinos also caused smaller eyes and brain, although marcksl1a alone generated larger brain ventricles. At 24 hpf, marcksb caused a wider angle of the hindbrain walls, while marcksl1a showed a "T-shaped" neural tube and alterations in neuroepithelium organization. The double knockdown surprisingly produced new features, which included an increased neuroepithelial disorganization and partial neural tube duplications evident at 48 hpf, suggesting defects in convergent extension. This disorganization was also evident in the retina, although retinal ganglion cells were still able to differentiate. marcksl1b morphants presented a unique retinal phenotype characterized by the occurrence of sporadic ectopic neuronal differentiation. Although only marcksl1a morphant had a clear "ciliary phenotype," all presented significantly shorter cilia. Altogether, our data show that all marcks genes have functions in zebrafish neural development, with some differences that suggest the onset of protein diversification.
Collapse
Affiliation(s)
- Daniel Prieto
- Facultad de Ciencias, Sección Biología Celular, Universidad de la República, Montevideo, Uruguay
| | - Flavio R Zolessi
- Facultad de Ciencias, Sección Biología Celular, Universidad de la República, Montevideo, Uruguay.,Cell Biology of Neural Development Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
21
|
Leventea E, Hazime K, Zhao C, Malicki J. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2016; 133:179-227. [PMID: 27263414 DOI: 10.1016/bs.mcb.2016.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilia are microtubule-based protrusions on the surface of most eukaryotic cells. They are found in most, if not all, vertebrate organs. Prominent cilia form in sensory structures, the eye, the ear, and the nose, where they are crucial for the detection of environmental stimuli, such as light and odors. Cilia are also involved in developmental processes, including left-right asymmetry formation, limb morphogenesis, and the patterning of neurons in the neural tube. Some cilia, such as those found in nephric ducts, are thought to have mechanosensory roles. Zebrafish proved very useful in genetic analysis and imaging of cilia-related processes, and in the modeling of mechanisms behind human cilia abnormalities, known as ciliopathies. A number of zebrafish defects resemble those seen in human ciliopathies. Forward and reverse genetic strategies generated a wide range of cilia mutants in zebrafish, which can be studied using sophisticated genetic and imaging approaches. In this chapter, we provide a set of protocols to examine cilia morphology, motility, and cilia-related defects in a variety of organs, focusing on the embryo and early postembryonic development.
Collapse
Affiliation(s)
- E Leventea
- The University of Sheffield, Sheffield, United Kingdom
| | - K Hazime
- The University of Sheffield, Sheffield, United Kingdom
| | - C Zhao
- The University of Sheffield, Sheffield, United Kingdom; Ocean University of China, Qingdao, China
| | - J Malicki
- The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
22
|
Song Z, Zhang X, Jia S, Yelick PC, Zhao C. Zebrafish as a Model for Human Ciliopathies. J Genet Genomics 2016; 43:107-20. [DOI: 10.1016/j.jgg.2016.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
|
23
|
Drummond BE, Wingert RA. Insights into kidney stem cell development and regeneration using zebrafish. World J Stem Cells 2016; 8:22-31. [PMID: 26981168 PMCID: PMC4766248 DOI: 10.4252/wjsc.v8.i2.22] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/28/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Kidney disease is an escalating global health problem, for which the formulation of therapeutic approaches using stem cells has received increasing research attention. The complexity of kidney anatomy and function, which includes the diversity of renal cell types, poses formidable challenges in the identification of methods to generate replacement structures. Recent work using the zebrafish has revealed their high capacity to regenerate the integral working units of the kidney, known as nephrons, following acute injury. Here, we discuss these findings and explore the ways that zebrafish can be further utilized to gain a deeper molecular appreciation of renal stem cell biology, which may uncover important clues for regenerative medicine.
Collapse
|
24
|
Ott E, Wendik B, Srivastava M, Pacho F, Töchterle S, Salvenmoser W, Meyer D. Pronephric tubule morphogenesis in zebrafish depends on Mnx mediated repression of irx1b within the intermediate mesoderm. Dev Biol 2015; 411:101-14. [PMID: 26472045 DOI: 10.1016/j.ydbio.2015.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022]
Abstract
Mutations in the homeobox transcription factor MNX1 are the major cause of dominantly inherited sacral agenesis. Studies in model organisms revealed conserved mnx gene requirements in neuronal and pancreatic development while Mnx activities that could explain the caudal mesoderm specific agenesis phenotype remain elusive. Here we use the zebrafish pronephros as a simple yet genetically conserved model for kidney formation to uncover a novel role of Mnx factors in nephron morphogenesis. Pronephros formation can formally be divided in four stages, the specification of nephric mesoderm from the intermediate mesoderm (IM), growth and epithelialisation, segmentation and formation of the glomerular capillary tuft. Two of the three mnx genes in zebrafish are dynamically transcribed in caudal IM in a time window that proceeds segmentation. We show that expression of one mnx gene, mnx2b, is restricted to the pronephric lineage and that mnx2b knock-down causes proximal pronephric tubule dilation and impaired pronephric excretion. Using expression profiling of embryos transgenic for conditional activation and repression of Mnx regulated genes, we further identified irx1b as a direct target of Mnx factors. Consistent with a repression of irx1b by Mnx factors, the transcripts of irx1b and mnx genes are found in mutual exclusive regions in the IM, and blocking of Mnx functions results in a caudal expansion of the IM-specific irx1b expression. Finally, we find that knock-down of irx1b is sufficient to rescue proximal pronephric tubule dilation and impaired nephron function in mnx-morpholino injected embryos. Our data revealed a first caudal mesoderm specific requirement of Mnx factors in a non-human system and they demonstrate that Mnx-dependent restriction of IM-specific irx1b activation is required for the morphogenesis and function of the zebrafish pronephros.
Collapse
Affiliation(s)
- Elisabeth Ott
- Institute for Molecular Biology/CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | - Björn Wendik
- Developmental Biology, Institute Biology 1, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany.
| | - Monika Srivastava
- Developmental Biology, Institute Biology 1, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany.
| | - Frederic Pacho
- Institute for Molecular Biology/CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | - Sonja Töchterle
- Institute for Molecular Biology/CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Institute of Zoology/CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | - Dirk Meyer
- Institute for Molecular Biology/CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| |
Collapse
|
25
|
Xu Y, Cao J, Huang S, Feng D, Zhang W, Zhu X, Yan X. Characterization of tetratricopeptide repeat-containing proteins critical for cilia formation and function. PLoS One 2015; 10:e0124378. [PMID: 25860617 PMCID: PMC4393279 DOI: 10.1371/journal.pone.0124378] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/01/2015] [Indexed: 12/23/2022] Open
Abstract
Cilia formation and function require a special set of trafficking machinery termed intraflagellar transport (IFT), consisting mainly of protein complexes IFT-A, IFT-B, BBSome, and microtubule-dependent molecular motors. Tetratricopeptide repeat-containing (TTC) proteins are widely involved in protein complex formation. Nine of them are known to serve as components of the IFT or BBSome complexes. How many TTC proteins are cilia-related and how they function, however, remain unclear. Here we show that twenty TTC genes were upregulated by at least 2-fold during the differentiation of cultured mouse tracheal epithelial cells (MTECs) into multiciliated cells. Our systematic screen in zebrafish identified four novel TTC genes, ttc4, -9c, -36, and -39c, that are critical for cilia formation and motility. Accordingly, their zebrafish morphants displayed typical ciliopathy-related phenotypes, including curved body, abnormal otolith, hydrocephalus, and defective left-right patterning. The morphants of ttc4 and ttc25, a known cilia-related gene, additionally showed pronephric cyst formation. Immunoprecipitation indicated associations of TTC4, -9c, -25, -36, and -39c with components or entire complexes of IFT-A, IFT-B, or BBSome, implying their participations in IFT or IFT-related activities. Our results provide a global view for the relationship between TTC proteins and cilia.
Collapse
Affiliation(s)
- Yanan Xu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Jingli Cao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Shan Huang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Di Feng
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
- * E-mail: (XZ); (XY)
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
- * E-mail: (XZ); (XY)
| |
Collapse
|
26
|
IFT46 plays an essential role in cilia development. Dev Biol 2015; 400:248-57. [PMID: 25722189 DOI: 10.1016/j.ydbio.2015.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 11/20/2022]
Abstract
Cilia are microtubule-based structures that project into the extracellular space. Ciliary defects are associated with several human diseases, including polycystic kidney disease, primary ciliary dyskinesia, left-right axis patterning, hydrocephalus and retinal degeneration. However, the genetic and cellular biological control of ciliogenesis remains poorly understood. The IFT46 is one of the highly conserved intraflagellar transport complex B proteins. In zebrafish, ift46 is expressed in various ciliated tissues such as Kupffer׳s vesicle, pronephric ducts, ears and spinal cord. We show that ift46 is localized to the basal body. Knockdown of ift46 gene results in multiple phenotypes associated with various ciliopathies including kidney cysts, pericardial edema and ventral axis curvature. In ift46 morphants, cilia in kidney and spinal canal are shortened and abnormal. Similar ciliary defects are observed in otic vesicles, lateral line hair cells, olfactory pits, but not in Kupffer׳s vesicle. To explore the functions of Ift46 during mouse development, we have generated Ift46 knock-out mice. The Ift46 mutants have developmental defects in brain, neural tube and heart. In particular Ift46(-/-) homozygotes displays randomization of the embryo heart looping, which is a hallmark of defective left-right (L/R) axis patterning. Taken together, our results demonstrated that IFT46 has an essential role in vertebrate ciliary development.
Collapse
|
27
|
Dash SN, Lehtonen E, Wasik AA, Schepis A, Paavola J, Panula P, Nelson WJ, Lehtonen S. Sept7b is essential for pronephric function and development of left-right asymmetry in zebrafish embryogenesis. J Cell Sci 2014; 127:1476-86. [PMID: 24496452 DOI: 10.1242/jcs.138495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The conserved septin family of filamentous small GTPases plays important roles in mitosis, cell migration and cell morphogenesis by forming scaffolds and diffusion barriers. Recent studies in cultured cells in vitro indicate that a septin complex of septin 2, 7 and 9 is required for ciliogenesis and cilia function, but septin function in ciliogenesis in vertebrate organs in vivo is not understood. We show that sept7b is expressed in ciliated cells in different tissues during early zebrafish development. Knockdown of sept7b by using morpholino antisense oligonucleotides caused misorientation of basal bodies and cilia, reduction of apical actin and the shortening of motile cilia in Kupffer's vesicle and pronephric tubules. This resulted in pericardial and yolk sac edema, body axis curvature and hydrocephaly. Notably, in sept7b morphants we detected strong left-right asymmetry defects in the heart and lateral plate mesoderm (situs inversus), reduced fluid flow in the kidney, the formation of kidney cysts and loss of glomerular filtration barrier function. Thus, sept7b is essential during zebrafish development for pronephric function and ciliogenesis, and loss of expression of sept7b results in defects that resemble human ciliopathies.
Collapse
Affiliation(s)
- Surjya Narayan Dash
- University of Helsinki, Haartman Institute, Department of Pathology, Haartmaninkatu 3, 00290 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Vandenberg LN, Lemire JM, Levin M. It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry. Commun Integr Biol 2013; 6:e27155. [PMID: 24505508 PMCID: PMC3912007 DOI: 10.4161/cib.27155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023] Open
Abstract
For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton's role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA ; Current affiliation: Department of Public Health; Division of Environmental Health Sciences; University of Massachusetts, Amherst; Amherst, MA USA
| | - Joan M Lemire
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA
| | - Michael Levin
- Biology Department; Center for Regenerative and Developmental Biology; Tufts University; Medford, MA USA
| |
Collapse
|
29
|
Vandenberg LN, Levin M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 2013; 379:1-15. [PMID: 23583583 PMCID: PMC3698617 DOI: 10.1016/j.ydbio.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| |
Collapse
|
30
|
The zebrafish orthologue of the dyslexia candidate gene DYX1C1 is essential for cilia growth and function. PLoS One 2013; 8:e63123. [PMID: 23650548 PMCID: PMC3641089 DOI: 10.1371/journal.pone.0063123] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
DYX1C1, a susceptibility gene for dyslexia, encodes a tetratricopeptide repeat domain containing protein that has been implicated in neuronal migration in rodent models. The developmental role of this gene remains unexplored. To understand the biological function(s) of zebrafish dyx1c1 during embryonic development, we cloned the zebrafish dyx1c1 and used morpholino-based knockdown strategy. Quantitative real-time PCR analysis revealed the presence of dyx1c1 transcripts in embryos, early larval stages and in a wide range of adult tissues. Using mRNA in situ hybridization, we show here that dyx1c1 is expressed in many ciliated tissues in zebrafish. Inhibition of dyx1c1 produced pleiotropic phenotypes characteristically associated with cilia defects such as body curvature, hydrocephalus, situs inversus and kidney cysts. We also demonstrate that in dyx1c1 morphants, cilia length is reduced in several organs including Kupffer’s vesicle, pronephros, spinal canal and olfactory placode. Furthermore, electron microscopic analysis of cilia in dyx1c1 morphants revealed loss of both outer (ODA) and inner dynein arms (IDA) that have been shown to be required for cilia motility. Considering all these results, we propose an essential role for dyx1c1 in cilia growth and function.
Collapse
|
31
|
Ichimura K, Fukuyo Y, Nakamura T, Powell R, Sakai T, Janknecht R, Obara T. Developmental localization of nephrin in zebrafish and medaka pronephric glomerulus. J Histochem Cytochem 2013; 61:313-24. [PMID: 23324868 DOI: 10.1369/0022155413477115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Slit diaphragm (SD) is a highly specialized intercellular junction between podocyte foot processes and plays a crucial role in the formation of the filtration barrier. In this study, we examined the developmental localization of Nephrin, an essential component of SD, in the pronephric glomerulus of zebrafish and medaka. In the mature glomerulus of both fish, Nephrin is localized along the glomerular basement membrane as seen in mammals, indicating that Nephrin is localized at the SD. Interestingly, Nephrin was detected already in immature podocytes before the SD and foot processes started to form in both fish. Nephrin was localized along the cell surface of immature podocytes but as different localization patterns. In zebrafish, Nephrin signal bordered the lateral membrane of podocytes, which were columnar in shape, as in rat immature podocytes. However, in medaka immature podocytes, Nephrin was localized in a punctate pattern among podocyte cell bodies. These findings suggest that Nephrin needs to be integrated to the membrane before the formation of the SD and then moves to the proper site to form the SD. Furthermore, a podocyte-specific marker, such as Nephrin, should be a useful tool for the future analysis of pronephric glomerular development in fish mutants and morphants.
Collapse
Affiliation(s)
- Koichiro Ichimura
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Zebrafish are ideally suited for analysis of genes required for ciliogenesis and cilia function. Combining genetic manipulation with high quality in vivo imaging, zebrafish embryos provide a high-throughput system for annotation of the cilia proteome. The specific advantages of the system are the availability of cilia mutants, the ability to target genes of unknown function using antisense methods, the feasibility of observing cilia in living embryos, and the ability to image fixed cilia in wholemount at high resolution. Techniques are described for analysis of mutants, gene knockdown using antisense morpholino oligos, visualizing cilia and cilia orientation in wholemount zebrafish embryos, live imaging cilia, and electron microscopy of zebrafish cilia.
Collapse
|
33
|
Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms. Proc Natl Acad Sci U S A 2012; 109:12586-91. [PMID: 22802643 DOI: 10.1073/pnas.1202659109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many types of embryos' bodyplans exhibit consistently oriented laterality of the heart, viscera, and brain. Errors of left-right patterning present an important class of human birth defects, and considerable controversy exists about the nature and evolutionary conservation of the molecular mechanisms that allow embryos to reliably orient the left-right axis. Here we show that the same mutations in the cytoskeletal protein tubulin that alter asymmetry in plants also affect very early steps of left-right patterning in nematode and frog embryos, as well as chirality of human cells in culture. In the frog embryo, tubulin α and tubulin γ-associated proteins are required for the differential distribution of maternal proteins to the left or right blastomere at the first cell division. Our data reveal a remarkable molecular conservation of mechanisms initiating left-right asymmetry. The origin of laterality is cytoplasmic, ancient, and highly conserved across kingdoms, a fundamental feature of the cytoskeleton that underlies chirality in cells and multicellular organisms.
Collapse
|
34
|
Abstract
Cilia are protrusions on the surface of cells. They are frequently motile and function to propel cells in an aqueous environment or to generate fluid flow. Equally important is the role of immotile cilia in detecting environmental changes or in sensing extracellular signals. The structure of cilia is supported by microtubules, and their formation requires microtubule-dependent motors, kinesins, which are thought to transport both structural and signaling ciliary proteins from the cell body into the distal portion of the ciliary shaft. In multicellular organisms, multiple kinesins are known to drive ciliary transport, and frequently cilia of a single cell type require more than one kinesin for their formation and function. In addition to kinesin-2 family motors, which function in cilia of all species investigated so far, kinesins from other families contribute to the transport of signaling proteins in a tissue-specific manner. It is becoming increasingly obvious that functional relationships between ciliary kinesins are complex, and a good understanding of these relationships is essential to comprehend the basis of biological processes as diverse as olfaction, vision, and embryonic development.
Collapse
Affiliation(s)
- Jarema Malicki
- MRC Centre for Developmental and Biomedical Genetics; Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| |
Collapse
|
35
|
Lee JE, Silhavy JL, Zaki MS, Schroth J, Bielas SL, Marsh SE, Olvera J, Brancati F, Iannicelli M, Ikegami K, Schlossman AM, Merriman B, Attié-Bitach T, Logan CV, Glass IA, Cluckey A, Louie CM, Lee JH, Raynes HR, Rapin I, Castroviejo IP, Setou M, Barbot C, Boltshauser E, Nelson SF, Hildebrandt F, Johnson CA, Doherty DA, Valente EM, Gleeson JG. CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nat Genet 2012; 44:193-9. [PMID: 22246503 PMCID: PMC3267856 DOI: 10.1038/ng.1078] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/14/2011] [Indexed: 12/24/2022]
Abstract
Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vandenberg LN. Laterality defects are influenced by timing of treatments and animal model. Differentiation 2012; 83:26-37. [PMID: 22099174 PMCID: PMC3222854 DOI: 10.1016/j.diff.2011.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/13/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
The timing of when the embryonic left-right (LR) axis is first established and the mechanisms driving this process are subjects of strong debate. While groups have focused on the role of cilia in establishing the LR axis during gastrula and neurula stages, many animals appear to orient the LR axis prior to the appearance of, or without the benefit of, motile cilia. Because of the large amount of data available in the published literature and the similarities in the type of data collected across laboratories, I have examined relationships between the studies that do and do not implicate cilia, the choice of animal model, the kinds of LR patterning defects observed, and the penetrance of LR phenotypes. I found that treatments affecting cilia structure and motility had a higher penetrance for both altered gene expression and improper organ placement compared to treatments that affect processes in early cleavage stage embryos. I also found differences in penetrance that could be attributed to the animal models used; the mouse is highly prone to LR randomization. Additionally, the data were examined to address whether gene expression can be used to predict randomized organ placement. Using regression analysis, gene expression was found to be predictive of organ placement in frogs, but much less so in the other animals examined. Together, these results challenge previous ideas about the conservation of LR mechanisms, with the mouse model being significantly different from fish, frogs, and chick in almost every aspect examined. Additionally, this analysis indicates that there may be missing pieces in the molecular pathways that dictate how genetic information becomes organ positional information in vertebrates; these gaps will be important for future studies to identify, as LR asymmetry is not only a fundamentally fascinating aspect of development but also of considerable biomedical importance.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Tufts University, Center for Regenerative & Developmental Biology and Department of Biology, Medford MA 02155
| |
Collapse
|
37
|
Zhao C, Malicki J. Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos. EMBO J 2011; 30:2532-44. [PMID: 21602787 DOI: 10.1038/emboj.2011.165] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 04/19/2011] [Indexed: 01/16/2023] Open
Abstract
Cilia are required for the development and function of many organs. Efficient transport of protein cargo along ciliary axoneme is necessary to sustain these processes. Despite its importance, the mode of interaction between the intraflagellar ciliary transport (IFT) mechanism and its cargo proteins remains poorly understood. Our studies demonstrate that IFT particle components, and a Meckel-Gruber syndrome 1 (MKS1)-related, B9 domain protein, B9d2, bind each other and contribute to the ciliary localization of Inversin (Nephrocystin 2). B9d2, Inversin, and Nephrocystin 5 support, in turn, the transport of a cargo protein, Opsin, but not another photoreceptor ciliary transmembrane protein, Peripherin. Interestingly, the components of this mechanism also contribute to the formation of planar cell polarity in mechanosensory epithelia. These studies reveal a molecular mechanism that mediates the transport of selected ciliary cargos and is of fundamental importance for the differentiation and survival of sensory cells.
Collapse
Affiliation(s)
- Chengtian Zhao
- Division of Craniofacial and Molecular Genetics, and Program in Genetics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| | | |
Collapse
|
38
|
Fogelgren B, Lin SY, Zuo X, Jaffe KM, Park KM, Reichert RJ, Bell PD, Burdine RD, Lipschutz JH. The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes. PLoS Genet 2011; 7:e1001361. [PMID: 21490950 PMCID: PMC3072367 DOI: 10.1371/journal.pgen.1001361] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 03/02/2011] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of renal cysts that destroy the kidney. Mutations in PKD1 and PKD2, encoding polycystins-1 and -2, cause ADPKD. Polycystins are thought to function in primary cilia, but it is not well understood how these and other proteins are targeted to cilia. Here, we provide the first genetic and biochemical link between polycystins and the exocyst, a highly-conserved eight-protein membrane trafficking complex. We show that knockdown of exocyst component Sec10 yields cellular phenotypes associated with ADPKD, including loss of flow-generated calcium increases, hyperproliferation, and abnormal activation of MAPK. Sec10 knockdown in zebrafish phenocopies many aspects of polycystin-2 knockdown-including curly tail up, left-right patterning defects, glomerular expansion, and MAPK activation-suggesting that the exocyst is required for pkd2 function in vivo. We observe a synergistic genetic interaction between zebrafish sec10 and pkd2 for many of these cilia-related phenotypes. Importantly, we demonstrate a biochemical interaction between Sec10 and the ciliary proteins polycystin-2, IFT88, and IFT20 and co-localization of the exocyst and polycystin-2 at the primary cilium. Our work supports a model in which the exocyst is required for the ciliary localization of polycystin-2, thus allowing for polycystin-2 function in cellular processes.
Collapse
Affiliation(s)
- Ben Fogelgren
- Department of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania, United States of America
| | - Shin-Yi Lin
- Department of Molecular Biology, Princeton University, Princeton, New
Jersey, United States of America
| | - Xiaofeng Zuo
- Department of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania, United States of America
| | - Kimberly M. Jaffe
- Department of Molecular Biology, Princeton University, Princeton, New
Jersey, United States of America
| | - Kwon Moo Park
- Department of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania, United States of America
- Department of Anatomy and BK 21 Project, Kyungpook National University,
Daegu, Republic of Korea
| | - Ryan J. Reichert
- Department of Medicine, Medical University of South Carolina, Charleston,
South Carolina, United States of America
| | - P. Darwin Bell
- Department of Medicine, Medical University of South Carolina, Charleston,
South Carolina, United States of America
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, New
Jersey, United States of America
| | - Joshua H. Lipschutz
- Department of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania, United States of America
- Department of Medicine, Philadelphia Veterans Affairs Medical Center,
Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
39
|
Clément A, Solnica-Krezel L, Gould KL. The Cdc14B phosphatase contributes to ciliogenesis in zebrafish. Development 2011; 138:291-302. [PMID: 21177342 DOI: 10.1242/dev.055038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progression through the cell cycle relies on oscillation of cyclin-dependent kinase (Cdk) activity. One mechanism for downregulating Cdk signaling is to activate opposing phosphatases. The Cdc14 family of phosphatases counteracts Cdk1 phosphorylation in diverse organisms to allow proper exit from mitosis and cytokinesis. However, the role of the vertebrate CDC14 phosphatases, CDC14A and CDC14B, in re-setting the cell for interphase remains unclear. To understand Cdc14 function in vertebrates, we cloned the zebrafish cdc14b gene and used antisense morpholino oligonucleotides and an insertional mutation to inhibit its function during early development. Loss of Cdc14B function led to an array of phenotypes, including hydrocephaly, curved body, kidney cysts and left-right asymmetry defects, reminiscent of zebrafish mutants with defective cilia. Indeed, we report that motile and primary cilia were shorter in cdc14b-deficient embryos. We also demonstrate that Cdc14B function in ciliogenesis requires its phosphatase activity and can be dissociated from its function in cell cycle control. Finally, we propose that Cdc14B plays a role in the regulation of cilia length in a pathway independent of fibroblast growth factor (FGF). This first study of a loss of function of a Cdc14 family member in a vertebrate organism reveals a new role for Cdc14B in ciliogenesis and consequently in a number of developmental processes.
Collapse
Affiliation(s)
- Aurélie Clément
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
40
|
Malicki J, Avanesov A, Li J, Yuan S, Sun Z. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2011; 101:39-74. [PMID: 21550439 DOI: 10.1016/b978-0-12-387036-0.00003-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cilium, a previously little studied cell surface protrusion, has emerged as an important organelle in vertebrate cells. This tiny structure is essential for normal embryonic development, including the formation of left-right asymmetry, limb morphogenesis, and the differentiation of sensory cells. In the adult, cilia also function in a variety of processes, such as the survival of photoreceptor cells, and the homeostasis in several tissues, including the epithelia of nephric ducts. Human ciliary malfunction is associated with situs inversus, kidney cysts, polydactyly, blindness, mental retardation, obesity, and many other abnormalities. The genetic accessibility and optical transparency of the zebrafish make it an excellent vertebrate model system to study cilia biology. In this chapter, we describe the morphology and distribution of cilia in zebrafish embryonic and larval organs. We also provide essential protocols to analyze cilia formation and function.
Collapse
Affiliation(s)
- Jarema Malicki
- Division of Craniofacial and Molecular Genetics, Tufts University, Massachusetts, USA
| | | | | | | | | |
Collapse
|
41
|
Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, McSheene J, Loges NT, Olbrich H, Haeffner K, Fliegauf M, Horvath J, Reinhardt R, Nielsen KG, Marthin JK, Baktai G, Anderson KV, Geisler R, Niswander L, Omran H, Burdine RD. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 2010; 43:79-84. [PMID: 21131974 DOI: 10.1038/ng.727] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/12/2010] [Indexed: 12/21/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous autosomal recessive disorder characterized by recurrent infections of the respiratory tract associated with the abnormal function of motile cilia. Approximately half of individuals with PCD also have alterations in the left-right organization of their internal organ positioning, including situs inversus and situs ambiguous (Kartagener's syndrome). Here, we identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning in mouse, zebrafish and human. In mouse and zebrafish, Ccdc40 is expressed in tissues that contain motile cilia, and mutations in Ccdc40 result in cilia with reduced ranges of motility. We further show that CCDC40 mutations in humans result in a variant of PCD characterized by misplacement of the central pair of microtubules and defective assembly of inner dynein arms and dynein regulatory complexes. CCDC40 localizes to motile cilia and the apical cytoplasm and is required for axonemal recruitment of CCDC39, disruption of which underlies a similar variant of PCD.
Collapse
Affiliation(s)
- Anita Becker-Heck
- Department of Pediatrics, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ravanelli AM, Klingensmith J. The actin nucleator Cordon-bleu is required for development of motile cilia in zebrafish. Dev Biol 2010; 350:101-11. [PMID: 21129373 DOI: 10.1016/j.ydbio.2010.11.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/15/2010] [Accepted: 11/19/2010] [Indexed: 11/19/2022]
Abstract
The cordon-bleu (Cobl) gene is widely conserved in vertebrates, with developmentally regulated axial and epithelial expression in mouse and chick embryos. In vitro, Cobl can bind monomeric actin and nucleate formation of unbranched actin filaments, while in cultured cells it can modulate the actin cytoskeleton. However, an essential role for Cobl in vivo has yet to be determined. We have used zebrafish as a model to assess the requirements for Cobl in embryogenesis. We find that cobl shows enriched expression in ciliated epithelial tissues during zebrafish organogenesis. Cobl protein is enriched in the apical domain of ciliated cells, in close proximity to the apical actin cap. Reduction of Cobl by antisense morpholinos reveals an essential role in development of motile cilia in organs such as Kupffer's vesicle and the pronephros. In Kupffer's vesicle, the reduction in Cobl coincides with a reduction in the amount of apical F-actin. Thus, Cobl represents a molecular activity that couples developmental patterning signals with local intracellular cytoskeletal dynamics to support morphogenesis of motile cilia.
Collapse
Affiliation(s)
- Andrew M Ravanelli
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
43
|
Vandenberg LN, Levin M. Far from solved: a perspective on what we know about early mechanisms of left-right asymmetry. Dev Dyn 2010; 239:3131-46. [PMID: 21031419 PMCID: PMC10468760 DOI: 10.1002/dvdy.22450] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Consistent laterality is a crucial aspect of embryonic development, physiology, and behavior. While strides have been made in understanding unilaterally expressed genes and the asymmetries of organogenesis, early mechanisms are still poorly understood. One popular model centers on the structure and function of motile cilia and subsequent chiral extracellular fluid flow during gastrulation. Alternative models focus on intracellular roles of the cytoskeleton in driving asymmetries of physiological signals or asymmetric chromatid segregation, at much earlier stages. All three models trace the origin of asymmetry back to the chirality of cytoskeletal organizing centers, but significant controversy exists about how this intracellular chirality is amplified onto cell fields. Analysis of specific predictions of each model and crucial recent data on new mutants suggest that ciliary function may not be a broadly conserved, initiating event in left-right patterning. Many questions about embryonic left-right asymmetry remain open, offering fascinating avenues for further research in cell, developmental, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Biology Department, and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Biology Department, and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
44
|
Gao C, Wang G, Amack JD, Mitchell DR. Oda16/Wdr69 is essential for axonemal dynein assembly and ciliary motility during zebrafish embryogenesis. Dev Dyn 2010; 239:2190-7. [PMID: 20568242 DOI: 10.1002/dvdy.22355] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the alga Chlamydomonas reinhardtii, Oda16 functions during ciliary assembly as an adaptor for intraflagellar transport of outer arm dynein. Oda16 orthologs only occur in genomes of organisms that use motile cilia; however, such cilia play multiple roles during vertebrate development and the contribution of Oda16 to their assembly remains unexplored. We demonstrate that the zebrafish Oda16 ortholog (Wdr69) is expressed in organs with motile cilia and retains a role in dynein assembly. Antisense morpholino knockdown of Wdr69 disrupts ciliary motility and results in multiple phenotypes associated with vertebrate ciliopathies. Affected cilia included those in Kupffer's vesicle, where Wdr69 plays a role in generation of asymmetric fluid flow and establishment of organ laterality, and otic vesicles, where Wdr69 is needed to develop normal numbers of otoliths. Analysis of cilium ultrastructure revealed loss of outer dynein arms in morphant embryos. These results support a remarkable level of functional conservation for Oda16/Wdr69.
Collapse
Affiliation(s)
- Chunlei Gao
- State University of New York Upstate Medical University, Department of Cell and Developmental Biology, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
45
|
Seson, a novel zinc finger protein, controls cilia integrity for the LR patterning during zebrafish embryogenesis. Biochem Biophys Res Commun 2010; 401:169-74. [DOI: 10.1016/j.bbrc.2010.08.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/27/2010] [Indexed: 02/07/2023]
|
46
|
Vandenberg LN, Levin M. Consistent left-right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin. Development 2010; 137:1095-105. [PMID: 20215347 PMCID: PMC2835325 DOI: 10.1242/dev.041798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2010] [Indexed: 12/28/2022]
Abstract
How embryos consistently orient asymmetries of the left-right (LR) axis is an intriguing question, as no macroscopic environmental cues reliably distinguish left from right. Especially unclear are the events coordinating LR patterning with the establishment of the dorsoventral (DV) axes and midline determination in early embryos. In frog embryos, consistent physiological and molecular asymmetries manifest by the second cell cleavage; however, models based on extracellular fluid flow at the node predict correct de novo asymmetry orientation during neurulation. We addressed these issues in Xenopus embryos by manipulating the timing and location of dorsal organizer induction: the primary dorsal organizer was ablated by UV irradiation, and a new organizer was induced at various locations, either early, by mechanical rotation, or late, by injection of lithium chloride (at 32 cells) or of the transcription factor XSiamois (which functions after mid-blastula transition). These embryos were then analyzed for the position of three asymmetric organs. Whereas organizers rescued before cleavage properly oriented the LR axis 90% of the time, organizers induced in any position at any time after the 32-cell stage exhibited randomized laterality. Late organizers were unable to correctly orient the LR axis even when placed back in their endogenous location. Strikingly, conjoined twins produced by late induction of ectopic organizers did have normal asymmetry. These data reveal that although correct LR orientation must occur no later than early cleavage stages in singleton embryos, a novel instructive influence from an early organizer can impose normal asymmetry upon late organizers in the same cell field.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
47
|
Arnaiz O, Malinowska A, Klotz C, Sperling L, Dadlez M, Koll F, Cohen J. Cildb: a knowledgebase for centrosomes and cilia. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2009; 2009:bap022. [PMID: 20428338 PMCID: PMC2860946 DOI: 10.1093/database/bap022] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/04/2009] [Accepted: 11/09/2009] [Indexed: 12/14/2022]
Abstract
Ciliopathies, pleiotropic diseases provoked by defects in the structure or function of cilia or flagella, reflect the multiple roles of cilia during development, in stem cells, in somatic organs and germ cells. High throughput studies have revealed several hundred proteins that are involved in the composition, function or biogenesis of cilia. The corresponding genes are potential candidates for orphan ciliopathies. To study ciliary genes, model organisms are used in which particular questions on motility, sensory or developmental functions can be approached by genetics. In the course of high throughput studies of cilia in Paramecium tetraurelia, we were confronted with the problem of comparing our results with those obtained in other model organisms. We therefore developed a novel knowledgebase, Cildb, that integrates ciliary data from heterogeneous sources. Cildb links orthology relationships among 18 species to high throughput ciliary studies, and to OMIM data on human hereditary diseases. The web interface of Cildb comprises three tools, BioMart for complex queries, BLAST for sequence homology searches and GBrowse for browsing the human genome in relation to OMIM information for human diseases. Cildb can be used for interspecies comparisons, building candidate ciliary proteomes in any species, or identifying candidate ciliopathy genes. Database URL:http://cildb.cgm.cnrs-gif.fr
Collapse
Affiliation(s)
- Olivier Arnaiz
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette Cedex, Université Paris-Sud, 91405 Orsay, France, Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw and Institute of Genetics and Biotechnology, Department of Biology, Warsaw University, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Zebrafish are ideally suited for analysis of genes required for ciliogenesis and cilia function. Combining genetic manipulation with high-quality in vivo imaging, zebrafish embryos provide a high-throughput system for annotation of the cilia proteome. The specific advantages of the system are the availability of cilia mutants, the ability to target genes of unknown function using antisense methods, the feasibility of observing cilia in living embryos, and the ability to image fixed cilia in wholemount at high resolution. Techniques are described for analysis of mutants, gene knockdown using antisense morpholino oligos, visualizing cilia and cilia orientation in wholemount zebrafish embryos, cilia imaging by high-speed video, and electron microscopy of zebrafish cilia.
Collapse
Affiliation(s)
- Iain Drummond
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital,Charlestown, Massachusetts 02129, USA
| |
Collapse
|
49
|
Serluca FC, Xu B, Okabe N, Baker K, Lin SY, Sullivan-Brown J, Konieczkowski DJ, Jaffe KM, Bradner JM, Fishman MC, Burdine RD. Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left-right patterning. Development 2009; 136:1621-31. [PMID: 19395640 DOI: 10.1242/dev.020735] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cilia defects have been implicated in a variety of human diseases and genetic disorders, but how cilia motility contributes to these phenotypes is still unknown. To further our understanding of how cilia function in development, we have cloned and characterized two alleles of seahorse, a zebrafish mutation that results in pronephric cysts. seahorse encodes Lrrc6l, a leucine-rich repeat-containing protein that is highly conserved in organisms that have motile cilia. seahorse is expressed in zebrafish tissues known to contain motile cilia. Although mutants do not affect cilia structure and retain the ability to interact with Disheveled, both alleles of seahorse strongly affect cilia motility in the zebrafish pronephros and neural tube. Intriguingly, although seahorse mutations variably affect fluid flow in Kupffer's vesicle, they can have very weak effects on left-right patterning. Combined with recently published results, our alleles suggest that the function of seahorse in cilia motility is separable from its function in other cilia-related phenotypes.
Collapse
|
50
|
Dale RM, Sisson BE, Topczewski J. The emerging role of Wnt/PCP signaling in organ formation. Zebrafish 2009; 6:9-14. [PMID: 19250029 DOI: 10.1089/zeb.2008.0563] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the last two decades zebrafish has been an excellent model organism to study vertebrate development. Mutant analysis combined with gene knockdown and other manipulations revealed an essential role of Wnt signaling, independent of beta-catenin, during development. Especially well characterized is the function of Wnt/planar cell polarity (PCP) signaling in the regulation of gastrulation movements and neurulation, described in other reviews within this special issue. Here, we set out to highlight some of the new and exciting research that is being carried out in zebrafish to elucidate the role that Wnt/PCP signaling plays in the formation of specific organs, including the lateral line, craniofacial development, and regeneration. We also summarized the emerging connection of the Wnt/PCP pathway with primary cilia function, an essential organelle in several organ activities.
Collapse
Affiliation(s)
- Rodney M Dale
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Children's Memorial Research Center, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|