1
|
Reamtong O, Waeonukul R, Prangthip P. Assessing the therapeutic potential of long-chain isomaltooligosaccharides in diabetic and hyperlipidemic rats. Diabetol Metab Syndr 2024; 16:165. [PMID: 39014451 PMCID: PMC11253390 DOI: 10.1186/s13098-024-01374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The global rise in diabetes prevalence necessitates effective treatments. Rats, mimicking physiological changes seen in Type 2 diabetes, serve as valuable models for studying metabolic disorders. Natural health supplements, especially prebiotics, are gaining interest for improving metabolic health. Isomaltooligosaccharides (IMOs), classified as functional oligosaccharides and prebiotics, have attracted attention due to their beneficial effects on gut microbiota balance and cholesterol reduction. However, commercial IMOs often contain undesirable sugars, leading to the development of long-chain IMOs with enhanced prebiotic properties. METHODS This study assessed the therapeutic potential of long-chain IMOs derived from Bacillus subtilis strain AP-1 compared to inulin, a widely recognized prebiotic, in addressing hyperglycemia and hyperlipidemia in rats. RESULTS IMOs treatment effectively reduced blood sugar and triglyceride levels similarly to inulin supplementation. Proteomic analysis revealed changes in hepatic protein profiles, with upregulated pathways including glutathione metabolism, oxidative phosphorylation, and pentose and glucuronate interconversion, while pathways related to fatty acid and amino acid biosynthesis exhibited downregulation. These results suggest promising therapeutic effects of IMOs treatment on diabetes and hyperlipidemia by influencing key metabolic pathways. CONCLUSIONS Our findings highlight the potential of long-chain IMOs as targeted interventions for metabolic disorders, warranting further investigation into their clinical applicability and mechanisms of action.
Collapse
Affiliation(s)
- Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rattiya Waeonukul
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Pattaneeya Prangthip
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Fang Y, Dong M, van Leeuwen SS, Dijkhuizen L, Meng X, Liu W. Biochemical characterization of glycoside hydrolase family 31 α-glucosidases from Myceliophthora thermophila for α-glucooligosaccharide synthesis. Int J Biol Macromol 2023; 252:126452. [PMID: 37619677 DOI: 10.1016/j.ijbiomac.2023.126452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
The transglucosidase activity of GH31 α-glucosidases is employed to catalyze the synthesis of prebiotic isomaltooligosaccharides (IMOs) using the malt syrup prepared from starch as substrate. Continuous mining for new GH31 α-glucosidases with high stability and efficient transglucosidase activity is critical for enhancing the supply and quality of IMO preparations. In the present study, two α-glucosidases (MT31α1 and MT31α2) from Myceliophthora thermophila were explored for biochemical characterization. The optimum pH and temperature of MT31α1 and MT31α2 were determined to be pH 4.5 and 65 °C, and pH 6.5 and 60 °C, respectively. Both MT31α1 and MT31α2 were shown to be stable in the pH range of 3.0 to 10.0. MT31α1 displayed a high thermostability, retaining 60 % of activity after incubation for 24 h at 55 °C. MT31α1 is highly active on substrates with all types of α-glucosidic linkages. In contrast, MT31α2 showed preference for substrates with α-(1→3) and α-(1→4) linkages. Importantly, MT31α1 was able to synthesize IMOs and the conversion rate of maltose into the main functional IMOs components reached over 40 %. Moreover, MT31α2 synthesizes glucooligosaccharides with (consecutive) α-(1→3) linkages. Taken together, MT31α1 and MT31α2, showing distinct substrate and product specificity, hold clear potential for the synthesis of prebiotic glucooligosaccharides.
Collapse
Affiliation(s)
- Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Meihong Dong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Sander S van Leeuwen
- Laboratory Medicine, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Lubbert Dijkhuizen
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; CarbExplore Research BV, Zernikepark 12, 9747 AN Groningen, the Netherlands
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| |
Collapse
|
3
|
Maurya R, Ali U, Kaul S, Bhaiyya R, Singh RP, Mazumder K. Immobilization of α-transglucosidase on silica-coated magnetic nanoparticles and its application for production of isomaltooligosaccharide from the potato peel. Sci Rep 2023; 13:12708. [PMID: 37543692 PMCID: PMC10404235 DOI: 10.1038/s41598-023-38266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 08/07/2023] Open
Abstract
In this study, the production of isomaltooligosaccharide from potato peel starch was carried out in three steps: liquefaction, saccharification, and transglucosylation. Further, cloning α-transglucosidase gene from Aspergillus niger (GH31 family), transforming into E. coli BL21 (DE3), overexpressing and purifying the resulting protein for the production of α-transglucosidase. The generated α-transglucosidase was then bound with magnetic nanoparticles, which improved reusability up to 5 cycles with more than 60% activity. All the modifications were characterized using the following methods: Fourier transform infra-red analysis, Transmission Electron Microscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray spectroscopy, X-Ray Diffraction Spectroscopy, Thermogravimetric Analysis, and Dynamic Light Scattering (DLS) analysis. Further, the optimum conditions for transglucosylation were determined by RSM as follows: enzyme-to-substrate ratio 6.9 U g-1, reaction time 9 h, temperature 45 °C, and pH 5.5 with a yield of 70 g l-1 (± 2.1). MALDI-TOF-MS analysis showed DP of the IMOs in ranges of 2-10. The detailed structural characterization of isomaltooligosaccharide by GC-MS and NMR suggested the α-(1 → 4) and α-(1 → 6)-D-Glcp residues as major constituents along with minor α-(1 → 2) and α-(1 → 3) -D-Glcp residues.
Collapse
Affiliation(s)
- Rohit Maurya
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
- Regional Centre for Biotechnology, Faridabad-Gurgaon, Haryana, 121001, India
| | - Usman Ali
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Sunaina Kaul
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Raja Bhaiyya
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North Gate Gujarat International Finance Tech-City, Gandhinagar, Gujarat, 382355, India
| | - Ravindra Pal Singh
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North Gate Gujarat International Finance Tech-City, Gandhinagar, Gujarat, 382355, India
| | - Koushik Mazumder
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
4
|
Zeng M, van Pijkeren JP, Pan X. Gluco-oligosaccharides as potential prebiotics: Synthesis, purification, structural characterization, and evaluation of prebiotic effect. Compr Rev Food Sci Food Saf 2023; 22:2611-2651. [PMID: 37073416 DOI: 10.1111/1541-4337.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Prebiotics have long been used to modulate the gut microbiota and improve host health. Most established prebiotics are nondigestible carbohydrates, especially short-chain oligosaccharides. Recently, gluco-oligosaccharides (GlcOS) with 2-10 glucose residues and one or more O-glycosidic linkage(s) have been found to exert prebiotic potentials (not fully established prebiotics) because of their selective fermentation by beneficial gut bacteria. However, the prebiotic effects (non-digestibility, selective fermentability, and potential health effects) of GlcOS are highly variable due to their complex structure originating from different synthesis processes. The relationship between GlcOS structure and their potential prebiotic effects has not been fully understood. To date, a comprehensive summary of the knowledge of GlcOS is still missing. Therefore, this review provides an overview of GlcOS as potential prebiotics, covering their synthesis, purification, structural characterization, and prebiotic effect evaluation. First, GlcOS with different structures are introduced. Then, the enzymatic and chemical processes for GlcOS synthesis are critically reviewed, including reaction mechanisms, substrates, catalysts, the structures of resultant GlcOS, and the synthetic performance (yield and selectivity). Industrial separation techniques for GlcOS purification and structural characterization methods are discussed in detail. Finally, in vitro and in vivo studies to evaluate the non-digestibility, selective fermentability, and associated health effects of different GlcOS are extensively reviewed with a special focus on the GlcOS structure-function relationship.
Collapse
Affiliation(s)
- Meijun Zeng
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Tiangpook S, Nhim S, Prangthip P, Pason P, Tachaapaikoon C, Ratanakhanokchai K, Waeonukul R. Production of a Series of Long-Chain Isomaltooligosaccharides from Maltose by Bacillus subtilis AP-1 and Associated Prebiotic Properties. Foods 2023; 12:foods12071499. [PMID: 37048320 PMCID: PMC10094464 DOI: 10.3390/foods12071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Bacillus subtilis strain AP-1, which produces α-glucosidase with transglucosidase activity, was used to produce a series of long-chain isomaltooligosaccharides (IMOs) with degree of polymerization (DP) ranging from 2 to 14 by direct fermentation of maltose. A total IMOs yield of 36.33 g/L without contabacillusmination from glucose and maltose was achieved at 36 h of cultivation using 50 g/L of maltose, with a yield of 72.7%. IMOs were purified by size exclusion chromatography with a Superdex 30 Increase column. The molecular mass and DP of IMOs were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Subsequently, linkages in produced oligosaccharides were verified by enzymatic hydrolysis with α-amylase and oligo-α-1,6-glucosidase. These IMOs showed prebiotic properties, namely tolerance to acidic conditions and digestive enzymes of the gastrointestinal tract, stimulation of probiotic bacteria growth to produce short-chain fatty acids and no stimulating effect on pathogenic bacteria growth. Moreover, these IMOs were not toxic to mammalian cells at up to 5 mg/mL, indicating their biocompatibility. Therefore, this research demonstrated a simple and economical method for producing IMOs with DP2–14 without additional operations; moreover, the excellent prebiotic properties of the IMOs offer great prospects for their application in functional foods.
Collapse
Affiliation(s)
- Suratsawadee Tiangpook
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sreyneang Nhim
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Pattaneeya Prangthip
- Department of Tropical Nutrition & Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Patthra Pason
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| |
Collapse
|
6
|
Um HE, Park BR, Kim YM, Lee BH. Slow digestion properties of long-sized isomaltooligosaccharides synthesized by a transglucosidase from Thermoanaerobacter thermocopriae. Food Chem 2023; 417:135892. [PMID: 36933421 DOI: 10.1016/j.foodchem.2023.135892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023]
Abstract
Isomaltooligosaccharides (IMOs) are widely used as prebiotic ingredients that promote colon health; however, recent studies revealed that these are slowly hydrolyzed to glucose within the small intestine. Here, novel α-glucans with a higher number of α-1,6 linkages were synthesized from maltodextrins using the Thermoanaerobacter thermocopriae-derived transglucosidase (TtTG) to decrease susceptibility to hydrolysis and improve slow digestion properties. The synthesized long-sized IMOs (l-IMOs; 70.1% of α-1,6 linkages), comprising 10-12 glucosyl units, exhibited slow hydrolysis to glucose when compared to commercial IMOs under treatment with mammalian α-glucosidase level. In male mice, the ingestion of l-IMOs significantly decreased the post-prandial glycemic response compared to other samples (p < 0.05). Therefore, enzymatically synthesized l-IMOs can be applied as functional ingredients for the modulation of blood glucose homeostasis in obesity, Type 2 diabetes, and other chronic diseases.
Collapse
Affiliation(s)
- Ha-Eun Um
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Bo-Ram Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea.
| | - Young Min Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
7
|
Molecular Docking and Site-Directed Mutagenesis of GH49 Family Dextranase for the Preparation of High-Degree Polymerization Isomaltooligosaccharide. Biomolecules 2023; 13:biom13020300. [PMID: 36830669 PMCID: PMC9953027 DOI: 10.3390/biom13020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The high-degree polymerization of isomaltooligosaccharide (IMO) not only effectively promotes the growth and reproduction of Bifidobacterium in the human body but also renders it resistant to rapid degradation by gastric acid and can stimulate insulin secretion. In this study, we chose the engineered strain expressed dextranase (PsDex1711) as the research model and used the AutoDock vina molecular docking technique to dock IMO4, IMO5, and IMO6 with it to obtain mutation sites, and then studied the potential effect of key amino acids in this enzyme on its hydrolysate composition and enzymatic properties by site-directed mutagenesis method. It was found that the yield of IMO4 increased significantly to 62.32% by the mutant enzyme H373A. Saturation mutation depicted that the yield of IMO4 increased to 69.81% by the mutant enzyme H373R, and its neighboring site S374R IMO4 yield was augmented to 64.31%. Analysis of the enzymatic properties of the mutant enzyme revealed that the optimum temperature of H373R decreased from 30 °C to 20 °C, and more than 70% of the enzyme activity was maintained under alkaline conditions. The double-site saturation mutation results showed that the mutant enzyme H373R/N445Y IMO4 yield increased to 68.57%. The results suggest that the 373 sites with basic non-polar amino acids, such as arginine and histidine, affect the catalytic properties of the enzyme. The findings provide an important theoretical basis for the future marketable production of IMO4 and analysis of the structure of dextranase.
Collapse
|
8
|
Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Carbohydrate-based functional ingredients derived from starch: Current status and future prospects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Cloning of Cold-Adapted Dextranase and Preparation of High Degree Polymerization Isomaltooligosaccharide. Catalysts 2022. [DOI: 10.3390/catal12070784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Intestinal diseases are mainly caused by a decrease in the relative abundance of probiotics and an increase in the number of pathogenic bacteria due to dysbiosis of the intestinal flora. High degree polymerization isomaltooligosaccharide (IMO) can promote probiotic metabolism and proliferation. In this study, the dextranase (PsDex1711) gene of marine bacterial Pseudarthrobacter sp. RN22 was cloned and expressed in Escherichia coli BL21 (DE3). The optimal pH and temperature of the dextranase were 6.0 and 30 °C, respectively, showing the highest stability at 20 °C. The dextran T70 could be hydrolyzed to produce IMO3, IMO4, IMO5, and IMO6 with a high degree of polymerization. The hydrolysate of 1 mg/mL could significantly promote the growth of Lactobacillus and Bifidobacterium after 12 h culture and the formation of biofilms by 58.2%. The hydrolysates could promote the proliferation of probiotics. Furthermore, the IC50 of scavenging rate of DPPH, hydroxyl radical, and superoxide anion was less than 20 mg/mL. This study provides a crucial theoretical basis for the application of dextranase such as pharmaceutical and food industries.
Collapse
|
11
|
Probiotics, Prebiotics, Synbiotics, and Fermented Foods as Potential Biotics in Nutrition Improving Health via Microbiome-Gut-Brain Axis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070303] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological, social, and psychological practices greatly affect the dietary intake of people; as a result, health-related complexities occur. Functional food and supplements have become popular due to their nutraceutical benefits, which make different choices of fermented food and beverages available to people. This review describes the characteristics of probiotics, prebiotics, post- and paraprobiotics, and their role in nutrition and in the sustainability of health. Currently, several synbiotic supplements have attracted consumers in the nutraceutical market to offer a number of health benefits, which are complementary mixtures of selected characterized probiotic cultures and prebiotic substrates. Traditional fermented foods consumed in different cultures are different than probiotics and symbiotic preparations, though these could be considered potential biotics in nutrition. Fermented foods are part of a staple diet in several countries and are cost-effective due to their preparation using seasonal raw materials available from local agriculture practices. Intake of all biotics discussed in this article is intended to improve the population of beneficial microbiota in the gut, which has proved important for the microbiome–gut–brain axis, influencing the activity of vagus nerve.
Collapse
|
12
|
Krusong K, Ismail A, Wangpaiboon K, Pongsawasdi P. Production of Large-Ring Cyclodextrins by Amylomaltases. Molecules 2022; 27:molecules27041446. [PMID: 35209232 PMCID: PMC8875642 DOI: 10.3390/molecules27041446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Amylomaltase is a well-known glucan transferase that can produce large ring cyclodextrins (LR-CDs) or so-called cycloamyloses via cyclization reaction. Amylomaltases have been found in several microorganisms and their optimum temperatures are generally around 60–70 °C for thermostable amylomaltases and 30–45 °C for the enzymes from mesophilic bacteria and plants. The optimum pHs for mesophilic amylomaltases are around pH 6.0–7.0, while the thermostable amylomaltases are generally active at more acidic conditions. Size of LR-CDs depends on the source of amylomaltases and the reaction conditions including pH, temperature, incubation time, and substrate. For example, in the case of amylomaltase from Corynebacterium glutamicum, LR-CD productions at alkaline pH or at a long incubation time favored products with a low degree of polymerization. In this review, we explore the synthesis of LR-CDs by amylomaltases, structural information of amylomaltases, as well as current applications of LR-CDs and amylomaltases.
Collapse
Affiliation(s)
- Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
- Correspondence: ; Tel.: + 66-(0)2-218-5413
| | - Abbas Ismail
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Karan Wangpaiboon
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand;
| |
Collapse
|
13
|
Narisetty V, Parhi P, Mohan B, Hakkim Hazeena S, Naresh Kumar A, Gullón B, Srivastava A, Nair LM, Paul Alphy M, Sindhu R, Kumar V, Castro E, Kumar Awasthi M, Binod P. Valorization of renewable resources to functional oligosaccharides: Recent trends and future prospective. BIORESOURCE TECHNOLOGY 2022; 346:126590. [PMID: 34953996 DOI: 10.1016/j.biortech.2021.126590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulosic wastes have the ability to be transformed into oligosaccharides and other value-added products. The synthesis of oligosaccharides from renewable sources bestow to growing bioeconomies. Oligosaccharides are synthesized chemically or biologically from agricultural residues. These oligosaccharides are functional food supplements that have a positive impact on humans and livestock. Non-digestible oligosaccharides, refered as prebiotics are beneficial for the colonic microbiota inhabiting the f the digestive system. These microbiota plays a crucial role in stimulating the host immune system and other physiological responses. The commonly known prebiotics, galactooligosaccharides (GOS), xylooligosaccharides (XOS), fructooligosaccharides (FOS), mannanooligosaccharides (MOS), and isomaltooligosaccharides (IOS) are synthesized either through enzymatic or whole cell-mediated approaches using natural or agricultural waste substrates. This review focusses on recent advancements in biological processes, for the synthesis of oligosaccharides using renewable resources (lignocellulosic substrates) for sustainable circular bioeconomy. The work also addresses the limitations associated with the processes and commercialization of the products.
Collapse
Affiliation(s)
- Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Priyanka Parhi
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Binoop Mohan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - A Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, E-32004 Ourense, Spain
| | - Anita Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Lakshmi M Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India.
| |
Collapse
|
14
|
Haewpetch P, Rudeekulthamrong P, Kaulpiboon J. Enzymatic Synthesis of Maltitol and Its Inhibitory Effect on the Growth of Streptococcus mutans DMST 18777. Biomolecules 2022; 12:167. [PMID: 35204667 PMCID: PMC8961570 DOI: 10.3390/biom12020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to synthesize maltitol using recombinant CGTase from Bacillus circulans A11 with β-cyclodextrin (β-CD) and sorbitol as a glucosyl donor and acceptor, respectively, and assess its antibacterial activity. Optimal conditions for producing the highest yield, 25.0% (w/w), were incubation of 1% (w/v) β-CD and sorbitol with 400 U/mL of CGTase in 20 mM phosphate buffer at pH 6.0 and 50 °C for 72 h. Subsequently, maltitol underwent large-scale production and was purified by HPLC. By mass spectrometry, the molecular weight of the synthesized maltitol was 379.08 daltons, corresponding exactly to that of standard maltitol. The relative sweetness of synthesized and standard maltitol was ~90% of that of sucrose. Spot assay on the agar plate showed that maltitol inhibited the growth of Streptococcus mutans DMST 18777 cells. In addition, the MIC and MBC values of synthesized and standard maltitol against S. mutans were also determined as 20 and 40 mg/mL, respectively. These results show that the synthesized maltitol can be produced at high yields and has the potential to be used as an anticariogenic agent in products such as toothpaste.
Collapse
Affiliation(s)
- Patinya Haewpetch
- Protein Research Laboratory, Department of Pre-Clinical Science, Division of Biochemistry, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand;
| | - Prakarn Rudeekulthamrong
- Department of Biochemistry, Phramongkutklao Hospital, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Jarunee Kaulpiboon
- Protein Research Laboratory, Department of Pre-Clinical Science, Division of Biochemistry, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand;
| |
Collapse
|
15
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Xue N, Svensson B, Bai Y. Structure, function and enzymatic synthesis of glucosaccharides assembled mainly by α1 → 6 linkages - A review. Carbohydr Polym 2022; 275:118705. [PMID: 34742430 DOI: 10.1016/j.carbpol.2021.118705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/02/2022]
Abstract
A variety of glucosaccharides composed of glucosyl residues can be classified into α- and β-type and have wide application in food and medicine areas. Among these glucosaccharides, β-type, such as cellulose and α-type, such as starch and starch derivatives, both contain 1 → 4 linkages and are well studied. Notably, in past decades also α1 → 6 glucosaccharides obtained increasing attention for unique physiochemical and biological properties. Especially in recent years, α1 → 6 glucosaccharides of different molecular weight distribution have been created and proved to be functional. However, compared to β- type and α1 → 4 glucosaccharides, only few articles provide a systematic overview of α1 → 6 glucosaccharides. This motivated, the present first comprehensive review on structure, function and synthesis of these α1 → 6 glucosaccharides, aiming both at improving understanding of traditional α1 → 6 glucosaccharides, such as isomaltose, isomaltooligosaccharides and dextrans, and to draw the attention to newly explored α1 → 6 glucosaccharides and their derivatives, such as cycloisomaltooligosaccharides, isomaltomegalosaccharides, and isomalto/malto-polysaccharides.
Collapse
Affiliation(s)
- Naixiang Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
17
|
Palaniappan A, Emmambux MN. The challenges in production technology, health-associated functions, physico-chemical properties and food applications of isomaltooligosaccharides. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34698594 DOI: 10.1080/10408398.2021.1994522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Isomaltooligosaccharides (IMOs) are recognized as functional food ingredients with prebiotic potential that deliver health benefits. IMOs have attained commercial interest as they are produced from low-cost agricultural products that are widely available and have prospective applications in the food industry. The review examines the various production processes and the main challenges involved in deriving diverse structures of IMO with maximized yield and increased functionality. The different characterization and purification techniques employed for structural elucidation, the physico-chemical importance, technological properties, food-based applications and biological effects (in vitro and in vivo interventions) have been discussed in detail. The key finding is the need for research involving biotechnological and enzymology aspects to simplify the production technologies that meet the industrial and consumer requirements. The knowledge from this article delivers a clear insight to scientists, food technologists and the general public for the improved utilization of IMOs to support the emerging market for functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ayyappan Palaniappan
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Mohammad Naushad Emmambux
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Mollakhalili-Meybodi N, Arab M, Nematollahi A, Mousavi Khaneghah A. Prebiotic wheat bread: Technological, sensorial and nutritional perspectives and challenges. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Gurbanov R, Karadağ H, Karaçam S, Samgane G. Tapioca Starch Modulates Cellular Events in Oral Probiotic Streptococcus salivarius Strains. Probiotics Antimicrob Proteins 2021; 13:195-207. [PMID: 32601954 DOI: 10.1007/s12602-020-09678-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Considering the implications of microbiota in health, scientists are in search of microbiota-oriented strategies for the effective prevention and/or treatment of a wide variety of serious diseases. A microbiota comprises diverse microorganisms with either probiotic or pathogenic properties. The fermentation of prebiotic carbohydrates by probiotic bacteria can affect host metabolism. Therefore, understanding the prebiotic-mediated metabolic modulations in probiotics is crucial to develop functional foods for the improvement of disturbed microbiota. Studies have emphasized the importance of prebiotics in probiotic therapies for mucosal diseases and highlighted the need for extensive research on oral bacteria. In the present study, the cellular events have been studied in batch cultures of probiotic Streptococcus salivarius exposed to the natural prebiotic, tapioca starch (TS). TS modulated the keystone metabolic events in Streptococcus salivarius in a dose-dependent manner. Besides increasing the live cell counts and altering the colony morphologies, TS affected the protein metabolism in terms of cellular expression and conformational changes in protein secondary structures. After treatment with TS, the nucleic acid synthesis increased and B-DNA was more than A- and Z-DNA, together with the diminished fatty acids and increased polysaccharide synthesis. The study results can be considered for the assessment of functional foods and probiotics in oral health.
Collapse
Affiliation(s)
- Rafig Gurbanov
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | - Hazel Karadağ
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Sevinç Karaçam
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Gizem Samgane
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
20
|
Cunningham M, Vinderola G, Charalampopoulos D, Lebeer S, Sanders ME, Grimaldi R. Applying probiotics and prebiotics in new delivery formats – is the clinical evidence transferable? Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Tumhom S, Nimpiboon P, Wangkanont K, Pongsawasdi P. Streptococcus agalactiae amylomaltase offers insight into the transglycosylation mechanism and the molecular basis of thermostability among amylomaltases. Sci Rep 2021; 11:6740. [PMID: 33762620 PMCID: PMC7990933 DOI: 10.1038/s41598-021-85769-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/04/2021] [Indexed: 11/09/2022] Open
Abstract
Amylomaltase (AM) catalyzes transglycosylation of starch to form linear or cyclic oligosaccharides with potential applications in biotechnology and industry. In the present work, a novel AM from the mesophilic bacterium Streptococcus agalactiae (SaAM), with 18–49% sequence identity to previously reported AMs, was characterized. Cyclization and disproportionation activities were observed with the optimum temperature of 30 °C and 40 °C, respectively. Structural determination of SaAM, the first crystal structure of small AMs from the mesophiles, revealed a glycosyl-enzyme intermediate derived from acarbose and a second acarbose molecule attacking the intermediate. This pre-transglycosylation conformation has never been before observed in AMs. Structural analysis suggests that thermostability in AMs might be mainly caused by an increase in salt bridges since SaAM has a lower number of salt bridges compared with AMs from the thermophiles. Increase in thermostability by mutation was performed. C446 was substituted with A/S/P. C446A showed higher activities and higher kcat/Km values for starch in comparison to the WT enzyme. C446S exhibited a 5 °C increase in optimum temperature and the threefold increase in half-life time at 45 °C, most likely resulting from H-bonding interactions. For all enzymes, the main large-ring cyclodextrin (LR-CD) products were CD24-CD26 with CD22 as the smallest. C446S produced more CD35-CD42, especially at a longer incubation time.
Collapse
Affiliation(s)
- Suthipapun Tumhom
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pitchanan Nimpiboon
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
22
|
Novel and emerging prebiotics: Advances and opportunities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:41-95. [PMID: 33745516 DOI: 10.1016/bs.afnr.2020.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumers are conscientiously changing their eating preferences toward healthier options, such as functional foods enriched with pre- and probiotics. Prebiotics are attractive bioactive compounds with multidimensional beneficial action on both human and animal health, namely on the gastrointestinal tract, cardiometabolism, bones or mental health. Conventionally, prebiotics are non-digestible carbohydrates which generally present favorable organoleptic properties, temperature and acidic stability, and are considered interesting food ingredients. However, according to the current definition of prebiotics, application categories other than food are accepted, as well as non-carbohydrate substrates and bioactivity at extra-intestinal sites. Regulatory issues are considered a major concern for prebiotics since a clear understanding and application of these compounds among the consumers, regulators, scientists, suppliers or manufacturers, health-care providers and standards or recommendation-setting organizations are of utmost importance. Prebiotics can be divided in several categories according to their development and regulatory status. Inulin, galactooligosaccharides, fructooligosaccharides and lactulose are generally classified as well established prebiotics. Xylooligosaccharides, isomaltooligosaccharides, chitooligosaccharides and lactosucrose are classified as "emerging" prebiotics, while raffinose, neoagaro-oligosaccharides and epilactose are "under development." Other substances, such as human milk oligosaccharides, polyphenols, polyunsaturated fatty acids, proteins, protein hydrolysates and peptides are considered "new candidates." This chapter will encompass actual information about the non-established prebiotics, mainly their physicochemical properties, market, legislation, biological activity and possible applications. Generally, there is a lack of clear demonstrations about the effective health benefits associated with all the non-established prebiotics. Overcoming this limitation will undoubtedly increase the demand for these compounds and their market size will follow the consumer's trend.
Collapse
|
23
|
Khummanee N, Rudeekulthamrong P, Kaulpiboon J. Enzymatic Synthesis of Functional Xylose Glucoside and Its Application to Prebiotic. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Oniszczuk A, Oniszczuk T, Gancarz M, Szymańska J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules 2021; 26:molecules26041172. [PMID: 33671813 PMCID: PMC7926819 DOI: 10.3390/molecules26041172] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a growing interest in identifying and applying new, naturally occurring molecules that promote health. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer health benefits on the host”. Quite a few fermented products serve as the source of probiotic strains, with many factors influencing the effectiveness of probiotics, including interactions of probiotic bacteria with the host’s microbiome. Prebiotics contain no microorganisms, only substances which stimulate their growth. Prebiotics can be obtained from various sources, including breast milk, soybeans, and raw oats, however, the most popular prebiotics are the oligosaccharides contained in plants. Recent research increasingly claims that probiotics and prebiotics alleviate many disorders related to the immune system, cancer metastasis, type 2 diabetes, and obesity. However, little is known about the role of these supplements as important dietary components in preventing or treating cardiovascular disease. Still, some reports and clinical studies were conducted, offering new ways of treatment. Therefore, the aim of this review is to discuss the roles of gut microbiota, probiotics, and prebiotics interventions in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (A.O.); (T.O.)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
- Correspondence: (A.O.); (T.O.)
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| | - Jolanta Szymańska
- Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| |
Collapse
|
25
|
Woodbury TJ, Lust AL, Mauer LJ. The effects of commercially available sweeteners (sucrose and sucrose replacers) on wheat starch gelatinization and pasting, and cookie baking. J Food Sci 2021; 86:687-698. [PMID: 33496959 DOI: 10.1111/1750-3841.15572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 11/28/2022]
Abstract
A variety of sucrose replacers (SRs) are increasing in popularity for reducing sucrose usage in low moisture baked goods (cookies, biscuits, etc.). The goal of this study was to link SR physicochemical properties to their observed effects on starch thermal properties, including results from differential scanning calorimetry, rapid viscoanalysis, particle size analysis, and model wire-cut cookie baking performance. The 12 SRs examined in this study were: Truvia, Splenda, Swerve, coconut palm sugar, Monk Fruit, erythritol, Benefiber, Miralax, blue agave syrup, yacon syrup, Sukrín Fiber Gold Syrup, and date syrup. The onset gelatinization temperature (Tgel ) of wheat starch increased significantly (P < 0.05) as sucrose and SR concentration increased (0 to 60% w/w), with significant variations in Tgel found between different sweetener types at the same concentration. Generally, as solution concentration increased, the larger SRs (degree of polymerization [DP]> 10) decreased paste viscosity (peak and final), decreased granule swelling, and increased Tgel compared to the control (water). The smaller SRs (DP < 10) increased both paste viscosity (peak and final) and granule swelling, unlike the larger SRs, and did not increase Tgel as much as larger SRs. The SRs which performed similar to sucrose in model cookie baking (fracturability, spread, color, etc.) and effects on starch properties (Tgel , paste viscosity, and granule swelling) were yacon, Sukrín, date syrups, and coconut palm sugar. The results linking sweetener physicochemical properties to their effects on starch gelatinization, pasting, and swelling can be used to guide reformulation strategies for potentially reducing sugar and/or increasing fiber content in foods. PRACTICAL APPLICATION: Several commercially available natural sweeteners and polymers (coconut palm sugar, date syrup, yacon syrup, Sukrín Fiber Gold syrup, and Benefiber) show promise for reducing or replacing sucrose in cookies, and other low-moisture baked goods, based on their similar effects on wheat starch gelatinization, pasting, and swelling, as well as performance in cookie baking trials. Compared to sucrose, some of these ingredients have a lower glycemic response and higher dietary fiber content, and act as prebiotics, thereby providing potential health benefit.
Collapse
Affiliation(s)
- Travest J Woodbury
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, U.S.A
| | - Andres L Lust
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, U.S.A
| | - Lisa J Mauer
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, U.S.A
| |
Collapse
|
26
|
Julio-Gonzalez LC, Moreno FJ, Jimeno ML, Doyagüez EG, Olano A, Corzo N, Hernandez-Hernandez O. Hydrolysis and transglycosylation activities of glycosidases from small intestine brush-border membrane vesicles. Food Res Int 2020; 139:109940. [PMID: 33509494 DOI: 10.1016/j.foodres.2020.109940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022]
Abstract
In order to know the catalytic activities of the disaccharidases expressed in the mammalian small intestinal brush-border membrane vesicles (BBMV) high concentrated solutions of sucrose, maltose, isomaltulose, trehalose and the mixture sucrose:lactose were incubated with pig small intestine disaccharidases. The hydrolysis and transglycosylation reactions generated new di- and trisaccharides, characterized and quantified by GC-MS and NMR, except for trehalose where only hydrolysis was detected. In general, α-glucosyl-glucoses and α-glucosyl-fructoses were the most abundant structures, whereas no fructosyl-fructoses or fructosyl-glucoses were found. The in-depth structural characterization of the obtained carbohydrates represents a new alternative to understand the potential catalytic activities of pig small intestinal disaccharidases. The hypothesis that the oligosaccharides synthesized by glycoside hydrolases could be also hydrolysed by the same enzymes was confirmed. This information could be extremely useful in the design of new non-digestible or partially digestible oligosaccharides with potential prebiotic properties.
Collapse
Affiliation(s)
| | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - María Luisa Jimeno
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Agustín Olano
- Institute of Food Science Research, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Nieves Corzo
- Institute of Food Science Research, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | | |
Collapse
|
27
|
Nimpiboon P, Tumhom S, Nakapong S, Pongsawasdi P. Amylomaltase from Thermus filiformis: expression in Saccharomyces cerevisiae and its use in starch modification. J Appl Microbiol 2020; 129:1287-1296. [PMID: 32330366 DOI: 10.1111/jam.14675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 01/30/2023]
Abstract
AIM To express amylomaltase from Thermus filiformis (TfAM) in a generally recognized as safe (GRAS) organism and to use the enzyme in starch modification. METHODS AND RESULTS TfAM was expressed in Saccharomyces cerevisiae, using 2% (w/v) galactose inducer under GAL1 promoter. The enzyme was thermostable with high disproportionation and cyclization activities. The main large-ring cyclodextrin (CD) products were CD24-CD29, with CD26 as maximum at all incubation times. TfAM was used to modify cassava and pea starches, the amylose content decreased 18% and 30%, respectively, when 5% (w/v) starch was treated with 0·5 U TfAM g-1 starch. The increase in short branched chain (DP, degree of polymerization, 1-5) and the broader chain length distribution pattern which extended to the longer chain (DP40) after TfAM treatment were observed. The thermal property was changed, with an increase in retrogradation of starch as suggested by a lower enthalpy. CONCLUSIONS TfAM was successfully expressed in S. cerevisiae and was used to make starches with new functionality. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the expression of AM in the GRAS yeast and the production of a modified starch gel from pea starch to improve the versatility of starch for food use.
Collapse
Affiliation(s)
- P Nimpiboon
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - S Tumhom
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - S Nakapong
- Department of Chemistry, Faculty of Science, Ramkamhaeng University, Bangkok, Thailand
| | - P Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Rengarajan S, Palanivel R. High purity prebiotic isomalto-oligosaccharides production by cell associated transglucosidase of isolated strain Debaryomyces hansenii SCY204 and selective fermentation by Saccharomyces cerevisiae SYI065. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Mottawea W, Sultan S, Landau K, Bordenave N, Hammami R. Evaluation of the Prebiotic Potential of a Commercial Synbiotic Food Ingredient on Gut Microbiota in an Ex Vivo Model of the Human Colon. Nutrients 2020; 12:nu12092669. [PMID: 32882999 PMCID: PMC7551822 DOI: 10.3390/nu12092669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022] Open
Abstract
Behavior and mood disorders have been linked to gut microbiota dysbiosis through the “microbiota-gut-brain axis”. Microbiota-targeting interventions are promising therapeutic modalities to restore or even maintain normal microbiome composition and activity in these disorders. Here, we test the impact of a commercial synbiotic formulation on gut microbiota composition and metabolic activity. We employed an ex-vivo continuous fermentation model that simulates the proximal colon to assess the effect of this formulation on microbiota structure and functionality as compared to no treatment control and microcrystalline cellulose as a dietary fiber control. The test formulation did not alter the diversity of gut microbiota over 48 h of treatment. However, it induced the enrichment of Lactobacillus, Collinsella and Erysipelotrichaceae. The test formulation significantly increased the level of microbiota-generated butyrate within 12 h of treatment as compared to 24 h required by microcrystalline cellulose to boost its production. The test formulation did not lead to a significant change in amino acid profiles. These results provide evidence of potential benefits related to synbiotic effects and general gut health and support the potential of this food formulation as a therapeutic dietary intervention in mood and behavior disorders.
Collapse
Affiliation(s)
- Walid Mottawea
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.M.); (S.S.); (N.B.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Salma Sultan
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.M.); (S.S.); (N.B.)
| | - Kara Landau
- Uplift Food Pty Ltd., New York, NY 10001, USA;
| | - Nicolas Bordenave
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.M.); (S.S.); (N.B.)
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.M.); (S.S.); (N.B.)
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 4110)
| |
Collapse
|
30
|
Ferreira-Lazarte A, Moreno FJ, Villamiel M. Bringing the digestibility of prebiotics into focus: update of carbohydrate digestion models. Crit Rev Food Sci Nutr 2020; 61:3267-3278. [PMID: 32744076 DOI: 10.1080/10408398.2020.1798344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oro-gastrointestinal digestion of dietary carbohydrates involves up to six different carbohydrases in a multistage process. Enzymes from the small intestinal brush border membrane play a major role in the digestibility of these substrates. However, to date, the inclusion of these small intestinal enzymes has been dismissed in most in vitro studies carried out, despite their importance in the degradation of carbohydrates. Several in vitro and in vivo studies have demonstrated the capability of brush border enzymes to degrade certain "non-digestible" carbohydrates to a different extent depending on their structural composition (monomeric composition, glycosidic linkage, etc.). In this sense, considering the available evidence, mucosal disaccharidases embedded in the small intestinal brush border membrane vesicles must be considered in addition to α-amylases; therefore, new approaches for the evaluation of the digestibility of carbohydrates have been recently reported. These new methods based on the utilization of the small intestinal enzymes present in the brush border membrane aim to fulfill the final and key step of the digestion of carbohydrates in the small intestine. Here, rat small intestinal extract enzymes as well as brush border membrane vesicles from pig have emerged as very reliable and useful tools to evaluate carbohydrate digestion. Thus, this review aims to go briefly through the most relevant digestion methods for carbohydrates that are currently available and to highlight the new improved methods, which include mammalian intestinal enzymes, and their current use in the evaluation of the digestibility of prebiotics.
Collapse
Affiliation(s)
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| |
Collapse
|
31
|
Guarino MPL, Altomare A, Emerenziani S, Di Rosa C, Ribolsi M, Balestrieri P, Iovino P, Rocchi G, Cicala M. Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients 2020; 12:1037. [PMID: 32283802 PMCID: PMC7231265 DOI: 10.3390/nu12041037] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, research has focused on the use of dietary fibers and prebiotics, since many of these polysaccharides can be metabolized by intestinal microbiota, leading to the production of short-chain fatty acids. The metabolites of prebiotic fermentation also show anti-inflammatory and immunomodulatory capabilities, suggesting an interesting role in the treatment of several pathological conditions. Galacto-oligosaccharide and short- and long-chain fructans (Fructo-oligosaccharides and inulin) are the most studied prebiotics, even if other dietary compounds seem to show the same features. There is an increasing interest in dietary strategies to modulate microbiota. The aim of this review is to explore the mechanisms of action of prebiotics and their effects on the principal gastro-intestinal disorders in adults, with a special focus on Galacto-oligosaccharides, Fructo-oligosaccharides, lactulose and new emerging substances which currently have evidence of prebiotics effects, such as xilooligosaccharides, soybean oligosaccharides, isomaltooligosaccharides, lactobionic acid, resistant starch and polyphenols.
Collapse
Affiliation(s)
- Michele Pier Luca Guarino
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Annamaria Altomare
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Sara Emerenziani
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
- (M.P.L.G.)
- (S.E.)
- (M.R.)
- (P.B.)
- (G.R.)
- (M.C.)
| | - Claudia Di Rosa
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Mentore Ribolsi
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Paola Balestrieri
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Paola Iovino
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081 Salerno, Italy;
| | - Giulia Rocchi
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Michele Cicala
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| |
Collapse
|
32
|
Hu Y, Heyer CME, Wang W, Zijlstra RT, Gänzle MG. Digestibility of branched and linear α-gluco-oligosaccharides in vitro and in ileal-cannulated pigs. Food Res Int 2019; 127:108726. [PMID: 31882112 DOI: 10.1016/j.foodres.2019.108726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 01/10/2023]
Abstract
Isomalto-oligosaccharides (IMOs) may promote health by modulating intestinal microbiota. We hypothesized that the proportion of α-(1 → 6) linkages in IMOs determines their digestibility. Ileal-cannulated pigs were fed diets containing IMO, IMO-DP3 with a greater DP and more α-(1 → 4) linkages, and digestible or resistant maltodextrins. Oligosaccharides were analysed by high-performance anion-exchange chromatography. Compared to IMO, IMO-DP3 contained more panose (18.6 vs. 10.3%) but less isomaltose (7.5 vs. 22.3%) and isomaltotriose (6.1 vs. 12.6%). The apparent ileal digestibility of dry matter were 3% greater for IMO-DP3 and digestible maltodextrin than resistant maltodextrin; the digestibility of IMO was not different from other oligosaccharides. Ileal propionate, isovalerate, and total SCFA was greater for IMO-DP3 and digestible maltodextrin than IMO. In conclusion, IMO was less digestible than IMO-DP3. Structural properties of IMOs are important determinants of their functional properties within the porcine digestive tract.
Collapse
Affiliation(s)
- Ying Hu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, China
| | - Charlotte M E Heyer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Weilan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, China.
| |
Collapse
|
33
|
Hernandez-Hernandez O, Olano A, Rastall RA, Moreno FJ. In vitro Digestibility of Dietary Carbohydrates: Toward a Standardized Methodology Beyond Amylolytic and Microbial Enzymes. Front Nutr 2019; 6:61. [PMID: 31134206 PMCID: PMC6514044 DOI: 10.3389/fnut.2019.00061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Oswaldo Hernandez-Hernandez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, Madrid, Spain
| | - Agustín Olano
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, Madrid, Spain
| | - Robert A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, Reading, United Kingdom
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Heterologous Expression of a Thermostable α-Glucosidase from Geobacillus sp. Strain HTA-462 by Escherichia coli and Its Potential Application for Isomaltose⁻Oligosaccharide Synthesis. Molecules 2019; 24:molecules24071413. [PMID: 30974879 PMCID: PMC6479687 DOI: 10.3390/molecules24071413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/09/2023] Open
Abstract
Isomaltose-oligosaccharides (IMOs), as food ingredients with prebiotic functionality, can be prepared via enzymatic synthesis using α-glucosidase. In the present study, the α-glucosidase (GSJ) from Geobacillus sp. strain HTA-462 was cloned and expressed in Escherichia coli BL21 (DE3). Recombinant GSJ was purified and biochemically characterized. The optimum temperature condition of the recombinant enzyme was 65 °C, and the half-life was 84 h at 60 °C, whereas the enzyme was active over the range of pH 6.0-10.0 with maximal activity at pH 7.0. The α-glucosidase activity in shake flasks reached 107.9 U/mL and using 4-Nitrophenyl β-D-glucopyranoside (pNPG) as substrate, the Km and Vmax values were 2.321 mM and 306.3 U/mg, respectively. The divalent ions Mn2+ and Ca2+ could improve GSJ activity by 32.1% and 13.8%. Moreover, the hydrolysis ability of recombinant α-glucosidase was almost the same as that of the commercial α-glucosidase (Bacillus stearothermophilus). In terms of the transglycosylation reaction, with 30% maltose syrup under the condition of 60 °C and pH 7.0, IMOs were synthesized with a conversion rate of 37%. These studies lay the basis for the industrial application of recombinant α-glucosidase.
Collapse
|
35
|
Sweetness and sensory properties of commercial and novel oligosaccharides of prebiotic potential. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Isomalto-oligosaccharides: Recent insights in production technology and their use for food and medical applications. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.098] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Gu F, Borewicz K, Richter B, van der Zaal PH, Smidt H, Buwalda PL, Schols HA. In Vitro Fermentation Behavior of Isomalto/Malto-Polysaccharides Using Human Fecal Inoculum Indicates Prebiotic Potential. Mol Nutr Food Res 2018; 62:e1800232. [PMID: 29710405 PMCID: PMC6033187 DOI: 10.1002/mnfr.201800232] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/09/2018] [Indexed: 12/11/2022]
Abstract
SCOPE This study characterize intestinal fermentation of isomalto/malto-polysaccharides (IMMPs), by monitoring degradation of IMMPs, production of short chain fatty acids (SCFAs), lactic acid, and succinic acid as well as enzyme activity and microbiota composition. METHODS AND RESULTS IMMP-94 (94% α-(1→6) glycosidic linkages), IMMP-96, IMMP-27, and IMMP-dig27 (IMMP-27 after removal of digestible starch segments) are fermented batchwise in vitro using human fecal inoculum. Fermentation digesta samples are taken for analysis in time up till 48 h. The fermentation of α-(1→6) glycosidic linkages in IMMP-94, IMMP-96, and IMMP-dig27 starts after 12 h and finishes within 48 h. IMMP-27 fermentation starts directly after inoculation utilizing α-(1→4) linked glucosyl residues; however, the utilization of α-(1→6) linked glucoses is delayed and start only after the depletion of α-(1→4) linked glucose moieties. SCFAs are produced in high amounts with acetic acid and succinic acid being the major products next to propionic acid and butyric acid. The polysaccharide fraction is degraded into isomalto-oligosaccharides (IMOs) mainly by extracellular enzymes. The smaller IMOs are further degraded by cell-associated enzymes. Overall microbial diversity and the relative abundance of Bifidobacterium and Lactobacillus, significantly increase during the fermentation of IMMPs. CONCLUSION IMMP containing segments of α-(1→6) linked glucose units are slowly fermentable fibers with prebiotic potential.
Collapse
Affiliation(s)
- Fangjie Gu
- Laboratory of Food ChemistryWageningen University & ResearchP.O. Box 176700 AA WageningenThe Netherlands
| | - Klaudyna Borewicz
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
| | - Bernadette Richter
- Laboratory of Food ChemistryWageningen University & ResearchP.O. Box 176700 AA WageningenThe Netherlands
| | - Pieter H. van der Zaal
- Biobased Chemistry & TechnologyWageningen University & ResearchWageningen6708 WGThe Netherlands
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
| | - Pieter L. Buwalda
- Biobased Chemistry & TechnologyWageningen University & ResearchWageningen6708 WGThe Netherlands
- Coöperatie AVEBE U.A.P.O. Box 159640 AA VeendamThe Netherlands
| | - Henk A. Schols
- Laboratory of Food ChemistryWageningen University & ResearchP.O. Box 176700 AA WageningenThe Netherlands
| |
Collapse
|
38
|
Isomalto/malto-polysaccharide structure in relation to the structural properties of starch substrates. Carbohydr Polym 2018; 185:179-186. [DOI: 10.1016/j.carbpol.2017.11.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
|
39
|
Sorndech W, Tongta S, Blennow A. Slowly Digestible‐ and Non‐Digestible α‐Glucans: An Enzymatic Approach to Starch Modification and Nutritional Effects. STARCH-STARKE 2017. [DOI: 10.1002/star.201700145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Waraporn Sorndech
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Sunanta Tongta
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Andreas Blennow
- Faculty of Sciences Department of Plant and Environmental Sciences University of CopenhagenFrederiksberg C 1871Denmark
| |
Collapse
|
40
|
Ferreira-Lazarte A, Olano A, Villamiel M, Moreno FJ. Assessment of in Vitro Digestibility of Dietary Carbohydrates Using Rat Small Intestinal Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8046-8053. [PMID: 28793770 DOI: 10.1021/acs.jafc.7b01809] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There are few studies on the assessment of digestibility of nondigestible carbohydrates, despite their increasingly important role in human health. In vitro digestibility of a range of dietary carbohydrates classified as digestible (maltose, sucrose, and lactose), well-recognized (lactulose, fructooligosaccharides (FOS), and two types of galactooligosaccharides (GOS) differing in the predominant glycosidic linkage), and potential (lactosucrose and GOS from lactulose, OsLu) prebiotics using a rat small intestinal extract (RSIE) under physiological conditions of temperature and pH is described. Recognized and potential prebiotics were highly resistant to RSIE digestion although partial hydrolysis at different extents was observed. FOS and lactulose were the most resistant to digestion, followed closely by OsLu and more distantly by both types of GOS and lactosucrose. In GOS, β(1 → 6) linkages were more resistant to digestion than β(1 → 4) bonds. The reported in vitro digestion model is a useful, simple, and cost-effective tool to evaluate the digestibility of dietary oligosaccharides.
Collapse
Affiliation(s)
- Alvaro Ferreira-Lazarte
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM) . C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Agustín Olano
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM) . C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM) . C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM) . C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
41
|
Combination of amylase and transferase catalysis to improve IMO compositions and productivity. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Rudeekulthamrong P, Kaulpiboon J. Application of amylomaltase for the synthesis of salicin-α-glucosides as efficient anticoagulant and anti-inflammatory agents. Carbohydr Res 2016; 432:55-61. [DOI: 10.1016/j.carres.2016.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
43
|
Nimpiboon P, Krusong K, Kaulpiboon J, Kidokoro SI, Pongsawasdi P. Roles of N287 in catalysis and product formation of amylomaltase from Corynebacterium glutamicum. Biochem Biophys Res Commun 2016; 478:759-64. [PMID: 27507216 DOI: 10.1016/j.bbrc.2016.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 02/02/2023]
Abstract
Amylomaltase catalyzes intermolecular and intramolecular transglucosylation reactions to form linear and cyclic oligosaccharides, respectively. The aim of this work is to investigate the structure-function relationship of amylomaltase from a mesophilic Corynebacterium glutamicum (CgAM). Site-directed mutagenesis was performed to substitute Tyr for Asn287 (N287Y) to determine its role in controlling amylomaltase activity and product formation. Expression of the wild-type (WT) and N287Y was achieved by cultivating recombinant cells in the medium containing lactose at 16 °C for 14 h. The purified mutated enzyme showed a significant decrease in all transglucosylation activities while hydrolysis activity was not changed. Optimum temperature and pH for disproportionation reaction were slightly changed upon mutation while those for cyclization reaction were not changed. Interestingly, N287Y showed a change in large-ring cyclodextrin (LR-CD) product profile in which the larger size was observed together with an increase in thermostability and substrate preference for G5 in addition to G3. The secondary structure of the mutated enzyme was slightly changed in related to the WT as evidenced from circular dichroism analysis. This work thus demonstrates that N287 is required for transglucosylation activities of CgAM. Having an aromatic residue in this position increased thermostability, changed product profile and substrate preference but demolished most enzyme activities.
Collapse
Affiliation(s)
- Pitchanan Nimpiboon
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Department of Pre-clinical Science (Biochemistry), Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Shun-Ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
44
|
Nimpiboon P, Kaulpiboon J, Krusong K, Nakamura S, Kidokoro SI, Pongsawasdi P. Mutagenesis for improvement of activity and thermostability of amylomaltase from Corynebacterium glutamicum. Int J Biol Macromol 2016; 86:820-8. [PMID: 26875536 DOI: 10.1016/j.ijbiomac.2016.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/25/2022]
Abstract
This work aims to improve thermostability of amylomaltase from a mesophilic Corynebacterium glutamicum (CgAM) by random and site-directed mutagenesis. From error prone PCR, a mutated CgAM with higher thermostability at 50 °C compared to the wild-type was selected and sequenced. The result showed that the mutant contains a single mutation of A406V. Site-directed mutagenesis was then performed to construct A406V and A406L. Both mutated CgAMs showed higher intermolecular transglucosylation activity with an upward shift in the optimum temperature and a slight increase in the optimum pH for disproportionation and cyclization reactions. Thermostability of both mutated CgAMs at 35-40 °C was significantly increased with a higher peak temperature from DSC spectra when compared to the wild-type. A406V had a greater effect on activity and thermostability than A406L. The catalytic efficiency values kcat/Km of A406V- and A406L-CgAMs were 2.9 and 1.4 times higher than that of the wild-type, respectively, mainly due to a significant increase in kcat. LR-CD product analysis demonstrated that A406V gave higher product yield, especially at longer incubation time and higher temperature, in comparison to the wild-type enzyme.
Collapse
Affiliation(s)
- Pitchanan Nimpiboon
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jarunee Kaulpiboon
- Department of Pre-Clinical Science, Biochemistry, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shigeyoshi Nakamura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Shun-ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|