1
|
Lee CK, Nguyen HS, Kang SJ, Jeong SW. Cellular and Molecular Mechanisms Underlying Altered Excitability of Cardiac Efferent Neurons in Cirrhotic Rats. Biomedicines 2024; 12:1722. [PMID: 39200187 PMCID: PMC11351538 DOI: 10.3390/biomedicines12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Patients with cirrhosis often exhibit cardiac autonomic dysfunction (CAD), characterized by enhanced cardiac sympathetic activity and diminished cardiac vagal tone, leading to increased morbidity and mortality. This study delineates the cellular and molecular mechanisms associated with altered neuronal activities causing cirrhosis-induced CAD. Biliary and nonbiliary cirrhotic rats were produced by common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Three weeks after CBDL or TAA injection, the assessment of heart rate variability revealed autonomic imbalance in cirrhotic rats. We observed increased excitability in stellate ganglion (SG) neurons and decreased excitability in intracardiac ganglion (ICG) neurons in cirrhotic rats compared to sham-operated controls. Additionally, threshold, rheobase, and action potential duration exhibited opposite alterations in SG and ICG neurons, along with changes in afterhyperpolarization duration. A- and M-type K⁺ channels were significantly downregulated in SG neurons, while M-type K⁺ channels were upregulated, with downregulation of the N- and L-type Ca2⁺ channels in the ICG neurons of cirrhotic rats, both in transcript expression and functional activity. Collectively, these findings suggest that cirrhosis induces an imbalance between cardiac sympathetic and parasympathetic neuronal activities via the differential regulation of K+ and Ca2+ channels. Thus, cirrhosis-induced CAD may be associated with impaired autonomic efferent functions within the homeostatic reflex arc that regulates cardiac functions.
Collapse
Affiliation(s)
| | | | | | - Seong-Woo Jeong
- Laboratory of Molecular Neurophysiology, Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (C.-K.L.); (H.S.N.); (S.J.K.)
| |
Collapse
|
2
|
Gonzalez-Ferrer J, Lehrer J, O'Farrell A, Paten B, Teodorescu M, Haussler D, Jonsson VD, Mostajo-Radji MA. SIMS: A deep-learning label transfer tool for single-cell RNA sequencing analysis. CELL GENOMICS 2024; 4:100581. [PMID: 38823397 PMCID: PMC11228957 DOI: 10.1016/j.xgen.2024.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Cell atlases serve as vital references for automating cell labeling in new samples, yet existing classification algorithms struggle with accuracy. Here we introduce SIMS (scalable, interpretable machine learning for single cell), a low-code data-efficient pipeline for single-cell RNA classification. We benchmark SIMS against datasets from different tissues and species. We demonstrate SIMS's efficacy in classifying cells in the brain, achieving high accuracy even with small training sets (<3,500 cells) and across different samples. SIMS accurately predicts neuronal subtypes in the developing brain, shedding light on genetic changes during neuronal differentiation and postmitotic fate refinement. Finally, we apply SIMS to single-cell RNA datasets of cortical organoids to predict cell identities and uncover genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.
Collapse
Affiliation(s)
- Jesus Gonzalez-Ferrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Julian Lehrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Ash O'Farrell
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Benedict Paten
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - David Haussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Vanessa D Jonsson
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Mohammed A Mostajo-Radji
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| |
Collapse
|
3
|
Gonzalo-Gobernado R, Moreno-Martínez L, González P, Dopazo XM, Calvo AC, Pidal-Ladrón de Guevara I, Seisdedos E, Díaz-Muñoz R, Mellström B, Osta R, Naranjo JR. Repaglinide Induces ATF6 Processing and Neuroprotection in Transgenic SOD1G93A Mice. Int J Mol Sci 2023; 24:15783. [PMID: 37958767 PMCID: PMC10648964 DOI: 10.3390/ijms242115783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The interaction of the activating transcription factor 6 (ATF6), a key effector of the unfolded protein response (UPR) in the endoplasmic reticulum, with the neuronal calcium sensor Downstream Regulatory Element Antagonist Modulator (DREAM) is a potential therapeutic target in neurodegeneration. Modulation of the ATF6-DREAM interaction with repaglinide (RP) induced neuroprotection in a model of Huntington's disease. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with no cure, characterized by the progressive loss of motoneurons resulting in muscle denervation, atrophy, paralysis, and death. The aim of this work was to investigate the potential therapeutic significance of DREAM as a target for intervention in ALS. We found that the expression of the DREAM protein was reduced in the spinal cord of SOD1G93A mice compared to wild-type littermates. RP treatment improved motor strength and reduced the expression of the ALS progression marker collagen type XIXα1 (Col19α1 mRNA) in the quadriceps muscle in SOD1G93A mice. Moreover, treated SOD1G93A mice showed reduced motoneuron loss and glial activation and increased ATF6 processing in the spinal cord. These results indicate that the modulation of the DREAM-ATF6 interaction ameliorates ALS symptoms in SOD1G93A mice.
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Laura Moreno-Martínez
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Paz González
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Xose Manuel Dopazo
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Ana Cristina Calvo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Isabel Pidal-Ladrón de Guevara
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Elisa Seisdedos
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Rodrigo Díaz-Muñoz
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Britt Mellström
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Rosario Osta
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - José Ramón Naranjo
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| |
Collapse
|
4
|
Masanetz RK, Baum W, Schett G, Winkler J, Süß P. Cellular plasticity and myeloid inflammation in the adult brain are independent of the transcriptional modulator DREAM. Neurosci Lett 2023; 796:137061. [PMID: 36626960 DOI: 10.1016/j.neulet.2023.137061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
The downstream regulatory element antagonist modulator (DREAM) modulates ion channel function and gene transcription. Functionally, DREAM is implicated in physiological and pathological processes including cell proliferation, inflammation, and nociception. Despite its multiple functions and robust expression in forebrain tissue, neurons and glial cells, the role of DREAM in regard to cellular plasticity and tumor necrosis factor (TNF)-mediated inflammation is largely unexplored. Here, we demonstrate that adult hippocampal neurogenesis as well as the density and plasticity of glial cells in the hippocampus and thalamus are independent of the presence of DREAM. Further, DREAM deletion does not alter the regional myeloid response and inflammatory gene expression induced by chronic peripheral inflammation in mice overexpressing human TNF. Our data suggest that despite their highly dynamic regulation, neural cell plasticity and adult neurogenesis in the hippocampus do not depend on the multifunctional protein DREAM. Furthermore, TNF-mediated myeloid inflammation in the brain persists in the absence of DREAM.
Collapse
Affiliation(s)
- Rebecca Katharina Masanetz
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Wolfgang Baum
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Neurology, Friedrich-Alexander-Universität Erlangen Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|
5
|
Wang GH, Chuang AY, Lai YC, Chen HI, Hsueh SW, Yang YC. Pre- and post-synaptic A-type K + channels regulate glutamatergic transmission and switch of the network into epileptiform oscillations. Br J Pharmacol 2022; 179:3754-3777. [PMID: 35170022 DOI: 10.1111/bph.15818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/28/2021] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Anticonvulsants targeting K+ channels have not been clinically available, although neuronal hyperexcitability in seizures could be suppressed by activation of K+ channels. Voltage-gated A-type K+ channel (A-channel) inhibitors may be prescribed for diseases of neuromuscular junction but could cause seizures. Consistently, genetic loss of function of A-channels may also cause seizures. It is unclear why inhibition of A-channels, if compared with the other types of K+ channels, is particularly prone to seizure induction. This hinders the development of relevant therapeutic interventions. EXPERIMENTAL APPROACH The epileptogenic mechanisms of A-channel inhibition and antiepileptic actions of A-channel activation were investigated in electrophysiological and behavioral seizures with pharmacological and optogenetic maneuvers. KEY RESULTS Presynaptic Kv1.4 and postsynaptic Kv4.3 A-channels act synergistically to gate glutamatergic transmission and control rhythmogenesis in the amygdala. The interconnected neurons set into the oscillatory mode by A-channel inhibition would reverberate with regular paces and the same top frequency, demonstrating a spatiotemporally well-orchestrated system with built-in oscillatory rhythms normally curbed by A-channels. Accordingly, selective over-excitation of glutamatergic neurons or inhibition of A-channels suffices to induce behavioral seizures, which are effectively ameliorated by A-channel activators such as NS-5806 or AMPA receptor antagonists such as perampanel. CONCLUSION AND IMPLICATIONS Transsynaptic voltage-dependent A-channels serve as a biophysical-biochemical transducer responsible for a novel form of synaptic plasticity. Such a network-level switch into and out of the oscillatory mode may underlie a wide-scope of telencephalic information processing, or to its extreme, epileptic seizures. A-channels thus constitute a potential target of antiepileptic therapy.
Collapse
Affiliation(s)
- Guan-Hsun Wang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Ai-Yu Chuang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsin-I Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| |
Collapse
|
6
|
Xu W, Wang Y, Qi X, Li K, Zhou L, Sha S, Wang X, Wu C, Du Y, Chen L. Involvement of TRPV4 in changes in rapidly inactivating potassium channels in the early stage of pilocarpine-induced status epilepticus in mice. J Cell Physiol 2021; 237:856-867. [PMID: 34415059 DOI: 10.1002/jcp.30558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/11/2022]
Abstract
The rapidly inactivating potassium current (IA ) is important in controlling neuronal action potentials. Altered IA function and K+ channel expression have been found in epilepsy, and activation of the transient receptor potential vanilloid 4 (TRPV4) channel is involved in epilepsy pathogenesis. This study examined whether TRPV4 affects Kv4.2 and K+ channel interacting protein (KCHIP) expression and IA changes following pilocarpine-induced status epilepticus (PISE) in mice. Herein, hippocampal protein levels of Kv4.2 and KCHIP2 increased 3 h-3 d and decreased 7-30 d; that of KCHIP1 increased 3-24 h and decreased 3-30 d post-PISE. The TRPV4 antagonist HC-067047 attenuated the increased protein levels of Kv4.2 and KCHIP2 but not that of KCHIP1 post-PISE. The TRPV4 agonist GSK1016790A increased hippocampal protein levels of Kv4.2 and KCHIP2 but had no effect on KCHIP1 expression. HC-067047 attenuated the increased IA in hippocampal pyramidal neurons 24 h and 3 d post-PISE. GSK1016790A increased IA in hippocampal pyramidal neurons, shifting the voltage-dependent inactivation curve toward depolarization. The GSK1016790A-induced increase of IA was blocked by protein kinase A and calcium/calmodulin-dependent kinase II antagonists but was unaffected by protein kinase C antagonists. We conclude that TRPV4 activation may be responsible for the increases of Kv4.2 and KCHIP2 expression in hippocampi and IA in hippocampal pyramidal neurons in PISE mice, which are likely compensatory measures for hyperexcitability at the early stage of epilepsy.
Collapse
Affiliation(s)
- Weixing Xu
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Yue Wang
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Xiuting Qi
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Kunpeng Li
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Li Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| | - Chunfeng Wu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yimei Du
- Department of cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
7
|
Kelemen K, Szilágyi T. New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System. Brain Sci 2021. [PMID: 34069107 DOI: 10.3390/brainsci11050634ht] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Although Ca2+ ion plays an essential role in cellular physiology, calcium-binding proteins (CaBPs) were long used for mainly as immunohistochemical markers of specific cell types in different regions of the central nervous system. They are a heterogeneous and wide-ranging group of proteins. Their function was studied intensively in the last two decades and a tremendous amount of information was gathered about them. Girard et al. compiled a comprehensive list of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. We selected from this database those CaBPs which are related to information processing and/or neuronal signalling, have a Ca2+-buffer activity, Ca2+-sensor activity, modulator of Ca2+-channel activity, or a yet unknown function. In this way we created a gene function-based selection of the CaBPs. We cross-referenced these findings with publicly available, high-quality RNA-sequencing and in situ hybridization databases (Human Protein Atlas (HPA), Brain RNA-seq database and Allen Brain Atlas integrated into the HPA) and created gene expression heat maps of the regional and cell type-specific expression levels of the selected CaBPs. This represents a useful tool to predict and investigate different expression patterns and functions of the less-known CaBPs of the central nervous system.
Collapse
Affiliation(s)
- Krisztina Kelemen
- Department of Physiology, Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania
| | - Tibor Szilágyi
- Department of Physiology, Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania
| |
Collapse
|
8
|
Kelemen K, Szilágyi T. New Approach for Untangling the Role of Uncommon Calcium-Binding Proteins in the Central Nervous System. Brain Sci 2021; 11:brainsci11050634. [PMID: 34069107 PMCID: PMC8156796 DOI: 10.3390/brainsci11050634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Although Ca2+ ion plays an essential role in cellular physiology, calcium-binding proteins (CaBPs) were long used for mainly as immunohistochemical markers of specific cell types in different regions of the central nervous system. They are a heterogeneous and wide-ranging group of proteins. Their function was studied intensively in the last two decades and a tremendous amount of information was gathered about them. Girard et al. compiled a comprehensive list of the gene-expression profiles of the entire EF-hand gene superfamily in the murine brain. We selected from this database those CaBPs which are related to information processing and/or neuronal signalling, have a Ca2+-buffer activity, Ca2+-sensor activity, modulator of Ca2+-channel activity, or a yet unknown function. In this way we created a gene function-based selection of the CaBPs. We cross-referenced these findings with publicly available, high-quality RNA-sequencing and in situ hybridization databases (Human Protein Atlas (HPA), Brain RNA-seq database and Allen Brain Atlas integrated into the HPA) and created gene expression heat maps of the regional and cell type-specific expression levels of the selected CaBPs. This represents a useful tool to predict and investigate different expression patterns and functions of the less-known CaBPs of the central nervous system.
Collapse
|
9
|
Yao J, Sun B, Institoris A, Zhan X, Guo W, Song Z, Liu Y, Hiess F, Boyce AKJ, Ni M, Wang R, Ter Keurs H, Back TG, Fill M, Thompson RJ, Turner RW, Gordon GR, Chen SRW. Limiting RyR2 Open Time Prevents Alzheimer's Disease-Related Neuronal Hyperactivity and Memory Loss but Not β-Amyloid Accumulation. Cell Rep 2021; 32:108169. [PMID: 32966798 PMCID: PMC7532726 DOI: 10.1016/j.celrep.2020.108169] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Neuronal hyperactivity is an early primary dysfunction in Alzheimer’s disease (AD) in humans and animal models, but effective neuronal hyperactivity-directed anti-AD therapeutic agents are lacking. Here we define a previously unknown mode of ryanodine receptor 2 (RyR2) control of neuronal hyperactivity and AD progression. We show that a single RyR2 point mutation, E4872Q, which reduces RyR2 open time, prevents hyperexcitability, hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset AD mouse model (5xFAD). The RyR2-E4872Q mutation upregulates hippocampal CA1-pyramidal cell A-type K+ current, a well-known neuronal excitability control that is downregulated in AD. Pharmacologically limiting RyR2 open time with the R-carvedilol enantiomer (but not racemic carvedilol) prevents and rescues neuronal hyperactivity, memory impairment, and neuron loss even in late stages of AD. These AD-related deficits are prevented even with continued β-amyloid accumulation. Thus, limiting RyR2 open time may be a hyperactivity-directed, non-β-amyloid-targeted anti-AD strategy. Yao et al. show that genetically or pharmacologically limiting the open duration of ryanodine receptor 2 upregulates the A-type potassium current and prevents neuronal hyperexcitability and hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset Alzheimer’s disease mouse model, even with continued accumulation of β-amyloid.
Collapse
Affiliation(s)
- Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bo Sun
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Medical School, Kunming University of Science and Technology, Kunming 650504, China
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Xiaoqin Zhan
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Zhenpeng Song
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yajing Liu
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Florian Hiess
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andrew K J Boyce
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mingke Ni
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Henk Ter Keurs
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael Fill
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Roger J Thompson
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ray W Turner
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
10
|
Alfaro-Ruíz R, Aguado C, Martín-Belmonte A, Moreno-Martínez AE, Luján R. Cellular and Subcellular Localisation of Kv4-Associated KChIP Proteins in the Rat Cerebellum. Int J Mol Sci 2020; 21:ijms21176403. [PMID: 32899153 PMCID: PMC7503578 DOI: 10.3390/ijms21176403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
The K+ channel interacting proteins (KChIPs) are a family of cytosolic proteins that interact with Kv4 channels, leading to higher current density, modulation of channel inactivation and faster recovery from inactivation. Using immunohistochemical techniques at the light and electron microscopic level combined with quantitative analysis, we investigated the cellular and subcellular localisation of KChIP3 and KChIP4 to compare their distribution patterns with those for Kv4.2 and Kv4.3 in the cerebellar cortex. Immunohistochemistry at the light microscopic level demonstrated that KChIP3, KChIP4, Kv4.2 and Kv4.3 proteins were widely expressed in the cerebellum, with mostly overlapping patterns. Immunoelectron microscopic techniques showed that KChIP3, KChIP4, Kv4.2 and Kv4.3 shared virtually the same somato-dendritic domains of Purkinje cells and granule cells. Application of quantitative approaches showed that KChIP3 and KChIP4 were mainly membrane-associated, but also present at cytoplasmic sites close to the plasma membrane, in dendritic spines and shafts of Purkinje cells (PCs) and dendrites of granule cells (GCs). Similarly, immunoparticles for Kv4.2 and Kv4.3 were observed along the plasma membrane and at intracellular sites in the same neuron populations. In addition to the preferential postsynaptic distribution, KChIPs and Kv4 were also distributed presynaptically in parallel fibres and mossy fibres. Immunoparticles for KChIP3, KChIP4 and Kv4.3 were detected in parallel fibres, and KChIP3, KChIP4, Kv4.2 and Kv4.3 were found in parallel fibres, indicating that composition of KChIP and Kv4 seems to be input-dependent. Together, our findings unravelled previously uncharacterised KChIP and Kv4 subcellular localisation patterns in neurons, revealed that KChIP have additional Kv4-unrelated functions in the cerebellum and support the formation of macromolecular complexes between KChIP3 and KChIP4 with heterotetrameric Kv4.2/Kv4.3 channels.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Luján
- Correspondence: ; Tel.: +34-967-599200 (ext. 2196)
| |
Collapse
|
11
|
Novel De Novo KCND3 Mutation in a Japanese Patient with Intellectual Disability, Cerebellar Ataxia, Myoclonus, and Dystonia. THE CEREBELLUM 2019; 17:237-242. [PMID: 28895081 DOI: 10.1007/s12311-017-0883-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spinocerebellar ataxia 19/22 (SCA19/22) is a rare type of autosomal dominant SCA that was previously described in 11 families. We report the case of a 30-year-old Japanese man presenting with intellectual disability, early onset cerebellar ataxia, myoclonus, and dystonia without a family history. MRI showed cerebellar atrophy, and electroencephalograms showed paroxysmal sharp waves during hyperventilation and photic stimulation. Trio whole-exome sequencing analysis of DNA samples from the patient and his parents revealed a de novo novel missense mutation (c.1150G>A, p.G384S) in KCND3, the causative gene of SCA19/22, substituting for evolutionally conserved glycine. The mutation was predicted to be functionally deleterious by bioinformatic analysis. Although pure cerebellar ataxia is the most common clinical feature in SCA19/22 families, extracerebellar symptoms including intellectual disability and myoclonus are reported in a limited number of families, suggesting a genotype-phenotype correlation for particular mutations. Although autosomal recessive diseases are more common in patients with early onset sporadic cerebellar ataxia, the present study emphasizes that such a possibility of de novo mutation should be considered.
Collapse
|
12
|
Carrillo-Reid L, Day M, Xie Z, Melendez AE, Kondapalli J, Plotkin JL, Wokosin DL, Chen Y, Kress GJ, Kaplitt M, Ilijic E, Guzman JN, Chan CS, Surmeier DJ. Mutant huntingtin enhances activation of dendritic Kv4 K + channels in striatal spiny projection neurons. eLife 2019; 8:e40818. [PMID: 31017573 PMCID: PMC6481990 DOI: 10.7554/elife.40818] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 04/02/2019] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is initially characterized by an inability to suppress unwanted movements, a deficit attributable to impaired synaptic activation of striatal indirect pathway spiny projection neurons (iSPNs). To better understand the mechanisms underlying this deficit, striatal neurons in ex vivo brain slices from mouse genetic models of HD were studied using electrophysiological, optical and biochemical approaches. Distal dendrites of iSPNs from symptomatic HD mice were hypoexcitable, a change that was attributable to increased association of dendritic Kv4 potassium channels with auxiliary KChIP subunits. This association was negatively modulated by TrkB receptor signaling. Dendritic excitability of HD iSPNs was rescued by knocking-down expression of Kv4 channels, by disrupting KChIP binding, by restoring TrkB receptor signaling or by lowering mutant-Htt (mHtt) levels with a zinc finger protein. Collectively, these studies demonstrate that mHtt induces reversible alterations in the dendritic excitability of iSPNs that could contribute to the motor symptoms of HD.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology InstituteNational Autonomous University of MexicoQueretaroMexico
| | - Michelle Day
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Zhong Xie
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Alexandria E Melendez
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Joshua L Plotkin
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
- Department of Neurobiology & BehaviorStony Brook University School of MedicineStony BrookUnited States
| | - David L Wokosin
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Yu Chen
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Geraldine J Kress
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
- Department of NeurologyWashington University School of MedicineSt. LouisUnited States
| | - Michael Kaplitt
- Department of Neurological SurgeryWeill Cornell Medical CollegeNew YorkUnited States
| | - Ema Ilijic
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Jaime N Guzman
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - C Savio Chan
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - D James Surmeier
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| |
Collapse
|
13
|
Néant I, Haiech J, Kilhoffer MC, Aulestia FJ, Moreau M, Leclerc C. Ca 2+-Dependent Transcriptional Repressors KCNIP and Regulation of Prognosis Genes in Glioblastoma. Front Mol Neurosci 2018; 11:472. [PMID: 30618619 PMCID: PMC6305344 DOI: 10.3389/fnmol.2018.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
Glioblastomas (GBMs) are the most aggressive and lethal primary astrocytic tumors in adults, with very poor prognosis. Recurrence in GBM is attributed to glioblastoma stem-like cells (GSLCs). The behavior of the tumor, including proliferation, progression, invasion, and significant resistance to therapies, is a consequence of the self-renewing properties of the GSLCs, and their high resistance to chemotherapies have been attributed to their capacity to enter quiescence. Thus, targeting GSLCs may constitute one of the possible therapeutic challenges to significantly improve anti-cancer treatment regimens for GBM. Ca2+ signaling is an important regulator of tumorigenesis in GBM, and the transition from proliferation to quiescence involves the modification of the kinetics of Ca2+ influx through store-operated channels due to an increased capacity of the mitochondria of quiescent GSLC to capture Ca2+. Therefore, the identification of new therapeutic targets requires the analysis of the calcium-regulated elements at transcriptional levels. In this review, we focus onto the direct regulation of gene expression by KCNIP proteins (KCNIP1–4). These proteins constitute the class E of Ca2+ sensor family with four EF-hand Ca2+-binding motifs and control gene transcription directly by binding, via a Ca2+-dependent mechanism, to specific DNA sites on target genes, called downstream regulatory element (DRE). The presence of putative DRE sites on genes associated with unfavorable outcome for GBM patients suggests that KCNIP proteins may contribute to the alteration of the expression of these prognosis genes. Indeed, in GBM, KCNIP2 expression appears to be significantly linked to the overall survival of patients. In this review, we summarize the current knowledge regarding the quiescent GSLCs with respect to Ca2+ signaling and discuss how Ca2+via KCNIP proteins may affect prognosis genes expression in GBM. This original mechanism may constitute the basis of the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Isabelle Néant
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jacques Haiech
- Laboratoire d'Excellence Medalis, CNRS, LIT UMR 7200, Université de Strasbourg, Strasbourg, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Excellence Medalis, CNRS, LIT UMR 7200, Université de Strasbourg, Strasbourg, France
| | - Francisco J Aulestia
- Department of Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, NY, United States
| | - Marc Moreau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Catherine Leclerc
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
14
|
Zobeiri M, Chaudhary R, Datunashvili M, Heuermann RJ, Lüttjohann A, Narayanan V, Balfanz S, Meuth P, Chetkovich DM, Pape HC, Baumann A, van Luijtelaar G, Budde T. Modulation of thalamocortical oscillations by TRIP8b, an auxiliary subunit for HCN channels. Brain Struct Funct 2018; 223:1537-1564. [PMID: 29168010 PMCID: PMC5869905 DOI: 10.1007/s00429-017-1559-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels have important functions in controlling neuronal excitability and generating rhythmic oscillatory activity. The role of tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) in regulation of hyperpolarization-activated inward current, I h, in the thalamocortical system and its functional relevance for the physiological thalamocortical oscillations were investigated. A significant decrease in I h current density, in both thalamocortical relay (TC) and cortical pyramidal neurons was found in TRIP8b-deficient mice (TRIP8b-/-). In addition basal cAMP levels in the brain were found to be decreased while the availability of the fast transient A-type K+ current, I A, in TC neurons was increased. These changes were associated with alterations in intrinsic properties and firing patterns of TC neurons, as well as intrathalamic and thalamocortical network oscillations, revealing a significant increase in slow oscillations in the delta frequency range (0.5-4 Hz) during episodes of active-wakefulness. In addition, absence of TRIP8b suppresses the normal desynchronization response of the EEG during the switch from slow-wave sleep to wakefulness. It is concluded that TRIP8b is necessary for the modulation of physiological thalamocortical oscillations due to its direct effect on HCN channel expression in thalamus and cortex and that mechanisms related to reduced cAMP signaling may contribute to the present findings.
Collapse
Affiliation(s)
- Mehrnoush Zobeiri
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| | - Rahul Chaudhary
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149, Münster, Germany
| | - Maia Datunashvili
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149, Münster, Germany
| | - Robert J Heuermann
- Davee Department of Neurology and Clinical Neurosciences and Department of Physiology, Feinberg School of Medicine, Northwestern University, 60611Chicago, USA
| | - Annika Lüttjohann
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149, Münster, Germany
| | - Venu Narayanan
- Department of Neurology and Institute of Translational Neurology, Westfälische Wilhelms-Universität, 48149, Münster, Germany
| | - Sabine Balfanz
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Patrick Meuth
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149, Münster, Germany
| | - Dane M Chetkovich
- Davee Department of Neurology and Clinical Neurosciences and Department of Physiology, Feinberg School of Medicine, Northwestern University, 60611Chicago, USA
| | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149, Münster, Germany
| | - Arnd Baumann
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | | | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
15
|
Lindroos R, Dorst MC, Du K, Filipović M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J. Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 2018; 12:3. [PMID: 29467627 PMCID: PMC5808142 DOI: 10.3389/fncir.2018.00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.
Collapse
Affiliation(s)
- Robert Lindroos
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Matthijs C. Dorst
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Kai Du
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Marko Filipović
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Keller
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Maya Ketzef
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Alexander K. Kozlov
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Arvind Kumar
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
- Department Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael Lindahl
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Anu G. Nair
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Juan Pérez-Fernández
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
16
|
Attention-deficit/hyperactivity disorder associated with KChIP1 rs1541665 in Kv channels accessory proteins. PLoS One 2017; 12:e0188678. [PMID: 29176790 PMCID: PMC5703492 DOI: 10.1371/journal.pone.0188678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is an early onset childhood neurodevelopmental disorder with high heritability. A number of genetic risk factors and environment factors have been implicated in the pathogenesis of ADHD. Genes encoding for subtypes of voltage-dependent K channels (Kv) and accessory proteins to these channels have been identified in genome-wide association studies (GWAS) of ADHD. We conducted a two-stage case–control study to investigate the associations between five key genes (KChIP4, KChIP1, DPP10, FHIT, and KCNC1) and the risk of developing ADHD. In the discovery stage comprising 256 cases and 372 controls, KChIP1 rs1541665 and FHIT rs3772475 were identified; they were further genotyped in the validation stage containing 328cases and 431 controls.KChIP1 rs1541665 showed significant association with a risk of ADHD at both stages, with CC vs TT odds ratio (OR) = 1.961, 95% confidence interval (CI) = 1.366–2.497, in combined analyses (P-FDR = 0.007). Moreover, we also found rs1541665 involvement in ADHD-I subtype (OR (95% CI) = 2.341(1.713, 3.282), and Hyperactive index score (P = 0.005) in combined samples.Intriguingly, gene-environmental interactions analysis consistently revealed the potential interactionsof rs1541665 collaboratingwith maternal stress pregnancy (Pmul = 0.021) and blood lead (Padd = 0.017) to modify ADHD risk. In conclusion, the current study provides evidence that genetic variants of Kv accessory proteins may contribute to the susceptibility of ADHD.Further studies with different ethnicitiesare warranted to produce definitive conclusions.
Collapse
|
17
|
Spencer KB, Mulholland PJ, Chandler LJ. FMRP Mediates Chronic Ethanol-Induced Changes in NMDA, Kv4.2, and KChIP3 Expression in the Hippocampus. Alcohol Clin Exp Res 2016; 40:1251-61. [PMID: 27147118 DOI: 10.1111/acer.13060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Exposure to chronic ethanol (EtOH) results in changes in the expression of proteins that regulate neuronal excitability. This study examined whether chronic EtOH alters the hippocampal expression and function of fragile X mental retardation protein (FMRP) and the role of FMRP in the modulation of chronic EtOH-induced changes in the expression of NMDA receptors and Kv4.2 channels. METHODS For in vivo studies, C57BL/6J mice underwent a chronic intermittent EtOH (CIE) vapor exposure procedure. After CIE, hippocampal tissue was collected and subjected to immunoblot blot analysis of NMDA receptor subunits (GluN1, GluN2B), Kv4.2, and its accessory protein KChIP3. For in vitro studies, hippocampal slice cultures were exposed to 75 mM EtOH for 8 days. Following EtOH exposure, mRNAs bound to FMRP was measured. In a separate set of studies, cultures were exposed to an inhibitor of S6K1 (PF-4708671 [PF], 6 μM) in order to assess whether EtOH-induced homeostatic changes in protein expression depend upon changes in FMRP activity. RESULTS Immunoblot blot analysis revealed increases in GluN1 and GluN2B but reductions in Kv4.2 and KChIP3. Analysis of mRNAs bound to FMRP revealed a similar bidirectional change observed as reduction of GluN2B and increase in Kv4.2 and KChIP3 mRNA transcripts. Analysis of FMRP further revealed that while chronic EtOH did not alter the expression of FMRP, it significantly increased phosphorylation of FMRP at the S499 residue that is known to critically regulate its activity. Inhibition of S6K1 prevented the chronic EtOH-induced increase in phospho-FMRP and changes in NMDA subunits, Kv4.2, and KChIP3. In contrast, PF had no effect in the absence of alcohol, indicating it was specific for the chronic EtOH-induced changes. CONCLUSIONS These findings demonstrate that chronic EtOH exposure enhances translational control of plasticity-related proteins by FMRP, and that S6K1 and FMRP activities are required for expression of chronic EtOH-induced homeostatic plasticity at glutamatergic synapses in the hippocampus.
Collapse
Affiliation(s)
- Kathryn B Spencer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Patrick J Mulholland
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - L Judson Chandler
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
18
|
Moreau M, Néant I, Webb SE, Miller AL, Riou JF, Leclerc C. Ca(2+) coding and decoding strategies for the specification of neural and renal precursor cells during development. Cell Calcium 2015; 59:75-83. [PMID: 26744233 DOI: 10.1016/j.ceca.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023]
Abstract
During embryogenesis, a rise in intracellular Ca(2+) is known to be a widespread trigger for directing stem cells towards a specific tissue fate, but the precise Ca(2+) signalling mechanisms involved in achieving these pleiotropic effects are still poorly understood. In this review, we compare the Ca(2+) signalling events that appear to be one of the first steps in initiating and regulating both neural determination (neural induction) and kidney development (nephrogenesis). We have highlighted the necessary and sufficient role played by Ca(2+) influx and by Ca(2+) transients in the determination and differentiation of pools of neural or renal precursors. We have identified new Ca(2+) target genes involved in neural induction and we showed that the same Ca(2+) early target genes studied are not restricted to neural tissue but are also present in other tissues, principally in the pronephros. In this review, we also described a mechanism whereby the transcriptional control of gene expression during neurogenesis and nephrogenesis might be directly controlled by Ca(2+) signalling. This mechanism involves members of the Kcnip family such that a change in their binding properties to specific DNA sites is a result of Ca(2+) binding to EF-hand motifs. The different functions of Ca(2+) signalling during these two events illustrate the versatility of Ca(2+) as a second messenger.
Collapse
Affiliation(s)
- Marc Moreau
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Isabelle Néant
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China; MBL, Woods Hole, MA, USA
| | - Jean-François Riou
- Université Pierre et Marie Curie-Paris VI, Equipe "Signalisation et Morphogenèse", UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France; CNRS, Equipe "Signalisation et Morphogenèse", UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Catherine Leclerc
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France.
| |
Collapse
|
19
|
A genome-wide association study identifies variants in KCNIP4 associated with ACE inhibitor-induced cough. THE PHARMACOGENOMICS JOURNAL 2015; 16:231-7. [PMID: 26169577 PMCID: PMC4713364 DOI: 10.1038/tpj.2015.51] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/13/2015] [Accepted: 06/03/2015] [Indexed: 12/30/2022]
Abstract
The most common side effect of angiotensin-converting enzyme inhibitor (ACEi) drugs is cough. We conducted a genome-wide association study (GWAS) of ACEi-induced cough among 7080 subjects of diverse ancestries in the Electronic Medical Records and Genomics (eMERGE) network. Cases were subjects diagnosed with ACEi-induced cough. Controls were subjects with at least 6 months of ACEi use and no cough. A GWAS (1595 cases and 5485 controls) identified associations on chromosome 4 in an intron of KCNIP4. The strongest association was at rs145489027 (minor allele frequency=0.33, odds ratio (OR)=1.3 (95% confidence interval (CI): 1.2–1.4), P=1.0 × 10−8). Replication for six single-nucleotide polymorphisms (SNPs) in KCNIP4 was tested in a second eMERGE population (n=926) and in the Genetics of Diabetes Audit and Research in Tayside, Scotland (GoDARTS) cohort (n=4309). Replication was observed at rs7675300 (OR=1.32 (1.01–1.70), P=0.04) in eMERGE and at rs16870989 and rs1495509 (OR=1.15 (1.01–1.30), P=0.03 for both) in GoDARTS. The combined association at rs1495509 was significant (OR=1.23 (1.15–1.32), P=1.9 × 10−9). These results indicate that SNPs in KCNIP4 may modulate ACEi-induced cough risk.
Collapse
|
20
|
Girard F, Venail J, Schwaller B, Celio M. The EF-hand Ca2+-binding protein super-family: A genome-wide analysis of gene expression patterns in the adult mouse brain. Neuroscience 2015; 294:116-55. [DOI: 10.1016/j.neuroscience.2015.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 01/13/2023]
|
21
|
Duarri A, Lin MCA, Fokkens MR, Meijer M, Smeets CJLM, Nibbeling EAR, Boddeke E, Sinke RJ, Kampinga HH, Papazian DM, Verbeek DS. Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner. Cell Mol Life Sci 2015; 72:3387-99. [PMID: 25854634 PMCID: PMC4531139 DOI: 10.1007/s00018-015-1894-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022]
Abstract
The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia.
Collapse
Affiliation(s)
- Anna Duarri
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Puighermanal E, Biever A, Espallergues J, Gangarossa G, De Bundel D, Valjent E. drd2-cre:ribotagmouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus 2015; 25:858-75. [DOI: 10.1002/hipo.22408] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Emma Puighermanal
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| | - Anne Biever
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| | - Julie Espallergues
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| | - Giuseppe Gangarossa
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| | - Dimitri De Bundel
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| | - Emmanuel Valjent
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| |
Collapse
|
23
|
Ruiz-DeDiego I, Mellstrom B, Vallejo M, Naranjo JR, Moratalla R. Activation of DREAM (downstream regulatory element antagonistic modulator), a calcium-binding protein, reduces L-DOPA-induced dyskinesias in mice. Biol Psychiatry 2015; 77:95-105. [PMID: 24857398 DOI: 10.1016/j.biopsych.2014.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/05/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Previous studies have implicated the cyclic adenosine monophosphate/protein kinase A pathway as well as FosB and dynorphin-B expression mediated by dopamine D1 receptor stimulation in the development of 3,4-dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia. The magnitude of these molecular changes correlates with the intensity of dyskinesias. The calcium-binding protein downstream regulatory element antagonistic modulator (DREAM) binds to regulatory element sites called DRE in the DNA and represses transcription of target genes such as c-fos, fos-related antigen-2 (fra-2), and prodynorphin. This repression is released by calcium and protein kinase A activation. Dominant-active DREAM transgenic mice (daDREAM) and DREAM knockout mice (DREAM(-/-)) were used to define the involvement of DREAM in dyskinesias. METHODS Dyskinesias were evaluated twice a week in mice with 6-hydroxydopamine lesions during long-term L-DOPA (25 mg/kg) treatment. The impact of DREAM on L-DOPA efficacy was evaluated using the rotarod and the cylinder test after the establishment of dyskinesia and the molecular changes by immunohistochemistry and Western blot. RESULTS In daDREAM mice, L-DOPA-induced dyskinesia was decreased throughout the entire treatment. In correlation with these behavioral results, daDREAM mice showed a decrease in FosB, phosphoacetylated histone H3, dynorphin-B, and phosphorylated glutamate receptor subunit, type 1 expression. Conversely, genetic inactivation of DREAM potentiated the intensity of dyskinesia, and DREAM(-/-) mice exhibited an increase in expression of molecular markers associated with dyskinesias. The DREAM modifications did not affect the kinetic profile or antiparkinsonian efficacy of L-DOPA therapy. CONCLUSIONS The protein DREAM decreases development of L-DOPA-induced dyskinesia in mice and reduces L-DOPA-induced expression of FosB, phosphoacetylated histone H3, and dynorphin-B in the striatum. These data suggest that therapeutic approaches that activate DREAM may be useful to alleviate L-DOPA-induced dyskinesia without interfering with the therapeutic motor effects of L-DOPA.
Collapse
Affiliation(s)
- Irene Ruiz-DeDiego
- Cajal Institute, Madrid, Spain; Centro Nacional de Biotecnología, Madrid, Spain
| | - Britt Mellstrom
- Centro Nacional de Biotecnología, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols all part of Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Vallejo
- CIBERNED, Madrid, Spain; CIBERDEM, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jose R Naranjo
- Centro Nacional de Biotecnología, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols all part of Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rosario Moratalla
- Cajal Institute, Madrid, Spain; Centro Nacional de Biotecnología, Madrid, Spain.
| |
Collapse
|
24
|
Néant I, Mellström B, Gonzalez P, Naranjo JR, Moreau M, Leclerc C. Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2077-85. [PMID: 25499267 DOI: 10.1016/j.bbamcr.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 12/30/2022]
Abstract
In amphibian embryos, our previous work has demonstrated that calcium transients occurring in the dorsal ectoderm at the onset of gastrulation are necessary and sufficient to engage the ectodermal cells into a neural fate by inducing neural specific genes. Some of these genes are direct targets of calcium. Here we search for a direct transcriptional mechanism by which calcium signals are acting. The only known mechanism responsible for a direct action of calcium on gene transcription involves an EF-hand Ca²⁺ binding protein which belongs to a group of four proteins (Kcnip1 to 4). Kcnip protein can act in a Ca²⁺-dependent manner as a transcriptional repressor by binding to a specific DNA sequence, the Downstream Regulatory Element (DRE) site. In Xenopus, among the four kcnips, we show that only kcnip1 is timely and spatially present in the presumptive neural territories and is able to bind DRE sites in a Ca²⁺-dependent manner. The loss of function of kcnip1 results in the expansion of the neural plate through an increased proliferation of neural progenitors. Later on, this leads to an impairment in the development of anterior neural structures. We propose that, in the embryo, at the onset of neurogenesis Kcnip1 is the Ca²⁺-dependent transcriptional repressor that controls the size of the neural plate. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Isabelle Néant
- Université Toulouse 3, Centre de Biologie du Développement, 118 routes de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062 France; GDRE CNRS, n° 731, Toulouse, France; Centro Nacional de Biotechnología, CSIC, Madrid, Spain; CIBERNED, Madrid, Spain
| | - Britt Mellström
- Centro Nacional de Biotechnología, CSIC, Madrid, Spain; CIBERNED, Madrid, Spain
| | - Paz Gonzalez
- Centro Nacional de Biotechnología, CSIC, Madrid, Spain; CIBERNED, Madrid, Spain
| | - Jose R Naranjo
- GDRE CNRS, n° 731, Toulouse, France; Centro Nacional de Biotechnología, CSIC, Madrid, Spain; CIBERNED, Madrid, Spain
| | - Marc Moreau
- Université Toulouse 3, Centre de Biologie du Développement, 118 routes de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062 France; GDRE CNRS, n° 731, Toulouse, France
| | - Catherine Leclerc
- Université Toulouse 3, Centre de Biologie du Développement, 118 routes de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062 France; GDRE CNRS, n° 731, Toulouse, France.
| |
Collapse
|
25
|
Rainnie DG, Hazra R, Dabrowska J, Guo JD, Li CC, Dewitt S, Muly EC. Distribution and functional expression of Kv4 family α subunits and associated KChIP β subunits in the bed nucleus of the stria terminalis. J Comp Neurol 2014; 522:609-25. [PMID: 24037673 DOI: 10.1002/cne.23435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 12/22/2022]
Abstract
Regulation of BNSTALG neuronal firing activity is tightly regulated by the opposing actions of the fast outward potassium current, IA , mediated by α subunits of the Kv4 family of ion channels, and the transient inward calcium current, IT . Together, these channels play a critical role in regulating the latency to action potential onset, duration, and frequency, as well as dendritic back-propagation and synaptic plasticity. Previously we have shown that Type I-III BNSTALG neurons express mRNA transcripts for each of the Kv4 α subunits. However, the biophysical properties of native IA channels are critically dependent on the formation of macromolecular complexes of Kv4 channels with a family of chaperone proteins, the potassium channel-interacting proteins (KChIP1-4). Here we used a multidisciplinary approach to investigate the expression and function of Kv4 channels and KChIPs in neurons of the rat BNSTALG . Using immunofluorescence we demonstrated the pattern of localization of Kv4.2, Kv4.3, and KChIP1-4 proteins in the BNSTALG . Moreover, our single-cell reverse-transcription polymerase chain reaction (scRT-PCR) studies revealed that mRNA transcripts for Kv4.2, Kv4.3, and all four KChIPs were differentially expressed in Type I-III BNSTALG neurons. Furthermore, immunoelectron microscopy revealed that Kv4.2 and Kv4.3 channels were primarily localized to the dendrites and spines of BNSTALG neurons, and are thus ideally situated to modulate synaptic transmission. Consistent with this observation, in vitro patch clamp recordings showed that reducing postsynaptic IA in these neurons lowered the threshold for long-term potentiation (LTP) induction. These results are discussed in relation to potential modulation of IA channels by chronic stress.
Collapse
Affiliation(s)
- Donald G Rainnie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia; Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia
| | | | | | | | | | | | | |
Collapse
|
26
|
The expression pattern of a Cav3-Kv4 complex differentially regulates spike output in cerebellar granule cells. J Neurosci 2014; 34:8800-12. [PMID: 24966380 DOI: 10.1523/jneurosci.0981-14.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cerebellum receives sensory information by mossy fiber input from a multitude of sources that require differential signal processing. A compartmentalization of function begins with the segregation of mossy fibers across 10 distinct lobules over the rostrocaudal axis, with tactile receptor afferents prevalent in anterior lobules and vestibular input in caudal lobules. However, it is unclear how these unique signals might be differentially processed at the circuit level across the cerebellum. As granule cells receive mossy fiber input, they represent a key stage at which postsynaptic mechanisms could influence signal processing. Granule cells express an A-type current mediated by Kv4 potassium channels that modify the latency and frequency of spike output. The current study examined the potential for a Cav3 calcium-Kv4 channel complex to regulate the response of granule cells to mossy fiber input in lobules 2 and 9 of the rat cerebellum. Similar A-type currents were recorded in both regions, but the Cav3 calcium current was expressed at a substantially higher density in lobule 9 cells, acting to increase A-type current availability through its influence on Kv4 voltage for inactivation. The difference in excitability imparted by Cav3-Kv4 interactions proves to allow lobule 2 granule cells to respond more effectively to tactile stimulus-like burst input and lobule 9 cells to slow shifts in input frequency characteristic of vestibular input. The expression pattern of Cav3 channels and its control of Kv4 availability thus provides a novel means of processing widely different forms of sensory input across cerebellar lobules.
Collapse
|
27
|
Rebound burst firing in the reticular thalamus is not essential for pharmacological absence seizures in mice. Proc Natl Acad Sci U S A 2014; 111:11828-33. [PMID: 25071191 DOI: 10.1073/pnas.1408609111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Intrinsic burst and rhythmic burst discharges (RBDs) are elicited by activation of T-type Ca(2+) channels in the thalamic reticular nucleus (TRN). TRN bursts are believed to be critical for generation and maintenance of thalamocortical oscillations, leading to the spike-and-wave discharges (SWDs), which are the hallmarks of absence seizures. We observed that the RBDs were completely abolished, whereas tonic firing was significantly increased, in TRN neurons from mice in which the gene for the T-type Ca(2+) channel, CaV3.3, was deleted (CaV3.3(-/-)). Contrary to expectations, there was an increased susceptibility to drug-induced SWDs both in CaV3.3(-/-) mice and in mice in which the CaV3.3 gene was silenced predominantly in the TRN. CaV3.3(-/-) mice also showed enhanced inhibitory synaptic drive onto TC neurons. Finally, a double knockout of both CaV3.3 and CaV3.2, which showed complete elimination of burst firing and RBDs in TRN neurons, also displayed enhanced drug-induced SWDs and absence seizures. On the other hand, tonic firing in the TRN was increased in these mice, suggesting that increased tonic firing in the TRN may be sufficient for drug-induced SWD generation in the absence of burst firing. These results call into question the role of burst firing in TRN neurons in the genesis of SWDs, calling for a rethinking of the mechanism for absence seizure induction.
Collapse
|
28
|
Jerng HH, Pfaffinger PJ. Incorporation of DPP6a and DPP6K variants in ternary Kv4 channel complex reconstitutes properties of A-type K current in rat cerebellar granule cells. PLoS One 2012; 7:e38205. [PMID: 22675523 PMCID: PMC3366920 DOI: 10.1371/journal.pone.0038205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/04/2012] [Indexed: 01/27/2023] Open
Abstract
Dipeptidyl peptidase-like protein 6 (DPP6) proteins co-assemble with Kv4 channel α-subunits and Kv channel-interacting proteins (KChIPs) to form channel protein complexes underlying neuronal somatodendritic A-type potassium current (ISA). DPP6 proteins are expressed as N-terminal variants (DPP6a, DPP6K, DPP6S, DPP6L) that result from alternative mRNA initiation and exhibit overlapping expression patterns. Here, we study the role DPP6 variants play in shaping the functional properties of ISA found in cerebellar granule (CG) cells using quantitative RT-PCR and voltage-clamp recordings of whole-cell currents from reconstituted channel complexes and native ISA channels. Differential expression of DPP6 variants was detected in rat CG cells, with DPP6K (41±3%)>DPP6a (33±3%)>>DPP6S (18±2%)>DPP6L (8±3%). To better understand how DPP6 variants shape native neuronal ISA, we focused on studying interactions between the two dominant variants, DPP6K and DPP6a. Although previous studies did not identify unique functional effects of DPP6K, we find that the unique N-terminus of DPP6K modulates the effects of KChIP proteins, slowing recovery and producing a negative shift in the steady-state inactivation curve. By contrast, DPP6a uses its distinct N-terminus to directly confer rapid N-type inactivation independently of KChIP3a. When DPP6a and DPP6K are co-expressed in ratios similar to those found in CG cells, their distinct effects compete in modulating channel function. The more rapid inactivation from DPP6a dominates during strong depolarization; however, DPP6K produces a negative shift in the steady-state inactivation curve and introduces a slow phase of recovery from inactivation. A direct comparison to the native CG cell ISA shows that these mixed effects are present in the native channels. Our results support the hypothesis that the precise expression and co-assembly of different auxiliary subunit variants are important factors in shaping the ISA functional properties in specific neuronal populations.
Collapse
Affiliation(s)
- Henry H Jerng
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America.
| | | |
Collapse
|
29
|
Evolution of CpG island promoter function underlies changes in KChIP2 potassium channel subunit gene expression in mammalian heart. Proc Natl Acad Sci U S A 2012; 109:1601-6. [PMID: 22307618 DOI: 10.1073/pnas.1114516109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Scaling of cardiac electrophysiology with body mass requires large changes in the ventricular action potential duration and heart rate in mammals. These changes in cellular electrophysiological function are produced by systematic and coordinated changes in the expression of multiple ion channel and transporter genes. Expression of one important potassium current, the transient outward current (I(to)), changes significantly during mammalian evolution. Changes in I(to) expression are determined, in part, by variation in the expression of an obligatory auxiliary subunit encoded by the KChIP2 gene. The KChIP2 gene is expressed in both cardiac myocytes and neurons and transcription in both cell types is initiated from the same CpG island promoter. Species-dependent variation of KChIP2 expression in heart is mediated by the evolution of the cis-regulatory function of this gene. Surprisingly, the major locus of evolutionary change for KChIP2 gene expression in heart lies within the CpG island core promoter. The results demonstrate that CpG island promoters are not simply permissive for gene expression but can also contribute to tissue-selective expression and, as such, can function as an important locus for the evolution of cis-regulatory function. More generally, evolution of the cis-regulatory function of voltage-gated ion channel genes appears to be an effective and efficient way to modify channel expression levels to optimize electrophysiological function.
Collapse
|
30
|
Kunze M, Neuberger G, Maurer-Stroh S, Ma J, Eck T, Braverman N, Schmid JA, Eisenhaber F, Berger J. Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7. J Biol Chem 2011; 286:45048-62. [PMID: 22057399 DOI: 10.1074/jbc.m111.301853] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The import of a subset of peroxisomal matrix proteins is mediated by the peroxisomal targeting signal 2 (PTS2). The results of our sequence and physical property analysis of known PTS2 signals and of a mutational study of the least characterized amino acids of a canonical PTS2 motif indicate that PTS2 forms an amphipathic helix accumulating all conserved residues on one side. Three-dimensional structural modeling of the PTS2 receptor PEX7 reveals a groove with an evolutionarily conserved charge distribution complementary to PTS2 signals. Mammalian two-hybrid assays and cross-complementation of a mutation in PTS2 by a compensatory mutation in PEX7 confirm the interaction site. An unstructured linker region separates the PTS2 signal from the core protein. This additional information on PTS2 signals was used to generate a PTS2 prediction algorithm that enabled us to identify novel PTS2 signals within human proteins and to describe KChIP4 as a novel peroxisomal protein.
Collapse
Affiliation(s)
- Markus Kunze
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kanyshkova T, Broicher T, Meuth SG, Pape HC, Budde T. A-type K+ currents in intralaminar thalamocortical relay neurons. Pflugers Arch 2011; 461:545-56. [PMID: 21437601 DOI: 10.1007/s00424-011-0953-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
Abstract
Transient A-type K+ currents (I(A)) are known to influence the firing pattern of a number of thalamic cell types, but have not been investigated in intralaminar thalamocortical (TC) relay neurons yet. We therefore combined whole-cell patch-clamp techniques, PCR analysis, and immunohistochemistry to investigate the voltage-dependent and pharmacological properties of I(A) and to determine its molecular basis in TC neurons from the centrolateral, paracentral, and centromedial thalamic nuclei. I(A) revealed half-maximal (V (h)) activation and inactivation at about -17 and -67 mV, respectively. At a concentration of 5-10 mM 4-aminopyridine (4-AP) completely blocked I(A). Furthermore, I(A) was nearly unaffected by two sea anemone toxins (blood depressing substances 1 and 2, BDS1 and BDS2; 6-8% block at a concentration of 1 μM) but strongly sensitive to the K(V)4 channel blocker Heteropoda venatoria toxin 2 (HpTx2; about 45% block at a concentration of 5 μM). PCR screening revealed the expression of K(V)4.1-4.3, with strongest expression for K(V)4.2 and weak expression for K(V)4.1. Accordingly K(V)4.1 was not detected in immunohistochemical staining. Furthermore, K(V)4.2 and K(V)4.3 revealed mainly dendritic and somatic staining, respectively. Together with current clamp recordings, these findings point to a scenario where the fast transient I(A) in intralaminar TC neurons has a depolarized threshold at potentials negative to -50 mV, is substantially generated by K(V)4.2 and K(V)4.3 channels, allows prominent burst firing at hyperpolarized potentials, prevents the generation of high-threshold potentials, generates a delayed onset of firing at more depolarized potentials, and allows fast tonic firing.
Collapse
Affiliation(s)
- Tatyana Kanyshkova
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, 48149, Münster, Germany
| | | | | | | | | |
Collapse
|
32
|
Whyment AD, Coderre E, Wilson JMM, Renaud LP, O'Hare E, Spanswick D. Electrophysiological, pharmacological and molecular profile of the transient outward rectifying conductance in rat sympathetic preganglionic neurons in vitro. Neuroscience 2011; 178:68-81. [PMID: 21211550 DOI: 10.1016/j.neuroscience.2010.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 12/27/2010] [Accepted: 12/30/2010] [Indexed: 01/13/2023]
Abstract
Transient outward rectifying conductances or A-like conductances in sympathetic preganglionic neurons (SPN) are prolonged, lasting for hundreds of milliseconds to seconds and are thought to play a key role in the regulation of SPN firing frequency. Here, a multidisciplinary electrophysiological, pharmacological and molecular single-cell rt-PCR approach was used to investigate the kinetics, pharmacological profile and putative K+ channel subunits underlying the transient outward rectifying conductance expressed in SPN. SPN expressed a 4-aminopyridine (4-AP) sensitive transient outward rectification with significantly longer decay kinetics than reported for many other central neurons. The conductance and corresponding current in voltage-clamp conditions was also sensitive to the Kv4.2 and Kv4.3 blocker phrixotoxin-2 (1-10 μM) and the blocker of rapidly inactivating Kv channels, pandinotoxin-Kα (50 nM). The conductance and corresponding current was only weakly sensitive to the Kv1 channel blocker tityustoxin-Kα and insensitive to dendrotoxin I (200 nM) and the Kv3.4 channel blocker BDS-II (1 μM). Single-cell RT-PCR revealed mRNA expression for the α-subunits Kv4.1 and Kv4.3 in the majority and Kv1.5 in less than half of SPN. mRNA for accessory β-subunits was detected for Kvβ2 in all SPN with differential expression of mRNA for KChIP1, Kvβ1 and Kvβ3 and the peptidase homologue DPP6. These data together suggest that the transient outwardly rectifying conductance in SPN is mediated by members of the Kv4 subfamily (Kv4.1 and Kv4.3) in association with the β-subunit Kvβ2. Differential expression of the accessory β subunits, which may act to modulate channel density and kinetics in SPN, may underlie the prolonged and variable time-course of this conductance in these neurons.
Collapse
Affiliation(s)
- A D Whyment
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | |
Collapse
|
33
|
Interdependent roles for accessory KChIP2, KChIP3, and KChIP4 subunits in the generation of Kv4-encoded IA channels in cortical pyramidal neurons. J Neurosci 2010; 30:13644-55. [PMID: 20943905 DOI: 10.1523/jneurosci.2487-10.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The rapidly activating and inactivating voltage-dependent outward K(+) (Kv) current, I(A), is widely expressed in central and peripheral neurons. I(A) has long been recognized to play important roles in determining neuronal firing properties and regulating neuronal excitability. Previous work demonstrated that Kv4.2 and Kv4.3 α-subunits are the primary determinants of I(A) in mouse cortical pyramidal neurons. Accumulating evidence indicates that native neuronal Kv4 channels function in macromolecular protein complexes that contain accessory subunits and other regulatory molecules. The K(+) channel interacting proteins (KChIPs) are among the identified Kv4 channel accessory subunits and are thought to be important for the formation and functioning of neuronal Kv4 channel complexes. Molecular genetic, biochemical, and electrophysiological approaches were exploited in the experiments described here to examine directly the roles of KChIPs in the generation of functional Kv4-encoded I(A) channels. These combined experiments revealed that KChIP2, KChIP3, and KChIP4 are robustly expressed in adult mouse posterior (visual) cortex and that all three proteins coimmunoprecipitate with Kv4.2. In addition, in cortical pyramidal neurons from mice lacking KChIP3 (KChIP3(-/-)), mean I(A) densities were reduced modestly, whereas in mean I(A) densities in KChIP2(-/-) and WT neurons were not significantly different. Interestingly, in both KChIP3(-/-) and KChIP2(-/-) cortices, the expression levels of the other KChIPs (KChIP2 and 4 or KChIP3 and 4, respectively) were increased. In neurons expressing constructs to mediate simultaneous RNA interference-induced reductions in the expression of KChIP2, 3, and 4, I(A) densities were markedly reduced and Kv current remodeling was evident.
Collapse
|
34
|
Liang P, Chen H, Cui Y, Lei L, Wang K. Functional rescue of Kv4.3 channel tetramerization mutants by KChIP4a. Biophys J 2010; 98:2867-76. [PMID: 20550899 DOI: 10.1016/j.bpj.2010.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 11/16/2022] Open
Abstract
KChIP4a shows a high homology with other members of the family of Kv channel-interacting proteins (KChIPs) in the conserved C-terminal core region, but exhibits a unique modulation of Kv4 channel gating and surface expression. Unlike KChIP1, the KChIP4 splice variant KChIP4a has been shown to inhibit surface expression and function as a suppressor of channel inactivation of Kv4. In this study, we sought to determine whether the multitasking KChIP4a modulates Kv4 function in a clamping fashion similar to that shown by KChIP1. Injection of Kv4.3 T1 zinc mutants into Xenopus oocytes resulted in the nonfunctional expression of Kv4.3 channels. Coexpression of Kv4.3 zinc mutants with WT KChIP4a gave rise to the functional expression of Kv4.3 current. Oocyte surface labeling results confirm the correlation between functional rescue and enhanced surface expression of zinc mutant proteins. Chimeric mutations that replace the Kv4.3 N-terminus with N-terminal KChIP4a or N-terminal deletion of KChIP4a further demonstrate that the functional rescue of Kv4.3 channel tetramerization mutants depends on the KChIP4a core region, but not its N-terminus. Structure-guided mutation of two critical residues of core KChIP4a attenuated functional rescue and tetrameric assembly. Moreover, size exclusion chromatography combined with fast protein liquid chromatography showed that KChIP4a can drive zinc mutant monomers to assemble as tetramers. Taken together, our results show that KChIP4a can rescue the function of tetramerization-defective Kv4 monomers. Therefore, we propose that core KChIP4a functions to promote tetrameric assembly and enhance surface expression of Kv4 channels by a clamping action, whereas its N-terminus inhibits surface expression of Kv4 by a mechanism that remains elusive.
Collapse
Affiliation(s)
- Ping Liang
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing, China
| | | | | | | | | |
Collapse
|
35
|
Xia K, Xiong H, Shin Y, Wang D, Deerinck T, Takahashi H, Ellisman MH, Lipton SA, Tong G, Descalzi G, Zhang D, Zhuo M, Zhang Z. Roles of KChIP1 in the regulation of GABA-mediated transmission and behavioral anxiety. Mol Brain 2010; 3:23. [PMID: 20678225 PMCID: PMC2927585 DOI: 10.1186/1756-6606-3-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/02/2010] [Indexed: 11/10/2022] Open
Abstract
K+ channel interacting protein 1 (KChIP1) is a neuronal calcium sensor (NCS) protein that interacts with multiple intracellular molecules. Its physiological function, however, remains largely unknown. We report that KChIP1 is predominantly expressed at GABAergic synapses of a subset of parvalbumin-positive neurons in the brain. Forced expression of KChIP1 in cultured hippocampal neurons increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), reduced paired pulse facilitation of autaptic IPSCs, and decreases potassium current density. Furthermore, genetic ablation of KChIP1 potentiated potassium current density in neurons and caused a robust enhancement of anxiety-like behavior in mice. Our study suggests that KChIP1 is a synaptic protein that regulates behavioral anxiety by modulating inhibitory synaptic transmission, and drugs that act on KChIP1 may help to treat patients with mood disorders including anxiety.
Collapse
Affiliation(s)
- Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dipeptidyl peptidase-like protein 6 is required for normal electrophysiological properties of cerebellar granule cells. J Neurosci 2010; 30:8551-65. [PMID: 20573902 DOI: 10.1523/jneurosci.5489-09.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In cerebellar granule (CG) cells and many other neurons, A-type potassium currents play an important role in regulating neuronal excitability, firing patterns, and activity-dependent plasticity. Protein biochemistry has identified dipeptidyl peptidase-like protein 6 (DPP6) as an auxiliary subunit of Kv4-based A-type channels and thus a potentially important regulator of neuronal excitability. In this study, we used an RNA interference (RNAi) strategy to examine the role DPP6 plays in forming and shaping the electrophysiological properties of CG cells. DPP6 RNAi delivered by lentiviral vectors effectively disrupts DPP6 protein expression in CG cells. In response to the loss of DPP6, I(SA) peak conductance amplitude is reduced by >85% in parallel with a dramatic reduction in the level of I(SA) channel protein complex found in CG cells. The I(SA) channels remaining in CG cells after suppression of DPP6 show alterations in gating similar to Kv4 channels expressed in heterologous systems without DPP6. In addition to these effects on A-type current, we find that loss of DPP6 has additional effects on input resistance and Na(+) channel conductance that combine with the effects on I(SA) to produce a global change in excitability. Overall, DPP6 expression seems to be critical for the expression of a high-frequency electrophysiological phenotype in CG cells by increasing leak conductance, A-type current levels and kinetics, and Na(+) current amplitude.
Collapse
|
37
|
Alvarado DM, Veile R, Speck J, Warchol M, Lovett M. Downstream targets of GATA3 in the vestibular sensory organs of the inner ear. Dev Dyn 2010; 238:3093-102. [PMID: 19924793 DOI: 10.1002/dvdy.22149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Haploinsufficiency for the transcription factor GATA3 leads to hearing loss in humans. It is expressed throughout the auditory sensory epithelium (SE). In the vestibular organs, GATA3 is limited to the striola reversal zone of the utricle. Stereocilia orientation shifts 180 degrees at this region, which contains morphologically distinct type-I hair cells. The striola is conserved in all amniotes, its function is unknown, and GATA3 is the only known marker of the reversal zone. To identify downstream targets of GATA3 that might point to striolar function, we measured gene expression differences between striolar and extra-striolar SE. These were compared with profiles after GATA3 RNAi and GATA3 over-expression. We identified four genes (BMP2, FKHL18, LMO4, and MBNL2) that consistently varied with GATA3. Two of these (LMO4 and MBNL2) were shown to be direct targets of GATA3 by ChIP. Our results suggest that GATA3 impacts WNT signaling in this region of the sensory macula.
Collapse
Affiliation(s)
- David M Alvarado
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
38
|
Kv channel interacting protein 3 expression and regulation by haloperidol in midbrain dopaminergic neurons. Brain Res 2009; 1304:1-13. [DOI: 10.1016/j.brainres.2009.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 01/29/2023]
|
39
|
Seikel E, Trimmer JS. Convergent modulation of Kv4.2 channel alpha subunits by structurally distinct DPPX and KChIP auxiliary subunits. Biochemistry 2009; 48:5721-30. [PMID: 19441798 DOI: 10.1021/bi802316m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kv4.2 is the major voltage-gated K(+) (Kv) channel alpha subunit responsible for the somatodendritic transient or A-type current I(SA) that activates at subthreshold membrane potentials. Stable association of Kv4.2 with diverse auxiliary subunits and reversible Kv4.2 phosphorylation regulate I(SA) function. Two classes of auxiliary subunits play distinct roles in modulating the biophysical properties of Kv4.2: dipeptidyl-peptidase-like type II transmembrane proteins typified by DPPX-S, and cytoplasmic Ca(2+) binding proteins known as K(+) channel interacting proteins (KChIPs). Here, we characterize the convergent roles that DPPX-S and KChIPs play as component subunits of Kv4.2 channel complexes. We coexpressed DPPX-S with Kv4.2 in heterologous cells and found a dramatic redistribution of Kv4.2, releasing it from intracellular retention and allowing plasma membrane expression, as well as altered Kv4.2 phosphorylation, detergent solubility, and stability. These changes are remarkably similar to those obtained upon coexpression of Kv4.2 with the structurally distinct KChIPs1-3 auxiliary subunits. KChIP4a, which negatively affects the impact of other KChIPs on Kv4.2, also inhibits the effects of DPPX-S, consistent with the formation of a ternary complex of Kv4.2, DPPX-S, and KChIPs early in channel biosynthesis. Tandem MS analyses reveal that coexpression with DPPX-S or KChIP2 leads to a pattern of Kv4.2 phosphorylation in heterologous cells similar to that observed in brain, but lacking in cells expressing Kv4.2 alone. In conclusion, transmembrane DPPX-S and cytoplasmic KChIPs, despite having distinct structures and binding sites on Kv4.2, exert similar effects on Kv4.2 trafficking, but distinct effects on Kv4.2 gating.
Collapse
Affiliation(s)
- Edward Seikel
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
40
|
Ban JH, Chang J, Im GJ, Jung HH. Proteomic analysis of the rat vestibular nucleus complex following unilateral labyrinthectomy. Acta Otolaryngol 2009; 129:846-54. [PMID: 18941951 DOI: 10.1080/00016480802455275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION The appearance of some candidate proteins may be essential for compensation as spatio-temporal expression patterns and this proteomic analysis may be a useful tool to understand the molecular basis of vestibular compensation. OBJECTIVE The purpose of this study was to identify the proteins expressed in vestibular nucleus complexes (VNCs) using proteomics following unilateral labyrinthectomy. MATERIALS AND METHODS Proteomic analysis was performed in VNCs of rats at 6 h, 72 h, and 7 days following unilateral labyrinthectomy in comparison to normal VNC. Twenty-seven interesting spots in both normal and study groups were selected for MALDI-TOF MS. Expression of some selected genes was confirmed by RT-PCR. RESULTS In all, 22 of 27 spots were matched after MALDI-TOF MS. Among these, 14 proteins were highly expressed in normal VNCs and 8 were newly expressed following labyrinthectomy. Among these 14 normal proteins, 9 were consistently expressed in both normal and labyrinthectomized VCNs, while 5 were down-regulated following labyrinthectomy. Eight were newly expressed following labyrinthectomy. Expression patterns of nine genes at RT-PCR were compatible with protein expression patterns.
Collapse
|
41
|
Xiong H, Xia K, Li B, Zhao G, Zhang Z. KChIP1: a potential modulator to GABAergic system. Acta Biochim Biophys Sin (Shanghai) 2009; 41:295-300. [PMID: 19352544 DOI: 10.1093/abbs/gmp013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compelling evidences from transgenic mice, immunoprecipitation data, gene expression analysis, and functional heterologous expression studies supported the role of Kv channel interacting proteins (KChIPs) as modulators of Kv4 (Shal) channels underlying the cardiac transient outward current and neuronal A-type current. Till now, there are four members (KChIP1-4) identified in this family. KChIP1 is expressed predominantly in brain, with relative abundance in Purkinje cells of cerebellum, the reticular thalamic nuclei, the medial habenular nuclei, the hippocampus, and striatum. Our results from in situ hybridization and immunostaining assay revealed that KChIP1 was expressed in a subpopulation of parvalbumin-positive neurons suggesting its functional relationship with the GABAergic inhibitory neurons. Moreover, results obtained from KChIP1-deficient mice showed that KChIP1 mutation did not impair survival or alter the overall brain architecture, arguing against its essential function in brain development. However, the mice bearing KChIP1 deletion showed increased susceptibility to anti-GABAergic convulsive drug pentylenetetrazole-induced seizure, indicating that KChIP1 might play pivotal roles in the GABAergic inhibitory system.
Collapse
Affiliation(s)
- Hui Xiong
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
42
|
Liang P, Wang H, Chen H, Cui Y, Gu L, Chai J, Wang K. Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation. J Biol Chem 2008; 284:4960-7. [PMID: 19109250 DOI: 10.1074/jbc.m807704200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dynamic inactivation in Kv4 A-type K(+) current plays a critical role in regulating neuronal excitability by shaping action potential waveform and duration. Multifunctional auxiliary KChIP1-4 subunits, which share a high homology in their C-terminal core regions, exhibit distinctive modulation of inactivation and surface expression of pore-forming Kv4 subunits. However, the structural differences that underlie the functional diversity of Kv channel-interacting proteins (KChIPs) remain undetermined. Here we have described the crystal structure of KChIP4a at 3.0A resolution, which shows distinct N-terminal alpha-helices that differentiate it from other KChIPs. Biochemical experiments showed that competitive binding of the Kv4.3 N-terminal peptide to the hydrophobic groove of the core of KChIP4a causes the release of the KChIP4a N terminus that suppresses the inactivation of Kv4.3 channels. Electrophysiology experiments confirmed that the first N-terminal alpha-helix peptide (residues 1-34) of KChIP4a, either by itself or fused to N-terminal truncated Kv4.3, can confer slow inactivation. We propose that N-terminal binding of Kv4.3 to the core of KChIP4a mobilizes the KChIP4a N terminus, which serves as the slow inactivation gate.
Collapse
Affiliation(s)
- Ping Liang
- Department of Neurobiology, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education, Center for Protein Sciences, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Li HL, Qu YJ, Lu YC, Bondarenko VE, Wang S, Skerrett IM, Morales MJ. DPP10 is an inactivation modulatory protein of Kv4.3 and Kv1.4. Am J Physiol Cell Physiol 2006; 291:C966-76. [PMID: 16738002 DOI: 10.1152/ajpcell.00571.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-gated K+ channels exist in vivo as multiprotein complexes made up of pore-forming and ancillary subunits. To further our understanding of the role of a dipeptidyl peptidase-related ancillary subunit, DPP10, we expressed it with Kv4.3 and Kv1.4, two channels responsible for fast-inactivating K+ currents. Previously, DPP10 has been shown to effect Kv4 channels. However, Kv1.4, when expressed with DPP10, showed many of the same effects as Kv4.3, such as faster time to peak current and negative shifts in the half-inactivation potential of steady-state activation and inactivation. The exception was recovery from inactivation, which is slowed by DPP10. DPP10 expressed with Kv4.3 caused negative shifts in both steady-state activation and inactivation of Kv4.3, but no significant shifts were detected when DPP10 was expressed with Kv4.3 + KChIP2b (Kv channel interacting protein). DPP10 and KChIP2b had different effects on closed-state inactivation. At −60 mV, KChIP2b nearly abolishes closed-state inactivation in Kv4.3, whereas it developed to a much greater extent in the presence of DPP10. Finally, expression of a DPP10 mutant consisting of its transmembrane and cytoplasmic 58 amino acids resulted in effects on Kv4.3 gating that were nearly identical to those of wild-type DPP10. These data show that DPP10 and KChIP2b both modulate Kv4.3 inactivation but that their primary effects are on different inactivation states. Thus DPP10 may be a general modulator of voltage-gated K+ channel inactivation; understanding its mechanism of action may lead to deeper understanding of the inactivation of a broad range of K+ channels.
Collapse
Affiliation(s)
- Hong-Ling Li
- Dept. of Physiology and Biophysics, University at Buffalo-SUNY, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Vacher H, Diochot S, Bougis PE, Martin-Eauclaire MF, Mourre C. Kv4 channels sensitive to BmTX3 in rat nervous system: autoradiographic analysis of their distribution during brain ontogenesis. Eur J Neurosci 2006; 24:1325-40. [PMID: 16987219 DOI: 10.1111/j.1460-9568.2006.05020.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding site distribution of sBmTX3, a chemically synthesized toxin originally purified from the venom of the scorpion Buthus martensi, was investigated in adult and developing rat brain, using patch-clamp experiments and quantitative autoradiography. The molecular basis of these sBmTX3 sites was analysed by electrophysiology on transient Kv currents recorded in mammalian transfected cells. The rapidly activating and inactivating Kv4.1 current was inhibited by sBmTX3 (IC50, 105 nM). The inhibition was less effective on Kv4.2 and Kv4.3 channels and the toxin did not affect other transient currents such as Kv1.4 and Kv3.4. The distribution of the 125I-sBmTX3 binding sites was heterogeneous, with a 113-fold difference between the highest and the lowest densities in adult rat brain. The site density was particularly important in the caudate-putamen and accumbens nucleus, thalamus, hippocampal formation and cerebellum. The affinity of sBmTX3 remained constant during brain ontogenesis. The level of sBmTX3 binding sites was very low in prenatal and postnatal stages to postnatal day (P)12 but drastically increased from P15 in the major part of the studied structures except in the CA3 hippocampal field where the density was very high from P6. Thus, the distribution of sBmTX3 binding sites in rat brain and its electrophysiological characteristics suggest that sBmTX3 specifically binds to the Kv4 subfamily of K channels.
Collapse
Affiliation(s)
- Hélène Vacher
- CNRS, UMR 6149, Neurobiologie des Processus Mnésiques, Université de Provence, Pôle 3C, Centre St Charles, 3 Place Victor Hugo, 13331 Marseille cedex 03, France
| | | | | | | | | |
Collapse
|
45
|
Pruunsild P, Timmusk T. Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. Genomics 2005; 86:581-93. [PMID: 16112838 DOI: 10.1016/j.ygeno.2005.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 07/01/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
Potassium channel-interacting proteins (KCNIPs, also named KChIPs) modulate A-type potassium channels and favor their surface expression. In addition, KCNIPs have been shown to interact with presenilins and also to function as transcriptional repressors. Here we describe the structures and alternative splicing of the human and mouse KCNIP genes, including novel splice variants for KCNIP1, KCNIP3, and KCNIP4, and show the expression of different KCNIP mRNAs in various mouse and human tissues and brain regions by RT-PCR. Furthermore, we describe the expression of KCNIP1, KCNIP2, KCNIP3, and KCNIP4 mRNAs in the adult mouse brain with in situ hybridization and show that all KCNIP mRNAs were expressed in the neurons of the mouse brain with specific patterns for each KCNIP. Our results show that alternatively spliced KCNIP mRNAs are expressed differentially and could contribute to the diversity of functions of the KCNIP proteins.
Collapse
Affiliation(s)
- Priit Pruunsild
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 19086, Estonia
| | | |
Collapse
|
46
|
Jerng HH, Kunjilwar K, Pfaffinger PJ. Multiprotein assembly of Kv4.2, KChIP3 and DPP10 produces ternary channel complexes with ISA-like properties. J Physiol 2005; 568:767-88. [PMID: 16123112 PMCID: PMC1464192 DOI: 10.1113/jphysiol.2005.087858] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 08/22/2005] [Indexed: 01/04/2023] Open
Abstract
Kv4 pore-forming subunits are the principal constituents of the voltage-gated K+ channel underlying somatodendritic subthreshold A-type currents (I(SA)) in neurones. Two structurally distinct types of Kv4 channel modulators, Kv channel-interacting proteins (KChIPs) and dipeptidyl-peptidase-like proteins (DPLs: DPP6 or DPPX, DPP10 or DPPY), enhance surface expression and modify functional properties. Since KChIP and DPL distributions overlap in the brain, we investigated the potential coassembly of Kv4.2, KChIP3 and DPL proteins, and the contribution of DPLs to ternary complex properties. Immunoprecipitation results show that KChIP3 and DPP10 associate simultaneously with Kv4.2 proteins in rat brain as well as heterologously expressing Xenopus oocytes, indicating Kv4.2 + KChIP3 + DPP10 multiprotein complexes. Consistent with ternary complex formation, coexpression of Kv4.2, KChIP3 and DPP10 in oocytes and CHO cells results in current waveforms distinct from the arithmetic sum of Kv4.2 + KChIP3 and Kv4.2 + DPP10 currents. Furthermore, the Kv4.2 + KChIP3 + DPP10 channels recover from inactivation very rapidly (tau(rec) approximately 18-26 ms), closely matching that of native I(SA) and significantly faster than the recovery of Kv4.2 + KChIP3 or Kv4.2 + DPP10 channels. For comparison, identical triple coexpression experiments were performed using DPP6 variants. While most results are similar, the Kv4.2 + KChIP3 + DPP6 channels exhibit inactivation that slows with increasing membrane potential, resulting in inactivation slower than that of Kv4.2 + KChIP3 + DPP10 channels at positive voltages. In conclusion, the native neuronal subthreshold A-type channel is probably a macromolecular complex formed from Kv4 and a combination of both KChIP and DPL proteins, with the precise composition of channel alpha and auxiliary subunits underlying tissue and regional variability in I(SA) properties.
Collapse
Affiliation(s)
- Henry H Jerng
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, S630, Houston, TX 77030, USA.
| | | | | |
Collapse
|
47
|
McKay BE, Turner RW. Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol 2005; 567:829-50. [PMID: 16002452 PMCID: PMC1474219 DOI: 10.1113/jphysiol.2005.089383] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cerebellar Purkinje cells integrate multimodal afferent inputs and, as the only projection neurones of the cerebellar cortex, are key to the coordination of a variety of motor- and learning-related behaviours. In the neonatal rat the cerebellum is undeveloped, but over the first few postnatal weeks both the structure of the cerebellum and cerebellar-dependent behaviours mature rapidly. Maturation of Purkinje cell physiology is expected to contribute significantly to the development of cerebellar output. However, the ontogeny of the electrophysiological properties of the Purkinje cell and its relationship to maturation of cell morphology is incompletely understood. To address this problem we performed a detailed in vitro electrophysiological analysis of the spontaneous and intracellularly evoked intrinsic properties of Purkinje cells obtained from postnatal rats (P0 to P90) using whole-cell patch clamp recordings. Cells were filled with neurobiotin to enable subsequent morphological comparisons. Three stages of physiological and structural development were identified. During the early postnatal period (P0 to approximately P9) Purkinje cells were characterized by an immature pattern of Na(+)-spike discharge, and possessed only short multipolar dendrites. This was followed by a period of rapid maturation (from approximately P12 to approximately P18), consisting of changes in Na(+)-spike discharge, emergence of repetitive bursts of Na(+) spikes terminated by Ca(2+) spikes (Ca(2+)-Na(+) bursts), generation of the trimodal pattern, and a significant expansion of the dendritic tree. During the final stage (> P18 to P90) there were minor refinements of cell output and a plateau in dendritic area. Our results reveal a rapid transition of the Purkinje cell from morphological and physiological immaturity to adult characteristics over a short developmental window, with a close correspondence between changes in cell output and dendritic growth. The development of Purkinje cell intrinsic electrophysiological properties further matches the time course of other measures of cerebellar structural and functional maturation.
Collapse
Affiliation(s)
- Bruce E McKay
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | | |
Collapse
|