1
|
Zhou D, Chen X, Li G, Zhao M, Li D. Effect of deep eutectic solvents on activity, stability, and selectivity of enzymes: Novel insights and further prospects. Int J Biol Macromol 2025; 284:138148. [PMID: 39613061 DOI: 10.1016/j.ijbiomac.2024.138148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Deep eutectic solvents (DESs) have been extensively concerned since 2008 as reaction media in biocatalysis because of their excellent solvent performances. Here, we try to clarify the effects of DESs on the catalytic properties, structure, and conformation of enzymes. Through comprehensive analysis, it is found that the catalytic properties of enzymes can be designed in different DESs through modulating the hydrogen bond acceptors, hydrogen bond donors, and their molar ratio. Structural changes of different enzymes in various DESs are not always consistent, which may be attributed to the original structure of enzymes, DES composition, and the interactions between enzymes and DESs. Moreover, we try to elucidate how DESs interact with varying amounts of water, and furthermore how water in DES affects the catalytic properties of enzymes. The available researches indicate that proper amount of water can integrate into the network of DESs and strengthen the hydrogen-bonding interactions while excessive water will destroy the integrity of DESs. Water affects the performance of enzymes in two possible ways: 1) affecting enzyme affinity and structure directly; 2) influencing the properties of DESs, thus modulating the efficiency of enzymes. This review paves road for researchers to design DESs with desired properties for specific applications.
Collapse
Affiliation(s)
- Duan Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Gaimiao Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Daoming Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Khan T, Das N, Bhowmik S, Negi KS, Sen P. Critical Role of Water beyond the Media to Maintain Protein Stability and Activity in Hydrated Deep Eutectic Solvent. J Phys Chem B 2024. [PMID: 39688336 DOI: 10.1021/acs.jpcb.4c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Hydrated deep eutectic solvents (DESs) are recognized for their potential in biocatalysis due to their tunability, biocompatibility, greenness, and ability to keep protein stable and active. However, the mechanisms governing enzyme stability and activity in DES remain poorly understood. Herein, using bromelain as the model enzyme and acetamide (0.5)/urea(0.3)/sorbitol(0.2) as the model DES, we provide experimental evidence that modulation of associated water plays a key role in dictating protein stability and activity in hydrated DES. Specifically, rigid associated water at higher DES concentrations (beyond 40% v/v) stabilizes bromelain through entropy but destabilizes it through enthalpy. On the other hand, flexible associated water dynamics at lower DES concentrations result in an opposite thermodynamic outcome. Importantly, the bulk water dynamics cannot explain the stability trend, which emphasizes the critical role of water near the protein surface. Strikingly, associated water dynamics also correlates strongly with bromelain's proteolytic activity. An increasing flexibility of the associated water dynamics leads to the enhancement of the activity. This is the first study to experimentally link associated water dynamics to enzyme behavior in hydrated DES, offering insights that could guide future developments in solvent engineering for enzyme catalysis.
Collapse
Affiliation(s)
- Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Suman Bhowmik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Kuldeep Singh Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| |
Collapse
|
3
|
Logarušić M, Šubar K, Nikolić M, Jurinjak Tušek A, Damjanović A, Radović M, Radojčić Redovniković I, Žnidaršič-Plazl P, Kroutil W, Cvjetko Bubalo M. Harnessing the potential of deep eutectic solvents in biocatalysis: design strategies using CO 2 to formate reduction as a case study. Front Chem 2024; 12:1467810. [PMID: 39525963 PMCID: PMC11543487 DOI: 10.3389/fchem.2024.1467810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Deep eutectic solvents (DESs) have emerged as green solvents with versatile applications, demonstrating significant potential in biocatalysis. They often increase the solubility of poorly water-soluble substrates, serve as smart co-substrates, modulate enzyme stereoselectivity, and potentially improve enzyme activity and stability. Despite these advantages, screening for an optimal DES and determining the appropriate water content for a given biocatalytic reaction remains a complex and time-consuming process, posing a significant challenge. Methods This paper discusses the rational design of DES tailored to a given biocatalytic system through a combination of experimental screening and computational tools, guided by performance targets defined by solvent properties and process constraints. The efficacy of this approach is demonstrated by the reduction of CO2 to formate catalyzed by NADH-dependent formate dehydrogenase (FDH). By systematically analyzing FDH activity and stability, NADH stability (both long-term and short-term stability after solvent saturation with CO2), and CO2 solubility in initially selected glycerol-based DESs, we were able to skillfully guide the DES screening process. Results and discussion Considering trade-offs between experimentally determined performance metrics of DESs, 20% solution of choline chloride:glycerol in phosphate buffer (ChCl:Gly80%B) was identified as the most promising solvent system for a given reaction. Using ChCl:Gly as a co-solvent resulted in an almost 15-fold increase in FDH half-life compared to the reference buffer and stabilized the coenzyme after the addition of CO2. Moreover, the 20% addition of ChCl:Gly to the buffer improved the volumetric productivity of FDH-catalyzed CO2 reduction in a batch system compared to the reference buffer. The exceptional stability of the enzyme in this co-solvent system shows great potential for application in continuous operation, which can significantly improve process productivity. Additionally, based on easily measurable physicochemical solvent properties and molecular descriptors derived from COSMO-RS, QSAR models were developed, which successfully predicted enzyme activity and stability, as well as coenzyme stability in selected solvent systems with DESs.
Collapse
Affiliation(s)
- Marijan Logarušić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Karla Šubar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Maja Nikolić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anja Damjanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Mia Radović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, Field of Excellence BioHealth, BioTechMed Graz, Graz, Austria
| | | |
Collapse
|
4
|
Damjanović A, Logarušić M, Tumir LM, Andreou T, Cvjetko Bubalo M, Radojčić Redovniković I. Enhancing protein stability under stress: osmolyte-based deep eutectic solvents as a biocompatible and robust stabilizing medium for lysozyme under heat and cold shock. Phys Chem Chem Phys 2024; 26:21040-21051. [PMID: 39054918 DOI: 10.1039/d4cp02275k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In biomedical and biotechnological domains, liquid protein formulations are vital tools, offering versatility across various fields. However, maintaining protein stability in a liquid form presents challenges due to environmental factors, driving research to refine formulations for broader applications. In our recent study, we investigated the relationship between deep eutectic solvents (DESs) and the natural presence of osmolytes in specific combinations, showcasing the effectiveness of a bioinspired osmolyte-based DES in stabilizing a model protein. Recognizing the need for a more nuanced understanding of osmolyte-based DES stabilization capabilities under different storage conditions, here we broadened the scope of our osmolyte-based DES experimental screening, and delved deeper into structural changes in the enzyme under these conditions. We subjected lysozyme solutions in DESs based on various kosmotropic osmolytes (TMAO, betaine, sarcosine, DMSP, ectoine, GPC, proline, sorbitol and taurine) paired either with another kosmotropic (glycerol) or with chaotropic osmolyte urea to rigorous conditions: heat shock (at 80 °C) and repetitive freeze-thaw cycles (at -20 and -80 °C). Changes in enzyme activity, colloidal stability, and conformational alterations were then monitored using bioassays, aggregation tests, and spectroscopic techniques (FT-IR and CD). Our results demonstrate the remarkable effectiveness of osmolyte-based DES in stabilizing lysozyme under stress conditions, with sarcosine- and betaine-based DESs containing glycerol as a hydrogen bond donor showing the highest efficacy, even at high enzyme loadings up to 200 mg ml-1. Investigation of the individual and combined effects of the DES components on enzyme stability confirmed the synergistic behavior of the kosmotrope-urea mixtures and the cumulative effects in kosmotrope-glycerol mixtures. Additionally, we have shown that the interplay between the enzyme's active and stable (but inactive) states is highly influenced by the water content in DESs. Finally, toxicity assessments of osmolyte-based DESs using cell lines (Caco-2, HaCaT, and HeLa) revealed no risks to human health.
Collapse
Affiliation(s)
- Anja Damjanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia.
| | - Marijan Logarušić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
5
|
Zhang M, Zhong Y, Lv R, Miao J, Duan S. Activities of proteases in deep eutectic solvents and removal of protein from chitin by subtilisin A in betaine/glycerol. Carbohydr Polym 2024; 337:122165. [PMID: 38710577 DOI: 10.1016/j.carbpol.2024.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
This research intended to remove residual protein from chitin with proteases in deep eutectic solvents (DESs). The activities of some proteases in several DESs, including choline chloride/p-toluenesulfonic acid, betaine/glycerol (Bet/G), choline chloride/malic acid, choline chloride/lactic acid, and choline chloride/urea, which are capable of dissolving chitin, were tested, and only in Bet/G some proteases were found to be active, with subtilisin A, ficin, and bromelain showing higher activity than other proteases. However, the latter two proteases caused degradation of chitin molecules. Further investigation revealed that subtilisin A in Bet/G did not exhibit "pH memory", which is a universal characteristic displayed by enzymes dispersed in organic phases, and the catalytic characteristics of subtilisin A in Bet/G differed significantly from those in aqueous phase. The conditions for protein removal from chitin by subtilisin A in Bet/G were determined: Chitin dissolved in Bet/G with 0.5 % subtilisin A (442.0 U/mg, based on the mass of chitin) was hydrolyzed at 45 °C for 30 min. The residual protein content in chitin decreased from 5.75 % ± 0.10 % to 1.01 % ± 0.12 %, improving protein removal by 57.20 % compared with protein removal obtained by Bet/G alone. The crystallinity and deacetylation degrees of chitin remained unchanged after the treatment.
Collapse
Affiliation(s)
- Mengzhen Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou City 510642, China
| | - Yanhua Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou City 510642, China
| | - Ranhui Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou City 510642, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou City 510642, China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou City 510642, China.
| |
Collapse
|
6
|
Myrtollari K, Calderini E, Kracher D, Schöngaßner T, Galušić S, Slavica A, Taden A, Mokos D, Schrüfer A, Wirnsberger G, Gruber K, Daniel B, Kourist R. Stability Increase of Phenolic Acid Decarboxylase by a Combination of Protein and Solvent Engineering Unlocks Applications at Elevated Temperatures. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:3575-3584. [PMID: 38456190 PMCID: PMC10915792 DOI: 10.1021/acssuschemeng.3c06513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/16/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Enzymatic decarboxylation of biobased hydroxycinnamic acids gives access to phenolic styrenes for adhesive production. Phenolic acid decarboxylases are proficient enzymes that have been applied in aqueous systems, organic solvents, biphasic systems, and deep eutectic solvents, which makes stability a key feature. Stabilization of the enzyme would increase the total turnover number and thus reduce the energy consumption and waste accumulation associated with biocatalyst production. In this study, we used ancestral sequence reconstruction to generate thermostable decarboxylases. Investigation of a set of 16 ancestors resulted in the identification of a variant with an unfolding temperature of 78.1 °C and a half-life time of 45 h at 60 °C. Crystal structures were determined for three selected ancestors. Structural attributes were calculated to fit different regression models for predicting the thermal stability of variants that have not yet been experimentally explored. The models rely on hydrophobic clusters, salt bridges, hydrogen bonds, and surface properties and can identify more stable proteins out of a pool of candidates. Further stabilization was achieved by the application of mixtures of natural deep eutectic solvents and buffers. Our approach is a straightforward option for enhancing the industrial application of the decarboxylation process.
Collapse
Affiliation(s)
- Kamela Myrtollari
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria
- Adhesive
Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Elia Calderini
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Daniel Kracher
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
| | - Tobias Schöngaßner
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Stela Galušić
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Anita Slavica
- Faculty
of Food Technology and Biotechnology, Department of Biochemical Engineering, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Andreas Taden
- Adhesive
Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Daniel Mokos
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Anna Schrüfer
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Gregor Wirnsberger
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Karl Gruber
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Bastian Daniel
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Robert Kourist
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
| |
Collapse
|
7
|
Liu E, Mercado MIV, Segato F, Wilkins MR. A green pathway for lignin valorization: Enzymatic lignin depolymerization in biocompatible ionic liquids and deep eutectic solvents. Enzyme Microb Technol 2024; 174:110392. [PMID: 38171172 DOI: 10.1016/j.enzmictec.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Lignin depolymerization, which enables the breakdown of a complex and heterogeneous aromatic polymer into relatively uniform derivatives, serves as a critical process in valorization of lignin. Enzymatic lignin depolymerization has become a promising biological strategy to overcome the heterogeneity of lignin, due to its mild reaction conditions and high specificity. However, the low solubility of lignin compounds in aqueous environments prevents efficient lignin depolymerization by lignin-degrading enzymes. The employment of biocompatible ionic liquids (ILs) and deep eutectic solvents (DESs) in lignin fractionation has created a promising pathway to enzymatically depolymerize lignin within these green solvents to increase lignin solubility. In this review, recent research progress on enzymatic lignin depolymerization, particularly in a consolidated process involving ILs/DESs is summarized. In addition, the interactions between lignin-degrading enzymes and solvent systems are explored, and potential protein engineering methodology to improve the performance of lignin-degrading enzymes is discussed. Consolidation of enzymatic lignin depolymerization and biocompatible ILs/DESs paves a sustainable, efficient, and synergistic way to convert lignin into value-added products.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Fernando Segato
- Department of Biotechnology, University of São Paulo, Lorena, SP, Brazil
| | - Mark R Wilkins
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
8
|
Domingues L, Duarte ARC, Jesus AR. How Can Deep Eutectic Systems Promote Greener Processes in Medicinal Chemistry and Drug Discovery? Pharmaceuticals (Basel) 2024; 17:221. [PMID: 38399436 PMCID: PMC10892015 DOI: 10.3390/ph17020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Chemists in the medicinal chemistry field are constantly searching for alternatives towards more sustainable and eco-friendly processes for the design and synthesis of drug candidates. The pharmaceutical industry is one of the most polluting industries, having a high E-factor, which is driving the adoption of more sustainable processes not only for new drug candidates, but also in the production of well-established active pharmaceutical ingredients. Deep eutectic systems (DESs) have emerged as a greener alternative to ionic liquids, and their potential to substitute traditional organic solvents in drug discovery has raised interest among scientists. With the use of DESs as alternative solvents, the processes become more attractive in terms of eco-friendliness and recyclability. Furthermore, they might be more effective through making the process simpler, faster, and with maximum efficiency. This review will be focused on the role and application of deep eutectic systems in drug discovery, using biocatalytic processes and traditional organic chemical reactions, as new environmentally benign alternative solvents. Furthermore, herein we also show that DESs, if used in the pharmaceutical industry, may have a significant effect on lowering production costs and decreasing the impact of this industry on the quality of the environment.
Collapse
Affiliation(s)
| | | | - Ana Rita Jesus
- LAQV-REQUIMTE, Chemistry Department, School of Science and Technology, NOVA University, 2829-516 Caparica, Portugal; (L.D.); (A.R.C.D.)
| |
Collapse
|
9
|
Li X, Li JY, Manzoor MF, Lin QY, Shen JL, Liao L, Zeng XA. Natural deep eutectic solvent: A promising eco-friendly food bio-inspired antifreezing. Food Chem 2023; 437:137808. [PMID: 39491255 DOI: 10.1016/j.foodchem.2023.137808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Bio-antifreezing is a green and highly effective strategy to inhibit ice nucleation. Bio-inspired antifreezing faces the severe challenges of significant toxicity and complex manufacturing procedures. Bio-inspired antifreezing natural deep eutectic solvent (Ba-NADES) could be an efficient and low or no-toxicity approach for the frozen food industry. Ba-NADES form a strong hydrogen bond network system under cold conditions, capably reducing the melting point of the system below the freezing point and effectively inhibiting ice growth. It has efficaciously alleviated freeze injury by Ba-NADES. The review highlights the current strategies of bio-inspired antifreezing, cold resistance behavior in organisms, and the existing applications of Ba-NADES. It updated information concerning their mechanisms for antifreezing. It emphasizes that the role of water on the antifreezing quality of NADES is worthy of further investigation for more extensive food applications. This work will provide a comprehensive overview of NADES antifreezing.
Collapse
Affiliation(s)
- Xue Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Jia-Ying Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Muhammad Faisal Manzoor
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Qiu-Ya Lin
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Jia-Ling Shen
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Lan Liao
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China.
| | - Xin-An Zeng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China.
| |
Collapse
|
10
|
Yadav N, Chahar D, Bisht M, Venkatesu P. Assessing the compatibility of choline-based deep eutectic solvents for the structural stability and activity of cellulase: Enzyme sustain at high temperature. Int J Biol Macromol 2023; 249:125988. [PMID: 37499720 DOI: 10.1016/j.ijbiomac.2023.125988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
As a new generation of 'green solvents' deep eutectic solvents (DESs) represents a promising alternative to the conventional solvents. Their environmental-benign nature and designer properties promote their utility in biocatalysis. Enzymes are marginally stable when exposed to physical/chemical disturbances. One such enzyme is cellulase which is a propitious catalyst for the depolymerization of cellulose under mild conditions. Therefore, their stability is a prerequisite condition to match demands of biorefineries. To address this issue of low stability, activity and thermal denaturation of cellulase, there is a need to find a sustainable and suitable co-solvent that is biocompatible with enzymes ultimately to facilitate their application in bio-industries. In this regard, we synthesized three choline-based DESs, choline chloride (ChCl)-glycerol, ChCl-ethylene glycol and ChCl-lactic acid and employed them to analyze their suitability for cellulase. The present study systematically evaluates the influence of the mentioned DESs on stability, activity and thermal stability of cellulase with the help of various spectroscopic techniques. The spectroscopic analysis revealed that the structural stability and activity of the enzyme were improved in presence of ChCl-glycerol and ChCl-ethylene glycol. The thermal stability was also very well maintained in both the DESs. Interestingly, the relative activity of cellulase was >80 % even after incubation at 50 °C after 48 h for both the DESs. This activity preservation behaviour was more pronounced for ChCl-ethylene glycol than ChCl-glycerol. Moreover, temperature variations studies also reveal promising results by maintain conformational intactness. On the other side, ChCl-lactic acid showed a deleterious effect on the enzyme both structurally as well as thermally. The dynamic light scattering (DLS) analysis provides more specific information about the negative influence of ChCl-lactic acid towards cellulase native structure. This DES induces unavoidable alterations in the enzyme structure which leads to the unfolding of enzyme, ultimately, destabilizing it. Overall, our results present a physical insight into how the enzyme stability and activity depend on the nature of DES. Also, the findings will help to facilitate the development and application of DESs as biocatalytic process.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Deepak Chahar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Meena Bisht
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
11
|
Yadav N, Mor S, Venkatesu P. The attenuating ability of deep eutectic solvents towards the carboxylated multiwalled carbon nanotubes induced denatured β-lactoglobulin structure. Phys Chem Chem Phys 2023. [PMID: 37470288 DOI: 10.1039/d3cp02908e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The stabilization of proteins has been a major challenge for their practical utilization in industrial applications. Proteins can easily lose their native conformation in the presence of denaturants, which unfolds the protein structure. Since the introduction of deep eutectic solvents (DESs), there are numerous studies in which DESs act as promising co-solvents that are biocompatible with biomolecules. DESs have emerged as sustainable biocatalytic media and an alternative to conventional organic solvents and ionic liquids (ILs). However, the superiority of DESs over the deleterious influence of denaturants on proteins is often neglected. To address this, we present the counteracting ability of biocompatible DESs, namely, choline chloride-glycerol (DES-1) and choline chloride-urea (DES-2), against the structural changes induced in β-lactoglobulin (Blg) by carboxylated multiwalled carbon nanotubes (CA-MWCNTs). The work is substantiated with various spectroscopic and thermal studies. The spectroscopic results revealed that the fluorescence emission intensity enhances for the protein in DESs. Contrary to this, the emission intensity extremely quenches in the presence of CA-MWCNTs. However, in the mixture of DESs and CA-MWCNTs, there was a slight increase in the fluorescence intensity. Circular dichroism spectral studies reflect the reappearance of the native band that was lost in the presence of CA-MWCNTs, which is a good indicator of the counteraction ability of DESs. Further, thermal fluorescence studies showed that the protein exhibited extremely great thermal stability in both DESs as well as in the mixture of DES-CA-MWCNTs compared to the protein in buffer. This study is also supported by dynamic light scattering and zeta potential measurements; the results reveal that DESs were successfully able to maintain the protein structure. The addition of CA-MWCNTs results in complex formation with the protein, which is indicated by the increased hydrodynamic size of the protein. The presence of DESs in the mixture of CA-MWCNTs and DESs was quite successful in eliminating the negative impact of CA-MWCNTs on protein structural alteration. DES-1 proved to be superior to DES-2 over counteraction against CA-MWCNTs and maintained the native conformation of the protein. Overall, both DESs act as recoiling media for both native and unfolded (denatured by CA-MWCNTs) Blg structures. Both the DESs can be described as potential co-solvents for Blg with increased structural and thermal stability of the protein. To the best of our knowledge, this study for the first time has demonstrated the role of choline-based DESs in the mixture with CA-MWCNTs in the structural transition of Blg. The DESs in the mixture successfully enhance the stability of the protein by reducing the perturbation caused by CA-MWCNTs and then amplifying the advantages of the DESs present in the mixture. Overall, these results might find implications for understanding the role of DES-CA-MWCNT mixtures in protein folding/unfolding and pave a new direction for the development of eco-friendly protein-protective solvents.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
12
|
Wang H, Masuku MV, Tao Y, Yang J, Kuang Y, Lyu C, Huang J, Yang S. Improved Stability and Catalytic Efficiency of ω-Transaminase in Aqueous Mixture of Deep Eutectic Solvents. Molecules 2023; 28:molecules28093895. [PMID: 37175305 PMCID: PMC10180074 DOI: 10.3390/molecules28093895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The efficient biosynthesis of chiral amines at an industrial scale to meet the high demand from industries that require chiral amines as precursors is challenging due to the poor stability and low catalytic efficiency of ω-transaminases (ω-TAs). Herein, this study adopted a green and efficient solvent engineering method to explore the effects of various aqueous solutions of deep eutectic solvents (DESs) as cosolvents on the catalytic efficiency and stability of ω-TA. Binary- and ternary-based DESs were used as cosolvents in enhancing the catalytic activity and stability of a ω-TA variant from Aspergillus terreus (E133A). The enzyme exhibited a higher catalytic activity in a ternary-based DES that was 2.4-fold higher than in conventional buffer. Moreover, the thermal stability was enhanced by a magnitude of 2.7, with an improvement in storage stability. Molecular docking studies illustrated that the most potent DES established strong hydrogen bond interactions with the enzyme's amino acid, which enhanced the catalytic efficiency and improved the stability of the ω-TA. Molecular docking is essential in designing DESs for a specific enzyme.
Collapse
Affiliation(s)
- Hongpeng Wang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Mercy Vimbai Masuku
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yachen Tao
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiayao Yang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yi Kuang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Changjiang Lyu
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengxiang Yang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
13
|
Svigelj R, Zanette F, Toniolo R. Electrochemical Evaluation of Tyrosinase Enzymatic Activity in Deep Eutectic Solvent and Aqueous Deep Eutectic Solvent. SENSORS (BASEL, SWITZERLAND) 2023; 23:3915. [PMID: 37112256 PMCID: PMC10143261 DOI: 10.3390/s23083915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The use of green, inexpensive, and biodegradable deep eutectic solvents as nonaqueous solvents and electrolytes could be a useful way to potentially improve the enzyme biosensor performance as well as a profitable strategy to extend their use in the gas phase. However, enzyme activity in these media, although fundamental for their implementation in electrochemical analysis, is still almost unexplored. In this study, an electrochemical approach was employed to monitor tyrosinase enzyme activity in a deep eutectic solvent. This study was performed in a DES consisting of choline chloride (ChCl) as a hydrogen bond acceptor (HBA) and glycerol as a hydrogen bond donor (HBD), while phenol was chosen as the prototype analyte. The tyrosinase enzyme was immobilized on a gold-nanoparticle-modified screen-printed carbon electrode, and its activity was monitored following the reduction current of orthoquinone produced by the tyrosinase biocatalysis of phenol. This work represents a first step toward the realization of green electrochemical biosensors capable of operating in both nonaqueous and gaseous media for the chemical analysis of phenols.
Collapse
|
14
|
Moradi Taklimi S, Divsalar A, Ghalandari B, Ding X, Luisa Di Gioia M, Omar KA, Akbar Saboury A. Effects of Deep Eutectic Solvents on the Activity and Stability of Enzymes. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Wang H, Tao Y, Masuku MV, Cao J, Yang J, Huang K, Ge Y, Yu Y, Xiao Z, Kuang Y, Huang J, Yang S. Effects of deep eutectic solvents on the biotransformation efficiency of ω-transaminase. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
16
|
Combination of Enzymes and Deep Eutectic Solvents as Powerful Toolbox for Organic Synthesis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020516. [PMID: 36677575 PMCID: PMC9863131 DOI: 10.3390/molecules28020516] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
During the last decade, a wide spectrum of applications and advantages in the use of deep eutectic solvents for promoting organic reactions has been well established among the scientific community. Among these synthetic methodologies, in recent years, various examples of biocatalyzed processes have been reported, making use of eutectic mixtures as reaction media, as an improvement in terms of selectivity and sustainability. This review aims to show the newly reported protocols in the field, subdivided by reaction class as a 'toolbox' guide for organic synthesis.
Collapse
|
17
|
Morozova OV, Vasil'eva IS, Shumakovich GP, Zaitseva EA, Yaropolov AI. Deep Eutectic Solvents for Biotechnology Applications. BIOCHEMISTRY (MOSCOW) 2023; 88:S150-S175. [PMID: 37069119 DOI: 10.1134/s0006297923140092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Deep eutectic solvents (DESs) are an alternative to traditional organic solvents and ionic liquids and meet the requirements of "green" chemistry. They are easy to prepare using low-cost constituents, are non-toxic and biodegradable. The review analyzes literature on the use of DES in various fields of biotechnology, provides data on the types of DESs, methods for their preparation, and properties. The main areas of using DESs in biotechnology include extraction of physiologically active substances from natural resources, pretreatment of lignocellulosic biomass to improve enzymatic hydrolysis of cellulose, production of bioplastics, as well as a reaction medium for biocatalytic reactions. The aim of this review is to summarize available information on the use of new solvents for biotechnological purposes.
Collapse
Affiliation(s)
- Olga V Morozova
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Irina S Vasil'eva
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Galina P Shumakovich
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Elena A Zaitseva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander I Yaropolov
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
18
|
Sanchez-Fernandez A, Basic M, Xiang J, Prevost S, Jackson AJ, Dicko C. Hydration in Deep Eutectic Solvents Induces Non-monotonic Changes in the Conformation and Stability of Proteins. J Am Chem Soc 2022; 144:23657-23667. [PMID: 36524921 PMCID: PMC9801427 DOI: 10.1021/jacs.2c11190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 12/23/2022]
Abstract
The preservation of labile biomolecules presents a major challenge in chemistry, and deep eutectic solvents (DESs) have emerged as suitable environments for this purpose. However, how the hydration of DESs impacts the behavior of proteins is often neglected. Here, we demonstrate that the amino acid environment and secondary structure of two proteins (bovine serum albumin and lysozyme) and an antibody (immunoglobulin G) in 1:2 choline chloride:glycerol and 1:2 choline chloride:urea follow a re-entrant behavior with solvent hydration. A dome-shaped transition is observed with a folded or partially folded structure at very low (<10 wt % H2O) and high (>40 wt % H2O) DES hydration, while protein unfolding increases between those regimes. Hydration also affects protein conformation and stability, as demonstrated for bovine serum albumin in hydrated 1:2 choline chloride:glycerol. In the neat DES, bovine serum albumin remains partially folded and unexpectedly undergoes unfolding and oligomerization at low water content. At intermediate hydration, the protein begins to refold and gradually retrieves the native monomer-dimer equilibrium. However, ca. 36 wt % H2O is required to recover the native folding fully. The half-denaturation temperature of the protein increases with decreasing hydration, but even the dilute DESs significantly enhance the thermal stability of bovine serum albumin. Also, protein unfolding can be reversed by rehydrating the sample to the high hydration regime, also recovering protein function. This correlation provides a new perspective to understanding protein behavior in hydrated DESs, where quantifying the DES hydration becomes imperative to identifying the folding and stability of proteins.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, Rúa de Jenaro de la Fuente, s/n, Santiago de Compostela 15705, Spain
- Food
Technology, Engineering and Nutrition, Lund
University, Box 124, Lund 221 00, Sweden
| | - Medina Basic
- Food
Technology, Engineering and Nutrition, Lund
University, Box 124, Lund 221 00, Sweden
| | - Jenny Xiang
- Food
Technology, Engineering and Nutrition, Lund
University, Box 124, Lund 221 00, Sweden
| | - Sylvain Prevost
- Institut
Laue-Langevin, DS / LSS,
71 Avenue des Martyrs, Grenoble 38000, France
| | - Andrew J. Jackson
- European
Spallation Source, Box
176, Lund 221 00, Sweden
- Department
of Physical Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Cedric Dicko
- Pure
and
Applied Biochemistry, Department of Chemistry, Lund University, Box
124, Lund SE-221 00, Sweden
- Lund
Institute of Advanced Neutron and X-ray Science, SE-223 70 Lund, Sweden
| |
Collapse
|
19
|
Arora H, Dhiman D, Kumar K, Venkatesu P. Fortification of thermal and structural stability of hemoglobin using choline chloride-based deep eutectic solvents. Phys Chem Chem Phys 2022; 24:29683-29692. [PMID: 36453254 DOI: 10.1039/d2cp03407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Of late, DESs have occupied the centre stage due to their eco-friendly and resource-efficient nature and their low toxicity. In this work, we have investigated the structural and thermal stability of hemoglobin (Hb) in two choline chloride ([Ch]Cl)-based DESs namely urea [Ch]Cl-urea (DES1) and [Ch]Cl-glycerol (Gly); (DES 2). Different biophysical techniques reveal that the presence of DESs facilitates the stability of Hb in a concentration-dependent manner and the extent of stability is more pronounced in [Ch]Cl-Gly as compared to [Ch]Cl-urea. Additionally, for a better understanding of the role of DESs in modulating the thermal and structural stability of Hb, studies have been performed on Hb in the presence of individual constituents of DESs, i.e., [Ch]Cl, urea, and Gly. Altogether, it was observed that the effect on the stability of Hb was by the presence of the DESs rather than their individual constituents. For instance, urea itself is a destabilizing co-solvent for biomolecules. However, the harmful effects of urea were surpassed when a DES is formed in the presence of [Ch]Cl. Therefore, overall, it can be concluded that both DESs can be described as potential non-harmful, green, and promising solvents for enhancing the structural and thermal stability of Hb.
Collapse
Affiliation(s)
- Harshita Arora
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Diksha Dhiman
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi, 110 007, India. .,Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
20
|
Gajardo-Parra N, Meneses L, Duarte ARC, Paiva A, Held C. Assessing the Influence of Betaine-Based Natural Deep Eutectic Systems on Horseradish Peroxidase. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:12873-12881. [PMID: 36573121 PMCID: PMC9783073 DOI: 10.1021/acssuschemeng.2c04045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Indexed: 06/02/2023]
Abstract
To validate the use of horseradish peroxidase (HRP) in natural deep eutectic systems (NADES), five different betaine-based NADES were characterized in terms of water content, water activity, density, and viscosity experimentally and by thermodynamic modeling. The results show that the NADES under study have a water activity of about 0.4 at 37 °C for water contents between 14 and 22 wt %. The densities of the studied NADES had values between 1.2 and 1.3 g.cm-3 at 20 °C. The density was modeled with a state-of-the-art equation of state; an excellent agreement with the experimental density data was achieved, allowing reasonable predictions for water activities. The system betaine:glycerol (1:2) was found to be the most viscous with a dynamic viscosity of ∼600 mPa.s at 40 °C, while all the other systems had viscosities <350 mPa.s at 40 °C. The impact of the NADES on the enzymatic activity, as well as on, conformational and thermal stability was assessed. The system betaine/sorbitol:water (1:1:3) showed the highest benefit for enzymatic activity, increasing it by two-folds. Moreover, upon NADES addition, thermal stability was increased followed by an increment in a-helix secondary structure content.
Collapse
Affiliation(s)
- Nicolás
F. Gajardo-Parra
- Laboratory
of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Liane Meneses
- LAQV-REQUIMTE,
Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Ana Rita C. Duarte
- LAQV-REQUIMTE,
Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Alexandre Paiva
- LAQV-REQUIMTE,
Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Christoph Held
- Laboratory
of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| |
Collapse
|
21
|
Marchel M, Cieśliński H, Boczkaj G. Thermal Instability of Choline Chloride-Based Deep Eutectic Solvents and Its Influence on Their Toxicity─Important Limitations of DESs as Sustainable Materials. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mateusz Marchel
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Faculty of Chemistry, Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
- EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
22
|
Hoppe J, Byzia E, Szymańska M, Drozd R, Smiglak M. Acceleration of lactose hydrolysis using beta-galactosidase and deep eutectic solvents. Food Chem 2022; 384:132498. [DOI: 10.1016/j.foodchem.2022.132498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
|
23
|
Kovács A, Yusupov M, Cornet I, Billen P, Neyts EC. Effect of natural deep eutectic solvents of non-eutectic compositions on enzyme stability. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Can deep eutectic solvents be the best alternatives to ionic liquids and organic solvents: A perspective in enzyme catalytic reactions. Int J Biol Macromol 2022; 217:255-269. [PMID: 35835302 DOI: 10.1016/j.ijbiomac.2022.07.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 01/17/2023]
Abstract
As a new generation of green solvents, deep eutectic solvents (DESs) have been considered as a promising alternative to classical organic solvents and ionic liquids (ILs). DESs are normally formed by two or more components via various h-bonds interactions. Up to date, four types of DESs are found, namely, type I DESs (formed by MClx, namely FeCl2, AlCl3, ZnCl2, CuCl2 and AgCl et al., and quaternary ammonium salts); type II DESs (formed by metal chloride hydrates and quaternary ammonium salts); type III DESs (formed by choline chlorides and different kinds of HBDs) and type IV DESs (formed by salts of transition metals and urea). DESs share many advantages, such as low vapor pressure, good substrate solubility and thermal stability, with ILs, and offering a high potential to be the medium of biocatalysis reactions. In this case, this paper reviews the applications of DESs in enzymatic reactions. Lipases are the most widely used enzyme in DESs systems as their versatile applications in various reactions and robustness. Interestingly, DESs can improve the efficiency of these reactions via enhancing the substrates solubility and the activity and stability of enzymes. Therefore, the directed engineering of DESs for special reactions such as degradation of polymers in high temperature or strong acid-base conditions will be one of the future perspectives of the investigation DESs.
Collapse
|
25
|
Zhang S, Zheng Z, Zheng C, Zhao Y, Jiang Z. Effect of high hydrostatic pressure on activity, thermal stability and structure of horseradish peroxidase. Food Chem 2022; 379:132142. [PMID: 35063856 DOI: 10.1016/j.foodchem.2022.132142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022]
Abstract
The mechanism of the high hydrostatic pressure (HHP) effect on horseradish peroxidase (HRP) is still unclear. The activity, thermal stability and structural changes of HRP after HHP treatments were studied in this work. Compared with the untreated sample, the enzyme activity reduces by 36% after 800 MPa processing. The results indicated that the conformation of the enzyme active center changes under pressure. Furthermore, HHP also changes the conformation of disulfide bonds and some secondary structures in HRP. These structural and conformational changes induce decreased activity. In addition, differential thermal scanning (DSC) results showed that the thermal denaturation temperature decreased from 103.74 °C to 85.78 °C after pressure treatment, suggesting HRP molecules formed large aggregates after pressure treatment. In this study, the interaction mechanism between pressure and enzyme was studied as well, and the results can provide some guidance for the application of HHP technology in fruit and vegetable products processing.
Collapse
Affiliation(s)
- Sinan Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenhong Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuyao Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yadong Zhao
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhuo Jiang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Yadav N, Venkatesu P. Current understanding and insights towards protein stabilization and activation in deep eutectic solvents as sustainable solvent media. Phys Chem Chem Phys 2022; 24:13474-13509. [PMID: 35640592 DOI: 10.1039/d2cp00084a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deep eutectic solvents (DESs) have emerged as a new class of green, designer and biocompatible solvents, an alternative to conventional organic solvents and ionic liquids (ILs) which are comparatively toxic and non-biodegradable. DESs are eutectic mixtures that are formed when a hydrogen bond acceptor (HBA) is mixed with a hydrogen bond donor (HBD) at particular molar ratios by mechanical grinding or under mild heating conditions. Very recently, these solvents have been the center of attention for researchers in biotechnology, biomedicine and various scientific applications. These environmentally benign solvents have a close analogy with ILs; however, they offer certain unique merits over traditional ILs. DESs display remarkable properties such as easy preparation, tunable composition, biodegradability, recyclability, inherently low toxicity, sustainability and biocompatibility; these special features validate DESs as new potential solvents/co-solvents for biomolecules. Mechanistically, the biocompatibility and protein friendly nature of DESs depend on various factors, which include the composition of the DES, viscosity and hydration level. Therefore, it becomes an essential task to bring together all the studies related to protein behaviour in DESs to unlock their biomolecular proficiency. This review specifically highlights recent insights into the biomacromolecular functionality in DESs, including outlines of the solubilization and stabilization of proteins, long term protein packaging, different extraction methods and enzyme activation in the presence of DESs. A literature survey reveals that DESs act as green media in which the protein structure and activity are retained. In some cases, proteins refolded and enzymatic activity was enhanced several fold in the presence of DESs. Furthermore, we have reviewed the possible mechanistic behaviour behind protein stabilization, refolding and activation in DESs. Overall, the main objective of this review is to explicate the advantages of the introduction of DESs for biomolecules and to demonstrate the versatility of these eco-friendly solvents for future bio-based applications.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | | |
Collapse
|
27
|
Marchel M, Cieśliński H, Boczkaj G. Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127963. [PMID: 34896723 DOI: 10.1016/j.jhazmat.2021.127963] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Deep eutectic solvents (DESs) were described at the beginning of 21st century and they consist of a mixture of two or more solid components, which gives rise to a lower melting point compared to the starting materials. Over the years, DESs have proved to be a promising alternative to traditional organic solvents and ionic liquids (ILs) due to their low volatility, low inflammability, easy preparation, and usually low cost of compounds used in their preparation. All these properties encouraged researchers to use them in diverse fields and applications e.g., as extractants for biomolecules and solvents in pharmaceutical and cosmetic industries. Nevertheless, despite undeniable potential of DESs, there is still controversy about their toxicity. Besides the low number of studies on this topic, there are also some contradicting reports on biocompatibility of these solvents. Such misleading reports could be mainly attributed to the lack of well design standard protocol for DESs toxicity determination or the use of out-off-purpose methodology. Thus, to better apply DESs in green and sustainable chemistry, more studies on their impact on organisms at different trophic levels and the use of proper techniques are required. This review focuses on DESs toxicity towards microorganisms and is divided into three parts: The first part provides a brief general introduction to DESs, the second part discusses the methodologies used for assessment of DESs microbial toxicity and the obtained results, and finally in the third part the critical evaluation of the methods is provided, as well as suggestions and guidelines for future research.
Collapse
Affiliation(s)
- Mateusz Marchel
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Gdansk University of Technology, Faculty of Chemistry, Department of Molecular Biotechnology and Microbiology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
28
|
Cao J, Wu R, Zhu F, Dong Q, Su E. Enzymes in nearly anhydrous deep eutectic solvents: insight into the biocompatibility and thermal stability. Enzyme Microb Technol 2022; 157:110022. [DOI: 10.1016/j.enzmictec.2022.110022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
|
29
|
Varriale S, Delorme AE, Andanson JM, Devemy J, Malfreyt P, Verney V, Pezzella C. Enhancing the Thermostability of Engineered Laccases in Aqueous Betaine-Based Natural Deep Eutectic Solvents. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:572-581. [PMID: 35036179 PMCID: PMC8753991 DOI: 10.1021/acssuschemeng.1c07104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Indexed: 06/02/2023]
Abstract
In recent years, natural deep eutectic solvents (NADESs) have gained increasing attention as promising nontoxic solvents for biotechnological applications, due to their compatibility with enzymes and ability to enhance their activity. Betaine-based NADESs at a concentration of 25 wt % in a buffered aqueous solution were used as media to inhibit thermal inactivation of POXA1b laccase and its five variants when incubated at 70 and 90 °C. All the tested laccases showed higher residual activity when incubated in NADES solutions, with a further enhancement achieved also for the most thermostable variant. Furthermore, the residual activity of laccases in the presence of NADESs showed a clear advantage over the use of NADESs' individual components. Molecular docking simulations were performed to understand the role of NADESs in the stabilization of laccases toward thermal inactivation, evaluating the interaction between each enzyme and NADESs' individual components. A correlation within the binding energies between laccases and NADES components and the stabilization of the enzymes was demonstrated. These findings establish the possibility of preincubating enzymes in NADESs as a facile and cost-effective solution to inhibit thermal inactivation of enzymes when exposed to high temperatures. This computer-aided approach can assist the tailoring of NADES composition for every enzyme of interest.
Collapse
Affiliation(s)
| | - Astrid E. Delorme
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Andanson
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Julien Devemy
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Patrice Malfreyt
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Vincent Verney
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cinzia Pezzella
- Biopox
srl, Viale Maria Bakunin
12, Naples 80125, Italy
- Department
of Agricultural Sciences, University of
Naples “Federico II”, Via Università, 100 Portici 80055, Italy
| |
Collapse
|
30
|
|
31
|
Hollá V, Karkeszová K, Antošová M, Polakovič M. Transglycosylation properties of a Kluyveromyces lactis enzyme preparation: Production of tyrosol β-fructoside using free and immobilized enzyme. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Qiao Q, Shi J, Shao Q. Effects of water on the solvation and structure of lipase in deep eutectic solvents containing a protein destabilizer and stabilizer. Phys Chem Chem Phys 2021; 23:23372-23379. [PMID: 34636834 DOI: 10.1039/d1cp03282h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aqueous deep eutectic solvent (DES) solutions emerge as new media for biocatalysis. The large number of DESs provides a space for designing solutions with desired features. One challenge for this design is to understand the fundamental relationship between the water effect on biocatalysis and the DES compositions. We investigate the solvation and structure of a lipase protein in two DESs containing a protein destabilizer (choline : urea (1 : 2)) and stabilizer (choline : glycerol (1 : 2)) and their 1 : 1 aqueous solution using molecular dynamics simulations. The lipase protein in the pure aqueous solution is simulated as the reference. The lipase protein remains folded in both DESs and their aqueous solutions. In both DESs, water molecules weaken the solvation shell of the lipase protein by reducing the protein-DES hydrogen bond lifetimes. However, the water molecules change the surface area and conformation of the active site on the lipase protein differently in the two DESs. Our simulations indicate that the impact on active sites plays an important role in differentiating the effect of water on biocatalysis in aqueous DESs.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA.
| | - Jian Shi
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA.
| |
Collapse
|
33
|
Chan JC, Zhang B, Martinez M, Kuruba B, Brozik J, Kang C, Zhang X. Structural studies of Myceliophthora Thermophila Laccase in the presence of deep eutectic solvents. Enzyme Microb Technol 2021; 150:109890. [PMID: 34489043 DOI: 10.1016/j.enzmictec.2021.109890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
In this work, we elucidated the interactions between Myceliophthora thermophila laccase and deep eutectic solvent (DES) by crystallographic and kinetics analyses. Four types of DESs with different hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD), including lactic acid: betaine, glycerol: choline chloride, lactic acid: choline chloride and glycerol: betaine was used. The results revealed that different DES have different effects on laccase activity. Lactic acid-betaine (2:1) DES has shown to enhance laccase activity up to 300 % at a concentration ranged from 2% to 8% v/v, while glycerol: choline chloride and lactic acid: choline chloride DES choline chloride-based DES have found to possess inhibitory effects on laccase under the same concentration range. Detailed kinetic study showed that glycerol: choline chloride DES is a S-parabolic-I-parabolic mixed non-competitive inhibitor, where conformational changes can occur. The crystal structures of laccase with lactic acid: choline chloride DES (LCDES) were obtained at 1.6 Å. Crystallographic analysis suggested that the addition of LCDES causes changes in the laccase active site, but the increase in water molecules observed in the resulting crystal prevented laccase from experiencing drastic structural change. Fluorescence and circular dichroism spectroscopies were also applied to determine the effects of DES on the structural conformation of laccase. The results have confirmed that the presence of DES can trigger changes in the local environments of the amino acids in the active site of laccase which contributes to the changes in its activity and stability.
Collapse
Affiliation(s)
- Jou Chin Chan
- Voiland School of Chemical Engineering and Bioengineering - Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Michael Martinez
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Balaganesh Kuruba
- Voiland School of Chemical Engineering and Bioengineering - Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - James Brozik
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA.
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering - Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA; Pacific Northwest National Laboratory - 902 Battelle Boulevard, P.O. Box 999, MSIN P8-60, Richland, WA, 99352, USA.
| |
Collapse
|
34
|
Svigelj R, Dossi N, Grazioli C, Toniolo R. Deep Eutectic Solvents (DESs) and Their Application in Biosensor Development. SENSORS (BASEL, SWITZERLAND) 2021; 21:4263. [PMID: 34206344 PMCID: PMC8271379 DOI: 10.3390/s21134263] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022]
Abstract
Deep Eutectic Solvents (DESs) are a new class of solvents characterized by a remarkable decrease in melting point compared to those of the starting components. The eutectic mixtures can be simply prepared by mixing a Hydrogen Bond Acceptor (HBA) with a Hydrogen Bond Donor (HBD) at a temperature of about 80 °C. They have found applications in different research fields; for instance, they have been employed in organic synthesis, electrochemistry, and bio-catalysis, showing improved biodegradability and lower toxicity compared to other solvents. Herein, we review the use of DESs in biosensor development. We consider the emerging interest in different fields of this green class of solvents and the possibility of their use for the improvement of biosensor performance. We point out some promising examples of approaches for the assembly of biosensors exploiting their compelling characteristics. Furthermore, the extensive ability of DESs to solubilize a wide range of molecules provides the possibility to set up new devices, even for analytes that are usually insoluble and difficult to quantify.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (N.D.); (C.G.)
| | | | | | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (N.D.); (C.G.)
| |
Collapse
|
35
|
Li L, Wang T, Chen T, Huang W, Zhang Y, Jia R, He C. Revealing two important tryptophan residues with completely different roles in a dye-decolorizing peroxidase from Irpex lacteus F17. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:128. [PMID: 34059116 PMCID: PMC8165797 DOI: 10.1186/s13068-021-01978-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/19/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Dye-decolorizing peroxidases (DyPs) represent a novel family of heme peroxidases that use H2O2 as the final electron acceptor to catalyze the oxidation of various organic compounds. A DyP from Irpex lacteus F17 (Il-DyP4, corresponding to GenBank MG209114), obtained by heterologous expression, exhibits a high catalytic efficiency for phenolic compounds and a strong decolorizing ability toward various synthetic dyes. However, the enzyme structure and the catalytic residues involved in substrate oxidation remain poorly understood. RESULTS Here, we obtained a high-resolution structure (2.0 Å, PDB: 7D8M) of Il‑DyP4 with α-helices, anti-parallel β-sheets and one ferric heme cofactor sandwiched between two domains. The crystal structure of Il‑DyP4 revealed two heme access channels leading from the enzyme molecular surface to its heme region, and also showed four conserved amino acid residues forming the pocket for the conversion of hydrogen peroxide into the water molecule. In addition, we found that Trp264 and Trp380, were two important residues with different roles in Il‑DyP4, by using site-directed mutagenesis and an electron paramagnetic resonance (EPR) study. Trp264 is a noncatalytic residue that mainly is used for maintaining the normal spatial conformation of the heme region and the high-spin state of heme Fe3+ of Il‑DyP4, while Trp380 serves as the surface-exposed radical-forming residue that is closely related to the oxidation of substrates including not only bulky dyes, but also simple phenols. CONCLUSIONS This study is important for better understanding the catalytic properties of fungal DyPs and their structure-function relationships.
Collapse
Affiliation(s)
- Liuqing Li
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Tao Wang
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Taohua Chen
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Wenhan Huang
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Yinliang Zhang
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Rong Jia
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601.
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China.
| | - Chao He
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601.
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
36
|
Enzymatic Polymerization of Dihydroquercetin (Taxifolin) in Betaine-Based Deep Eutectic Solvent and Product Characterization. Catalysts 2021. [DOI: 10.3390/catal11050639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Deep eutectic solvents (DESs) are an alternative to conventional organic solvents in various biocatalytic reactions. Meanwhile, there have been few studies reporting on synthetic reactions in DESs or DES-containing mixtures involving oxidoreductases. In this work, we have studied the effects of several DESs based on betaine as the acceptor of hydrogen bonds on the catalytic activity and stability of laccase from the basidial fungus Trametes hirsuta and performed enzymatic polymerization of the flavonoid dihydroquercetin (DHQ, taxifolin) in a DES–buffer mixture containing 60 vol.% of betaine-glycerol DES (molar ratio 1:2). The use of the laccase redox mediator TEMPO enabled an increased yield of DHQ oligomers (oligoDHQ), with a number average molecular weight of 1800 g mol−1 and a polydispersity index of 1.09. The structure of the synthesized product was studied using different physicochemical methods. NMR spectroscopy showed that oligoDHQ had a linear structure with an average chain length of 6 monomers. A scheme for enzymatic polymerization of DHQ in a DES–buffer mixture was also proposed.
Collapse
|
37
|
Kist JA, Zhao H, Mitchell-Koch KR, Baker GA. The study and application of biomolecules in deep eutectic solvents. J Mater Chem B 2021; 9:536-566. [DOI: 10.1039/d0tb01656j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deep eutectic solvents offer stimulating possibilities for biomolecular stabilization and manipulation, biocatalysis, bioextraction, biomass processing, and drug delivery and therapy.
Collapse
Affiliation(s)
- Jennifer A. Kist
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| | - Hua Zhao
- Department of Chemistry and Biochemistry
- University of Northern Colorado
- Greeley
- USA
| | | | - Gary A. Baker
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| |
Collapse
|
38
|
Jung D, Jung JB, Kang S, Li K, Hwang I, Jeong JH, Kim HS, Lee J. Toxico-metabolomics study of a deep eutectic solvent comprising choline chloride and urea suggests in vivo toxicity involving oxidative stress and ammonia stress. GREEN CHEMISTRY 2021; 23:1300-1311. [DOI: 10.1039/d0gc03927f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.
Collapse
Affiliation(s)
- Dasom Jung
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Jae Back Jung
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Seulgi Kang
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Ke Li
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Inseon Hwang
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| |
Collapse
|
39
|
Kumari P, Kumari M, Kashyap HK. How Pure and Hydrated Reline Deep Eutectic Solvents Affect the Conformation and Stability of Lysozyme: Insights from Atomistic Molecular Dynamics Simulations. J Phys Chem B 2020; 124:11919-11927. [DOI: 10.1021/acs.jpcb.0c09873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
40
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 839] [Impact Index Per Article: 167.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
41
|
Mbous YP, Hayyan M, Wong WF, Hayyan A, Looi CY, Hashim MA. Simulation of Deep Eutectic Solvents' Interaction with Membranes of Cancer Cells Using COSMO-RS. J Phys Chem B 2020; 124:9086-9094. [PMID: 32930594 DOI: 10.1021/acs.jpcb.0c04801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deep eutectic solvent (DES) affinities with cellular membranes structures dictate the degree of cytotoxicity that results from these interactions. The physicochemical properties of choline chloride (ChCl)-DESs suggest non-negligible cytotoxicities that were attested by published researches. In this study, the profiles of novel N,N-diethylammonium chloride (DAC)-based-deep eutectic solvents (DESs) prepared with various hydrogen bond donors (urea, glycerol, ethylene glycol, malonic acid, and zinc chloride) were compared to those of ChCl-DESs by using HelaS3, AGS, MCF-7, and WRL-68 cancer cell lines. The molecular interactions between salts and cellular membranes were investigated to explain the observed cytotoxicity. The results show that ChCl-based DESs (279 ≤ IC50 ≥ 1260 mM) were less toxic than DAC-based DESs (37 ≤ IC50 ≥ 109 mM). COSMO-RS analysis emphasized the importance of salt hydrophobicity with regards to DESs cytotoxicity. Malonic acid increased hydrophobicity and cytotoxicity in general, thus highlighting the potential of ammonium salt-based DESs as anticancer agents.
Collapse
Affiliation(s)
- Yves Paul Mbous
- Department of Pharmaceutical Systems and Policy, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering and Technology, Muscat University, P.O. Box 550, Muscat P.C. 130, Oman.,University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Adeeb Hayyan
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.,Centre for Separation Science & Technology (CSST), Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Mohd Ali Hashim
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur 50603, Malaysia.,Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
42
|
Lin KP, Feng GJ, Pu FL, Hou XD, Cao SL. Enhancing the Thermostability of Papain by Immobilizing on Deep Eutectic Solvents-Treated Chitosan With Optimal Microporous Structure and Catalytic Microenvironment. Front Bioeng Biotechnol 2020; 8:576266. [PMID: 33134288 PMCID: PMC7561714 DOI: 10.3389/fbioe.2020.576266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/16/2020] [Indexed: 01/22/2023] Open
Abstract
Deep eutectic solvents (DESs) have attracted an increasing attention in the fields of biocatalysis and biopolymer processing. In this study, papain immobilized on choline chloride- lactic acid (ChCl-Lac) DES-treated chitosan exhibited excellent thermostability as compared to the free enzyme. The properties of native or DES-treated chitosan and immobilized enzyme were characterized by FT-IR, SEM, surface area and pore property analysis. Like the common enzyme immobilization, papain immobilized on DES-treated chitosan resulted in a lower catalytic efficiency and a higher thermostability than the free enzyme due to the restricted diffusion. The results also revealed that DES could control the active group content, thus achieving the appropriate microporous structure of immobilized enzyme. Meanwhile, it could also help to construct the optimal microenvironment by hydrogen-bonding interaction between enzyme, chitosan, and residual DES, which are benefit for maintaining an active conformation and subsequently a high thermostability of papain. Moreover, it was found that trace DES (10 mM) significantly promoted the activity of free papain (145%). Deactivation thermodynamics study showed that the DES could enhance the thermostability of papain especially at high temperature (half-life of 7.4 vs. 3.5 h) because of the increased Gibbs free energy of denaturation. Secondary structure analysis by circular dichroism spectroscopy (CD) agreed well with the activity and thermostability data, further confirming the formation of rigid conformation induced by a specific amount of DES. This work provides a new way of enzyme immobilization synergistically intensified by solvents and supporting materials to achieve better microporous structure and catalytic microenvironment.
Collapse
Affiliation(s)
- Kai-Peng Lin
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Guo-Jian Feng
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Fu-Long Pu
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xue-Dan Hou
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shi-Lin Cao
- School of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
43
|
Kovács A, Neyts EC, Cornet I, Wijnants M, Billen P. Modeling the Physicochemical Properties of Natural Deep Eutectic Solvents. CHEMSUSCHEM 2020; 13:3789-3804. [PMID: 32378359 DOI: 10.1002/cssc.202000286] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/04/2020] [Indexed: 05/08/2023]
Abstract
Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point owing to specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents); hence, they are often considered to be a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts have been made to this end. This Review aims at structuring the present knowledge as an outline for future research. First, the key properties of NADES are reviewed and related to their structure on the basis of the available experimental data. Second, available modeling methods applicable to NADES are reviewed. At the molecular level, DFT and molecular dynamics allow density differences and vibrational spectra to be interpreted, and interaction energies to be computed. Additionally, properties at the level of the bulk medium can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed: models based on group-contribution methods and machine learning. A combination of bulk-medium and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension, and refractive index on the other. Multiscale modeling, combining molecular and macroscale methods, is expected to strongly enhance the predictability of NADES properties and their interaction with solutes, and thus yield truly tailorable solvents to accommodate (bio)chemical reactions.
Collapse
Affiliation(s)
- Attila Kovács
- Department of Chemistry/Biochemistry, iPRACS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Erik C Neyts
- Department of Chemistry, PLASMANT Research Group, NANOLab Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Iris Cornet
- Department of Chemistry/Biochemistry, BioWAVE Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Marc Wijnants
- Department of Chemistry/Biochemistry, BioWAVE Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Pieter Billen
- Department of Chemistry/Biochemistry, iPRACS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
44
|
Positive Impact of Natural Deep Eutectic Solvents on the Biocatalytic Performance of 5-Hydroxymethyl-Furfural Oxidase. Catalysts 2020. [DOI: 10.3390/catal10040447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Deep eutectic solvents (DESs) have been applied as cosolvents in various biocatalytic processes during recent years. However, their use in combination with redox enzymes has been limited. In this study, we have explored the beneficial effects of several DES as cosolvents on the performance of 5-hydroxymethylfurfural oxidase (HMFO), a valuable oxidative enzyme for the preparation of furan-2,5-dicarboxylic acid (FDCA), and other compounds, such as carbonyl compounds and carboxylic acids. The use of natural DESs, based on glucose and fructose, was found to have a positive effect. Higher conversions are obtained for the synthesis of several oxidized compounds, including FDCA. Depending on the type of DES, the stability of HMFO could be significantly improved. As the use of DES increases the solubility of many substrates while they only mildly affect dioxygen solubility, this study demonstrates that biocatalysis based on HMFO and other redox biocatalysts can benefit from a carefully selected DES.
Collapse
|
45
|
Chatterjee S, Haldar T, Ghosh D, Bagchi S. Electrostatic Manifestation of Micro-Heterogeneous Solvation Structures in Deep-Eutectic Solvents: A Spectroscopic Approach. J Phys Chem B 2020; 124:3709-3715. [DOI: 10.1021/acs.jpcb.9b11352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Tapas Haldar
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Deborin Ghosh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
46
|
Huang L, Bittner JP, Domínguez de María P, Jakobtorweihen S, Kara S. Modeling Alcohol Dehydrogenase Catalysis in Deep Eutectic Solvent/Water Mixtures. Chembiochem 2020; 21:811-817. [PMID: 31605652 PMCID: PMC7154551 DOI: 10.1002/cbic.201900624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 11/17/2022]
Abstract
The use of oxidoreductases (EC1) in non-conventional reaction media has been increasingly explored. In particular, deep eutectic solvents (DESs) have emerged as a novel class of solvents. Herein, an in-depth study of bioreduction with an alcohol dehydrogenase (ADH) in the DES glyceline is presented. The activity and stability of ADH in mixtures of glyceline/water with varying water contents were measured. Furthermore, the thermodynamic water activity and viscosity of mixtures of glyceline/water have been determined. For a better understanding of the observations, molecular dynamics simulations were performed to quantify the molecular flexibility, hydration layer, and intraprotein hydrogen bonds of ADH. The behavior of the enzyme in DESs follows the classic dependence of water activity (aW ) in non-conventional media. At low aW values (<0.2), ADH does not show any activity; at higher aW values, the activity was still lower than that in pure water due to the high viscosities of the DES. These findings could be further explained by increased enzyme flexibility with increasing water content.
Collapse
Affiliation(s)
- Lei Huang
- Department of EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Jan Philipp Bittner
- Institute of Thermal Separation ProcessesHamburg University of TechnologyEißendorfer Strasse 3821073HamburgGermany
| | | | - Sven Jakobtorweihen
- Institute of Thermal Separation ProcessesHamburg University of TechnologyEißendorfer Strasse 3821073HamburgGermany
| | - Selin Kara
- Department of EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| |
Collapse
|
47
|
Bhakuni K, Yadav N, Venkatesu P. A novel amalgamation of deep eutectic solvents and crowders as biocompatible solvent media for enhanced structural and thermal stability of bovine serum albumin. Phys Chem Chem Phys 2020; 22:24410-24422. [DOI: 10.1039/d0cp04397d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study unravels the effect of a novel solvent medium designed by amalgamation of macromolecular crowders and deep eutectic solvents (DESs) on bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Kavya Bhakuni
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | - Niketa Yadav
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | | |
Collapse
|
48
|
|
49
|
Liu H, Zou Y, Yao C, Yang Z. Enzymatic synthesis of vanillin and related catalytic mechanism. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hai‐Min Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology College of Life Sciences and Oceanography Shenzhen University Shenzhen China
| | - Yong Zou
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou China
| | - Chuang‐Yu Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology College of Life Sciences and Oceanography Shenzhen University Shenzhen China
| | - Zhen Yang
- Shenzhen Key Laboratory of Microbial Genetic Engineering College of Life Sciences and Oceanography Shenzhen University Shenzhen China
| |
Collapse
|
50
|
Deng Z, Li J, Pei Y, Wan J, Li B, Liang H. Oligosaccharides act as the high efficiency stabilizer for β-galactosidase under heat treatment. Int J Biol Macromol 2019; 137:69-76. [DOI: 10.1016/j.ijbiomac.2019.06.218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022]
|