1
|
Moisan GJ, Kamath N, Apgar S, Schwehr M, Vedmurthy P, Conner O, Hayes K, Toro CP. Alternative Splicing and Nonsense-Mediated Decay of a Zebrafish GABA Receptor Subunit Transcript. Zebrafish 2024; 21:198-205. [PMID: 37751193 DOI: 10.1089/zeb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The superfamily of Cys-loop ionotropic neurotransmitter receptors includes those that detect GABA, glutamate, glycine, and acetylcholine. There is ample evidence that many Cys-loop receptor subunit genes include alternatively spliced exons. In this study, we report a novel example of alternative splicing (AS): we show that the 68-bp exon 3 in the zebrafish gabrr2b gene-which codes for the ρ2b GABAAR subunit-is an alternative cassette exon. Skipping of gabrr2b exon 3 results in a downstream frame shift and a premature termination codon (PTC). We provide evidence in larval zebrafish that transcripts containing the PTC are subject to degradation through nonsense-mediated decay. We also compile reports of AS of homologous exons in other Cys-loop receptor genes in multiple species. Our data add to a large body of research demonstrating that exon 3 in Cys-loop receptor genes is a conserved site for AS, the effects of which can vary from novel splice-isoform generation to downregulation of gene expression through transcript degradation.
Collapse
Affiliation(s)
- Gaia J Moisan
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Nitika Kamath
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Shannon Apgar
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Megan Schwehr
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Pooja Vedmurthy
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Olivya Conner
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Kyler Hayes
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Cecilia Phillips Toro
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
- Biology Department, Linfield University, McMinnville, Oregon, USA
| |
Collapse
|
2
|
Yu W, Hill SF, Xenakis JG, Pardo-Manuel de Villena F, Wagnon JL, Meisler MH. Gabra2 is a genetic modifier of Scn8a encephalopathy in the mouse. Epilepsia 2020; 61:2847-2856. [PMID: 33140451 PMCID: PMC7756374 DOI: 10.1111/epi.16741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
Objective SCN8A encephalopathy is a developmental epileptic encephalopathy typically caused by de novo gain‐of‐function mutations in Nav1.6. Severely affected individuals exhibit refractory seizures, developmental delay, cognitive disabilities, movement disorders, and elevated risk of sudden death. Patients with the identical SCN8A variant can differ in clinical course, suggesting a role for modifier genes in determining disease severity. The identification of genetic modifiers contributes to understanding disease pathogenesis and suggesting therapeutic interventions. Methods We generated F1 and F2 crosses between inbred mouse strains and mice carrying the human pathogenic variants SCN8A‐R1872W and SCN8A‐N1768D. Quantitative trait locus (QTL) analysis of seizure‐related phenotypes was used for chromosomal mapping of modifier loci. Results In an F2 cross between strain SJL/J and C57BL/6J mice carrying the patient mutation R1872W, we identified a major QTL on chromosome 5 containing the Gabra2 gene. Strain C57BL/6J carries a splice site mutation that reduces expression of Gabra2, encoding the α2 subunit of the aminobutyric acid type A receptor. The protective wild‐type allele of Gabra2 from strain SJL/J delays the age at seizure onset and extends life span of the Scn8a mutant mice. Additional Scn8a modifiers were observed in the F2 cross and in an F1 cross with strain C3HeB/FeJ. Significance These studies demonstrate that the SJL/J strain carries multiple modifiers with protective effects against seizures induced by gain‐of‐function mutations in Scn8a. Homozygosity for the hypomorphic variant of Gabra2 in strain C57BL/6J is associated with early seizure onset and short life span. GABRA2 is a potential therapeutic target for SCN8A encephalopathy.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sophie F Hill
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - James G Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Sanchis-Juan A, Hasenahuer MA, Baker JA, McTague A, Barwick K, Kurian MA, Duarte ST, Carss KJ, Thornton J, Raymond FL. Structural analysis of pathogenic missense mutations in GABRA2 and identification of a novel de novo variant in the desensitization gate. Mol Genet Genomic Med 2020; 8:e1106. [PMID: 32347641 PMCID: PMC7336760 DOI: 10.1002/mgg3.1106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background Cys‐loop receptors control neuronal excitability in the brain and their dysfunction results in numerous neurological disorders. Recently, six missense variants in GABRA2, a member of this family, have been associated with early infantile epileptic encephalopathy (EIEE). We identified a novel de novo missense variant in GABRA2 in a patient with EIEE and performed protein structural analysis of the seven variants. Methods The novel variant was identified by trio whole‐genome sequencing. We performed protein structural analysis of the seven variants, and compared them to previously reported pathogenic mutations at equivalent positions in other Cys‐loop receptors. Additionally, we studied the distribution of disease‐associated variants in the transmembrane helices of these proteins. Results The seven variants are in the transmembrane domain, either close to the desensitization gate, the activation gate, or in inter‐subunit interfaces. Six of them have pathogenic mutations at equivalent positions in other Cys‐loop receptors, emphasizing the importance of these residues. Also, pathogenic mutations are more common in the pore‐lining helix, consistent with this region being highly constrained for variation in control populations. Conclusion Our study reports a novel pathogenic variant in GABRA2, characterizes the regions where pathogenic mutations are in the transmembrane helices, and underscores the value of considering sequence, evolutionary, and structural information as a strategy for variant interpretation of novel missense mutations.
Collapse
Affiliation(s)
- Alba Sanchis-Juan
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK.,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Marcia A Hasenahuer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - James A Baker
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Amy McTague
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Katy Barwick
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sofia T Duarte
- Hospital Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | | | - Keren J Carss
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK.,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Janet Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Butler KM, Moody OA, Schuler E, Coryell J, Alexander JJ, Jenkins A, Escayg A. De novo variants in GABRA2 and GABRA5 alter receptor function and contribute to early-onset epilepsy. Brain 2018; 141:2392-2405. [PMID: 29961870 PMCID: PMC6061692 DOI: 10.1093/brain/awy171] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/02/2018] [Accepted: 05/04/2018] [Indexed: 01/19/2023] Open
Abstract
GABAA receptors are ligand-gated anion channels that are important regulators of neuronal inhibition. Mutations in several genes encoding receptor subunits have been identified in patients with various types of epilepsy, ranging from mild febrile seizures to severe epileptic encephalopathy. Using whole-genome sequencing, we identified a novel de novo missense variant in GABRA5 (c.880G > C, p.V294L) in a patient with severe early-onset epilepsy and developmental delay. Targeted resequencing of 279 additional epilepsy patients identified 19 rare variants from nine GABAA receptor genes, including a novel de novo missense variant in GABRA2 (c.875C > A, p.T292K) and a recurrent missense variant in GABRB3 (c.902C > T, p.P301L). Patients with the GABRA2 and GABRB3 variants also presented with severe epilepsy and developmental delay. We evaluated the effects of the GABRA5, GABRA2 and GABRB3 missense variants on receptor function using whole-cell patch-clamp recordings from human embryonic kidney 293T cells expressing appropriate α, β and γ subunits. The GABRA5 p.V294L variant produced receptors that were 10-times more sensitive to GABA but had reduced maximal GABA-evoked current due to increased receptor desensitization. The GABRA2 p.T292K variant reduced channel expression and produced mutant channels that were tonically open, even in the absence of GABA. Receptors containing the GABRB3 p.P301L variant were less sensitive to GABA and produced less GABA-evoked current. These results provide the first functional evidence that de novo variants in the GABRA5 and GABRA2 genes contribute to early-onset epilepsy and developmental delay, and demonstrate that epilepsy can result from reduced neuronal inhibition via a wide range of alterations in GABAA receptor function.
Collapse
Affiliation(s)
- Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, 30322, USA
| | - Olivia A Moody
- Departments of Anesthesiology and Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
- Neuroscience Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, 30322, USA
| | - Elisabeth Schuler
- Department for Pediatric Metabolic Medicine and Neurology, University Children’s Hospital, Heidelberg, 69120, Germany
| | - Jason Coryell
- Departments of Pediatrics and Neurology, School of Medicine, Oregon Health & Sciences University, Portland, Oregon, 97239, USA
| | - John J Alexander
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
- EGL Genetics, Tucker, Georgia, 30084, USA
| | - Andrew Jenkins
- Departments of Anesthesiology and Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
5
|
Strac DS, Erjavec GN, Perkovic MN, Sviglin KN, Borovecki F, Pivac N. Association of GABAA receptor α2 subunit gene (GABRA2) with alcohol dependence-related aggressive behavior. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:119-25. [PMID: 26116794 DOI: 10.1016/j.pnpbp.2015.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
Alcohol dependence is a common chronic disorder precipitated by the complex interaction between biological, genetic and environmental risk factors. Recent studies have demonstrated that polymorphisms of the gene encoding the GABAA receptor α2 subunit (GABRA2) are associated with alcohol dependence in different populations of European ancestry. As aggression often occurs in the context of alcohol dependence, the aim of this study was to examine the allelic and haplotypic association of GABRA2 gene with alcohol dependence and related aggressive behavior in subjects of Eastern European (Croatian) origin. Genotyping of the 3 single nucleotide polymorphisms (SNPs) across the GABRA2 gene (rs567926, rs279858 and rs9291283) was performed in patients with alcohol dependence (N=654) and healthy control subjects (N=574). Alcohol-dependent participants were additionally subdivided according to the presence/absence of aggressive behavior and type of alcohol dependence according to the Cloninger's classification. The association of rs279858 with alcohol dependence yielded nominal significance level. Haplotype analysis revealed a high degree of linkage disequilibrium (LD) for rs567926 and rs279858, but not for rs9291283 polymorphism in the GABRA2 gene. In patients with alcohol dependence, the A-C (rs567926 and rs279858) haplotype carriers were more likely to demonstrate aggressive behavior. The same haplotype (present only in 1.6% of all subjects) was significantly more often present in patients with a combination of early onset alcohol abuse and aggression, corresponding to the Cloninger's type II alcoholism subgroup. These findings support the involvement of GABRA2 gene in alcohol dependence-related aggressive behavior.
Collapse
Affiliation(s)
| | | | | | - Korona Nenadic Sviglin
- Center for Alcoholism and Other Addictions, Psychiatric Hospital Vrapce, Zagreb, Croatia
| | - Fran Borovecki
- Department for Functional Genomics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, University Hospital Center Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia.
| |
Collapse
|
6
|
Susceptibility effects of GABA receptor subunit alpha-2 (GABRA2) variants and parental monitoring on externalizing behavior trajectories: Risk and protection conveyed by the minor allele. Dev Psychopathol 2015; 28:15-26. [PMID: 25797587 DOI: 10.1017/s0954579415000255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Understanding factors increasing susceptibility to social contexts and predicting psychopathology can help identify targets for prevention. Persistently high externalizing behavior in adolescence is predictive of psychopathology in adulthood. Parental monitoring predicts low externalizing behavior, yet youth likely vary in the degree to which they are affected by parents. Genetic variants of GABA receptor subunit alpha-2 (GABRA2) may increase susceptibility to parental monitoring, thus impacting externalizing trajectories. We had several objectives: (a) to determine whether GABRA2 (rs279827, rs279826, rs279858) moderates the relationship between a component of parental monitoring, parental knowledge, and externalizing trajectories; (b) to test the form of this interaction to assess whether GABRA2 variants reflect risk (diathesis-stress) or susceptibility (differential susceptibility) factors; and (c) to clarify GABRA2 associations on the development of problem behavior. This prospective study (N = 504) identified three externalizing trajectory classes (i.e., low, decreasing, and high) across adolescence. A GABRA2 × Parental Monitoring effect on class membership was observed, such that A-carriers were largely unaffected by parental monitoring, whereas class membership for those with the GG genotype was affected by parental monitoring. Findings support differential susceptibility in GABRA2.
Collapse
|
7
|
Heitzeg MM, Villafuerte S, Weiland BJ, Enoch MA, Burmeister M, Zubieta JK, Zucker RA. Effect of GABRA2 genotype on development of incentive-motivation circuitry in a sample enriched for alcoholism risk. Neuropsychopharmacology 2014; 39:3077-86. [PMID: 24975023 PMCID: PMC4229579 DOI: 10.1038/npp.2014.161] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/10/2023]
Abstract
Heightened reactivity of the incentive-motivation system has been proposed to underlie adolescent-typical risky behaviors, including problem alcohol involvement. However, even in adolescence considerable individual variation in these behaviors exists, which may have genetic underpinnings and be related to variations in risk for later alcohol use disorder (AUD). Variants in GABRA2 have been associated with adult alcohol dependence as well as phenotypic precursors, including impulsiveness and externalizing behaviors. We investigated the impact of GABRA2 on the developmental trajectory of nucleus accumbens (NAcc) activation during anticipation of monetary reward from childhood to young adulthood. Functional MRI during a monetary incentive delay task was collected in 175 participants, with the majority (n = 151) undergoing repeated scanning at 1- to 2-year intervals. One group entered the study at age 8-13 years (n = 76) and another entered at age 18-23 years (n = 99). Most participants were children of alcoholics (79%) and thus at heightened risk for AUD. A total of 473 sessions were completed, covering ages 8-27 years. NAcc activation was heightened during adolescence compared with childhood and young adulthood. GABRA2 genotype (SNP rs279858) was associated with individual differences in NAcc activation specifically during adolescence, with the minor allele (G) associated with greater activation. Furthermore, NAcc activation mediated an effect of genotype on alcohol problems (n = 104). This work demonstrates an impact of GABRA2 genotype on incentive-motivation neurocircuitry in adolescence, with implications for vulnerability to alcoholism. These findings represent an important step toward understanding the genetic and neural basis of individual differences in how risk for addiction unfolds across development.
Collapse
Affiliation(s)
- Mary M Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Addiction Research Center, University of Michigan, Ann Arbor, MI, USA,Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109-2700, USA, Tel: +734 232 0267, Fax: +734 998 7992, E-mail:
| | - Sandra Villafuerte
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Barbara J Weiland
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Addiction Research Center, University of Michigan, Ann Arbor, MI, USA,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Margit Burmeister
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Zucker
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Addiction Research Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Jin Z, Bhandage AK, Bazov I, Kononenko O, Bakalkin G, Korpi ER, Birnir B. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics. Front Cell Neurosci 2014; 8:288. [PMID: 25278838 PMCID: PMC4165314 DOI: 10.3389/fncel.2014.00288] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/29/2014] [Indexed: 01/20/2023] Open
Abstract
The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence.
Collapse
Affiliation(s)
- Zhe Jin
- Molecular Physiology and Neuroscience Unit, Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| | - Amol K Bhandage
- Molecular Physiology and Neuroscience Unit, Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| | - Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Esa R Korpi
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Bryndis Birnir
- Molecular Physiology and Neuroscience Unit, Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| |
Collapse
|
9
|
Enoch MA, Baghal B, Yuan Q, Goldman D. A factor analysis of global GABAergic gene expression in human brain identifies specificity in response to chronic alcohol and cocaine exposure. PLoS One 2013; 8:e64014. [PMID: 23717525 PMCID: PMC3661725 DOI: 10.1371/journal.pone.0064014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022] Open
Abstract
Although expression patterns of GABAergic genes in rodent brain have largely been elucidated, no comprehensive studies have been performed in human brain. The purpose of this study was to identify global patterns of GABAergic gene expression in healthy adults, including trans and cis effects in the GABAA gene clusters, before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from ‘BrainSpan’ was obtained across 16 brain regions from postmortem samples from nine adults. A factor analysis was performed on global expression of 21 GABAergic pathway genes. Factor specificity for response to chronic alcohol/cocaine exposure was subsequently determined from the analysis of RNA-Seq data from postmortem hippocampus of eight alcoholics, eight cocaine addicts and eight controls. Six gene expression factors were identified. Most genes loaded (≥0.5) onto one factor; six genes loaded onto two. The largest factor (0.30 variance) included the chromosome 5 gene cluster that encodes the most common GABAA receptor, α1β2γ2, and genes encoding the α3β3γ2 receptor. Genes within this factor were largely unresponsive to chronic alcohol/cocaine exposure. In contrast, the chromosome 4 gene cluster factor (0.14 variance) encoding the α2β1γ1 receptor was influenced by chronic alcohol/cocaine exposure. Two other factors (0.17 and 0.06 variance) showed expression changes in alcoholics/cocaine addicts; these factors included genes involved in GABA synthesis and synaptic transport. Finally there were two factors that included genes with exceptionally low (0.10 variance) and high (0.09 variance) expression in the cerebellum; the former factor was unaffected by alcohol/cocaine exposure. This study has shown that there appears to be specificity of GABAergic gene groups, defined by covariation in expression, for response to chronic alcohol/cocaine exposure. These findings might have implications for combating stress-related craving and relapse.
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
10
|
Villafuerte S, Strumba V, Stoltenberg SF, Zucker RA, Burmeister M. Impulsiveness mediates the association between GABRA2 SNPs and lifetime alcohol problems. GENES BRAIN AND BEHAVIOR 2013; 12:525-31. [PMID: 23566244 DOI: 10.1111/gbb.12039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/12/2013] [Accepted: 03/25/2013] [Indexed: 11/28/2022]
Abstract
Genetic variants in GABRA2 have previously been shown to be associated with alcohol measures, electroencephalography (EEG) β waves and impulsiveness-related traits. Impulsiveness is a behavioral risk factor for alcohol and other substance abuse. Here, we tested association between 11 variants in GABRA2 with NEO-impulsiveness and problem drinking. Our sample of 295 unrelated adult subjects was from a community of families with at least one male with DSM-IV alcohol use diagnosis, and from a socioeconomically comparable control group. Ten GABRA2 SNPs (single-nucleotide polymorphisms) were associated with the NEO-impulsiveness (P < 0.03). The alleles associated with higher impulsiveness correspond to the minor alleles identified in previous alcohol dependence studies. All ten SNPs are in linkage disequilibrium (LD) with each other and represent one effect on impulsiveness. Four SNPs and the corresponding haplotype from intron 3 to intron 4 were also associated with Lifetime Alcohol Problems Score (LAPS, P < 0.03) (not corrected for multiple testing). Impulsiveness partially mediates (22.6% average) this relation between GABRA2 and LAPS. Our results suggest that GABRA2 variation in the region between introns 3 and 4 is associated with impulsiveness and this effect partially influences the development of alcohol problems, but a direct effect of GABRA2 on problem drinking remains. A potential functional SNP rs279827, located next to a splice site, is located in the most significant region for both impulsiveness and LAPS. The high degree of LD among nine of these SNPs and the conditional analyses we have performed suggest that all variants represent one signal.
Collapse
Affiliation(s)
- S Villafuerte
- Molecular & Behavioral Neuroscience Institute, University of Michigan, 109 Zina Pitcher Place, BSRB 5063, Ann Arbor, MI 48109–2200, USA.
| | | | | | | | | |
Collapse
|
11
|
Brackett DM, Qing F, Amieux PS, Sellers DL, Horner PJ, Morris DR. FMR1 transcript isoforms: association with polyribosomes; regional and developmental expression in mouse brain. PLoS One 2013; 8:e58296. [PMID: 23505481 PMCID: PMC3591412 DOI: 10.1371/journal.pone.0058296] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/01/2013] [Indexed: 12/31/2022] Open
Abstract
The primary transcript of the mammalian Fragile X Mental Retardation-1 gene (Fmr1), like many transcripts in the central nervous system, is alternatively spliced to yield mRNAs encoding multiple proteins, which can possess quite different biochemical properties. Despite the fact that the relative levels of the 12 Fmr1 transcript isoforms examined here vary by as much as two orders of magnitude amongst themselves in both adult and embryonic mouse brain, all are associated with polyribosomes, consistent with translation into the corresponding isoforms of the protein product, FMRP (Fragile X Mental Retardation Protein). Employing the RiboTag methodology developed in our laboratory, the relative proportions of the 7 most abundant transcript isoforms were measured specifically in neurons and found to be similar to those identified in whole brain. Measurements of isoform profiles across 11 regions of adult brain yielded similar distributions, with the exceptions of the hippocampus and the olfactory bulb. These two regions differ from most of the brain in relative amounts of transcripts encoding an alternate form of one of the KH RNA binding domains. A possible relationship between patterns of expression in the hippocampus and olfactory bulb and the presence of neuroblasts in these two regions is suggested by the isoform patterns in early embryonic brain and in cultured neural progenitor cells. These results demonstrate that the relative levels of the Fmr1 isoforms are modulated according to developmental stage, highlighting the complex ramifications of losing all the protein isoforms in individuals with Fragile X Syndrome. It should also be noted that, of the eight most prominent FMRP isoforms (1–3, 6–9 and 12) in mouse, only two have the major site of phosphorylation at Ser-499, which is thought to be involved in some of the regulatory interactions of this protein.
Collapse
Affiliation(s)
- David M. Brackett
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Feng Qing
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Paul S. Amieux
- Department of Pharmacology; University of Washington, Seattle, Washington, United States of America
| | - Drew L. Sellers
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States of America
| | - Philip J. Horner
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States of America
| | - David R. Morris
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
12
|
Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 2012; 10:327-36. [PMID: 22385659 DOI: 10.1016/j.stem.2012.01.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 12/14/2011] [Accepted: 01/26/2012] [Indexed: 01/09/2023]
Abstract
Pax3, a key myogenic regulator, is transiently expressed during activation of adult muscle stem cells, or satellite cells (SCs), and is also expressed in a subset of quiescent SCs (QSCs), but only in specific muscles. The mechanisms regulating these variations in expression are not well understood. Here we show that Pax3 levels are regulated by miR-206, a miRNA with a previously demonstrated role in myogenic differentiation. In most QSCs and activated SCs, miR-206 expression suppresses Pax3 expression. Paradoxically, QSCs that express high levels of Pax3 also express high levels of miR-206. In these QSCs, Pax3 transcripts are subject to alternative polyadenylation, resulting in transcripts with shorter 3' untranslated regions (3'UTRs) that render them resistant to regulation by miR-206. Similar alternate polyadenylation of the Pax3 transcript also occurs in myogenic progenitors during development. Our findings may reflect a general role of alternative polyadenylation in circumventing miRNA-mediated regulation of stem cell function.
Collapse
|
13
|
Sasabe T, Ishiura S. Alcoholism and alternative splicing of candidate genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1448-66. [PMID: 20617039 PMCID: PMC2872348 DOI: 10.3390/ijerph7041448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
Abstract
Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.
Collapse
Affiliation(s)
- Toshikazu Sasabe
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
14
|
Onori N, Turchi C, Solito G, Gesuita R, Buscemi L, Tagliabracci A. GABRA2 and alcohol use disorders: no evidence of an association in an Italian case-control study. Alcohol Clin Exp Res 2010; 34:659-68. [PMID: 20102561 DOI: 10.1111/j.1530-0277.2009.01135.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcoholism is a major health and social issue, a highly frequent disease and a cause of premature death. It is also the most expensive addictive disorder being related to high morbidity and mortality, violence, accidents, and social and legal problems. It is a quantitative disorder, where the combined incidence of environmental and multiple genetic factors varies from 1 subject to another. Recent association studies have identified several genes as candidates for alcoholism, including GABAA receptor genes, due to their role in mediating several behavioral effects of alcohol, such as motor incoordination, anxiolysis, sedation, and withdrawal. The proposed association between the 3' half of the gene encoding the alpha-2 subunit of GABA receptor (3'-GABRA2) and alcohol use disorders (AUDs) has received several independent confirmations. METHODS In this study, 10 single nucleotide polymorphisms (SNPs) of the 3'-GABRA2 gene, previously reported to be implicated in alcohol dependence, were used to evaluate the linkage between selected SNPs and AUDs in an Italian sample and to compare findings with those of previous studies. RESULTS No evidence of an association was found at the allele, genotype, haplotype, or diplotype levels between the 3'-GABRA2 polymorphisms investigated and alcoholism in 149 Italian alcoholics (98 alcohol dependents and 51 alcohol abusers) and 278 controls. CONCLUSIONS Despite previous reports, we did not find an association between AUDs and 3'-GABRA2 polymorphisms. This is probably due to the minimal comorbidity of our Italian sample suggesting that this gene is implicated in polysubstance dependence rather than in alcoholism alone.
Collapse
Affiliation(s)
- Nicoletta Onori
- Institute of Legal Medicine, Department of Neuroscience, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Splice-variant- and stage-specific RNA editing of the Drosophila GABA receptor modulates agonist potency. J Neurosci 2009; 29:4287-92. [PMID: 19339622 DOI: 10.1523/jneurosci.5251-08.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular diversity of many gene products functioning in the nervous system is enhanced by alternative splicing and adenosine-to-inosine editing of pre-mRNA. Using RDL, a Drosophila melanogaster GABA-gated ion channel, we examined the functional impact of RNA editing at several sites along with alternative splicing of more than one exon. We show that alternative splicing and RNA editing have a combined influence on the potency of the neurotransmitter GABA, and the editing isoforms detected in vivo span the entire functional range of potencies seen for all possible edit variants expressed in Xenopus laevis oocytes. The extent of RNA editing is developmentally regulated and can also be linked to the choice of alternative exons. These results provide insights into how the rich diversity of signaling necessary for complex brain function can be achieved by relatively few genes.
Collapse
|
16
|
Enoch MA, Hodgkinson CA, Yuan Q, Albaugh B, Virkkunen M, Goldman D. GABRG1 and GABRA2 as independent predictors for alcoholism in two populations. Neuropsychopharmacology 2009; 34:1245-54. [PMID: 18818659 PMCID: PMC2656604 DOI: 10.1038/npp.2008.171] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chromosome 4 cluster of GABA(A) receptor genes is predominantly expressed in the brain reward circuitry and this chromosomal region has been implicated in linkage scans for alcoholism. Variation in one chromosome 4 gene, GABRA2, has been robustly associated with alcohol use disorders (AUD) although no functional locus has been identified. As HapMap data reveal moderate long-distance linkage disequilibrium across GABRA2 and the adjacent gene, GABRG1, it is possible that the functional locus is in GABRG1. We genotyped 24 SNPs across GABRG1 and GABRA2 in two population isolates: 547 Finnish Caucasian men (266 alcoholics) and 311 community-derived Plains Indian men and women (181 alcoholics). In both the Plains Indians and the Caucasians: (1) the GABRG1 haplotype block(s) did not extend to GABRA2; (2) GABRG1 haplotypes and SNPs were significantly associated with AUD; (3) there was no association between GABRA2 haplotypes and AUD; (4) there were several common (>or=0.05) haplotypes that spanned GABRG1 and GABRA2 (341 kb), three of which were present in both populations: one of these ancestral haplotypes was associated with AUD, the other two were more common in non-alcoholics; this association was determined by GABRG1; (5) in the Finns, three less common (<0.05) extended haplotypes showed an association with AUD that was determined by GABRA2. Our results suggest that there are likely to be independent, complex contributions from both GABRG1 and GABRA2 to alcoholism vulnerability.
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Colin A. Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda MD 20892
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda MD 20892
| | - Bernard Albaugh
- Center for Human Behavior Studies, Inc, Weatherford, OK 73096
| | - Matti Virkkunen
- Department of Psychiatry, University of Helsinki, Helsinki, Finland
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda MD 20892
| |
Collapse
|
17
|
Hurley JH, Ballard CJ, Edenberg HJ. Altering the relative abundance of GABA A receptor subunits changes GABA- and ethanol-responses in Xenopus oocytes. Alcohol Clin Exp Res 2009; 33:1089-96. [PMID: 19382902 DOI: 10.1111/j.1530-0277.2009.00930.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Variations in GABRA2 and GABRG3, genes encoding the alpha2 and gamma3 subunits of the pentameric GABA(A) receptor, are associated with the risk of developing alcoholism in adults, conduct disorder at younger ages, and with differences in electroencephalographic power in the beta frequency range. The SNPs associated with alcoholism did not alter the coding of these genes, and extensive DNA sequencing of GABRA2 did not find coding changes in the high-risk haplotypes. Therefore, we hypothesize that the associations arise from differences in gene expression. METHODS Here we report studies in Xenopus oocytes to examine the functional effects of altering the relative abundance of these 2 receptor subunits on GABA current and response to ethanol, as a model of potential effects of regulatory differences. RESULTS When human alpha2beta2gamma3 subunits are co-expressed, increasing the amount of the alpha2 subunit mRNA increased GABA current; in contrast, increasing the amount of the gamma3 subunit decreased GABA currents. Acute ethanol treatment of oocytes injected with a 1:1:1 or 2:2:1 ratio of alpha2:beta2:gamma3 subunit mRNAs resulted in significant potentiation of GABA currents, whereas ethanol inhibited GABA currents in cells injected with a 6:2:1 ratio. Overnight treatment with ethanol significantly reduced GABA currents in a manner dependent on the ratio of subunits. CONCLUSIONS These studies demonstrate that changes in relative expression of GABA(A) receptor subunits alter the response of the resulting channels to GABA and to ethanol.
Collapse
Affiliation(s)
- Joyce H Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
18
|
Rangaswamy M, Porjesz B. Uncovering genes for cognitive (dys)function and predisposition for alcoholism spectrum disorders: a review of human brain oscillations as effective endophenotypes. Brain Res 2008; 1235:153-71. [PMID: 18634760 DOI: 10.1016/j.brainres.2008.06.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
Brain oscillations provide a rich source of potentially useful endophenotypes (intermediate phenotypes) for psychiatric genetics, as they represent important correlates of human information processing and are associated with fundamental processes from perception to cognition. These oscillations are highly heritable, are modulated by genes controlling neurotransmitters in the brain, and provide links to associative and integrative brain functions. These endophenotypes represent traits that are less complex and more proximal to gene function than either diagnostic labels or traditional cognitive measures, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. Our group has utilized heritable neurophysiological features (i.e., brain oscillations) as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We have discussed our findings of significant linkage and association between brain oscillations and genes in GABAergic, cholinergic and glutamatergic systems (GABRA2, CHRM2, and GRM8). We have also shown that some oscillatory indices from both resting and active cognitive states have revealed a common subset of genetic foci that are shared with the diagnosis of alcoholism and related disorders. Implications of our findings have been discussed in the context of physiological and pharmacological studies on receptor function. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of brain function and the genetic diathesis underlying complex psychiatric disorders.
Collapse
Affiliation(s)
- Madhavi Rangaswamy
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Box 1203, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
19
|
Enoch MA. The role of GABA(A) receptors in the development of alcoholism. Pharmacol Biochem Behav 2008; 90:95-104. [PMID: 18440057 DOI: 10.1016/j.pbb.2008.03.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/29/2008] [Accepted: 03/05/2008] [Indexed: 11/18/2022]
Abstract
Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.
Collapse
MESH Headings
- Alcohol Drinking/genetics
- Alcohol Drinking/psychology
- Alcoholism/drug therapy
- Alcoholism/genetics
- Alcoholism/physiopathology
- Animals
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 4/physiology
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/physiology
- Dopamine/physiology
- Gene Expression Regulation/physiology
- Humans
- Neuronal Plasticity/physiology
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, GABA-A/physiology
- Receptors, Presynaptic/drug effects
- Reward
- Steroids/physiology
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
Ittiwut C, Listman J, Mutirangura A, Malison R, Covault J, Kranzler HR, Sughondhabirom A, Thavichachart N, Gelernter J. Interpopulation linkage disequilibrium patterns of GABRA2 and GABRG1 genes at the GABA cluster locus on human chromosome 4. Genomics 2007; 91:61-9. [PMID: 17976953 DOI: 10.1016/j.ygeno.2007.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 08/10/2007] [Accepted: 08/23/2007] [Indexed: 11/20/2022]
Abstract
GABRA2 and GABRG1, which encode the alpha-2 and gamma-1 subunits, respectively, of the GABA(A) receptor, are located in a cluster on chromosome 4p. The GABRA2 locus has been found to be associated with alcohol dependence in several studies, but no functional variant that can account for this association has been identified. To understand the reported associations, we sought to understand the linkage disequilibrium (LD) patterns and haplotype structures of these genes. With close intergenic distance, approximately 90 kb, it was anticipated that some markers might show intergenic LD. Variation in 13-SNP haplotype block structure was observed in five different populations: European American, African American, Chinese (Han and Thai), Thai, and Hmong. In the Hmong, a 280-kb region of considerably higher LD spans the intergenic region, whereas in other populations, there were two or more LD blocks that cross this region. These findings may aid in understanding the genetic association of this locus with alcohol dependence in several populations.
Collapse
Affiliation(s)
- Chupong Ittiwut
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ding L, Mychaleckyj JC, Hegde AN. Full length cloning and expression analysis of splice variants of regulator of G-protein signaling RGS4 in human and murine brain. Gene 2007; 401:46-60. [PMID: 17707117 DOI: 10.1016/j.gene.2007.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 05/25/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
RGS4 (regulator of G protein signaling 4) protein is a GTPase-activating protein specific for Gi/o and Gq alpha subunits. It is highly expressed in brain but the mechanisms by which RGS4 expression is regulated remain unknown. RGS4 is associated with schizophrenia either through heritable genetic polymorphisms or as a co-regulated mediator of the pathology, and may play a role in other brain diseases. As a necessary step towards understanding the transcriptional regulation of RGS4, we isolated full-length splice variants of the human RGS4 and mouse Rgs4 gene using bioinformatic predictions, followed by RACE, RT-PCR, and sequencing. In human brain, we found five different isoforms RGS4-1, RGS4-2, RGS4-3, RGS4-4 and RGS4-5 of which RGS4-2, RGS4-3, RGS4-4 and RGS4-5 are novel. RGS4-1 and 2 encode a 205-amino acid protein, while RGS4-3 encodes a 302 aa protein with an N-terminal extension. RGS4-4 and RGS4-5 encode truncated proteins of 93 aa and 187 aa respectively. Our results indicate that RGS4-1, RGS4-2, RGS4-3 and RGS4-4 are translated into proteins. In contrast, the mouse brain has 3 different splice variants, Rgs4-1, Rgs4-2 and Rgs4-3 which encode the same 205 aa protein but vary in their 3'UTRs. Among the mouse isoforms, Rgs4-1 and Rgs4-3 are novel. Human RGS4 has four different transcription start sites and three different stop sites. We found differential expression of the human isoforms in dorsolateral prefrontal and visual cortex. All five RGS4 splice variants are expressed at high levels in human cortical areas although RGS4 isoforms 1, 2, and 3 are not expressed in the cerebellum. RGS4-2 is tissue-specific whereas RGS4-4 and RGS4-5 appear to be ubiquitously expressed. Our results suggest the intriguing possibility that RGS4 gene expression in the human brain is spatially and temporally regulated through differential transcription of isoforms from alternative promoters. This may have implications for the physiological role of RGS4 and in pathologies of the brain.
Collapse
Affiliation(s)
- Lan Ding
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
22
|
Joyce CJ. In silico comparative genomic analysis of GABAA receptor transcriptional regulation. BMC Genomics 2007; 8:203. [PMID: 17603907 PMCID: PMC1934366 DOI: 10.1186/1471-2164-8-203] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 06/30/2007] [Indexed: 11/30/2022] Open
Abstract
Background Subtypes of the GABAA receptor subunit exhibit diverse temporal and spatial expression patterns. In silico comparative analysis was used to predict transcriptional regulatory features in individual mammalian GABAA receptor subunit genes, and to identify potential transcriptional regulatory components involved in the coordinate regulation of the GABAA receptor gene clusters. Results Previously unreported putative promoters were identified for the β2, γ1, γ3, ε, θ and π subunit genes. Putative core elements and proximal transcriptional factors were identified within these predicted promoters, and within the experimentally determined promoters of other subunit genes. Conserved intergenic regions of sequence in the mammalian GABAA receptor gene cluster comprising the α1, β2, γ2 and α6 subunits were identified as potential long range transcriptional regulatory components involved in the coordinate regulation of these genes. A region of predicted DNase I hypersensitive sites within the cluster may contain transcriptional regulatory features coordinating gene expression. A novel model is proposed for the coordinate control of the gene cluster and parallel expression of the α1 and β2 subunits, based upon the selective action of putative Scaffold/Matrix Attachment Regions (S/MARs). Conclusion The putative regulatory features identified by genomic analysis of GABAA receptor genes were substantiated by cross-species comparative analysis and now require experimental verification. The proposed model for the coordinate regulation of genes in the cluster accounts for the head-to-head orientation and parallel expression of the α1 and β2 subunit genes, and for the disruption of transcription caused by insertion of a neomycin gene in the close vicinity of the α6 gene, which is proximal to a putative critical S/MAR.
Collapse
|
23
|
Hoerndli FJ, Pelech S, Papassotiropoulos A, Götz J. Abeta treatment and P301L tau expression in an Alzheimer's disease tissue culture model act synergistically to promote aberrant cell cycle re-entry. Eur J Neurosci 2007; 26:60-72. [PMID: 17587323 DOI: 10.1111/j.1460-9568.2007.05618.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microarrays enable the observation of gene expression in experimental models of Alzheimer's disease (AD), with implications for the human pathology. Histopathologically, AD is characterized by Abeta-containing plaques and tau-containing neurofibrillary tangles. Here, we used a human SH-SY5Y neuroblastoma cell system to assess the role of P301L mutant human tau expression, and treatment with or without Abeta on gene regulation. We found that Abeta and P301L tau expression independently affect the regulation of genes controlling cell proliferation and synaptic elements. Moreover, Abeta and P301L tau act synergistically on cell cycle and DNA damage genes, yet influence specific genes within these categories. By using neuronally differentiated P301L tau cells, we can show that Abeta treatment induces an early upregulation of cell cycle control and synaptic genes. At the protein level, by using Kinetworks multi-immunoblotting and BrdU labelling, we found that although P301L tau and Abeta both affected levels of cell cycle proteins, their effects were distinct, in particular concerning DNA damage proteins. Moreover, DNA synthesis was observed only when SH-SY5Y cells overexpressed human wild-type or P301L tau and were incubated with Abeta. Thus, our study shows that Abeta treatment and human tau overexpression in an AD cell culture model act synergistically to promote aberrant cell cycle re-entry, supporting the mitosis failure hypothesis in AD.
Collapse
Affiliation(s)
- Frederic J Hoerndli
- Division of Psychiatry Research, University of Zurich, August Forel Str. 1, 8008 Zurich, Switzerland
| | | | | | | |
Collapse
|
24
|
Enoch MA, Schwartz L, Albaugh B, Virkkunen M, Goldman D. Dimensional anxiety mediates linkage of GABRA2 haplotypes with alcoholism. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:599-607. [PMID: 16874763 PMCID: PMC4516162 DOI: 10.1002/ajmg.b.30336] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The GABAAalpha2 receptor gene (GABRA2) modulates anxiety and stress response. Three recent association studies implicate GABRA2 in alcoholism, however in these papers both common, opposite-configuration haplotypes in the region distal to intron3 predict risk. We have now replicated the GABRA2 association with alcoholism in 331 Plains Indian men and women and 461 Finnish Caucasian men. Using a dimensional measure of anxiety, harm avoidance (HA), we also found that the association with alcoholism is mediated, or moderated, by anxiety. Nine SNPs were genotyped revealing two haplotype blocks. Within the previously implicated block 2 region, we identified the two common, opposite-configuration risk haplotypes, A and B. Their frequencies differed markedly in Finns and Plains Indians. In both populations, most block 2 SNPs were significantly associated with alcoholism. The associations were due to increased frequencies of both homozygotes in alcoholics, indicating the possibility of alcoholic subtypes with opposite genotypes. Congruently, there was no significant haplotype association. Using HA as an indicator variable for anxiety, we found haplotype linkage to alcoholism with high and low dimensional anxiety, and to HA itself, in both populations. High HA alcoholics had the highest frequency of the more abundant haplotype (A in Finns, B in Plains Indians); low HA alcoholics had the highest frequency of the less abundant haplotype (B in Finns, A in Plains Indians) (Finns: P = 0.007, OR = 2.1, Plains Indians: P = 0.040, OR = 1.9). Non-alcoholics had intermediate frequencies. Our results suggest that within the distal GABRA2 region is a functional locus or loci that may differ between populations but that alters risk for alcoholism via the mediating action of anxiety.
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
25
|
Fehr C, Sander T, Tadic A, Lenzen KP, Anghelescu I, Klawe C, Dahmen N, Schmidt LG, Szegedi A. Confirmation of association of the GABRA2 gene with alcohol dependence by subtype-specific analysis. Psychiatr Genet 2006; 16:9-17. [PMID: 16395124 DOI: 10.1097/01.ypg.0000185027.89816.d9] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Three recent studies revealed a haplotypic association of alcohol dependence with the gene encoding the alpha2 subunit of the gamma-aminobutyric acid type A (GABAA) receptor (GABRA2). The present study examined whether variation of the GABRA2 gene confers susceptibility to different subtypes of alcohol dependence in the German population. METHODS A total of 257 German alcohol-dependent patients and 88 healthy population controls were genotyped for six single-nucleotide polymorphisms covering the middle part and the 3' end of GABRA2. Allelic, genotypic and haplotypic comparisons were done for subgroups of alcohol-dependent patients with a presumed high genetic load. RESULTS The overall alcohol-dependent patients vs. control group comparison confirmed positive allelic association for five of six single-nucleotide polymorphisms mapping from intron 3 to the 3' end of GABRA2 (P=0.01-0.02). Haplotype analysis revealed two common haplotypes accounting for approximately 90% of the chromosomes within the patients and controls. The less frequent haplotype was significantly more prevalent among the alcohol-dependent patients (45%) than among the controls [29%; odds ratio (OR)=1.97, 95% confidence interval (CI): 1.30-2.96]. The strength of association increased, if the subsets of alcohol-dependent patients with a positive family history (OR=2.60, 95% CI: 1.63-4.13), withdrawal seizures (OR=2.22, 95% CI: 1.30-3.79) or an early onset (OR=2.19, 95% CI: 1.24-3.88) were analyzed. CONCLUSIONS Although our study was limited by the number of cases being larger than the number of controls, the results confirm GABRA2 as a susceptibility gene for alcohol dependence in the German population. We found a consistent increase of the susceptibility effect in alcohol-dependent patients with a presumed strong genetic predisposition.
Collapse
Affiliation(s)
- Christoph Fehr
- Department of Psychiatry, University of Mainz, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Alcohol dependence is a complex disorder with a well documented highly hereditary nature. This article reviews the recent advances in our understanding of the direct and indirect genetic influences on alcohol use and dependence. RECENT FINDINGS Recent findings can be summarized as follows: (a) twin studies have defined and estimated the risks of general and specific alcohol-related vulnerabilities. (b) Linkage studies have provided largely inconsistent findings, though several chromosomal regions have been implicated. (c) Quantitative trait loci analyses in animals have identified that the Mpdz gene predisposes to alcohol dependence and withdrawal. (d) Examination of family-based samples has identified several genes including GABRA2 and CHRM2 thought to be associated with alcohol dependence. SUMMARY Despite great advances in understanding of genetic vulnerability in alcohol use disorders, only two gene complexes, ADH and ALDH2, have been identified as having defined effects on alcohol use and liability to dependence in humans. New genes associated with increased risks for the disorder will certainly be added to this list in the near future. Neurobiological analyses of the effects of these genes will surely contribute to further understanding of the cause of alcohol dependence and the interindividual differences in risks.
Collapse
Affiliation(s)
- Susumu Higuchi
- National Hospital Organization, Kurihama Alcoholism Center, Yokosuka, Kanagawa, Japan.
| | | | | |
Collapse
|