1
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
2
|
Gubas A, Attridge E, Jefferies HB, Nishimura T, Razi M, Kunzelmann S, Gilad Y, Mercer TJ, Wilson MM, Kimchi A, Tooze SA. WIPI2b recruitment to phagophores and ATG16L1 binding are regulated by ULK1 phosphorylation. EMBO Rep 2024; 25:3789-3811. [PMID: 39152217 PMCID: PMC11387628 DOI: 10.1038/s44319-024-00215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 08/19/2024] Open
Abstract
One of the key events in autophagy is the formation of a double-membrane phagophore, and many regulatory mechanisms underpinning this remain under investigation. WIPI2b is among the first proteins to be recruited to the phagophore and is essential for stimulating autophagy flux by recruiting the ATG12-ATG5-ATG16L1 complex, driving LC3 and GABARAP lipidation. Here, we set out to investigate how WIPI2b function is regulated by phosphorylation. We studied two phosphorylation sites on WIPI2b, S68 and S284. Phosphorylation at these sites plays distinct roles, regulating WIPI2b's association with ATG16L1 and the phagophore, respectively. We confirm WIPI2b is a novel ULK1 substrate, validated by the detection of endogenous phosphorylation at S284. Notably, S284 is situated within an 18-amino acid stretch, which, when in contact with liposomes, forms an amphipathic helix. Phosphorylation at S284 disrupts the formation of the amphipathic helix, hindering the association of WIPI2b with membranes and autophagosome formation. Understanding these intricacies in the regulatory mechanisms governing WIPI2b's association with its interacting partners and membranes, holds the potential to shed light on these complex processes, integral to phagophore biogenesis.
Collapse
Affiliation(s)
- Andrea Gubas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Muscular Dystrophy UK, London, SE1 8QD, UK
| | - Eleanor Attridge
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Harold Bj Jefferies
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Taki Nishimura
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Minoo Razi
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yuval Gilad
- The Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Adi Kimchi
- The Weizmann Institute of Science, Rehovot, Israel
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
3
|
Adriaenssens E, Schaar S, Cook ASI, Stuke JFM, Sawa-Makarska J, Nguyen TN, Ren X, Schuschnig M, Romanov J, Khuu G, Lazarou M, Hummer G, Hurley JH, Martens S. Reconstitution of BNIP3/NIX-mediated autophagy reveals two pathways and hierarchical flexibility of the initiation machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609967. [PMID: 39253418 PMCID: PMC11383309 DOI: 10.1101/2024.08.28.609967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Selective autophagy is a lysosomal degradation pathway that is critical for maintaining cellular homeostasis by disposing of harmful cellular material. While the mechanisms by which soluble cargo receptors recruit the autophagy machinery are becoming increasingly clear, the principles governing how organelle-localized transmembrane cargo receptors initiate selective autophagy remain poorly understood. Here, we demonstrate that transmembrane cargo receptors can initiate autophagosome biogenesis not only by recruiting the upstream FIP200/ULK1 complex but also via a WIPI-ATG13 complex. This latter pathway is employed by the BNIP3/NIX receptors to trigger mitophagy. Additionally, other transmembrane mitophagy receptors, including FUNDC1 and BCL2L13, exclusively use the FIP200/ULK1 complex, while FKBP8 and the ER-phagy receptor TEX264 are capable of utilizing both pathways to initiate autophagy. Our study defines the molecular rules for initiation by transmembrane cargo receptors, revealing remarkable flexibility in the assembly and activation of the autophagy machinery, with significant implications for therapeutic interventions.
Collapse
|
4
|
Song JZ, Feng YH, Sergevnina V, Zhu J, Li H, Xie Z. Assessing the Presence of Phosphoinositides on Autophagosomal Membrane in Yeast by Live Cell Imaging. Microorganisms 2024; 12:1458. [PMID: 39065227 PMCID: PMC11279164 DOI: 10.3390/microorganisms12071458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The formation of autophagosomes mediating the sequestration of cytoplasmic materials is the central step of autophagy. Several phosphoinositides, which are signaling molecules on the membrane, are involved in autophagy. However, it is not always clear whether these phosphoinositides act directly at the site of autophagosome formation, or indirectly via the regulation of other steps or pathways. To address this question, we used a set of phosphoinositide probes to systematically examine their potential presence on autophagosomal membranes in yeast (Saccharomyces cerevisiae). We verified the specificity of these probes using mutant cells deficient in the production of the corresponding phosphoinositides. We then examined starved yeast cells co-expressing a phosphoinositide probe together with an autophagosomal membrane marker, 2Katushka2S-Atg8. Our data revealed that PtdIns(4,5)P2 and PtdIns(3,5)P2 were mainly present on the plasma membrane and vacuolar membrane, respectively. We observed only occasional co-localization between the PtdIns(4)P probe and Atg8, some of which may represent the transient passage of a PtdIns(4)P-containing structure near the autophagosomal membrane. In contrast, substantial colocalization of the PtdIns(3)P probe with Atg8 was observed. Taken together, our data indicate that only PtdIns(3)P is present in a substantial amount on the autophagosomal membrane. For other phosphoinositides involved in autophagy, either their presence on the autophagosomal membrane is very transient, or they act on other cellular membranes to regulate autophagy.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Gopaldass N, Mayer A. PROPPINs and membrane fission in the endo-lysosomal system. Biochem Soc Trans 2024; 52:1233-1241. [PMID: 38747700 DOI: 10.1042/bst20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
PROPPINs constitute a conserved protein family with multiple members being expressed in many eukaryotes. PROPPINs have mainly been investigated for their role in autophagy, where they co-operate with several core factors for autophagosome formation. Recently, novel functions of these proteins on endo-lysosomal compartments have emerged. PROPPINs support the division of these organelles and the formation of tubulo-vesicular cargo carriers that mediate protein exit from them, such as those generated by the Retromer coat. In both cases, PROPPINs provide membrane fission activity. Integrating information from yeast and human cells this review summarizes the most important molecular features that allow these proteins to facilitate membrane fission and thus provide a critical element to endo-lysosomal protein traffic.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
6
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
7
|
Papandreou A, Singh N, Gianfrancesco L, Budinger D, Barwick K, Agrotis A, Luft C, Shao Y, Lenaerts AS, Gregory A, Jeong SY, Hogarth P, Hayflick S, Barral S, Kriston-Vizi J, Gissen P, Kurian MA, Ketteler R. Cardiac glycosides restore autophagy flux in an iPSC-derived neuronal model of WDR45 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.13.556416. [PMID: 37745522 PMCID: PMC10515824 DOI: 10.1101/2023.09.13.556416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are poorly understood and, as a result, there are currently no disease-modifying treatments for this progressive disorder. We have developed a patient-derived, induced pluripotent stem cell (iPSC)-based midbrain dopaminergic neuronal cell model of BPAN (3 patient, 2 age-matched controls and 2 isogenic control lines) which shows defective autophagy and aberrant gene expression in key neurodegenerative, neurodevelopmental and collagen pathways. A high content imaging-based medium-throughput blinded drug screen using the FDA-approved Prestwick library identified 5 cardiac glycosides that both corrected disease-related defective autophagosome formation and restored BPAN-specific gene expression profiles. Our findings have clear translational potential and emphasise the utility of iPSC-based modelling in elucidating disease pathophysiology and identifying targeted therapeutics for early-onset monogenic disorders.
Collapse
Affiliation(s)
- Apostolos Papandreou
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nivedita Singh
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Lorita Gianfrancesco
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Dimitri Budinger
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Katy Barwick
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Alexander Agrotis
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Christin Luft
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ying Shao
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | | | | | | | | | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Janos Kriston-Vizi
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul Gissen
- Inborn Errors of Metabolism, Genetics & Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- These authors contributed equally
| | - Robin Ketteler
- Laboratory for Molecular Cell Biology, University College London, London, UK
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
- These authors contributed equally
| |
Collapse
|
8
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
9
|
Kervin TA, Overduin M. Membranes are functionalized by a proteolipid code. BMC Biol 2024; 22:46. [PMID: 38414038 PMCID: PMC10898092 DOI: 10.1186/s12915-024-01849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Membranes are protein and lipid structures that surround cells and other biological compartments. We present a conceptual model wherein all membranes are organized into structural and functional zones. The assembly of zones such as receptor clusters, protein-coated pits, lamellipodia, cell junctions, and membrane fusion sites is explained to occur through a protein-lipid code. This challenges the theory that lipids sort proteins after forming stable membrane subregions independently of proteins.
Collapse
Affiliation(s)
- Troy A Kervin
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Rao S, Skulsuppaisarn M, Strong LM, Ren X, Lazarou M, Hurley JH, Hummer G. Three-step docking by WIPI2, ATG16L1, and ATG3 delivers LC3 to the phagophore. SCIENCE ADVANCES 2024; 10:eadj8027. [PMID: 38324698 PMCID: PMC10851258 DOI: 10.1126/sciadv.adj8027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
The covalent attachment of ubiquitin-like LC3 proteins (microtubule-associated proteins 1A/1B light chain 3) prepares the autophagic membrane for cargo recruitment. We resolve key steps in LC3 lipidation by combining molecular dynamics simulations and experiments in vitro and in cellulo. We show how the E3-like ligaseautophagy-related 12 (ATG12)-ATG5-ATG16L1 in complex with the E2-like conjugase ATG3 docks LC3 onto the membrane in three steps by (i) the phosphatidylinositol 3-phosphate effector protein WD repeat domain phosphoinositide-interacting protein 2 (WIPI2), (ii) helix α2 of ATG16L1, and (iii) a membrane-interacting surface of ATG3. Phosphatidylethanolamine (PE) lipids concentrate in a region around the thioester bond between ATG3 and LC3, highlighting residues with a possible role in the catalytic transfer of LC3 to PE, including two conserved histidines. In a near-complete pathway from the initial membrane recruitment to the LC3 lipidation reaction, the three-step targeting of the ATG12-ATG5-ATG16L1 machinery establishes a high level of regulatory control.
Collapse
Affiliation(s)
- Shanlin Rao
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Marvin Skulsuppaisarn
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Lisa M. Strong
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuefeng Ren
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Lazarou
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - James H. Hurley
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Noda NN. Structural view on autophagosome formation. FEBS Lett 2024; 598:84-106. [PMID: 37758522 DOI: 10.1002/1873-3468.14742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Autophagy is a conserved intracellular degradation system in eukaryotes, involving the sequestration of degradation targets into autophagosomes, which are subsequently delivered to lysosomes (or vacuoles in yeasts and plants) for degradation. In budding yeast, starvation-induced autophagosome formation relies on approximately 20 core Atg proteins, grouped into six functional categories: the Atg1/ULK complex, the phosphatidylinositol-3 kinase complex, the Atg9 transmembrane protein, the Atg2-Atg18/WIPI complex, the Atg8 lipidation system, and the Atg12-Atg5 conjugation system. Additionally, selective autophagy requires cargo receptors and other factors, including a fission factor, for specific sequestration. This review covers the 30-year history of structural studies on core Atg proteins and factors involved in selective autophagy, examining X-ray crystallography, NMR, and cryo-EM techniques. The molecular mechanisms of autophagy are explored based on protein structures, and future directions in the structural biology of autophagy are discussed, considering the advancements in the era of AlphaFold.
Collapse
Affiliation(s)
- Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
12
|
Sakurai HT, Arakawa S, Yamaguchi H, Torii S, Honda S, Shimizu S. An Overview of Golgi Membrane-Associated Degradation (GOMED) and Its Detection Methods. Cells 2023; 12:2817. [PMID: 38132137 PMCID: PMC10741765 DOI: 10.3390/cells12242817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy is a cellular mechanism that utilizes lysosomes to degrade its own components and is performed using Atg5 and other molecules originating from the endoplasmic reticulum membrane. On the other hand, we identified an alternative type of autophagy, namely, Golgi membrane-associated degradation (GOMED), which also utilizes lysosomes to degrade its own components, but does not use Atg5 originating from the Golgi membranes. The GOMED pathway involves Ulk1, Wipi3, Rab9, and other molecules, and plays crucial roles in a wide range of biological phenomena, such as the regulation of insulin secretion and neuronal maintenance. We here describe the overview of GOMED, methods to detect autophagy and GOMED, and to distinguish GOMED from autophagy.
Collapse
Affiliation(s)
- Hajime Tajima Sakurai
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Himeji 678-1205, Hyogo, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Hirofumi Yamaguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| |
Collapse
|
13
|
Mann D, Fromm SA, Martinez-Sanchez A, Gopaldass N, Choy R, Mayer A, Sachse C. Atg18 oligomer organization in assembled tubes and on lipid membrane scaffolds. Nat Commun 2023; 14:8086. [PMID: 38057304 DOI: 10.1038/s41467-023-43460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Autophagy-related protein 18 (Atg18) participates in the elongation of early autophagosomal structures in concert with Atg2 and Atg9 complexes. How Atg18 contributes to the structural coordination of Atg2 and Atg9 at the isolation membrane remains to be understood. Here, we determined the cryo-EM structures of Atg18 organized in helical tubes, Atg18 oligomers in solution as well as on lipid membrane scaffolds. The helical assembly is composed of Atg18 tetramers forming a lozenge cylindrical lattice with remarkable structural similarity to the COPII outer coat. When reconstituted with lipid membranes, using subtomogram averaging we determined tilted Atg18 dimer structures bridging two juxtaposed lipid membranes spaced apart by 80 Å. Moreover, lipid reconstitution experiments further delineate the contributions of Atg18's FRRG motif and the amphipathic helical extension in membrane interaction. The observed structural plasticity of Atg18's oligomeric organization and membrane binding properties provide a molecular framework for the positioning of downstream components of the autophagy machinery.
Collapse
Affiliation(s)
- Daniel Mann
- Ernst-Ruska Centre 3/Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Biological Information Processing 6/Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Simon A Fromm
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio Martinez-Sanchez
- Department of Information and Communications Engineering, Faculty of Computers Sciences, University of Murcia, Murcia, Spain
| | - Navin Gopaldass
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ramona Choy
- Ernst-Ruska Centre 3/Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Biological Information Processing 6/Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Andreas Mayer
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Carsten Sachse
- Ernst-Ruska Centre 3/Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany.
- Institute for Biological Information Processing 6/Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany.
| |
Collapse
|
14
|
Sporbeck K, Haas ML, Pastor-Maldonado CJ, Schüssele DS, Hunter C, Takacs Z, Diogo de Oliveira AL, Franz-Wachtel M, Charsou C, Pfisterer SG, Gubas A, Haller PK, Knorr RL, Kaulich M, Macek B, Eskelinen EL, Simonsen A, Proikas-Cezanne T. The ABL-MYC axis controls WIPI1-enhanced autophagy in lifespan extension. Commun Biol 2023; 6:872. [PMID: 37620393 PMCID: PMC10449903 DOI: 10.1038/s42003-023-05236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Human WIPI β-propellers function as PI3P effectors in autophagy, with WIPI4 and WIPI3 being able to link autophagy control by AMPK and TORC1 to the formation of autophagosomes. WIPI1, instead, assists WIPI2 in efficiently recruiting the ATG16L1 complex at the nascent autophagosome, which in turn promotes lipidation of LC3/GABARAP and autophagosome maturation. However, the specific role of WIPI1 and its regulation are unknown. Here, we discovered the ABL-ERK-MYC signalling axis controlling WIPI1. As a result of this signalling, MYC binds to the WIPI1 promoter and represses WIPI1 gene expression. When ABL-ERK-MYC signalling is counteracted, increased WIPI1 gene expression enhances the formation of autophagic membranes capable of migrating through tunnelling nanotubes to neighbouring cells with low autophagic activity. ABL-regulated WIPI1 function is relevant to lifespan control, as ABL deficiency in C. elegans increased gene expression of the WIPI1 orthologue ATG-18 and prolonged lifespan in a manner dependent on ATG-18. We propose that WIPI1 acts as an enhancer of autophagy that is physiologically relevant for regulating the level of autophagic activity over the lifespan.
Collapse
Affiliation(s)
- Katharina Sporbeck
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Maximilian L Haas
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Carmen J Pastor-Maldonado
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - David S Schüssele
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Catherine Hunter
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Zsuzsanna Takacs
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Institute of Molecular Biotechnology, A-1030, Vienna, Austria
| | - Ana L Diogo de Oliveira
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Chara Charsou
- Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Simon G Pfisterer
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Department of Anatomy, Faculty of Medicine, University of Helsinki, FI-00290, Helsinki, Finland
| | - Andrea Gubas
- Institute of Biochemistry II, Frankfurt Cancer Institute, Goethe University Medical School, D-60590, Frankfurt, Germany
| | - Patricia K Haller
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Roland L Knorr
- Humboldt University of Berlin, Institute of Biology, D-10115, Berlin, Germany
- Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Manuel Kaulich
- Institute of Biochemistry II, Frankfurt Cancer Institute, Goethe University Medical School, D-60590, Frankfurt, Germany
| | - Boris Macek
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Eeva-Liisa Eskelinen
- Department of Biosciences, University of Helsinki, Fl-00790, Helsinki, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany.
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany.
| |
Collapse
|
15
|
Shimizu T, Tamura N, Nishimura T, Saito C, Yamamoto H, Mizushima N. Comprehensive analysis of autophagic functions of WIPI family proteins and their implications for the pathogenesis of β-propeller associated neurodegeneration. Hum Mol Genet 2023; 32:2623-2637. [PMID: 37364041 PMCID: PMC10407718 DOI: 10.1093/hmg/ddad096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
β-propellers that bind polyphosphoinositides (PROPPINs) are an autophagy-related protein family conserved throughout eukaryotes. The PROPPIN family includes Atg18, Atg21 and Hsv2 in yeast and WD-repeat protein interacting with phosphoinositides (WIPI)1-4 in mammals. Mutations in the WIPI genes are associated with human neuronal diseases, including β-propeller associated neurodegeneration (BPAN) caused by mutations in WDR45 (encoding WIPI4). In contrast to yeast PROPPINs, the functions of mammalian WIPI1-WIPI4 have not been systematically investigated. Although the involvement of WIPI2 in autophagy has been clearly shown, the functions of WIPI1, WIPI3 and WIPI4 in autophagy remain poorly understood. In this study, we comprehensively analyzed the roles of WIPI proteins by using WIPI-knockout (single, double and quadruple knockout) HEK293T cells and recently developed HaloTag-based reporters, which enable us to monitor autophagic flux sensitively and quantitatively. We found that WIPI2 was nearly essential for autophagy. Autophagic flux was unaffected or only slightly reduced by single deletion of WIPI3 (encoded by WDR45B) or WIPI4 but was profoundly reduced by double deletion of WIPI3 and WIPI4. Furthermore, we revealed variable effects of BPAN-related missense mutations on the autophagic activity of WIPI4. BPAN is characterized by neurodevelopmental and neurodegenerative abnormalities, and we found a possible association between the magnitude of the defect of the autophagic activity of WIPI4 mutants and the severity of neurodevelopmental symptoms. However, some of the BPAN-related missense mutations, which produce neurodegenerative signs, showed almost normal autophagic activity, suggesting that non-autophagic functions of WIPI4 may be related to neurodegeneration in BPAN.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Norito Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Taki Nishimura
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Chieko Saito
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Molecular Oncology, Nippon Medical School, Institute for Advanced Medical Sciences, Tokyo 113-8602, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
16
|
Marquardt L, Thumm M. Autophagic and non-autophagic functions of the Saccharomyces cerevisiae PROPPINs Atg18, Atg21 and Hsv2. Biol Chem 2023; 404:813-819. [PMID: 37139661 DOI: 10.1515/hsz-2023-0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Atg18, Atg21 and Hsv2 are homologous β-propeller proteins binding to PI3P and PI(3,5)P2. Atg18 is thought to organize lipid transferring protein complexes at contact sites of the growing autophagosome (phagophore) with both the ER and the vacuole. Atg21 is restricted to the vacuole phagophore contact, where it organizes part of the Atg8-lipidation machinery. The role of Hsv2 is less understood, it partly affects micronucleophagy. Atg18 is further involved in regulation of PI(3,5)P2 synthesis. Recently, a novel Atg18-retromer complex and its role in vacuole homeostasis and membrane fission was uncovered.
Collapse
Affiliation(s)
- Lisa Marquardt
- Institute of Cellular Biochemistry, University Medicine, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Michael Thumm
- Institute of Cellular Biochemistry, University Medicine, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
17
|
Tang T, Hasan M, Capelluto DGS. Phafins Are More Than Phosphoinositide-Binding Proteins. Int J Mol Sci 2023; 24:ijms24098096. [PMID: 37175801 PMCID: PMC10178739 DOI: 10.3390/ijms24098096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Phafins are PH (Pleckstrin Homology) and FYVE (Fab1, YOTB, Vac1, and EEA1) domain-containing proteins. The Phafin protein family is classified into two groups based on their sequence homology and functional similarity: Phafin1 and Phafin2. This protein family is unique because both the PH and FYVE domains bind to phosphatidylinositol 3-phosphate [PtdIns(3)P], a phosphoinositide primarily found in endosomal and lysosomal membranes. Phafin proteins act as PtdIns(3)P effectors in apoptosis, endocytic cargo trafficking, and autophagy. Additionally, Phafin2 is recruited to macropinocytic compartments through coincidence detection of PtdIns(3)P and PtdIns(4)P. Membrane-associated Phafins serve as adaptor proteins that recruit other binding partners. In addition to the phosphoinositide-binding domains, Phafin proteins present a poly aspartic acid motif that regulates membrane binding specificity. In this review, we summarize the involvement of Phafins in several cellular pathways and their potential physiological functions while highlighting the similarities and differences between Phafin1 and Phafin2. Besides, we discuss research perspectives for Phafins.
Collapse
Affiliation(s)
- Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahmudul Hasan
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Gong X, Wang Y, Tang Y, Wang Y, Zhang M, Li M, Zhang Y, Pan L. ATG16L1 adopts a dual-binding site mode to interact with WIPI2b in autophagy. SCIENCE ADVANCES 2023; 9:eadf0824. [PMID: 36857448 PMCID: PMC9977175 DOI: 10.1126/sciadv.adf0824] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Macroautophagy plays crucial roles in the regulation of cellular physiology and requires de novo synthesis of double-membrane autophagosomes, which relies on a specific interaction between autophagy-related 16L1 (ATG16L1) and WD repeat domain phosphoinositide-interacting protein 2b (WIPI2b). However, the molecular mechanism governing the interaction of ATG16L1 with WIPI2b remains elusive. Here, we find that ATG16L1 has two distinct binding sites for interacting with WIPI2b, the previously reported WIPI2b-binding site (WBS1) and the previously unidentified site (WBS2). We determine the crystal structures of WIPI2b with ATG16L1 WBS1 and WBS2, respectively, and elucidate the molecular mechanism underpinning the recruitment of ATG16L1 by WIPI2b. Moreover, we uncover that ATG16L1 WBS2 and its binding mode with WIPI2b is well conserved from yeast to mammals, unlike ATG16L1 WBS1. Last, our cell-based functional assays demonstrate that both ATG16L1 WBS1 and WBS2 are required for the effective autophagic flux. In conclusion, our findings provide mechanistic insights into the key ATG16L1/WIPI2b interaction in autophagy.
Collapse
Affiliation(s)
- Xinyu Gong
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingli Wang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yubin Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yaru Wang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingfang Zhang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Miao Li
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yuchao Zhang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lifeng Pan
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
19
|
Deprez MA, Caligaris M, Rosseels J, Hatakeyama R, Ghillebert R, Sampaio-Marques B, Mudholkar K, Eskes E, Meert E, Ungermann C, Ludovico P, Rospert S, De Virgilio C, Winderickx J. The nutrient-responsive CDK Pho85 primes the Sch9 kinase for its activation by TORC1. PLoS Genet 2023; 19:e1010641. [PMID: 36791155 PMCID: PMC9974134 DOI: 10.1371/journal.pgen.1010641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation. We demonstrate that it is specifically the CDK-cyclin pair Pho85-Pho80 or the partially redundant CDK-cyclin pairs Pho85-Pcl6/Pcl7 that become essential for growth when Sch9 is absent. Interestingly, the respective three CDK-cyclin pairs regulate the activity and distribution of the phosphatidylinositol-3 phosphate 5-kinase Fab1 on endosomes and vacuoles, where it generates phosphatidylinositol-3,5 bisphosphate that serves to recruit both TORC1 and its substrate Sch9. In addition, Pho85-Pho80 directly phosphorylates Sch9 at Ser726, and to a lesser extent at Thr723, thereby priming Sch9 for its subsequent phosphorylation and activation by TORC1. The TORC1-Sch9 signaling branch therefore integrates Pho85-mediated information at different levels. In this context, we also discovered that loss of the transcription factor Pho4 rescued the synthetic lethality caused by loss of Pho85 and Sch9, indicating that both signaling pathways also converge on Pho4, which appears to be wired to a feedback loop involving the high-affinity phosphate transporter Pho84 that fine-tunes Sch9-mediated responses.
Collapse
Affiliation(s)
- Marie-Anne Deprez
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Marco Caligaris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joëlle Rosseels
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Ruben Ghillebert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Kaivalya Mudholkar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elja Eskes
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Els Meert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Christian Ungermann
- Department of Biology/Chemistry & Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail: (CDV); (JW)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
- * E-mail: (CDV); (JW)
| |
Collapse
|
20
|
Marquardt L, Taylor M, Kramer F, Schmitt K, Braus GH, Valerius O, Thumm M. Vacuole fragmentation depends on a novel Atg18-containing retromer-complex. Autophagy 2023; 19:278-295. [PMID: 35574911 PMCID: PMC9809942 DOI: 10.1080/15548627.2022.2072656] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The yeast PROPPIN Atg18 folds as a β-propeller with two binding sites for phosphatidylinositol-3-phosphate (PtdIns3P) and PtdIns(3,5)P2 at its circumference. Membrane insertion of an amphipathic loop of Atg18 leads to membrane tubulation and fission. Atg18 has known functions at the PAS during macroautophagy, but the functional relevance of its endosomal and vacuolar pool is not well understood. Here we show in a proximity-dependent labeling approach and by co-immunoprecipitations that Atg18 interacts with Vps35, a central component of the retromer complex. The binding of Atg18 to Vps35 is competitive with the sorting nexin dimer Vps5 and Vps17. This suggests that Atg18 within the retromer can substitute for both the phosphoinositide binding and the membrane bending capabilities of these sorting nexins. Indeed, we found that Atg18-retromer is required for PtdIns(3,5)P2-dependent vacuolar fragmentation during hyperosmotic stress. The Atg18-retromer is further involved in the normal sorting of the integral membrane protein Atg9. However, PtdIns3P-dependent macroautophagy and the selective cytoplasm-to-vacuole targeting (Cvt) pathway are only partially affected by the Atg18-retromer. We expect that this is due to the plasticity of the different sorting pathways within the endovacuolar system.Abbreviations: BAR: bin/amphiphysin/Rvs; FOA: 5-fluoroorotic acid; PAS: phagophore assembly site; PROPPIN: beta-propeller that binds phosphoinositides; PtdIns3P: phosphatidylinositol-3-phosphate; PX: phox homology.
Collapse
Affiliation(s)
- Lisa Marquardt
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Matthew Taylor
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Florian Kramer
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University, Goettingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University, Goettingen, Germany
| | - Michael Thumm
- Institute of Cellular Biochemistry, University Medicine, Goettingen, Germany,CONTACT Michael Thumm ; Institute of Cellular Biochemistry, University Medicine, Humboldtallee 23, D-37073Goettingen, Germany
| |
Collapse
|
21
|
Vargas Duarte P, Reggiori F. The Organization and Function of the Phagophore-ER Membrane Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231183898. [PMID: 37465355 PMCID: PMC10350784 DOI: 10.1177/25152564231183898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023]
Abstract
Macroautophagy is characterized by the de novo formation of double-membrane vesicles termed autophagosomes. The precursor structure of autophagosomes is a membrane cistern called phagophore, which elongates through a massive acquisition of lipids until closure. The phagophore establishes membrane-contact sites (MCSs) with the endoplasmic reticulum (ER), where conserved ATG proteins belonging to the ATG9 lipid scramblase, ATG2 lipid transfer and Atg18/WIPI4 β-propeller families concentrate. Several recent in vivo and in vitro studies have uncovered the relevance of these proteins and MCSs in the lipid supply required for autophagosome formation. Although important conceptual advances have been reached, the functional interrelationship between ATG9, ATG2 and Atg18/WIPI4 proteins at the phagophore-ER MCSs and their role in the phagophore expansion are not completely understood. In this review, we describe the current knowledge about the structure, interactions, localizations, and molecular functions of these proteins, with a particular emphasis on the yeast Saccharomyces cerevisiae and mammalian systems.
Collapse
Affiliation(s)
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| |
Collapse
|
22
|
Jensen LE, Rao S, Schuschnig M, Cada AK, Martens S, Hummer G, Hurley JH. Membrane curvature sensing and stabilization by the autophagic LC3 lipidation machinery. SCIENCE ADVANCES 2022; 8:eadd1436. [PMID: 36516251 PMCID: PMC9750143 DOI: 10.1126/sciadv.add1436] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/10/2022] [Indexed: 05/28/2023]
Abstract
How the highly curved phagophore membrane is stabilized during autophagy initiation is a major open question in autophagosome biogenesis. Here, we use in vitro reconstitution on membrane nanotubes and molecular dynamics simulations to investigate how core autophagy proteins in the LC3 (Microtubule-associated proteins 1A/1B light chain 3) lipidation cascade interact with curved membranes, providing insight into their possible roles in regulating membrane shape during autophagosome biogenesis. ATG12(Autophagy-related 12)-ATG5-ATG16L1 was up to 100-fold enriched on highly curved nanotubes relative to flat membranes. At high surface density, ATG12-ATG5-ATG16L1 binding increased the curvature of the nanotubes. While WIPI2 (WD repeat domain phosphoinositide-interacting protein 2) binding directs membrane recruitment, the amphipathic helix α2 of ATG16L1 is responsible for curvature sensitivity. Molecular dynamics simulations revealed that helix α2 of ATG16L1 inserts shallowly into the membrane, explaining its curvature-sensitive binding to the membrane. These observations show how the binding of the ATG12-ATG5-ATG16L1 complex to the early phagophore rim could stabilize membrane curvature and facilitate autophagosome growth.
Collapse
Affiliation(s)
- Liv E. Jensen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Shanlin Rao
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Martina Schuschnig
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - A. King Cada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Sascha Martens
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Gerhard Hummer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Noguchi S, Shimizu S. Molecular mechanisms and biological roles of GOMED. FEBS J 2022; 289:7213-7220. [PMID: 34787961 DOI: 10.1111/febs.16281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023]
Abstract
We previously discovered an autophagy-like proteolysis mechanism that uses the Golgi membrane, namely, Golgi membrane-associated degradation (GOMED). Morphologically, GOMED resembles canonical autophagy, but the two mechanisms have different cellular functions, as they degrade different substrates and use different membrane sources. Furthermore, although the molecules involved partially overlap, the core molecules are completely different. GOMED preferentially degrades Golgi-trafficking proteins, including insulin granules in pancreatic β-cells and ceruloplasmin in neurons, and is involved in a wide variety of physiological events.
Collapse
Affiliation(s)
- Saori Noguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
24
|
Ye H, Gao J, Liang Z, Lin Y, Yu Q, Huang S, Jiang L. Arabidopsis ORP2A mediates ER-autophagosomal membrane contact sites and regulates PI3P in plant autophagy. Proc Natl Acad Sci U S A 2022; 119:e2205314119. [PMID: 36252028 PMCID: PMC9618059 DOI: 10.1073/pnas.2205314119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/21/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an intracellular degradation system for cytoplasmic constituents which is mediated by the formation of a double-membrane organelle termed the autophagosome and its subsequent fusion with the lysosome/vacuole. The formation of the autophagosome requires membrane from the endoplasmic reticulum (ER) and is tightly regulated by a series of autophagy-related (ATG) proteins and lipids. However, how the ER contacts autophagosomes and regulates autophagy remain elusive in plants. In this study, we identified and demonstrated the roles of Arabidopsis oxysterol-binding protein-related protein 2A (ORP2A) in mediating ER-autophagosomal membrane contacts and autophagosome biogenesis. We showed that ORP2A localizes to both ER-plasma membrane contact sites (EPCSs) and autophagosomes, and that ORP2A interacts with both the ER-localized VAMP-associated protein (VAP) 27-1 and ATG8e on the autophagosomes to mediate the membrane contact sites (MCSs). In ORP2A artificial microRNA knockdown (KD) plants, seedlings display retarded growth and impaired autophagy levels. Both ATG1a and ATG8e accumulated and associated with the ER membrane in ORP2A KD lines. Moreover, ORP2A binds multiple phospholipids and shows colocalization with phosphatidylinositol 3-phosphate (PI3P) in vivo. Taken together, ORP2A mediates ER-autophagosomal MCSs and regulates autophagy through PI3P redistribution.
Collapse
Affiliation(s)
- Hao Ye
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Youshun Lin
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianyi Yu
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen H. Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm (Beijing) 2022; 3:e150. [PMID: 35845350 PMCID: PMC9271889 DOI: 10.1002/mco2.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionally conserved catabolic process in which cytosolic contents, such as aggregated proteins, dysfunctional organelle, or invading pathogens, are sequestered by the double-membrane structure termed autophagosome and delivered to lysosome for degradation. Over the past two decades, autophagy has been extensively studied, from the molecular mechanisms, biological functions, implications in various human diseases, to development of autophagy-related therapeutics. This review will focus on the latest development of autophagy research, covering molecular mechanisms in control of autophagosome biogenesis and autophagosome-lysosome fusion, and the upstream regulatory pathways including the AMPK and MTORC1 pathways. We will also provide a systematic discussion on the implication of autophagy in various human diseases, including cancer, neurodegenerative disorders (Alzheimer disease, Parkinson disease, Huntington's disease, and Amyotrophic lateral sclerosis), metabolic diseases (obesity and diabetes), viral infection especially SARS-Cov-2 and COVID-19, cardiovascular diseases (cardiac ischemia/reperfusion and cardiomyopathy), and aging. Finally, we will also summarize the development of pharmacological agents that have therapeutic potential for clinical applications via targeting the autophagy pathway. It is believed that decades of hard work on autophagy research is eventually to bring real and tangible benefits for improvement of human health and control of human diseases.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yin Shi
- Department of BiochemistryZhejiang University School of MedicineHangzhouChina
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn ResearchSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of PathophysiologyNingbo University School of MedicineNingboZhejiangChina
| | - Han‐Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
26
|
Vps21 Directs the PI3K-PI(3)P-Atg21-Atg16 Module to Phagophores via Vps8 for Autophagy. Int J Mol Sci 2022; 23:ijms23179550. [PMID: 36076954 PMCID: PMC9455592 DOI: 10.3390/ijms23179550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
Phosphatidylinositol 3-phosphate (PI(3)P) serves important functions in endocytosis, phagocytosis, and autophagy. PI(3)P is generated by Vps34 of the class III phosphatidylinositol 3-kinase (PI3K) complex. The Vps34-PI3K complex can be divided into Vps34-PI3K class II (containing Vps38, endosomal) and Vps34-PI3K class I (containing Atg14, autophagosomal). Most PI(3)Ps are associated with endosomal membranes. In yeast, the endosomal localization of Vps34 and PI(3)P is tightly regulated by Vps21-module proteins. At yeast phagophore assembly site (PAS) or mammalian omegasomes, PI(3)P binds to WD-repeat protein interacting with phosphoinositide (WIPI) proteins to further recruit two conjugation systems, Atg5-Atg12·Atg16 and Atg8-PE (LC3-II), to initiate autophagy. However, the spatiotemporal regulation of PI(3)P during autophagy remains obscure. Therefore, in this study, we determined the effect of Vps21 on localization and interactions of Vps8, Vps34, Atg21, Atg8, and Atg16 upon autophagy induction. The results showed that Vps21 was required for successive colocalizations and interactions of Vps8-Vps34 and Vps34-Atg21 on endosomes, and Atg21-Atg8/Atg16 on the PAS. In addition to disrupted localization of the PI3K complex II subunits Vps34 and Vps38 on endosomes, the localization of the PI3K complex I subunits Vps34 and Atg14, as well as Atg21, was partly disrupted from the PAS in vps21∆ cells. The impaired PI3K-PI(3)P-Atg21-Atg16 axis in vps21∆ cells might delay autophagy, which is consistent with the delay of early autophagy when Atg21 was absent. This study provides the first insight into the upstream sequential regulation of the PI3K-PI(3)P-Atg21-Atg16 module by Vps21 in autophagy.
Collapse
|
27
|
Cannariato M, Miceli M, Deriu MA. In silico investigation of Alsin RLD conformational dynamics and phosphoinositides binding mechanism. PLoS One 2022; 17:e0270955. [PMID: 35849605 PMCID: PMC9292110 DOI: 10.1371/journal.pone.0270955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Alsin is a protein known for its major role in neuronal homeostasis and whose mutation is associated with early-onset neurodegenerative diseases. It has been shown that its relocalization from the cytoplasm to the cell membrane is crucial to induce early endosomes maturation. In particular, evidences suggest that the N-terminal regulator of chromosome condensation 1 like domain (RLD) is necessary for membrane association thanks to its affinity to phosphoinositides, membrane lipids involved in the regulation of several signaling processes. Interestingly, this domain showed affinity towards phosphatidylinositol 3-phosphate [PI(3)P], which is highly expressed in endosomes membrane. However, Alsin structure has not been experimentally resolved yet and molecular mechanisms associated with its biological functions are mostly unknown. In this work, Alsin RLD has been investigated through computational molecular modeling techniques to analyze its conformational dynamics and obtain a representative 3D model of this domain. Moreover, a putative phosphoinositide binding site has been proposed and PI(3)P interaction mechanism studied. Results highlight the substantial conformational stability of Alsin RLD secondary structure and suggest the role of one highly flexible region in the phosphoinositides selectivity of this domain.
Collapse
Affiliation(s)
- Marco Cannariato
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marcello Miceli
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- * E-mail:
| |
Collapse
|
28
|
Characterization of Protein-Membrane Interactions in Yeast Autophagy. Cells 2022; 11:cells11121876. [PMID: 35741004 PMCID: PMC9221364 DOI: 10.3390/cells11121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells rely on autophagy to degrade cytosolic material and maintain homeostasis. During autophagy, content to be degraded is encapsulated in double membrane vesicles, termed autophagosomes, which fuse with the yeast vacuole for degradation. This conserved cellular process requires the dynamic rearrangement of membranes. As such, the process of autophagy requires many soluble proteins that bind to membranes to restructure, tether, or facilitate lipid transfer between membranes. Here, we review the methods that have been used to investigate membrane binding by the core autophagy machinery and additional accessory proteins involved in autophagy in yeast. We also review the key experiments demonstrating how each autophagy protein was shown to interact with membranes.
Collapse
|
29
|
Courtellemont T, De Leo MG, Gopaldass N, Mayer A. CROP: a retromer-PROPPIN complex mediating membrane fission in the endo-lysosomal system. EMBO J 2022; 41:e109646. [PMID: 35466426 PMCID: PMC9108610 DOI: 10.15252/embj.2021109646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023] Open
Abstract
Endo-lysosomal compartments exchange proteins by fusing, fissioning, and through endosomal transport carriers. Thereby, they sort many plasma membrane receptors and transporters and control cellular signaling and metabolism. How the membrane fission events are catalyzed is poorly understood. Here, we identify the novel CROP complex as a factor acting at this step. CROP joins members of two protein families: the peripheral subunits of retromer, a coat forming endosomal transport carriers, and membrane inserting PROPPINs. Integration into CROP potentiates the membrane fission activity of the PROPPIN Atg18 on synthetic liposomes and confers strong preference for binding PI(3,5)P2 , a phosphoinositide required for membrane fission activity. Disrupting CROP blocks fragmentation of lysosome-like yeast vacuoles in vivo. CROP-deficient mammalian endosomes accumulate micrometer-long tubules and fail to export cargo, suggesting that carriers attempt to form but cannot separate from these organelles. PROPPINs compete for retromer binding with the SNX-BAR proteins, which recruit retromer to the membrane during the formation of endosomal carriers. Transition from retromer-SNX-BAR complexes to retromer-PROPPIN complexes might hence switch retromer activities from cargo capture to membrane fission.
Collapse
Affiliation(s)
| | | | - Navin Gopaldass
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| | - Andreas Mayer
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| |
Collapse
|
30
|
Popelka H, Uversky VN. Theater in the Self-Cleaning Cell: Intrinsically Disordered Proteins or Protein Regions Acting with Membranes in Autophagy. MEMBRANES 2022; 12:457. [PMID: 35629783 PMCID: PMC9143426 DOI: 10.3390/membranes12050457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered proteins and protein regions (IDPs/IDPRs) are mainly involved in signaling pathways, where fast regulation, temporal interactions, promiscuous interactions, and assemblies of structurally diverse components including membranes are essential. The autophagy pathway builds, de novo, a membrane organelle, the autophagosome, using carefully orchestrated interactions between proteins and lipid bilayers. Here, we discuss molecular mechanisms related to the protein disorder-based interactions of the autophagy machinery with membranes. We describe not only membrane binding phenomenon, but also examples of membrane remodeling processes including membrane tethering, bending, curvature sensing, and/or fragmentation of membrane organelles such as the endoplasmic reticulum, which is an important membrane source as well as cargo for autophagy. Summary of the current state of knowledge presented here will hopefully inspire new studies. A profound understanding of the autophagic protein-membrane interface is essential for advancements in therapeutic interventions against major human diseases, in which autophagy is involved including neurodegeneration, cancer as well as cardiovascular, metabolic, infectious, musculoskeletal, and other disorders.
Collapse
Affiliation(s)
- Hana Popelka
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
31
|
Fission Yeast Autophagy Machinery. Cells 2022; 11:cells11071086. [PMID: 35406650 PMCID: PMC8997447 DOI: 10.3390/cells11071086] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Autophagy is a conserved process that delivers cytoplasmic components to the vacuole/lysosome. It plays important roles in maintaining cellular homeostasis and conferring stress resistance. In the fission yeast Schizosaccharomyces pombe, autophagy is important for cell survival under nutrient depletion and ER stress conditions. Experimental analyses of fission yeast autophagy machinery in the last 10 years have unveiled both similarities and differences in autophagosome biogenesis mechanisms between fission yeast and other model eukaryotes for autophagy research, in particular, the budding yeast Saccharomyces cerevisiae. More recently, selective autophagy pathways that deliver hydrolytic enzymes, the ER, and mitochondria to the vacuole have been discovered in fission yeast, yielding novel insights into how cargo selectivity can be achieved in autophagy. Here, we review the progress made in understanding the autophagy machinery in fission yeast.
Collapse
|
32
|
Schreiber A, Collins BC, Davis C, Enchev RI, Sedra A, D'Antuono R, Aebersold R, Peter M. Multilayered regulation of autophagy by the Atg1 kinase orchestrates spatial and temporal control of autophagosome formation. Mol Cell 2021; 81:5066-5081.e10. [PMID: 34798055 PMCID: PMC8693860 DOI: 10.1016/j.molcel.2021.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/23/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022]
Abstract
Autophagy is a conserved intracellular degradation pathway exerting various cytoprotective and homeostatic functions by using de novo double-membrane vesicle (autophagosome) formation to target a wide range of cytoplasmic material for vacuolar/lysosomal degradation. The Atg1 kinase is one of its key regulators, coordinating a complex signaling program to orchestrate autophagosome formation. Combining in vitro reconstitution and cell-based approaches, we demonstrate that Atg1 is activated by lipidated Atg8 (Atg8-PE), stimulating substrate phosphorylation along the growing autophagosomal membrane. Atg1-dependent phosphorylation of Atg13 triggers Atg1 complex dissociation, enabling rapid turnover of Atg1 complex subunits at the pre-autophagosomal structure (PAS). Moreover, Atg1 recruitment by Atg8-PE self-regulates Atg8-PE levels in the growing autophagosomal membrane by phosphorylating and thus inhibiting the Atg8-specific E2 and E3. Our work uncovers the molecular basis for positive and negative feedback imposed by Atg1 and how opposing phosphorylation and dephosphorylation events underlie the spatiotemporal regulation of autophagy.
Collapse
Affiliation(s)
- Anne Schreiber
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Ben C Collins
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| | - Colin Davis
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Radoslav I Enchev
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Angie Sedra
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Rocco D'Antuono
- Crick Advanced Light Microscopy (CALM) STP, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
33
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
34
|
Maroofian R, Gubas A, Kaiyrzhanov R, Scala M, Hundallah K, Severino M, Abdel-Hamid MS, Rosenfeld JA, Ebrahimi-Fakhari D, Ali Z, Rahim F, Houlden H, Tooze SA, Alsaleh NS, Zaki MS. Homozygous missense WIPI2 variants cause a congenital disorder of autophagy with neurodevelopmental impairments of variable clinical severity and disease course. Brain Commun 2021; 3:fcab183. [PMID: 34557665 PMCID: PMC8453401 DOI: 10.1093/braincomms/fcab183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/27/2022] Open
Abstract
WIPI2 is a member of the human WIPI protein family (seven-bladed b-propeller proteins binding phosphatidylinositols, PROPPINs), which play a pivotal role in autophagy and has been implicated in the pathogenesis of several neurological conditions. The homozygous WIPI2 variant c.745G>A; p.(Val249Met) (NM_015610.4) has recently been associated with a neurodevelopmental disorder in a single family. Using exome sequencing and Sanger segregation analysis, here, two novel homozygous WIPI2 variants [c.551T>G; p.(Val184Gly) and c.724C>T; p.(Arg242Trp) (NM_015610.4)] were identified in four individuals of two consanguineous families. Additionally, follow-up clinical data were sought from the previously reported family. Three non-ambulant affected siblings of the first family harbouring the p.(Val184Gly) missense variant presented with microcephaly, profound global developmental delay/intellectual disability, refractory infantile/childhood-onset epilepsy, progressive tetraplegia with joint contractures and dyskinesia. In contrast, the proband of the second family carrying the p.(Arg242Trp) missense variant, similar to the initially reported WIPI2 cases, presented with a milder phenotype, encompassing moderate intellectual disability, speech and visual impairment, autistic features, and an ataxic gait. Brain MR imaging in five patients showed prominent white matter involvement with a global reduction in volume, posterior corpus callosum hypoplasia, abnormal dentate nuclei and hypoplasia of the inferior cerebellar vermis. To investigate the functional impact of these novel WIPI2 variants, we overexpressed both in WIPI2-knockout HEK293A cells. In comparison to wildtype, expression of the Val166Gly WIPI2b mutant resulted in a deficient rescue of LC3 lipidation whereas Arg224Trp mutant increased LC3 lipidation, in line with the previously reported Val231Met variant. These findings support a dysregulation of the early steps of the autophagy pathway. Collectively, our findings provide evidence that biallelic WIPI2 variants cause a neurodevelopmental disorder of variable severity and disease course. Our report expands the clinical spectrum and establishes WIPI2-related disorder as a congenital disorders of autophagy.
Collapse
Affiliation(s)
- Reza Maroofian
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, UK
| | - Andrea Gubas
- Goethe University Medical School, University Hospital, 60590 Frankfurt am Main, Germany
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, UK
| | - Marcello Scala
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, UK
| | - Khalid Hundallah
- Division of Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zahir Ali
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Fazal Rahim
- Department of Physiology, Bacha Khan Medical College, Mardan, Pakistan
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, UK
| | - Sharon A Tooze
- The Francis Crick Institute, Molecular Cell Biology of Autophagy, NW1 1AT London, UK
| | - Norah S Alsaleh
- Division of Medical Genetics and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, 11159 Riyadh, Saudi Arabia
| | - Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, 12311 Cairo, Egypt
| |
Collapse
|
35
|
Vincent O, Antón-Esteban L, Bueno-Arribas M, Tornero-Écija A, Navas MÁ, Escalante R. The WIPI Gene Family and Neurodegenerative Diseases: Insights From Yeast and Dictyostelium Models. Front Cell Dev Biol 2021; 9:737071. [PMID: 34540850 PMCID: PMC8442847 DOI: 10.3389/fcell.2021.737071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/12/2021] [Indexed: 02/01/2023] Open
Abstract
WIPIs are a conserved family of proteins with a characteristic 7-bladed β-propeller structure. They play a prominent role in autophagy, but also in other membrane trafficking processes. Mutations in human WIPI4 cause several neurodegenerative diseases. One of them is BPAN, a rare disease characterized by developmental delay, motor disorders, and seizures. Autophagy dysfunction is thought to play an important role in this disease but the precise pathological consequences of the mutations are not well established. The use of simple models such as the yeast Saccharomyces cerevisiae and the social amoeba Dictyostelium discoideum provides valuable information on the molecular and cellular function of these proteins, but also sheds light on possible pathways that may be relevant in the search for potential therapies. Here, we review the function of WIPIs as well as disease-causing mutations with a special focus on the information provided by these simple models.
Collapse
Affiliation(s)
- Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | - Laura Antón-Esteban
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | | | - Alba Tornero-Écija
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | - María-Ángeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| |
Collapse
|
36
|
Strong LM, Chang C, Riley JF, Boecker CA, Flower TG, Buffalo CZ, Ren X, Stavoe AK, Holzbaur EL, Hurley JH. Structural basis for membrane recruitment of ATG16L1 by WIPI2 in autophagy. eLife 2021; 10:70372. [PMID: 34505572 PMCID: PMC8455133 DOI: 10.7554/elife.70372] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double-membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12-5-16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12-5-16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven-bladedß -propeller WIPI proteins. We determined the crystal structure of WIPI2d in complex with the WIPI2 interacting region (W2IR) of ATG16L1 comprising residues 207-230 at 1.85 Å resolution. The structure shows that the ATG16L1 W2IR adopts an alpha helical conformation and binds in an electropositive and hydrophobic groove between WIPI2 ß-propeller blades 2 and 3. Mutation of residues at the interface reduces or blocks the recruitment of ATG12-5-16 L1 and the conjugation of the ATG8 protein LC3B to synthetic membranes. Interface mutants show a decrease in starvation-induced autophagy. Comparisons across the four human WIPIs suggest that WIPI1 and 2 belong to a W2IR-binding subclass responsible for localizing ATG12-5-16 L1 and driving ATG8 lipidation, whilst WIPI3 and 4 belong to a second W34IR-binding subclass responsible for localizing ATG2, and so directing lipid supply to the nascent phagophore. The structure provides a framework for understanding the regulatory node connecting two central events in autophagy initiation, the action of the autophagic PI 3-kinase complex on the one hand and ATG8 lipidation on the other.
Collapse
Affiliation(s)
- Lisa M Strong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| | - Chunmei Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| | - Julia F Riley
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - C Alexander Boecker
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Thomas G Flower
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Cosmo Z Buffalo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Xuefeng Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Andrea Kh Stavoe
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, United States
| | - Erika Lf Holzbaur
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| |
Collapse
|
37
|
Bueno-Arribas M, Blanca I, Cruz-Cuevas C, Escalante R, Navas MA, Vincent O. A conserved ATG2 binding site in WIPI4 and yeast Hsv2 is disrupted by mutations causing β-propeller protein-associated neurodegeneration. Hum Mol Genet 2021; 31:111-121. [PMID: 34368840 PMCID: PMC8682751 DOI: 10.1093/hmg/ddab225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/18/2023] Open
Abstract
PROPPINs are phosphoinositide-binding β-propeller proteins that mediate membrane recruitment of other proteins and are involved in different membrane remodeling processes. The main role of PROPPINs is their function in autophagy, where they act at different steps in phagophore formation. The human PROPPIN WIPI4 (WDR45) forms a complex with ATG2 involved in phagophore elongation, and mutations in this gene cause β-propeller protein-associated neurodegeneration (BPAN). The yeast functional counterpart of WIPI4 is Atg18, although its closest sequence homolog is another member of the PROPPIN family, Hsv2, whose function remains largely undefined. Here, we provide evidence that Hsv2, like WIPI4 and Atg18, interacts with Atg2. We show that Hsv2 and a pool of Atg2 colocalize on endosomes under basal conditions and at the pre-autophagosomal structure (PAS) upon autophagy induction. We further show that Hsv2 drives the recruitment of Atg2 to endosomes while Atg2 mediates Hsv2 recruitment to the PAS. HSV2 overexpression results in mis-sorting and secretion of carboxypeptidase CPY, suggesting that the endosomal function of this protein is related to the endosome-to-Golgi recycling pathway. Furthermore, we show that the Atg2 binding site is conserved in Hsv2 and WIPI4 but not in Atg18. Notably, two WIPI4 residues involved in ATG2 binding are mutated in patients with BPAN, and there is a correlation between the inhibitory effect of these mutations on ATG2 binding and the severity of the disease.
Collapse
Affiliation(s)
| | - Irene Blanca
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Celia Cruz-Cuevas
- Instituto de Investigaciones Biomédicas CSIC-UAM 28029 Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas CSIC-UAM 28029 Madrid, Spain
| | - María-Angeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas CSIC-UAM 28029 Madrid, Spain
| |
Collapse
|
38
|
Overduin M, Kervin TA. The phosphoinositide code is read by a plethora of protein domains. Expert Rev Proteomics 2021; 18:483-502. [PMID: 34351250 DOI: 10.1080/14789450.2021.1962302] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The proteins that decipher nucleic acid- and protein-based information are well known, however, those that read membrane-encoded information remain understudied. Here we report 70 different human, microbial and viral protein folds that recognize phosphoinositides (PIs), comprising the readers of a vast membrane code. AREAS COVERED Membrane recognition is best understood for FYVE, PH and PX domains, which exemplify hundreds of PI code readers. Comparable lipid interaction mechanisms may be mediated by kinases, adjacent C1 and C2 domains, trafficking arrestin, GAT and VHS modules, membrane-perturbing annexin, BAR, CHMP, ENTH, HEAT, syntaxin and Tubby helical bundles, multipurpose FERM, EH, MATH, PHD, PDZ, PROPPIN, PTB and SH2 domains, as well as systems that regulate receptors, GTPases and actin filaments, transfer lipids and assembled bacterial and viral particles. EXPERT OPINION The elucidation of how membranes are recognized has extended the genetic code to the PI code. Novel discoveries include PIP-stop and MET-stop residues to which phosphates and metabolites are attached to block phosphatidylinositol phosphate (PIP) recognition, memteins as functional membrane protein apparatuses, and lipidons as lipid "codons" recognized by membrane readers. At least 5% of the human proteome senses such membrane signals and allows eukaryotic organelles and pathogens to operate and replicate.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Noda NN. Atg2 and Atg9: Intermembrane and interleaflet lipid transporters driving autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158956. [PMID: 33932584 DOI: 10.1016/j.bbalip.2021.158956] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Autophagy, an intracellular degradation mechanism, involves de novo generation of autophagosomes that sequester and deliver cytoplasmic components to the lysosome for degradation. The mechanism behind autophagosomal membrane expansion has been a longstanding enigma in this field. Recent structural and biochemical analyses have revealed that two mysterious autophagy-related (Atg) proteins, Atg2 and Atg9, are novel types of intermembrane and interleaflet lipid transporters, respectively. This review summarizes recent discoveries surrounding Atg2 and Atg9 as a lipid transporter and discusses the molecular mechanism of autophagosomal membrane expansion driven by collaboration between these two lipid transporters.
Collapse
Affiliation(s)
- Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan.
| |
Collapse
|
40
|
Matoba K, Noda NN. Structural catalog of core Atg proteins opens new era of autophagy research. J Biochem 2021; 169:517-525. [PMID: 33576807 DOI: 10.1093/jb/mvab017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy, which is an evolutionarily conserved intracellular degradation system, involves de novo generation of autophagosomes that sequester and deliver diverse cytoplasmic materials to the lysosome for degradation. Autophagosome formation is mediated by approximately 20 core autophagy-related (Atg) proteins, which collaborate to mediate complicated membrane dynamics during autophagy. To elucidate the molecular functions of these Atg proteins in autophagosome formation, many researchers have tried to determine the structures of Atg proteins by using various structural biological methods. Although not sufficient, the basic structural catalog of all core Atg proteins was established. In this review article, we summarize structural biological studies of core Atg proteins, with an emphasis on recently unveiled structures, and describe the mechanistic breakthroughs in autophagy research that have derived from new structural information.
Collapse
Affiliation(s)
- Kazuaki Matoba
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
41
|
Tornero-Écija A, Tábara LC, Bueno-Arribas M, Antón-Esteban L, Navarro-Gómez C, Sánchez I, Vincent O, Escalante R. A Dictyostelium model for BPAN disease reveals a functional relationship between the WDR45/WIPI4 homolog Wdr45l and Vmp1 in the regulation of autophagy-associated PtdIns3P and ER stress. Autophagy 2021; 18:661-677. [PMID: 34328055 PMCID: PMC9037511 DOI: 10.1080/15548627.2021.1953262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PROPPINs are conserved PtdIns3P-binding proteins required for autophagosome biogenesis that fold into a characteristic group of seven-bladed beta-propellers. Mutations in WDR45/WIPI4, a human member of this family, lead to BPAN, a rare form of neurodegeneration. We have generated mutants for the two PROPPIN proteins present in the model system Dictyostelium discoideum (Atg18 and Wdr45l) and characterized their function. Lack of Wdr45l greatly impairs autophagy, while Atg18 only causes subtle defects in the maturation of autolysosomes. The strong phenotype of the Wdr45l mutant is strikingly similar to that observed in Dictyostelium cells lacking Vmp1, an ER protein required for omegasome formation. Common phenotypes include impaired growth in axenic medium, lack of aggregation, and local enrichment of PtdIns3P as determined by the use of lipid reporters. In addition, Vmp1 and Wdr45l mutants show a chronically active response to ER stress. For both mutants, this altered PtdIns3P localization can be prevented by the additional mutation of the upstream regulator Atg1, which also leads to recovery of axenic growth and reduction of ER stress. We propose that, in addition to an autophagy defect, local autophagy-associated PtdIns3P accumulation might contribute to the pathogenesis of BPAN by disrupting ER homeostasis. The introduction of BPAN-associated mutations in Dictyostelium Wdr45l reveals the impact of pathogenic residues on the function and localization of the protein.
Collapse
Affiliation(s)
- Alba Tornero-Écija
- C.S.I.C./U.A.M., Instituto De Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Luis-Carlos Tábara
- C.S.I.C./U.A.M., Instituto De Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Miranda Bueno-Arribas
- C.S.I.C./U.A.M., Instituto De Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Laura Antón-Esteban
- C.S.I.C./U.A.M., Instituto De Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | | | - Irene Sánchez
- C.S.I.C./U.A.M., Instituto De Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Olivier Vincent
- C.S.I.C./U.A.M., Instituto De Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Ricardo Escalante
- C.S.I.C./U.A.M., Instituto De Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| |
Collapse
|
42
|
Li L, Tong M, Fu Y, Chen F, Zhang S, Chen H, Ma X, Li D, Liu X, Zhong Q. Lipids and membrane-associated proteins in autophagy. Protein Cell 2021; 12:520-544. [PMID: 33151516 PMCID: PMC8225772 DOI: 10.1007/s13238-020-00793-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy is essential for the maintenance of cellular homeostasis and its dysfunction has been linked to various diseases. Autophagy is a membrane driven process and tightly regulated by membrane-associated proteins. Here, we summarized membrane lipid composition, and membrane-associated proteins relevant to autophagy from a spatiotemporal perspective. In particular, we focused on three important membrane remodeling processes in autophagy, lipid transfer for phagophore elongation, membrane scission for phagophore closure, and autophagosome-lysosome membrane fusion. We discussed the significance of the discoveries in this field and possible avenues to follow for future studies. Finally, we summarized the membrane-associated biochemical techniques and assays used to study membrane properties, with a discussion of their applications in autophagy.
Collapse
Affiliation(s)
- Linsen Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mindan Tong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuhui Fu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanmo Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
43
|
Dziurdzik SK, Bean BDM, Davey M, Conibear E. A VPS13D spastic ataxia mutation disrupts the conserved adaptor-binding site in yeast Vps13. Hum Mol Genet 2021; 29:635-648. [PMID: 31943017 PMCID: PMC7068118 DOI: 10.1093/hmg/ddz318] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in each of the four human VPS13 (VPS13A-D) proteins are associated with distinct neurological disorders: chorea-acanthocytosis, Cohen syndrome, early-onset Parkinson's disease and spastic ataxia. Recent evidence suggests that the different VPS13 paralogs transport lipids between organelles at different membrane contact sites. How each VPS13 isoform is targeted to organelles is not known. We have shown that the localization of yeast Vps13 protein to membranes requires a conserved six-repeat region, the Vps13 Adaptor Binding (VAB) domain, which binds to organelle-specific adaptors. Here, we use a systematic mutagenesis strategy to determine the role of each repeat in recognizing each known adaptor. Our results show that mutation of invariant asparagines in repeats 1 and 6 strongly impacts the binding of all adaptors and blocks Vps13 membrane recruitment. However, we find that repeats 5-6 are sufficient for localization and interaction with adaptors. This supports a model where a single adaptor-binding site is found in the last two repeats of the VAB domain, while VAB domain repeat 1 may influence domain conformation. Importantly, a disease-causing mutation in VPS13D, which maps to the highly conserved asparagine residue in repeat 6, blocks adaptor binding and Vps13 membrane recruitment when modeled in yeast. Our findings are consistent with a conserved adaptor binding role for the VAB domain and suggest the presence of as-yet-unidentified adaptors in both yeast and humans.
Collapse
Affiliation(s)
- Samantha K Dziurdzik
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Björn D M Bean
- Department of Biology, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
44
|
Gomez RE, Lupette J, Chambaud C, Castets J, Ducloy A, Cacas JL, Masclaux-Daubresse C, Bernard A. How Lipids Contribute to Autophagosome Biogenesis, a Critical Process in Plant Responses to Stresses. Cells 2021; 10:1272. [PMID: 34063958 PMCID: PMC8224036 DOI: 10.3390/cells10061272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed.
Collapse
Affiliation(s)
- Rodrigo Enrique Gomez
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Julie Castets
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Amélie Ducloy
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Amélie Bernard
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| |
Collapse
|
45
|
Plasmodium falciparum Atg18 localizes to the food vacuole via interaction with the multi-drug resistance protein 1 and phosphatidylinositol 3-phosphate. Biochem J 2021; 478:1705-1732. [PMID: 33843972 DOI: 10.1042/bcj20210001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022]
Abstract
Autophagy, a lysosome-dependent degradative process, does not appear to be a major degradative process in malaria parasites and has a limited repertoire of genes. To better understand the autophagy process, we investigated Plasmodium falciparum Atg18 (PfAtg18), a PROPPIN family protein, whose members like S. cerevisiae Atg18 (ScAtg18) and human WIPI2 bind PI3P and play an essential role in autophagosome formation. Wild type and mutant PfAtg18 were expressed in P. falciparum and assessed for localization, the effect of various inhibitors and antimalarials on PfAtg18 localization, and identification of PfAtg18-interacting proteins. PfAtg18 is expressed in asexual erythrocytic stages and localized to the food vacuole, which was also observed with other Plasmodium Atg18 proteins, indicating that food vacuole localization is likely a shared feature. Interaction of PfAtg18 with the food vacuole-associated PI3P is essential for localization, as PfAtg18 mutants of PI3P-binding motifs neither bound PI3P nor localized to the food vacuole. Interestingly, wild type ScAtg18 interacted with PI3P, but its expression in P. falciparum showed complete cytoplasmic localization, indicating additional requirement for food vacuole localization. The food vacuole multi-drug resistance protein 1 (MDR1) was consistently identified in the immunoprecipitates of PfAtg18 and P. berghei Atg18, and also interacted with PfAtg18. In contrast with PfAtg18, ScAtg18 did not interact with MDR1, which, in addition to PI3P, could play a critical role in localization of PfAtg18. Chloroquine and amodiaquine caused cytoplasmic localization of PfAtg18, suggesting that these target PfAtg18 transport pathway. Thus, PI3P and MDR1 are critical mediators of PfAtg18 localization.
Collapse
|
46
|
De Leo MG, Berger P, Mayer A. WIPI1 promotes fission of endosomal transport carriers and formation of autophagosomes through distinct mechanisms. Autophagy 2021; 17:3644-3670. [PMID: 33685363 PMCID: PMC8632285 DOI: 10.1080/15548627.2021.1886830] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagosome formation requires PROPPIN/WIPI proteins and monophosphorylated phosphoinositides, such as phosphatidylinositol-3-phosphate (PtdIns3P) or PtdIns5P. This process occurs in association with mammalian endosomes, where the PROPPIN WIPI1 has additional, undefined roles in vesicular traffic. To explore whether these functions are interconnected, we dissected routes and subreactions of endosomal trafficking requiring WIPI1. WIPI1 specifically acts in the formation and fission of tubulo-vesicular endosomal transport carriers. This activity supports the PtdIns(3,5)P2-dependent transport of endosomal cargo toward the plasma membrane, Golgi, and lysosomes, suggesting a general role of WIPI1 in endosomal protein exit. Three features differentiate the endosomal and macroautophagic/autophagic activities of WIPI1: phosphoinositide binding site II, the requirement for PtdIns(3,5)P2, and bilayer deformation through a conserved amphipathic α-helix. Their inactivation preserves autophagy but leads to a strong enlargement of endosomes, which accumulate micrometer-long endosomal membrane tubules carrying cargo proteins. WIPI1 thus supports autophagy and protein exit from endosomes by different modes of action. We propose that the type of phosphoinositides occupying its two lipid binding sites, the most unusual feature of PROPPIN/WIPI family proteins, switches between these effector functions. Abbreviations: EGF: epidermal growth factorEGFR: epidermal growth factor receptorKD: knockdownKO: knockoutPtdIns3P: phosphatidylinositol-3-phosphatePtdIns5P: phosphatidylinositol-5-phosphatePtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphateTF: transferrinTFRC: transferrin receptorWT: wildtype
Collapse
Affiliation(s)
| | - Philipp Berger
- Department of Biology and Chemistry, Laboratory of Nanoscale Biology, Paul-Scherrer-Institute, Villigen, Switzerland
| | - Andreas Mayer
- Département De Biochimie, Université De Lausanne, Lausanne, Epalinges, Switzerland
| |
Collapse
|
47
|
Lei Y, Tang D, Liao G, Xu L, Liu S, Chen Q, Li C, Duan J, Wang K, Wang J, Sun B, Li Z, Dai L, Cheng W, Qi S, Lu K. The crystal structure of Atg18 reveals a new binding site for Atg2 in Saccharomyces cerevisiae. Cell Mol Life Sci 2021; 78:2131-2143. [PMID: 32809042 PMCID: PMC11073433 DOI: 10.1007/s00018-020-03621-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Macroautophagy (hereafter referred to as autophagy) is a highly conserved catabolic eukaryotic pathway that is critical for stress responses and homeostasis. Atg18, one of the core proteins involved in autophagy, belongs to the PROPPIN family and is composed of seven WD40 repeats. Together with Atg2, Atg18 participates in the elongation of phagophores and the recycling of Atg9 in yeast. Despite extensive studies on the PROPPIN family, the structure of Atg18 from Saccharomyces cerevisiae has not been determined. Here, we report the structure of ScAtg18 at a resolution of 2.8 Å. Based on bioinformatics and structural analysis, we found that the 7AB loop of ScAtg18 is extended in Atg18, in comparison to other members of the PROPPIN family. Genetic analysis revealed that the 7AB loop of ScAtg18 is required for autophagy. Biochemical and biophysical experiments indicated that the 7AB loop of ScAtg18 is critical for interaction with ScAtg2 and the recruitment of ScAtg2 to the autophagy-initiating site. Collectively, our results show that the 7AB loop of ScAtg18 is a new binding site for Atg2 and is of functional importance to autophagy.
Collapse
Affiliation(s)
- Yuqing Lei
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dan Tang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liangting Xu
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiyan Liu
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qianqian Chen
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chunxia Li
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinsong Duan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kunjie Wang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bo Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zhonghan Li
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wei Cheng
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Kefeng Lu
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Yamada Y, Schaap P. The proppin Bcas3 and its interactor KinkyA localize to the early phagophore and regulate autophagy. Autophagy 2021; 17:640-655. [PMID: 32116088 PMCID: PMC8032249 DOI: 10.1080/15548627.2020.1725403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 11/11/2022] Open
Abstract
To resolve the signaling mechanisms that mediate the starvation-induced processes of Dictyostelium sporulation and encystation, we performed insertional mutagenesis on cells harboring an mRFP-tagged spore gene. We isolated a mutant in kinkyA (knkA), a gene without known function, which formed fruiting bodies with a kinked stalk and lacking viable spores. Immunoprecipitation of lysates of KnkA-YFP-transformed knkA- cells yielded a mammalian BCAS3 homolog as a KnkA interactor. bcas3- phenocopied knkA- and Bcas3 colocalized with KnkA to puncta. Bcas3 shares sequence similarity with proppins (beta-propellors that bind phosphoinositides). Mutation of 2 Bcas3 residues that are essential for PtdIns3P binding in proppins prevented Bcas3 binding to PtdIns3P as well as punctate Bcas3 and KnkA localization. KnkA puncta also colocalized with small but not large vesicles that contain the autophagy protein Atg8 and were contiguous with the endoplasmic reticulum. knkA- and bcas3- cells showed a pronounced decrease of RFP-GFP-Atg8 in neutral early autophagosomes, indicating that KnkA and Bcas3 are required for macroautophagy/autophagy. Knockouts in atg7, atg5 or atg9 substantiated this finding by showing similar sporulation defects as knkA- and bcas3-. Defective Dictyostelium sporulation is evidently a useful diagnostic tool for the discovery of novel autophagy genes.Abbreviations: Atg: Autophagy-related; BCAS3: BCAS3 microtubule associated cell migration factor; cAMP: 3',5'-cyclic adenosine monophosphate; ER: endoplasmic reticulum; GFP: green fluorescent protein; PAS: phagophore assembly site; PRKA/PKA: protein kinase cAMP-dependent; Proppin: beta-propellers that bind phosphoinositides; PtdIns3P: phosphatidylinositol 3-phosphate; REMI: restriction enzyme-mediated insertional mutagenesis; RFP: red fluorescent protein; RT-qPCR: reverse transcriptase - quantitative polymerase chain reaction; WIPI: WD repeat domain, phosphoinositide interacting; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Yoko Yamada
- School of Life Sciences, University of Dundee, Dundee, UK
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
49
|
Kojima W, Yamano K, Kosako H, Imai K, Kikuchi R, Tanaka K, Matsuda N. Mammalian BCAS3 and C16orf70 associate with the phagophore assembly site in response to selective and non-selective autophagy. Autophagy 2021; 17:2011-2036. [PMID: 33499712 PMCID: PMC8386740 DOI: 10.1080/15548627.2021.1874133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Macroautophagy/autophagy is an intracellular degradation process that delivers cytosolic materials and/or damaged organelles to lysosomes. De novo synthesis of the autophagosome membrane occurs within a phosphatidylinositol-3-phosphate-rich region of the endoplasmic reticulum, and subsequent expansion is critical for cargo encapsulation. This process is complex, especially in mammals, with many regulatory factors. In this study, by utilizing PRKN (parkin RBR E3 ubiquitin protein ligase)-mediated mitochondria autophagy (mitophagy)-inducing conditions in conjunction with chemical crosslinking and mass spectrometry, we identified human BCAS3 (BCAS3 microtubule associated cell migration factor) and C16orf70 (chromosome 16 open reading frame 70) as novel proteins that associate with the autophagosome formation site during both non-selective and selective autophagy. We demonstrate that BCAS3 and C16orf70 form a complex and that their association with the phagophore assembly site requires both proteins. In silico structural modeling, mutational analyses in cells and in vitro phosphoinositide-binding assays indicate that the WD40 repeat domain in human BCAS3 directly binds phosphatidylinositol-3-phosphate. Furthermore, overexpression of the BCAS3-C16orf70 complex affects the recruitment of several core autophagy proteins to the phagophore assembly site. This study demonstrates regulatory roles for human BCAS3 and C16orf70 in autophagic activity. Abbreviations: AO: antimycin A and oligomycin; Ash: assembly helper; ATG: autophagy-related; BCAS3: BCAS3 microtubule associated cell migration factor; C16orf70: chromosome 16 open reading frame 70; DAPI: 4‘,6-diamidino-2-phenylindole; DKO: double knockout; DMSO: dimethyl sulfoxide; ER: endoplasmic reticulum; fluoppi: fluorescent-based technology detecting protein-protein interactions; FIS1: fission, mitochondrial 1; FKBP: FKBP prolyl isomerase family member 1C; FRB: FKBP-rapamycin binding; hAG: humanized azami-green; IP: immunoprecipitation; IRES: internal ribosome entry site; KO: knockout; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MS: mass spectrometry; MT-CO2: mitochondrially encoded cytochrome c oxidase II; mtDNA: mitochondrial DNA; OPTN: optineurin; PFA: paraformaldehyde; PE: phosphatidylethanolamine; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphate; PINK1: PTEN induced kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PROPPIN: β-propellers that bind polyphosphoinositides; RB1CC1/FIP200: RB1 inducible coiled-coil 1; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like autophagy activating kinase 1; WDR45B/WIPI3: WD repeat domain 45B; WDR45/WIPI4: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting; WT: wild type; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1
Collapse
Affiliation(s)
- Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Molecular Profiling Research Center for Drug Discovery (Molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Reika Kikuchi
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
50
|
Characterization of PROPPIN-Phosphoinositide Binding by Stopped-Flow Fluorescence Spectroscopy. Methods Mol Biol 2021. [PMID: 33481242 DOI: 10.1007/978-1-0716-1142-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
PROPPINs (β-propellers that bind polyphosphoinositides) are a protein family that binds preferentially phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) via its FRRG motif. PROPPINs are involved in autophagic functions, but their molecular mechanism is still elusive. To unravel the molecular mechanism of PROPPINs, it is essential to understand the PROPPIN-phosphoinositide binding. Here, we describe a protocol to study the kinetics of the PROPPIN-phosphoinositide binding using a fluorescence resonance energy transfer (FRET) stopped-flow approach. We use FRET between fluorophore-labeled protein and fluorophore-labeled liposomes, monitoring the increase of the acceptor emission in labeled liposomes after the protein-membrane binding. Through this approach, we studied the kinetics of the PROPPIN Atg18 (Autophagy-related protein 18) from Pichia angusta (PaAtg18) and a mutant of its FRRG motif, called FTTG mutant. Stopped-flow experiments demonstrated that the main function of the FRRG motif is to retain, instead of to drive, Atg18 to the membrane, decreasing the Atg18 dissociation rate. Furthermore, this method is suitable for the study of other PI-binding proteins.
Collapse
|