1
|
Sharma N, Coticchio G, Borini A, Tachibana K, Nasmyth KA, Schuh M. Changes in DNA repair compartments and cohesin loss promote DNA damage accumulation in aged oocytes. Curr Biol 2024:S0960-9822(24)01281-8. [PMID: 39437784 DOI: 10.1016/j.cub.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/20/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Oocyte loss, a natural process that accelerates as women approach their mid-30s, poses a significant challenge to female reproduction. Recent studies have identified DNA damage as a primary contributor to oocyte loss, but the mechanisms underlying DNA damage accumulation remain unclear. Here, we show that aged oocytes have a lower DNA repair capacity and reduced mobility of DNA damage sites compared to young oocytes. Incomplete DNA repair in aged oocytes results in defective chromosome integrity and partitioning, thereby compromising oocyte quality. We found that DNA repair proteins are arranged in spatially distinct DNA repair compartments that form during the late stages of oocyte growth, accompanied by changes in the activity of DNA repair pathways. We demonstrate alterations in these compartments with age, including substantial changes in the levels of key DNA repair proteins and a shift toward error-prone DNA repair pathways. In addition, we show that reduced cohesin levels make aged oocytes more vulnerable to persistent DNA damage and cause changes in DNA repair compartments. Our study links DNA damage accumulation in aged oocytes, a leading cause of oocyte loss, to cohesin deterioration and changes in the organization, abundance, and response of DNA repair machinery.
Collapse
Affiliation(s)
- Ninadini Sharma
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | | | - Andrea Borini
- IVIRMA Global Research Alliance, 9.baby, Bologna 40125, Italy
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich 82152, Germany
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Melina Schuh
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| |
Collapse
|
2
|
Haseeb MA, Weng KA, Bickel SE. Chromatin-associated cohesin turns over extensively and forms new cohesive linkages in Drosophila oocytes during meiotic prophase. Curr Biol 2024; 34:2868-2879.e6. [PMID: 38870933 PMCID: PMC11258876 DOI: 10.1016/j.cub.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here, we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Cohesin along the arms of oocyte chromosomes appears to completely turn over within a 2-day window during prophase, whereas replacement is less extensive at centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.
Collapse
Affiliation(s)
- Muhammad A Haseeb
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Katherine A Weng
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Sharon E Bickel
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA.
| |
Collapse
|
3
|
Fajish G, Challa K, Salim S, Vp A, Mwaniki S, Zhang R, Fujita Y, Ito M, Nishant KT, Shinohara A. DNA double-strand breaks regulate the cleavage-independent release of Rec8-cohesin during yeast meiosis. Genes Cells 2024; 29:86-98. [PMID: 37968127 DOI: 10.1111/gtc.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The mitotic cohesin complex necessary for sister chromatid cohesion and chromatin loop formation shows local and global association to chromosomes in response to DNA double-strand breaks (DSBs). Here, by genome-wide binding analysis of the meiotic cohesin with Rec8, we found that the Rec8-localization profile along chromosomes is altered from middle to late meiotic prophase I with cleavage-independent dissociation. Each Rec8-binding site on the chromosome axis follows a unique alternation pattern with dissociation and probably association. Centromeres showed altered Rec8 binding in late prophase I relative to mid-prophase I, implying chromosome remodeling of the regions. Rec8 dissociation ratio per chromosome is correlated well with meiotic DSB density. Indeed, the spo11 mutant deficient in meiotic DSB formation did not change the distribution of Rec8 along chromosomes in late meiotic prophase I. These suggest the presence of a meiosis-specific regulatory pathway for the global binding of Rec8-cohesin in response to DSBs.
Collapse
Affiliation(s)
- Ghanim Fajish
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiran Challa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Sagar Salim
- School of Biology, Indian Institute of Science, Education and Research, Thiruvananthapuram, India
| | - Ajith Vp
- School of Biology, Indian Institute of Science, Education and Research, Thiruvananthapuram, India
| | - Stephen Mwaniki
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Ruihao Zhang
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Koodali T Nishant
- School of Biology, Indian Institute of Science, Education and Research, Thiruvananthapuram, India
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Ghaddar N, Luciano P, Géli V, Corda Y. Chromatin assembly factor-1 preserves genome stability in ctf4Δ cells by promoting sister chromatid cohesion. Cell Stress 2023; 7:69-89. [PMID: 37662646 PMCID: PMC10468696 DOI: 10.15698/cst2023.09.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Chromatin assembly and the establishment of sister chromatid cohesion are intimately connected to the progression of DNA replication forks. Here we examined the genetic interaction between the heterotrimeric chromatin assembly factor-1 (CAF-1), a central component of chromatin assembly during replication, and the core replisome component Ctf4. We find that CAF-1 deficient cells as well as cells affected in newly-synthesized H3-H4 histones deposition during DNA replication exhibit a severe negative growth with ctf4Δ mutant. We dissected the role of CAF-1 in the maintenance of genome stability in ctf4Δ yeast cells. In the absence of CTF4, CAF-1 is essential for viability in cells experiencing replication problems, in cells lacking functional S-phase checkpoint or functional spindle checkpoint, and in cells lacking DNA repair pathways involving homologous recombination. We present evidence that CAF-1 affects cohesin association to chromatin in a DNA-damage-dependent manner and is essential to maintain cohesion in the absence of CTF4. We also show that Eco1-catalyzed Smc3 acetylation is reduced in absence of CAF-1. Furthermore, we describe genetic interactions between CAF-1 and essential genes involved in cohesin loading, cohesin stabilization, and cohesin component indicating that CAF-1 is crucial for viability when sister chromatid cohesion is affected. Finally, our data indicate that the CAF-1-dependent pathway required for cohesion is functionally distinct from the Rtt101-Mms1-Mms22 pathway which functions in replicated chromatin assembly. Collectively, our results suggest that the deposition by CAF-1 of newly-synthesized H3-H4 histones during DNA replication creates a chromatin environment that favors sister chromatid cohesion and maintains genome integrity.
Collapse
Affiliation(s)
- Nagham Ghaddar
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Pierre Luciano
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Yves Corda
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| |
Collapse
|
5
|
Haseeb MA, Weng KA, Bickel SE. Chromatin-associated cohesin turns over extensively and forms new cohesive linkages during meiotic prophase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553729. [PMID: 37645916 PMCID: PMC10462139 DOI: 10.1101/2023.08.17.553729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Moreover, nearly complete turnover of chromosome-associated cohesin occurs during meiotic prophase, with faster replacement on the arms than at the centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.
Collapse
Affiliation(s)
- Muhammad A. Haseeb
- Department of Biological Sciences, Dartmouth College 78 College Street, Hanover, NH 03755
| | - Katherine A. Weng
- Department of Biological Sciences, Dartmouth College 78 College Street, Hanover, NH 03755
| | | |
Collapse
|
6
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
7
|
Yu Z, Kim HJ, Dernburg AF. ATM signaling modulates cohesin behavior in meiotic prophase and proliferating cells. Nat Struct Mol Biol 2023; 30:436-450. [PMID: 36879153 PMCID: PMC10113158 DOI: 10.1038/s41594-023-00929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023]
Abstract
Cohesins are ancient and ubiquitous regulators of chromosome architecture and function, but their diverse roles and regulation remain poorly understood. During meiosis, chromosomes are reorganized as linear arrays of chromatin loops around a cohesin axis. This unique organization underlies homolog pairing, synapsis, double-stranded break induction, and recombination. We report that axis assembly in Caenorhabditis elegans is promoted by DNA-damage response (DDR) kinases that are activated at meiotic entry, even in the absence of DNA breaks. Downregulation of the cohesin-destabilizing factor WAPL-1 by ATM-1 promotes axis association of cohesins containing the meiotic kleisins COH-3 and COH-4. ECO-1 and PDS-5 also contribute to stabilizing axis-associated meiotic cohesins. Further, our data suggest that cohesin-enriched domains that promote DNA repair in mammalian cells also depend on WAPL inhibition by ATM. Thus, DDR and Wapl seem to play conserved roles in cohesin regulation in meiotic prophase and proliferating cells.
Collapse
Affiliation(s)
- Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, Berkeley, CA, USA.
| |
Collapse
|
8
|
Choudhary K, Kupiec M. The cohesin complex of yeasts: sister chromatid cohesion and beyond. FEMS Microbiol Rev 2023; 47:6825453. [PMID: 36370456 DOI: 10.1093/femsre/fuac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Each time a cell divides, it needs to duplicate the genome and then separate the two copies. In eukaryotes, which usually have more than one linear chromosome, this entails tethering the two newly replicated DNA molecules, a phenomenon known as sister chromatid cohesion (SCC). Cohesion ensures proper chromosome segregation to separate poles during mitosis. SCC is achieved by the presence of the cohesin complex. Besides its canonical function, cohesin is essential for chromosome organization and DNA damage repair. Surprisingly, yeast cohesin is loaded in G1 before DNA replication starts but only acquires its binding activity during DNA replication. Work in microorganisms, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe has greatly contributed to the understanding of cohesin composition and functions. In the last few years, much progress has been made in elucidating the role of cohesin in chromosome organization and compaction. Here, we discuss the different functions of cohesin to ensure faithful chromosome segregation and genome stability during the mitotic cell division in yeast. We describe what is known about its composition and how DNA replication is coupled with SCC establishment. We also discuss current models for the role of cohesin in chromatin loop extrusion and delineate unanswered questions about the activity of this important, conserved complex.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
9
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
10
|
Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022; 57:333-350. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Collapse
Affiliation(s)
- Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yan Li
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yisui Xia
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xueting Wang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Hongxiang Chen
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Scherzer M, Giordano F, Ferran MS, Ström L. Recruitment of Scc2/4 to double-strand breaks depends on γH2A and DNA end resection. Life Sci Alliance 2022; 5:e202101244. [PMID: 35086935 PMCID: PMC8807874 DOI: 10.26508/lsa.202101244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination enables cells to overcome the threat of DNA double-strand breaks (DSBs), allowing for repair without the loss of genetic information. Central to the homologous recombination repair process is the de novo loading of cohesin around a DSB by its loader complex Scc2/4. Although cohesin's DSB accumulation has been explored in numerous studies, the prerequisites for Scc2/4 recruitment during the repair process are still elusive. To address this question, we combine chromatin immunoprecipitation-qPCR with a site-specific DSB in vivo, in Saccharomyces cerevisiae We find that Scc2 DSB recruitment relies on γH2A and Tel1, but as opposed to cohesin, not on Mec1. We further show that the binding of Scc2, which emanates from the break site, depends on and coincides with DNA end resection. Absence of chromatin remodeling at the DSB affects Scc2 binding and DNA end resection to a comparable degree, further indicating the latter to be a major driver for Scc2 recruitment. Our results shed light on the intricate DSB repair cascade leading to the recruitment of Scc2/4 and subsequent loading of cohesin.
Collapse
Affiliation(s)
- Martin Scherzer
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fosco Giordano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Solé Ferran
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Ström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Osadska M, Selicky T, Kretova M, Jurcik J, Sivakova B, Cipakova I, Cipak L. The Interplay of Cohesin and RNA Processing Factors: The Impact of Their Alterations on Genome Stability. Int J Mol Sci 2022; 23:3939. [PMID: 35409298 PMCID: PMC8999970 DOI: 10.3390/ijms23073939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Michaela Osadska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| |
Collapse
|
13
|
Phipps J, Dubrana K. DNA Repair in Space and Time: Safeguarding the Genome with the Cohesin Complex. Genes (Basel) 2022; 13:198. [PMID: 35205243 PMCID: PMC8872453 DOI: 10.3390/genes13020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a deleterious form of DNA damage, which must be robustly addressed to ensure genome stability. Defective repair can result in chromosome loss, point mutations, loss of heterozygosity or chromosomal rearrangements, which could lead to oncogenesis or cell death. We explore the requirements for the successful repair of DNA DSBs by non-homologous end joining and homology-directed repair (HDR) mechanisms in relation to genome folding and dynamics. On the occurrence of a DSB, local and global chromatin composition and dynamics, as well as 3D genome organization and break localization within the nuclear space, influence how repair proceeds. The cohesin complex is increasingly implicated as a key regulator of the genome, influencing chromatin composition and dynamics, and crucially genome organization through folding chromosomes by an active loop extrusion mechanism, and maintaining sister chromatid cohesion. Here, we consider how this complex is now emerging as a key player in the DNA damage response, influencing repair pathway choice and efficiency.
Collapse
Affiliation(s)
| | - Karine Dubrana
- UMR Stabilité Génétique Cellules Souches et Radiations, INSERM, iRCM/IBFJ CEA, Université de Paris and Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France;
| |
Collapse
|
14
|
Piazza A, Bordelet H, Dumont A, Thierry A, Savocco J, Girard F, Koszul R. Cohesin regulates homology search during recombinational DNA repair. Nat Cell Biol 2021; 23:1176-1186. [PMID: 34750581 DOI: 10.1038/s41556-021-00783-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination repairs DNA double-strand breaks (DSB) using an intact dsDNA molecule as a template. It entails a homology search step, carried out along a conserved RecA/Rad51-ssDNA filament assembled on each DSB end. Whether, how and to what extent a DSB impacts chromatin folding, and how this (re)organization in turns influences the homology search process, remain ill-defined. Here we characterize two layers of spatial chromatin reorganization following DSB formation in Saccharomyces cerevisiae. Although cohesin folds chromosomes into cohesive arrays of ~20-kb-long chromatin loops as cells arrest in G2/M, the DSB-flanking regions interact locally in a resection- and 9-1-1 clamp-dependent manner, independently of cohesin, Mec1ATR, Rad52 and Rad51. This local structure blocks cohesin progression, constraining the DSB region at the base of a loop. Functionally, cohesin promotes DSB-dsDNA interactions and donor identification in cis, while inhibiting them in trans. This study identifies multiple direct and indirect ways by which cohesin regulates homology search during recombinational DNA repair.
Collapse
Affiliation(s)
- Aurèle Piazza
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France.
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France.
| | - Hélène Bordelet
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Agnès Dumont
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
| | - Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Fabien Girard
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France.
| |
Collapse
|
15
|
Kothiwal D, Gopinath S, Laloraya S. Cohesin dysfunction results in cell wall defects in budding yeast. Genetics 2021; 217:1-16. [PMID: 33683362 DOI: 10.1093/genetics/iyaa023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/17/2020] [Indexed: 11/14/2022] Open
Abstract
Cohesin is a conserved chromatin-binding multisubunit protein complex involved in diverse chromosomal transactions such as sister-chromatid cohesion, chromosome condensation, regulation of gene expression, DNA replication, and repair. While working with a budding yeast temperature-sensitive mutant, mcd1-1, defective in a cohesin subunit, we observed that it was resistant to zymolyase, indicating an altered cell wall organization. The budding yeast cell wall is a strong but elastic structure essential for maintenance of cell shape and protection from extreme environmental challenges. Here, we show that the cohesin complex plays an important role in cell wall maintenance. Cohesin mutants showed high chitin content in the cell wall and sensitivity to multiple cell wall stress-inducing agents. Interestingly, temperature-dependent lethality of cohesin mutants was osmoremedial, in a HOG1-MAPK pathway-dependent manner, suggesting that the temperature sensitivity of these mutants may arise partially from cell wall defects. Moreover, Mpk1 hyper-phosphorylation indicated activation of the cell wall integrity (CWI) signaling pathway in cohesin mutants. Genetic interaction analysis revealed that the CWI pathway is essential for survival of mcd1-1 upon additional cell wall stress. The cell wall defect was independent of the cohesion function and accompanied by misregulation of expression of several genes having cell wall-related functions. Our findings reveal a requirement of cohesin in maintenance of CWI that is independent of the CWI pathway, and that may arise from cohesin's role in regulating the expression of multiple genes encoding proteins involved in cell wall organization and biosynthesis.
Collapse
Affiliation(s)
- Deepash Kothiwal
- Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Swagathnath Gopinath
- Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Shikha Laloraya
- Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
16
|
Hydroxyurea-The Good, the Bad and the Ugly. Genes (Basel) 2021; 12:genes12071096. [PMID: 34356112 PMCID: PMC8304116 DOI: 10.3390/genes12071096] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Hydroxyurea (HU) is mostly referred to as an inhibitor of ribonucleotide reductase (RNR) and as the agent that is commonly used to arrest cells in the S-phase of the cycle by inducing replication stress. It is a well-known and widely used drug, one which has proved to be effective in treating chronic myeloproliferative disorders and which is considered a staple agent in sickle anemia therapy and—recently—a promising factor in preventing cognitive decline in Alzheimer’s disease. The reversibility of HU-induced replication inhibition also makes it a common laboratory ingredient used to synchronize cell cycles. On the other hand, prolonged treatment or higher dosage of hydroxyurea causes cell death due to accumulation of DNA damage and oxidative stress. Hydroxyurea treatments are also still far from perfect and it has been suggested that it facilitates skin cancer progression. Also, recent studies have shown that hydroxyurea may affect a larger number of enzymes due to its less specific interaction mechanism, which may contribute to further as-yet unspecified factors affecting cell response. In this review, we examine the actual state of knowledge about hydroxyurea and the mechanisms behind its cytotoxic effects. The practical applications of the recent findings may prove to enhance the already existing use of the drug in new and promising ways.
Collapse
|
17
|
Luo Y, Wang J, Bai X, Xiao H, Tao W, Zhou L, Wang D, Wei J. Differential expression patterns of the two paralogous Rec8 from Nile tilapia and their responsiveness to retinoic acid signaling. Comp Biochem Physiol B Biochem Mol Biol 2021; 253:110563. [PMID: 33482354 DOI: 10.1016/j.cbpb.2021.110563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/10/2020] [Accepted: 01/10/2021] [Indexed: 11/18/2022]
Abstract
REC8 (meiotic recombination protein 8) is an essential component of meiotic cohesion complexes. Interestingly, two paralogous rec8 genes happen to exist in the stra8 (stimulated by retinoic acid gene 8)-absent fishes but not in stra8-existing fishes. Stra8 is usually considered as the prerequirement during RA (retinoic acid)-mediated meiosis initiation in mammals. However, how RA triggers meiosis in the stra8-absent fishes just like Nile tilapia (Oreochromis niloticus) remains elusive. Here we characterized the two paralogous rec8 genes in Nile tilapia (Onrec8a and Onrec8b), and investigated their expression patterns and responsiveness to RA signaling by treatment of ex vivo testicular culture and promoter luciferase reporter assay. OnRec8a and OnRec8b share 36% identity to each other and are true orthologs of REC8. Their expression was predominantly restricted to meiotic germline cells with differential spatiotemporal patterns. During spermatogenesis, OnRec8b predominantly exhibited nuclear expression in spermatocytes from 60 dah (days after hatching), while OnRec8a exhibited cytoplasmic expression from 90 dah. During oogenesis, OnRec8a was expressed from 30 dah, while OnRec8b from 90 dah. Further study shows that RA signaling could upregulate the expression of both Onrec8a and Onrec8b. Collectively, our data implies that OnRec8a and OnRec8b might have differential function during meiosis and be involved in RA-mediated meiosis program.
Collapse
Affiliation(s)
- Yubing Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China; Lijia Middle School, Chongqing, 401122 Chongqing, China
| | - Jie Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Xiaoming Bai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China.
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, China.
| |
Collapse
|
18
|
Mfarej MG, Skibbens RV. DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae. PLoS One 2020; 15:e0242968. [PMID: 33373396 PMCID: PMC7771704 DOI: 10.1371/journal.pone.0242968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast Eco1 (ESCO2 in humans) acetyltransferase converts chromatin-bound cohesins to a DNA tethering state, thereby establishing sister chromatid cohesion. Eco1 establishes cohesion during DNA replication, after which Eco1 is targeted for degradation by SCF E3 ubiquitin ligase. SCF E3 ligase, and sequential phosphorylations that promote Eco1 ubiquitination and degradation, remain active throughout the M phase. In this way, Eco1 protein levels are high during S phase, but remain low throughout the remaining cell cycle. In response to DNA damage during M phase, however, Eco1 activity increases-providing for a new wave of cohesion establishment (termed Damage-Induced Cohesion, or DIC) which is critical for efficient DNA repair. To date, little evidence exists as to the mechanism through which Eco1 activity increases during M phase in response to DNA damage. Possibilities include that either the kinases or E3 ligase, that target Eco1 for degradation, are inhibited in response to DNA damage. Our results reveal instead that the degradation machinery remains fully active during M phase, despite the presence of DNA damage. In testing alternate models through which Eco1 activity increases in response to DNA damage, the results reveal that DNA damage induces new transcription of ECO1 and at a rate that exceeds the rate of Eco1 turnover, providing for rapid accumulation of Eco1 protein. We further show that DNA damage induction of ECO1 transcription is in part regulated by Yap5-a stress-induced transcription factor. Given the role for mutated ESCO2 (homolog of ECO1) in human birth defects, this study highlights the complex nature through which mutation of ESCO2, and defects in ESCO2 regulation, may promote developmental abnormalities and contribute to various diseases including cancer.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
19
|
Cheng H, Zhang N, Pati D. Cohesin subunit RAD21: From biology to disease. Gene 2020; 758:144966. [PMID: 32687945 PMCID: PMC7949736 DOI: 10.1016/j.gene.2020.144966] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
RAD21 (also known as KIAA0078, NXP1, HR21, Mcd1, Scc1, and hereafter called RAD21), an essential gene, encodes a DNA double-strand break (DSB) repair protein that is evolutionarily conserved in all eukaryotes from budding yeast to humans. RAD21 protein is a structural component of the highly conserved cohesin complex consisting of RAD21, SMC1a, SMC3, and SCC3 [STAG1 (SA1) and STAG2 (SA2) in metazoans] proteins, involved in sister chromatid cohesion. This function is essential for proper chromosome segregation, post-replicative DNA repair, and prevention of inappropriate recombination between repetitive regions. In interphase, cohesin also functions in the control of gene expression by binding to numerous sites within the genome. In addition to playing roles in the normal cell cycle and DNA DSB repair, RAD21 is also linked to the apoptotic pathways. Germline heterozygous or homozygous missense mutations in RAD21 have been associated with human genetic disorders, including developmental diseases such as Cornelia de Lange syndrome (CdLS) and chronic intestinal pseudo-obstruction (CIPO) called Mungan syndrome, respectively, and collectively termed as cohesinopathies. Somatic mutations and amplification of the RAD21 have also been widely reported in both human solid and hematopoietic tumors. Considering the role of RAD21 in a broad range of cellular processes that are hot spots in neoplasm, it is not surprising that the deregulation of RAD21 has been increasingly evident in human cancers. Herein, we review the biology of RAD21 and the cellular processes that this important protein regulates and discuss the significance of RAD21 deregulation in cancer and cohesinopathies.
Collapse
Affiliation(s)
- Haizi Cheng
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nenggang Zhang
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Debananda Pati
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
20
|
Liu HW, Bouchoux C, Panarotto M, Kakui Y, Patel H, Uhlmann F. Division of Labor between PCNA Loaders in DNA Replication and Sister Chromatid Cohesion Establishment. Mol Cell 2020; 78:725-738.e4. [PMID: 32277910 PMCID: PMC7242910 DOI: 10.1016/j.molcel.2020.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 03/10/2020] [Indexed: 01/26/2023]
Abstract
Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Several replication-fork-associated "cohesion establishment factors," including the multifunctional Ctf18-RFC complex, aid this process in as yet unknown ways. Here, we show that Ctf18-RFC's role in sister chromatid cohesion correlates with PCNA loading but is separable from its role in the replication checkpoint. Ctf18-RFC loads PCNA with a slight preference for the leading strand, which is dispensable for DNA replication. Conversely, the canonical Rfc1-RFC complex preferentially loads PCNA onto the lagging strand, which is crucial for DNA replication but dispensable for sister chromatid cohesion. The downstream effector of Ctf18-RFC is cohesin acetylation, which we place toward a late step during replication maturation. Our results suggest that Ctf18-RFC enriches and balances PCNA levels at the replication fork, beyond the needs of DNA replication, to promote establishment of sister chromatid cohesion and possibly other post-replicative processes.
Collapse
Affiliation(s)
- Hon Wing Liu
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mélanie Panarotto
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yasutaka Kakui
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
21
|
Hsieh YYP, Makrantoni V, Robertson D, Marston AL, Murray AW. Evolutionary repair: Changes in multiple functional modules allow meiotic cohesin to support mitosis. PLoS Biol 2020; 18:e3000635. [PMID: 32155147 PMCID: PMC7138332 DOI: 10.1371/journal.pbio.3000635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/07/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The role of proteins often changes during evolution, but we do not know how cells adapt when a protein is asked to participate in a different biological function. We forced the budding yeast, Saccharomyces cerevisiae, to use the meiosis-specific kleisin, recombination 8 (Rec8), during the mitotic cell cycle, instead of its paralog, Scc1. This perturbation impairs sister chromosome linkage, advances the timing of genome replication, and reduces reproductive fitness by 45%. We evolved 15 parallel populations for 1,750 generations, substantially increasing their fitness, and analyzed the genotypes and phenotypes of the evolved cells. Only one population contained a mutation in Rec8, but many populations had mutations in the transcriptional mediator complex, cohesin-related genes, and cell cycle regulators that induce S phase. These mutations improve sister chromosome cohesion and delay genome replication in Rec8-expressing cells. We conclude that changes in known and novel partners allow cells to use an existing protein to participate in new biological functions.
Collapse
Affiliation(s)
- Yu-Ying Phoebe Hsieh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Vasso Makrantoni
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Robertson
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Adèle L. Marston
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
22
|
Dubrez L, Causse S, Borges Bonan N, Dumétier B, Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene 2019; 39:516-529. [DOI: 10.1038/s41388-019-1016-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
|
23
|
McKay MJ, Craig J, Kalitsis P, Kozlov S, Verschoor S, Chen P, Lobachevsky P, Vasireddy R, Yan Y, Ryan J, McGillivray G, Savarirayan R, Lavin MF, Ramsay RG, Xu H. A Roberts Syndrome Individual With Differential Genotoxin Sensitivity and a DNA Damage Response Defect. Int J Radiat Oncol Biol Phys 2019; 103:1194-1202. [PMID: 30508616 DOI: 10.1016/j.ijrobp.2018.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/14/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Roberts syndrome (RBS) is a rare, recessively transmitted developmental disorder characterized by growth retardation, craniofacial abnormalities, and truncation of limbs. All affected individuals to date have mutations in the ESCO2 (establishment of cohesion 2) gene, a key regulator of the cohesin complex, which is involved in sister chromatid cohesion and DNA double-strand break (DSB) repair. Here we characterize DNA damage responses (DDRs) for the first time in an RBS-affected family. METHODS AND MATERIALS Lymphoblastoid cell lines were established from an RBS family, including the proband and parents carrying ESCO2 mutations. Various DDR assays were performed on these cells, including cell survival, chromosome break, and apoptosis assays; checkpoint activation indicators; and measures of DNA breakage and repair. RESULTS Cells derived from the RBS-affected individual showed sensitivity to ionizing radiation (IR) and mitomycin C-induced DNA damage. In this ESCO2 compound heterozygote, other DDRs were also defective, including enhanced IR-induced clastogenicity and apoptosis; increased DNA DSB induction; and a reduced capacity for repairing IR-induced DNA DSBs, as measured by γ-H2AX foci and the comet assay. CONCLUSIONS In addition to its developmental features, RBS can be, like ataxia telangiectasia, considered a DDR-defective syndrome, which contributes to its cellular, molecular, and clinical phenotype.
Collapse
Affiliation(s)
- Michael J McKay
- Olivia Newton-John Cancer Research Institute and Austin Health, Heidelberg, Victoria, Australia; Latrobe University, Bundoora, Victoria, Australia
| | - Jeffery Craig
- School of Medicine, Deakin University, Geelong Waurn Campus, Geelong, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paul Kalitsis
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Sergei Kozlov
- University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland, Australia
| | - Sandra Verschoor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Phillip Chen
- University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland, Australia
| | - Pavel Lobachevsky
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Raja Vasireddy
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yuqian Yan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jacinta Ryan
- School of Medicine, Flinders University, Adelaide, South Australia, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland, Australia
| | - Robert G Ramsay
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Huiling Xu
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia; College of Life Sciences, Shanxi Normal University, Linfen, Shanxi, China.
| |
Collapse
|
24
|
Bommi JR, Rao HBDP, Challa K, Higashide M, Shinmyozu K, Nakayama JI, Shinohara M, Shinohara A. Meiosis-specific cohesin component, Rec8, promotes the localization of Mps3 SUN domain protein on the nuclear envelope. Genes Cells 2019; 24:94-106. [PMID: 30417519 DOI: 10.1111/gtc.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Proteins in the nuclear envelope (NE) play a role in the dynamics and functions of the nucleus and of chromosomes during mitosis and meiosis. Mps3, a yeast NE protein with a conserved SUN domain, predominantly localizes on a yeast centrosome equivalent, spindle pole body (SPB), in mitotic cells. During meiosis, Mps3, together with SPB, forms a distinct multiple ensemble on NE. How meiosis-specific NE localization of Mps3 is regulated remains largely unknown. In this study, we found that a meiosis-specific component of the protein complex essential for sister chromatid cohesion, Rec8, binds to Mps3 during meiosis and controls Mps3 localization and proper dynamics on NE. Ectopic expression of Rec8 in mitotic yeast cells induced the formation of Mps3 patches/foci on NE. This required the cohesin regulator, WAPL ortholog, Rad61/Wpl1, suggesting that a meiosis-specific cohesin complex with Rec8 controls NE localization of Mps3. We also observed that two domains of the nucleoplasmic region of Mps3 are essential for NE localization of Mps3 in mitotic as well as meiotic cells. We speculate that the interaction of Mps3 with the meiosis-specific cohesin in the nucleoplasm is a key determinant for NE localization/function of Mps3.
Collapse
Affiliation(s)
| | | | - Kiran Challa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mika Higashide
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Jun-Ichi Nakayama
- RIKEN Center for Developmental Biology, Kobe, Japan
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
25
|
Ishiguro K. The cohesin complex in mammalian meiosis. Genes Cells 2019; 24:6-30. [PMID: 30479058 PMCID: PMC7379579 DOI: 10.1111/gtc.12652] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Cohesin is an evolutionary conserved multi-protein complex that plays a pivotal role in chromosome dynamics. It plays a role both in sister chromatid cohesion and in establishing higher order chromosome architecture, in somatic and germ cells. Notably, the cohesin complex in meiosis differs from that in mitosis. In mammalian meiosis, distinct types of cohesin complexes are produced by altering the combination of meiosis-specific subunits. The meiosis-specific subunits endow the cohesin complex with specific functions for numerous meiosis-associated chromosomal events, such as chromosome axis formation, homologue association, meiotic recombination and centromeric cohesion for sister kinetochore geometry. This review mainly focuses on the cohesin complex in mammalian meiosis, pointing out the differences in its roles from those in mitosis. Further, common and divergent aspects of the meiosis-specific cohesin complex between mammals and other organisms are discussed.
Collapse
Affiliation(s)
- Kei‐ichiro Ishiguro
- Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| |
Collapse
|
26
|
Oh J, Symington LS. Role of the Mre11 Complex in Preserving Genome Integrity. Genes (Basel) 2018; 9:E589. [PMID: 30501098 PMCID: PMC6315862 DOI: 10.3390/genes9120589] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous lesions that threaten genome integrity and cell survival. The DNA damage response (DDR) safeguards the genome by sensing DSBs, halting cell cycle progression and promoting repair through either non-homologous end joining (NHEJ) or homologous recombination (HR). The Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex is central to the DDR through its structural, enzymatic, and signaling roles. The complex tethers DNA ends, activates the Tel1/ATM kinase, resolves protein-bound or hairpin-capped DNA ends, and maintains telomere homeostasis. In addition to its role at DSBs, MRX/N associates with unperturbed replication forks, as well as stalled replication forks, to ensure complete DNA synthesis and to prevent chromosome rearrangements. Here, we summarize the significant progress made in characterizing the MRX/N complex and its various activities in chromosome metabolism.
Collapse
Affiliation(s)
- Julyun Oh
- Biological Sciences Program, Columbia University, New York, NY 10027, USA.
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
27
|
Litwin I, Pilarczyk E, Wysocki R. The Emerging Role of Cohesin in the DNA Damage Response. Genes (Basel) 2018; 9:genes9120581. [PMID: 30487431 PMCID: PMC6316000 DOI: 10.3390/genes9120581] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Faithful transmission of genetic material is crucial for all organisms since changes in genetic information may result in genomic instability that causes developmental disorders and cancers. Thus, understanding the mechanisms that preserve genome integrity is of fundamental importance. Cohesin is a multiprotein complex whose canonical function is to hold sister chromatids together from S-phase until the onset of anaphase to ensure the equal division of chromosomes. However, recent research points to a crucial function of cohesin in the DNA damage response (DDR). In this review, we summarize recent advances in the understanding of cohesin function in DNA damage signaling and repair. First, we focus on cohesin architecture and molecular mechanisms that govern sister chromatid cohesion. Next, we briefly characterize the main DDR pathways. Finally, we describe mechanisms that determine cohesin accumulation at DNA damage sites and discuss possible roles of cohesin in DDR.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Ewa Pilarczyk
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| |
Collapse
|
28
|
Oh J, Lee SJ, Rothstein R, Symington LS. Xrs2 and Tel1 Independently Contribute to MR-Mediated DNA Tethering and Replisome Stability. Cell Rep 2018; 25:1681-1692.e4. [PMID: 30428339 PMCID: PMC6317890 DOI: 10.1016/j.celrep.2018.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/08/2018] [Accepted: 10/05/2018] [Indexed: 02/04/2023] Open
Abstract
The yeast Mre11-Rad50-Xrs2 (MRX) complex has structural, signaling, and catalytic functions in the response to DNA damage. Xrs2, the eukaryotic-specific component of the complex, is required for nuclear import of Mre11 and Rad50 and to recruit the Tel1 kinase to damage sites. We show that nuclear-localized MR complex (Mre11-NLS) catalyzes homology-dependent repair without Xrs2, but MR cannot activate Tel1, and it fails to tether DSBs, resulting in sensitivity to genotoxins, replisome instability, and increased gross chromosome rearrangements (GCRs). Fusing the Tel1 interaction domain from Xrs2 to Mre11-NLS is sufficient to restore telomere elongation and Tel1 signaling to Xrs2-deficient cells. Furthermore, Tel1 stabilizes Mre11-DNA association, and this stabilization function becomes important for DNA damage resistance in the absence of Xrs2. Enforcing Tel1 recruitment to the nuclear MR complex fully rescues end tethering and stalled replication fork stability, and suppresses GCRs, highlighting important roles for Xrs2 and Tel1 to ensure optimal MR activity.
Collapse
Affiliation(s)
- Julyun Oh
- Biological Sciences Program, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - So Jung Lee
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rodney Rothstein
- Biological Sciences Program, Columbia University, New York, NY 10027, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Biological Sciences Program, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
29
|
Sutherland JH, Holloman WK. Loss of Cohesin Subunit Rec8 Switches Rad51 Mediator Dependence in Resistance to Formaldehyde Toxicity in Ustilago maydis. Genetics 2018; 210:559-572. [PMID: 30082279 PMCID: PMC6216591 DOI: 10.1534/genetics.118.301439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/03/2018] [Indexed: 01/08/2023] Open
Abstract
DNA-protein cross-links (DPCs) are frequently occurring lesions that provoke continual threats to the integrity of the genome by interference with replication and transcription. Reactive aldehydes generated from endogenous metabolic processes or produced in the environment are sources that trigger cross-linking of DNA with associated proteins. DNA repair pathways in place for removing DPCs, or for bypassing them to enable completion of replication, include homologous recombination (HR) and replication fork remodeling (FR) systems. Here, we surveyed a set of mutants defective in known HR and FR components to determine their contribution toward maintaining resistance to chronic formaldehyde (FA) exposure in Ustilago maydis, a fungus that relies on the BRCA2-family member Brh2 as the principal Rad51 mediator in repair of DNA strand breaks. We found that, in addition to Brh2, Rad52 was also vital for resistance to FA. Deleting the gene for Rec8, a kleisin subunit of cohesin, eliminated the requirement for Brh2, but not Rad52, in FA resistance. The Rad51K133R mutant variant that is able to bind DNA but unable to dissociate from it was able to support resistance to FA. These findings suggest a model for DPC repair and tolerance that features a specialized role for Rad52, enabling Rad51 to access DNA in its noncanonical capacity of replication fork protection rather than DNA strand transfer.
Collapse
Affiliation(s)
- Jeanette H Sutherland
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - William K Holloman
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
30
|
Litwin I, Bakowski T, Szakal B, Pilarczyk E, Maciaszczyk-Dziubinska E, Branzei D, Wysocki R. Error-free DNA damage tolerance pathway is facilitated by the Irc5 translocase through cohesin. EMBO J 2018; 37:e98732. [PMID: 30111537 PMCID: PMC6138436 DOI: 10.15252/embj.201798732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
DNA damage tolerance (DDT) mechanisms facilitate replication resumption and completion when DNA replication is blocked by bulky DNA lesions. In budding yeast, template switching (TS) via the Rad18/Rad5 pathway is a favored DDT pathway that involves usage of the sister chromatid as a template to bypass DNA lesions in an error-free recombination-like process. Here, we establish that the Snf2 family translocase Irc5 is a novel factor that promotes TS and averts single-stranded DNA persistence during replication. We demonstrate that, during replication stress, Irc5 enables replication progression by assisting enrichment of cohesin complexes, recruited in an Scc2/Scc4-dependent fashion, near blocked replication forks. This allows efficient formation of sister chromatid junctions that are crucial for error-free DNA lesion bypass. Our results support the notion of a key role of cohesin in the completion of DNA synthesis under replication stress and reveal that the Rad18/Rad5-mediated DDT pathway is linked to cohesin enrichment at sites of perturbed replication via the Snf2 family translocase Irc5.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Tomasz Bakowski
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Barnabas Szakal
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Ewa Pilarczyk
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | | | - Dana Branzei
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
31
|
Sanyal S, Molnarova L, Richterova J, Huraiova B, Benko Z, Polakova S, Cipakova I, Sevcovicova A, Gaplovska-Kysela K, Mechtler K, Cipak L, Gregan J. Mutations that prevent methylation of cohesin render sensitivity to DNA damage in S. pombe. J Cell Sci 2018; 131:jcs214924. [PMID: 29898918 PMCID: PMC6051343 DOI: 10.1242/jcs.214924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/04/2018] [Indexed: 01/18/2023] Open
Abstract
The canonical role of cohesin is to mediate sister chromatid cohesion. In addition, cohesin plays important roles in processes such as DNA repair and regulation of gene expression. Mounting evidence suggests that various post-translational modifications, including phosphorylation, acetylation and sumoylation regulate cohesin functions. Our mass spectrometry analysis of cohesin purified from Schizosaccharomyces pombe cells revealed that the cohesin subunit Psm1 is methylated on two evolutionarily conserved lysine residues, K536 and K1200. We found that mutations that prevent methylation of Psm1 K536 and K1200 render sensitivity to DNA-damaging agents and show positive genetic interactions with mutations in genes encoding the Mus81-Eme1 endonuclease. Yeast two-hybrid and co-immunoprecipitation assays showed that there were interactions between subunits of the cohesin and Mus81-Eme1 complexes. We conclude that cohesin is methylated and that mutations that prevent methylation of Psm1 K536 and K1200 show synthetic phenotypes with mutants defective in the homologous recombination DNA repair pathway.
Collapse
Affiliation(s)
- Swastika Sanyal
- Department of Chromosome Biology, MFPL, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Lucia Molnarova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Judita Richterova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Barbora Huraiova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Zsigmond Benko
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Silvia Polakova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Katarina Gaplovska-Kysela
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, MFPL, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Advanced Microscopy Facility, Vienna Biocenter Core Facilities, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
32
|
Frattini C, Villa-Hernández S, Pellicanò G, Jossen R, Katou Y, Shirahige K, Bermejo R. Cohesin Ubiquitylation and Mobilization Facilitate Stalled Replication Fork Dynamics. Mol Cell 2017; 68:758-772.e4. [PMID: 29129641 DOI: 10.1016/j.molcel.2017.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/11/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
Replication fork integrity is challenged in conditions of stress and protected by the Mec1/ATR checkpoint to preserve genome stability. Still poorly understood in fork protection is the role played by the structural maintenance of chromosomes (SMC) cohesin complex. We uncovered a role for the Rsp5Bul2 ubiquitin ligase in promoting survival to replication stress by preserving stalled fork integrity. Rsp5Bul2 physically interacts with cohesin and the Mec1 kinase, thus promoting checkpoint-dependent cohesin ubiquitylation and cohesin-mediated fork protection. Ubiquitylation mediated by Rsp5Bul2 promotes cohesin mobilization from chromatin neighboring stalled forks, likely by stimulating the Cdc48/p97 ubiquitin-selective segregase, and its timely association to nascent chromatids. This Rsp5Bul2 fork protection mechanism requires the Wpl1 cohesin mobilizer as well as the function of the Eco1 acetyltransferase securing sister chromatid entrapment. Our data indicate that ubiquitylation facilitates cohesin dynamic interfacing with replication forks within a mechanism preserving stalled-fork functional architecture.
Collapse
Affiliation(s)
- Camilla Frattini
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain; Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sara Villa-Hernández
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain; Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Grazia Pellicanò
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rachel Jossen
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Yuki Katou
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi Bunkyo-Ku, Tokyo, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi Bunkyo-Ku, Tokyo, Japan
| | - Rodrigo Bermejo
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain; Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
33
|
Zhang N, Pati D. Biology and insights into the role of cohesin protease separase in human malignancies. Biol Rev Camb Philos Soc 2017; 92:2070-2083. [PMID: 28177203 DOI: 10.1111/brv.12321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
Abstract
Separase, an enzyme that resolves sister chromatid cohesion during the metaphase-to-anaphase transition, plays a pivotal role in chromosomal segregation and cell division. Separase protein, encoded by the extra spindle pole bodies like 1 (ESPL1) gene, is overexpressed in numerous human cancers including breast, bone, brain, and prostate. Separase is oncogenic, and its overexpression is sufficient to induce mammary tumours in mice. Either acute or chronic overexpression of separase in mouse mammary glands leads to aneuploidy and tumorigenesis, and inhibition of separase enzymatic activity decreases the growth of human breast tumour xenografts in mice. This review focuses on the biology of and insights into the molecular mechanisms of separase as an oncogene, and its significance and implications for human cancers.
Collapse
Affiliation(s)
- Nenggang Zhang
- Departments of Pediatrics and Molecular and Cellular Biology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates St., FC1220, Houston, TX 77030, U.S.A
| | - Debananda Pati
- Departments of Pediatrics and Molecular and Cellular Biology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates St., FC1220, Houston, TX 77030, U.S.A
| |
Collapse
|
34
|
Seeber A, Hegnauer AM, Hustedt N, Deshpande I, Poli J, Eglinger J, Pasero P, Gut H, Shinohara M, Hopfner KP, Shimada K, Gasser SM. RPA Mediates Recruitment of MRX to Forks and Double-Strand Breaks to Hold Sister Chromatids Together. Mol Cell 2016; 64:951-966. [PMID: 27889450 DOI: 10.1016/j.molcel.2016.10.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
The Mre11-Rad50-Xrs2 (MRX) complex is related to SMC complexes that form rings capable of holding two distinct DNA strands together. MRX functions at stalled replication forks and double-strand breaks (DSBs). A mutation in the N-terminal OB fold of the 70 kDa subunit of yeast replication protein A, rfa1-t11, abrogates MRX recruitment to both types of DNA damage. The rfa1 mutation is functionally epistatic with loss of any of the MRX subunits for survival of replication fork stress or DSB recovery, although it does not compromise end-resection. High-resolution imaging shows that either the rfa1-t11 or the rad50Δ mutation lets stalled replication forks collapse and allows the separation not only of opposing ends but of sister chromatids at breaks. Given that cohesin loss does not provoke visible sister separation as long as the RPA-MRX contacts are intact, we conclude that MRX also serves as a structural linchpin holding sister chromatids together at breaks.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Anna Maria Hegnauer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicole Hustedt
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Ishan Deshpande
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jérôme Poli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Philippe Pasero
- Institute of Human Genetics, CNRS UPR 1142, 34090 Montpellier, France
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
35
|
Liu YJ, Liu C, Chang Z, Wadas B, Brower CS, Song ZH, Xu ZL, Shang YL, Liu WX, Wang LN, Dong W, Varshavsky A, Hu RG, Li W. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway. J Biol Chem 2016; 291:7426-38. [PMID: 26858254 DOI: 10.1074/jbc.m116.714964] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 02/05/2023] Open
Abstract
The Ate1 arginyltransferase (R-transferase) is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. Ate1 arginylates N-terminal Asp, Glu, or (oxidized) Cys. The resulting N-terminal Arg is recognized by ubiquitin ligases of the N-end rule pathway. In the yeastSaccharomyces cerevisiae, the separase-mediated cleavage of the Scc1/Rad21/Mcd1 cohesin subunit generates a C-terminal fragment that bears N-terminal Arg and is destroyed by the N-end rule pathway without a requirement for arginylation. In contrast, the separase-mediated cleavage of Rec8, the mammalian meiotic cohesin subunit, yields a fragment bearing N-terminal Glu, a substrate of the Ate1 R-transferase. Here we constructed and used a germ cell-confinedAte1(-/-)mouse strain to analyze the separase-generated C-terminal fragment of Rec8. We show that this fragment is a short-lived N-end rule substrate, that its degradation requires N-terminal arginylation, and that maleAte1(-/-)mice are nearly infertile, due to massive apoptotic death ofAte1(-/-)spermatocytes during the metaphase of meiosis I. These effects ofAte1ablation are inferred to be caused, at least in part, by the failure to destroy the C-terminal fragment of Rec8 in the absence of N-terminal arginylation.
Collapse
Affiliation(s)
- Yu-Jiao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the College of Marine Life, Ocean University of China, Qingdao 266003, China, and
| | - Chao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - ZeNan Chang
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brandon Wadas
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Christopher S Brower
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Zhen-Hua Song
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Liang Xu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Shang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Xiao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Na Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Dong
- the College of Marine Life, Ocean University of China, Qingdao 266003, China, and
| | - Alexander Varshavsky
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Rong-Gui Hu
- the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
36
|
Crawley O, Barroso C, Testori S, Ferrandiz N, Silva N, Castellano-Pozo M, Jaso-Tamame AL, Martinez-Perez E. Cohesin-interacting protein WAPL-1 regulates meiotic chromosome structure and cohesion by antagonizing specific cohesin complexes. eLife 2016; 5:e10851. [PMID: 26841696 PMCID: PMC4758955 DOI: 10.7554/elife.10851] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
Wapl induces cohesin dissociation from DNA throughout the mitotic cell cycle, modulating sister chromatid cohesion and higher-order chromatin structure. Cohesin complexes containing meiosis-specific kleisin subunits govern most aspects of meiotic chromosome function, but whether Wapl regulates these complexes remains unknown. We show that during C. elegans oogenesis WAPL-1 antagonizes binding of cohesin containing COH-3/4 kleisins, but not REC-8, demonstrating that sensitivity to WAPL-1 is dictated by kleisin identity. By restricting the amount of chromosome-associated COH-3/4 cohesin, WAPL-1 controls chromosome structure throughout meiotic prophase. In the absence of REC-8, WAPL-1 inhibits COH-3/4-mediated cohesion, which requires crossover-fated events formed during meiotic recombination. Thus, WAPL-1 promotes functional specialization of meiotic cohesin: WAPL-1-sensitive COH-3/4 complexes modulate higher-order chromosome structure, while WAPL-1-refractory REC-8 complexes provide stable cohesion. Surprisingly, a WAPL-1-independent mechanism removes cohesin before metaphase I. Our studies provide insight into how meiosis-specific cohesin complexes are regulated to ensure formation of euploid gametes.
Collapse
Affiliation(s)
- Oliver Crawley
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Consuelo Barroso
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Sarah Testori
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nuria Ferrandiz
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicola Silva
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Maikel Castellano-Pozo
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Angel Luis Jaso-Tamame
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Enrique Martinez-Perez
- Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Abstract
Recombination is a central process to stably maintain and transmit a genome through somatic cell divisions and to new generations. Hence, recombination needs to be coordinated with other events occurring on the DNA template, such as DNA replication, transcription, and the specialized chromosomal functions at centromeres and telomeres. Moreover, regulation with respect to the cell-cycle stage is required as much as spatiotemporal coordination within the nuclear volume. These regulatory mechanisms impinge on the DNA substrate through modifications of the chromatin and directly on recombination proteins through a myriad of posttranslational modifications (PTMs) and additional mechanisms. Although recombination is primarily appreciated to maintain genomic stability, the process also contributes to gross chromosomal arrangements and copy-number changes. Hence, the recombination process itself requires quality control to ensure high fidelity and avoid genomic instability. Evidently, recombination and its regulatory processes have significant impact on human disease, specifically cancer and, possibly, neurodegenerative diseases.
Collapse
Affiliation(s)
- Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616-8665 Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616-8665
| |
Collapse
|
38
|
Liu D, Makaroff CA. Overexpression of a truncated CTF7 construct leads to pleiotropic defects in reproduction and vegetative growth in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:74. [PMID: 25848842 PMCID: PMC4359560 DOI: 10.1186/s12870-015-0452-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/12/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Eco1/Ctf7 is essential for the establishment of sister chromatid cohesion during S phase of the cell cycle. Inactivation of Ctf7/Eco1 leads to a lethal phenotype in most organisms. Altering Eco1/Ctf7 levels or point mutations in the gene can lead to alterations in nuclear division as well as a wide range of developmental defects. Inactivation of Arabidopsis CTF7 (AtCTF7) results in severe defects in reproduction and vegetative growth. RESULTS To further investigate the function(s) of AtCTF7, a tagged version of AtCTF7 and several AtCTF7 deletion constructs were created and transformed into wild type or ctf7 +/- plants. Transgenic plants expressing 35S:NTAP:AtCTF7∆299-345 (AtCTF7∆B) displayed a wide range of phenotypic alterations in reproduction and vegetative growth. Male meiocytes exhibited chromosome fragmentation and uneven chromosome segregation. Mutant ovules contained abnormal megasporocyte-like cells during pre-meiosis, megaspores experienced elongated meiosis and megagametogenesis, and defective megaspores/embryo sacs were produced at various stages. The transgenic plants also exhibited a broad range of vegetative defects, including meristem disruption and dwarfism that were inherited in a non-Mendelian fashion. Transcripts for epigenetically regulated transposable elements (TEs) were elevated in transgenic plants. Transgenic plants expressing 35S:AtCTF7∆B displayed similar vegetative defects, suggesting the defects in 35S:NTAP:AtCTF7∆B plants are caused by high-level expression of AtCTF7∆B. CONCLUSIONS High level expression of AtCTF7∆B disrupts megasporogenesis, megagametogenesis and male meiosis, as well as causing a broad range of vegetative defects, including dwarfism that are inherited in a non-Mendelian fashion.
Collapse
Affiliation(s)
- Desheng Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 USA
| | | |
Collapse
|
39
|
Orgil O, Matityahu A, Eng T, Guacci V, Koshland D, Onn I. A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex. PLoS Genet 2015; 11:e1005036. [PMID: 25748820 PMCID: PMC4352044 DOI: 10.1371/journal.pgen.1005036] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/28/2015] [Indexed: 01/25/2023] Open
Abstract
The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.
Collapse
Affiliation(s)
- Ola Orgil
- Faculty of Medicine in The Galilee, Bar-Ilan University, Safed, Israel
| | - Avi Matityahu
- Faculty of Medicine in The Galilee, Bar-Ilan University, Safed, Israel
| | - Thomas Eng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Vincent Guacci
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Itay Onn
- Faculty of Medicine in The Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
40
|
Covo S, Chiou E, Gordenin DA, Resnick MA. Suppression of allelic recombination and aneuploidy by cohesin is independent of Chk1 in Saccharomyces cerevisiae. PLoS One 2014; 9:e113435. [PMID: 25551702 PMCID: PMC4281242 DOI: 10.1371/journal.pone.0113435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022] Open
Abstract
Sister chromatid cohesion (SCC), which is established during DNA replication, ensures genome stability. Establishment of SCC is inhibited in G2. However, this inhibition is relived and SCC is established as a response to DNA damage, a process known as Damage Induced Cohesion (DIC). In yeast, Chk1, which is a kinase that functions in DNA damage signal transduction, is considered an activator of SCC through DIC. Nonetheless, here we show that, unlike SCC mutations, loss of CHK1 did not increase spontaneous or damage-induced allelic recombination or aneuploidy. We suggest that Chk1 has a redundant role in the control of DIC or that DIC is redundant for maintaining genome stability.
Collapse
Affiliation(s)
- Shay Covo
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Eric Chiou
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
41
|
Tapia-Alveal C, Lin SJ, O’Connell MJ. Functional interplay between cohesin and Smc5/6 complexes. Chromosoma 2014; 123:437-45. [PMID: 24981336 PMCID: PMC4169997 DOI: 10.1007/s00412-014-0474-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/14/2022]
Abstract
Chromosomes are subjected to massive reengineering as they are replicated, transcribed, repaired, condensed, and segregated into daughter cells. Among the engineers are three large protein complexes collectively known as the structural maintenance of chromosome (SMC) complexes: cohesin, condensin, and Smc5/6. As their names suggest, cohesin controls sister chromatid cohesion, condensin controls chromosome condensation, and while precise functions for Smc5/6 have remained somewhat elusive, most reports have focused on the control of recombinational DNA repair. Here, we focus on cohesin and Smc5/6 function. It is becoming increasingly clear that the functional repertoires of these complexes are greater than sister chromatid cohesion and recombination. These SMC complexes are emerging as interrelated and cooperating factors that control chromosome dynamics throughout interphase. However, they also release their embrace of sister chromatids to enable their segregation at anaphase, resetting the dynamic cycle of SMC-chromosome interactions.
Collapse
Affiliation(s)
- Claudia Tapia-Alveal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Su-Jiun Lin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew J. O’Connell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
42
|
Severson AF, Meyer BJ. Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes. eLife 2014; 3:e03467. [PMID: 25171895 PMCID: PMC4174578 DOI: 10.7554/elife.03467] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022] Open
Abstract
We show that multiple, functionally specialized cohesin complexes mediate the establishment and two-step release of sister chromatid cohesion that underlies the production of haploid gametes. In C. elegans, the kleisin subunits REC-8 and COH-3/4 differ between meiotic cohesins and endow them with distinctive properties that specify how cohesins load onto chromosomes and then trigger and release cohesion. Unlike REC-8 cohesin, COH-3/4 cohesin becomes cohesive through a replication-independent mechanism initiated by the DNA double-stranded breaks that induce crossover recombination. Thus, break-induced cohesion also tethers replicated meiotic chromosomes. Later, recombination stimulates separase-independent removal of REC-8 and COH-3/4 cohesins from reciprocal chromosomal territories flanking the crossover site. This region-specific removal likely underlies the two-step separation of homologs and sisters. Unexpectedly, COH-3/4 performs cohesion-independent functions in synaptonemal complex assembly. This new model for cohesin function diverges from that established in yeast but likely applies directly to plants and mammals, which utilize similar meiotic kleisins.
Collapse
Affiliation(s)
- Aaron F Severson
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
43
|
Covo S, Puccia CM, Argueso JL, Gordenin DA, Resnick MA. The sister chromatid cohesion pathway suppresses multiple chromosome gain and chromosome amplification. Genetics 2014; 196:373-84. [PMID: 24298060 PMCID: PMC3914611 DOI: 10.1534/genetics.113.159202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
Gain or loss of chromosomes resulting in aneuploidy can be important factors in cancer and adaptive evolution. Although chromosome gain is a frequent event in eukaryotes, there is limited information on its genetic control. Here we measured the rates of chromosome gain in wild-type yeast and sister chromatid cohesion (SCC) compromised strains. SCC tethers the newly replicated chromatids until anaphase via the cohesin complex. Chromosome gain was measured by selecting and characterizing copper-resistant colonies that emerged due to increased copies of the metallothionein gene CUP1. Although all defective SCC diploid strains exhibited increased rates of chromosome gain, there were 15-fold differences between them. Of all mutants examined, a hypomorphic mutation at the cohesin complex caused the highest rate of chromosome gain while disruption of WPL1, an important regulator of SCC and chromosome condensation, resulted in the smallest increase in chromosome gain. In addition to defects in SCC, yeast cell type contributed significantly to chromosome gain, with the greatest rates observed for homozygous mating-type diploids, followed by heterozygous mating type, and smallest in haploids. In fact, wpl1-deficient haploids did not show any difference in chromosome gain rates compared to wild-type haploids. Genomic analysis of copper-resistant colonies revealed that the "driver" chromosome for which selection was applied could be amplified to over five copies per diploid cell. In addition, an increase in the expected driver chromosome was often accompanied by a gain of a small number of other chromosomes. We suggest that while chromosome gain due to SCC malfunction can have negative effects through gene imbalance, it could also facilitate opportunities for adaptive changes. In multicellular organisms, both factors could lead to somatic diseases including cancer.
Collapse
Affiliation(s)
- Shay Covo
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Christopher M. Puccia
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Dmitry A. Gordenin
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Michael A. Resnick
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
44
|
Xu B, Lu S, Gerton JL. Roberts syndrome: A deficit in acetylated cohesin leads to nucleolar dysfunction. Rare Dis 2014; 2:e27743. [PMID: 25054091 PMCID: PMC4091327 DOI: 10.4161/rdis.27743] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/10/2013] [Accepted: 01/06/2014] [Indexed: 12/26/2022] Open
Abstract
All living organisms must go through cycles of replicating their genetic information and then dividing the copies between two new cells. This cyclical process, in cells from bacteria and human alike, requires a protein complex known as cohesin. Cohesin is a structural maintenance of chromosomes (SMC) complex. While bacteria have one form of this complex, yeast have several SMC complexes, and humans have at least a dozen cohesin complexes alone. Therefore the ancient structure and function of SMC complexes has been both conserved and specialized over the course of evolution. These complexes play roles in replication, repair, organization, and segregation of the genome. Mutations in the genes that encode cohesin and its regulatory factors are associated with developmental disorders such as Roberts syndrome, Cornelia de Lange syndrome, and cancer. In this review, we focus on how acetylation of cohesin contributes to its function. In Roberts syndrome, the lack of cohesin acetylation contributes to nucleolar defects and translational inhibition. An understanding of basic SMC complex function will be essential to unraveling the molecular etiology of human diseases associated with defective SMC function.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research; Kansas City, MO USA
| | - Shuai Lu
- Stowers Institute for Medical Research; Kansas City, MO USA ; Department of Biochemistry and Molecular Biology; University of Kansas School of Medicine; Kansas City, KS USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research; Kansas City, MO USA ; Department of Biochemistry and Molecular Biology; University of Kansas School of Medicine; Kansas City, KS USA
| |
Collapse
|
45
|
Marston AL. Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics 2014; 196:31-63. [PMID: 24395824 PMCID: PMC3872193 DOI: 10.1534/genetics.112.145144] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 12/28/2022] Open
Abstract
Studies on budding yeast have exposed the highly conserved mechanisms by which duplicated chromosomes are evenly distributed to daughter cells at the metaphase-anaphase transition. The establishment of proteinaceous bridges between sister chromatids, a function provided by a ring-shaped complex known as cohesin, is central to accurate segregation. It is the destruction of this cohesin that triggers the segregation of chromosomes following their proper attachment to microtubules. Since it is irreversible, this process must be tightly controlled and driven to completion. Furthermore, during meiosis, modifications must be put in place to allow the segregation of maternal and paternal chromosomes in the first division for gamete formation. Here, I review the pioneering work from budding yeast that has led to a molecular understanding of the establishment and destruction of cohesion.
Collapse
Affiliation(s)
- Adele L Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
46
|
Biswas U, Wetzker C, Lange J, Christodoulou EG, Seifert M, Beyer A, Jessberger R. Meiotic cohesin SMC1β provides prophase I centromeric cohesion and is required for multiple synapsis-associated functions. PLoS Genet 2013; 9:e1003985. [PMID: 24385917 PMCID: PMC3873225 DOI: 10.1371/journal.pgen.1003985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/14/2013] [Indexed: 01/09/2023] Open
Abstract
Cohesin subunit SMC1β is specific and essential for meiosis. Previous studies showed functions of SMC1β in determining the axis-loop structure of synaptonemal complexes (SCs), in providing sister chromatid cohesion (SCC) in metaphase I and thereafter, in protecting telomere structure, and in synapsis. However, several central questions remained unanswered and concern roles of SMC1β in SCC and synapsis and processes related to these two processes. Here we show that SMC1β substantially supports prophase I SCC at centromeres but not along chromosome arms. Arm cohesion and some of centromeric cohesion in prophase I are provided by non-phosphorylated SMC1α. Besides supporting synapsis of autosomes, SMC1β is also required for synapsis and silencing of sex chromosomes. In absence of SMC1β, the silencing factor γH2AX remains associated with asynapsed autosomes and fails to localize to sex chromosomes. Microarray expression studies revealed up-regulated sex chromosome genes and many down-regulated autosomal genes. SMC1β is further required for non-homologous chromosome associations observed in absence of SPO11 and thus of programmed double-strand breaks. These breaks are properly generated in Smc1β−/− spermatocytes, but their repair is delayed on asynapsed chromosomes. SMC1α alone cannot support non-homologous associations. Together with previous knowledge, three main functions of SMC1β have emerged, which have multiple consequences for spermatocyte biology: generation of the loop-axis architecture of SCs, homologous and non-homologous synapsis, and SCC starting in early prophase I. The generation of mammalian gametes through meiosis comprises two subsequent cell divisions. The first division, meiosis I, features highly specific chromosome structures, and behavior, and requires distinct sets of chromosome-associated proteins. Cohesin proteins, of which some are meiosis-specific, are essential for meiosis, but their particular roles in meiosis are incompletely understood. We show here that SMC1β, a meiosis-specific cohesin, serves key functions already in prophase of meiosis I: SMC1β contributes to keeping sister chromatids in cohesion at their centromeres and supports synapsis of the four sister chromatids present in these cells. SMC1β is required for the synapsis of the X and Y sex chromosomes. The failure of autosomes to properly synapse in absence of SMC1β causes extensive alterations in gene expression. This leads to expression of sex chromosome-linked genes, which are lethal at this stage, explaining the death of spermatocytes in mid-prophase I. Together with the analyses of other cohesin proteins and of phosphorylated forms of SMC3 and SMC1α, this paper describes hitherto undescribed properties and functions of meiotic cohesin in sister chromatid cohesion and synapsis.
Collapse
Affiliation(s)
- Uddipta Biswas
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cornelia Wetzker
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | | | | | - Andreas Beyer
- Biotechnology Center, TU Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
47
|
Mehta GD, Kumar R, Srivastava S, Ghosh SK. Cohesin: functions beyond sister chromatid cohesion. FEBS Lett 2013; 587:2299-312. [PMID: 23831059 DOI: 10.1016/j.febslet.2013.06.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022]
Abstract
Faithful segregation of chromosomes during mitosis and meiosis is the cornerstone process of life. Cohesin, a multi-protein complex conserved from yeast to human, plays a crucial role in this process by keeping the sister chromatids together from S-phase to anaphase onset during mitosis and meiosis. Technological advancements have discovered myriad functions of cohesin beyond its role in sister chromatid cohesion (SCC), such as transcription regulation, DNA repair, chromosome condensation, homolog pairing, monoorientation of sister kinetochore, etc. Here, we have focused on such functions of cohesin that are either independent of or dependent on its canonical role of sister chromatid cohesion. At the end, human diseases associated with malfunctioning of cohesin, albeit with mostly unperturbed sister chromatid cohesion, have been discussed.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | | | | | | |
Collapse
|
48
|
Howard-Till RA, Lukaszewicz A, Novatchkova M, Loidl J. A single cohesin complex performs mitotic and meiotic functions in the protist tetrahymena. PLoS Genet 2013; 9:e1003418. [PMID: 23555314 PMCID: PMC3610610 DOI: 10.1371/journal.pgen.1003418] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 02/12/2013] [Indexed: 01/08/2023] Open
Abstract
The cohesion of sister chromatids in the interval between chromosome replication and anaphase is important for preventing the precocious separation, and hence nondisjunction, of chromatids. Cohesion is accomplished by a ring-shaped protein complex, cohesin; and its release at anaphase occurs when separase cleaves the complex's α-kleisin subunit. Cohesin has additional roles in facilitating DNA damage repair from the sister chromatid and in regulating gene expression. We tested the universality of the present model of cohesion by studying cohesin in the evolutionarily distant protist Tetrahymena thermophila. Localization of tagged cohesin components Smc1p and Rec8p (the α-kleisin) showed that cohesin is abundant in mitotic and meiotic nuclei. RNAi knockdown experiments demonstrated that cohesin is crucial for normal chromosome segregation and meiotic DSB repair. Unexpectedly, cohesin does not detach from chromosome arms in anaphase, yet chromosome segregation depends on the activity of separase (Esp1p). When Esp1p is depleted by RNAi, chromosomes become polytenic as they undergo multiple rounds of replication, but fail to separate. The cohesion of such bundles of numerous chromatids suggests that chromatids may be connected by factors in addition to topological linkage by cohesin rings. Although cohesin is not detected in transcriptionally active somatic nuclei, its loss causes a slight defect in their amitotic division. Notably, Tetrahymena uses a single version of α-kleisin for both mitosis and meiosis. Therefore, we propose that the differentiation of mitotic and meiotic cohesins found in most other model systems is not due to the need of a specialized meiotic cohesin, but due to additional roles of mitotic cohesin.
Collapse
Affiliation(s)
- Rachel A. Howard-Till
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Lyons NA, Fonslow BR, Diedrich JK, Yates JR, Morgan DO. Sequential primed kinases create a damage-responsive phosphodegron on Eco1. Nat Struct Mol Biol 2013; 20:194-201. [PMID: 23314252 PMCID: PMC3565030 DOI: 10.1038/nsmb.2478] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/27/2012] [Indexed: 02/06/2023]
Abstract
Sister-chromatid cohesion is established during S phase when Eco1 acetylates cohesin. In budding yeast, Eco1 activity falls after S phase due to Cdk1-dependent phosphorylation, which triggers ubiquitination by SCF(Cdc4). We show here that Eco1 degradation requires the sequential actions of Cdk1 and two additional kinases, Cdc7-Dbf4 and the GSK-3 homolog Mck1. These kinases recognize motifs primed by previous phosphorylation, resulting in an ordered sequence of three phosphorylation events on Eco1. Only the latter two phosphorylation sites are spaced correctly to bind Cdc4, resulting in strict discrimination between phosphates added by Cdk1 and by Cdc7. Inhibition of Cdc7 by the DNA damage response prevents Eco1 destruction, allowing establishment of cohesion after S phase. This elaborate regulatory system, involving three independent kinases and stringent substrate selection by a ubiquitin ligase, enables robust control of cohesion establishment during normal growth and after stress.
Collapse
Affiliation(s)
- Nicholas A Lyons
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
50
|
McAleenan A, Clemente-Blanco A, Cordon-Preciado V, Sen N, Esteras M, Jarmuz A, Aragón L. Post-replicative repair involves separase-dependent removal of the kleisin subunit of cohesin. Nature 2013; 493:250-4. [PMID: 23178808 DOI: 10.1038/nature11630] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 09/28/2012] [Indexed: 01/18/2023]
Abstract
DNA double-strand break repair is critical for cell viability and involves highly coordinated pathways to restore DNA integrity at the lesion. An early event during homology-dependent repair is resection of the break to generate progressively longer 3' single-strand tails that are used to identify suitable templates for repair. Sister chromatids provide near-perfect sequence homology and are therefore the preferred templates during homologous recombination. To provide a bias for the use of sisters as donors, cohesin--the complex that tethers sister chromatids together--is recruited to the break to enforce physical proximity. Here we show that DNA breaks promote dissociation of cohesin loaded during the previous S phase in budding yeast, and that damage-induced dissociation of cohesin requires separase, the protease that dissolves cohesion in anaphase. Moreover, a separase-resistant allele of the gene coding for the α-kleisin subunit of cohesin, Mcd1 (also known as Scc1), reduces double-strand break resection and compromises the efficiency of repair even when loaded during DNA damage. We conclude that post-replicative DNA repair involves cohesin dissociation by separase to promote accessibility to repair factors during the coordinated cellular response to restore DNA integrity.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|