1
|
Dwyer MB, Aumiller JL, Wedegaertner PB. Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G α in Human Cancer. Mol Pharmacol 2024; 106:198-215. [PMID: 39187387 PMCID: PMC11493338 DOI: 10.1124/molpharm.124.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
G protein-coupled receptors (GPCRs) couple to heterotrimeric G proteins, comprised of α and βγ subunits, to convert extracellular signals into activation of intracellular signaling pathways. Canonically, GPCR-mediated activation results in the exchange of GDP for GTP on G protein α subunits (Gα) and the dissociation of Gα-GTP and G protein βγ subunits (Gβγ), both of which can regulate a variety of signaling pathways. Hydrolysis of bound GTP by Gα returns the protein to Gα-GDP and allows reassociation with Gβγ to reform the inactive heterotrimer. Naturally occurring mutations in Gα have been found at conserved glutamine and arginine amino acids that disrupt the canonical G protein cycle by inhibiting GTP hydrolysis, rendering these mutants constitutively active. Interestingly, these dysregulated Gα mutants are found in many different cancers due to their ability to sustain aberrant signaling without a need for activation by GPCRs. This review will highlight an increased recognition of the prevalence of such constitutively activating Gα mutations in cancers and the signaling pathways activated. In addition, we will discuss new knowledge regarding how these constitutively active Gα are regulated, how different mutations are biochemically distinct, and how mutationally activated Gα are unique compared with GPCR-activated Gα Lastly, we will discuss recent progress in developing inhibitors directly targeting constitutively active Gα mutants. SIGNIFICANCE STATEMENT: Constitutively activating mutations in G protein α subunits (Gα) widely occur in and contribute to the development of many human cancers. To develop ways to inhibit dysregulated, oncogenic signaling by these mutant Gα, it is crucial to better understand mechanisms that lead to constitutive Gα activation and unique mechanisms that regulate mutationally activated Gα in cells. The prevalence of activating mutations in Gα in various cancers makes Gα proteins compelling targets for the development of therapeutics.
Collapse
Affiliation(s)
- Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenna L Aumiller
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal 2024; 17:eadp3967. [PMID: 39288219 DOI: 10.1126/scisignal.adp3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
3
|
Ravala SK, Tesmer JJG. New Mechanisms Underlying Oncogenesis in Dbl Family Rho Guanine Nucleotide Exchange Factors. Mol Pharmacol 2024; 106:117-128. [PMID: 38902036 PMCID: PMC11331503 DOI: 10.1124/molpharm.124.000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.
Collapse
Affiliation(s)
- Sandeep K Ravala
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
4
|
Miyamoto S. Untangling the role of RhoA in the heart: protective effect and mechanism. Cell Death Dis 2024; 15:579. [PMID: 39122698 PMCID: PMC11315981 DOI: 10.1038/s41419-024-06928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
RhoA (ras homolog family member A) is a small G-protein that transduces intracellular signaling to regulate a broad range of cellular functions such as cell growth, proliferation, migration, and survival. RhoA serves as a proximal downstream effector of numerous G protein-coupled receptors (GPCRs) and is also responsive to various stresses in the heart. Upon its activation, RhoA engages multiple downstream signaling pathways. Rho-associated coiled-coil-containing protein kinase (ROCK) is the first discovered and best characterized effector or RhoA, playing a major role in cytoskeletal arrangement. Many other RhoA effectors have been identified, including myocardin-related transcription factor A (MRTF-A), Yes-associated Protein (YAP) and phospholipase Cε (PLCε) to regulate transcriptional and post-transcriptional processes. The role of RhoA signaling in the heart has been increasingly studied in last decades. It was initially suggested that RhoA signaling pathway is maladaptive in the heart, but more recent studies using cardiac-specific expression or deletion of RhoA have revealed that RhoA activation provides cardioprotection against stress through various mechanisms including the novel role of RhoA in mitochondrial quality control. This review summarizes recent advances in understanding the role of RhoA in the heart and its signaling pathways to prevent progression of heart disease.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
5
|
Bürvenich L, Rössler OG, Thiel G. Stimulus-Induced Activation of the Glycoprotein Hormone α-Subunit Promoter in Human Placental Choriocarcinoma Cells: Major Role of a tandem cAMP Response Element. Curr Issues Mol Biol 2024; 46:3218-3235. [PMID: 38666932 PMCID: PMC11049346 DOI: 10.3390/cimb46040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The glycoprotein hormones LH, FSH, TSH and chorionic gonadotropin consist of a common α-subunit and a hormone-specific β-subunit. The α-subunit is expressed in the pituitary and the placental cells, and its expression is regulated by extracellular signal molecules. Much is known about the regulation of the α-subunit gene in the pituitary, but few studies have addressed the regulation of this gene in trophoblasts. The aim of this study was to characterize the molecular mechanism of stimulus-induced α-subunit gene transcription in JEG-3 cells, a cellular model for human trophoblasts, using chromatin-embedded reporter genes under the control of the α-subunit promoter. The results show that increasing the concentration of the second messengers cAMP or Ca2+, or expressing the catalytic subunit of cAMP-dependent protein kinase in the nucleus activated the α-subunit promoter. Similarly, the stimulation of p38 protein kinase activated the α-subunit promoter, linking α-subunit expression to stress response. The stimulation of a Gαq-coupled designer receptor activated the α-subunit promoter, involving the transcription factor CREB, linking α-subunit expression to hormonal stimulation and an increase in intracellular Ca2+. Deletion mutagenesis underscores the importance of a tandem cAMP response element within the glycoprotein hormone α-subunit promoter, which acts as a point of convergence for a multiple signaling pathway.
Collapse
Affiliation(s)
| | | | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany; (L.B.); (O.G.R.)
| |
Collapse
|
6
|
Pan D, Ladds G, Rahman KM, Pitchford SC. Exploring bias in platelet P2Y 1 signalling: Host defence versus haemostasis. Br J Pharmacol 2024; 181:580-592. [PMID: 37442808 PMCID: PMC10952580 DOI: 10.1111/bph.16191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cβ (PLCβ) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Dingxin Pan
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Graham Ladds
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
7
|
Sorrentino FS, De Rosa F, Di Terlizzi P, Toneatto G, Gabai A, Finocchio L, Salati C, Spadea L, Zeppieri M. Uveal melanoma: Recent advances in immunotherapy. World J Clin Oncol 2024; 15:23-31. [PMID: 38292657 PMCID: PMC10823941 DOI: 10.5306/wjco.v15.i1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular cancer in adults. The incidence in Europe and the United States is 6-7 per million population per year. Although most primary UMs can be successfully treated and locally controlled by irradiation therapy or local tumor resection, up to 50% of UM patients develop metastases that usually involve the liver and are fatal within 1 year. To date, chemotherapy and targeted treatments only obtain minimal responses in patients with metastatic UM, which is still characterized by poor prognosis. No standard therapeutic approaches for its prevention or treatment have been established. The application of immunotherapy agents, such as immune checkpoint inhibitors that are effective in cutaneous melanoma, has shown limited effects in the treatment of ocular disease. This is due to UM's distinct genetics, natural history, and complex interaction with the immune system. Unlike cutaneous melanomas characterized mainly by BRAF or NRAS mutations, UMs are usually triggered by a mutation in GNAQ or GNA11. As a result, more effective immunotherapeutic approaches, such as cancer vaccines, adoptive cell transfer, and other new molecules are currently being studied. In this review, we examine novel immunotherapeutic strategies in clinical and preclinical studies and highlight the latest insight in immunotherapy and the development of tailored treatment of UM.
Collapse
Affiliation(s)
| | - Francesco De Rosa
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, Meldola 47014, Italy
| | - Patrick Di Terlizzi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, Bologna 40100, Italy
| | - Giacomo Toneatto
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
8
|
Arang N, Lubrano S, Ceribelli M, Rigiracciolo DC, Saddawi-Konefka R, Faraji F, Ramirez SI, Kim D, Tosto FA, Stevenson E, Zhou Y, Wang Z, Bogomolovas J, Molinolo AA, Swaney DL, Krogan NJ, Yang J, Coma S, Pachter JA, Aplin AE, Alessi DR, Thomas CJ, Gutkind JS. High-throughput chemogenetic drug screening reveals PKC-RhoA/PKN as a targetable signaling vulnerability in GNAQ-driven uveal melanoma. Cell Rep Med 2023; 4:101244. [PMID: 37858338 PMCID: PMC10694608 DOI: 10.1016/j.xcrm.2023.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Uveal melanoma (UM) is the most prevalent cancer of the eye in adults, driven by activating mutation of GNAQ/GNA11; however, there are limited therapies against UM and metastatic UM (mUM). Here, we perform a high-throughput chemogenetic drug screen in GNAQ-mutant UM contrasted with BRAF-mutant cutaneous melanoma, defining the druggable landscape of these distinct melanoma subtypes. Across all compounds, darovasertib demonstrates the highest preferential activity against UM. Our investigation reveals that darovasertib potently inhibits PKC as well as PKN/PRK, an AGC kinase family that is part of the "dark kinome." We find that downstream of the Gαq-RhoA signaling axis, PKN converges with ROCK to control FAK, a mediator of non-canonical Gαq-driven signaling. Strikingly, darovasertib synergizes with FAK inhibitors to halt UM growth and promote cytotoxic cell death in vitro and in preclinical metastatic mouse models, thus exposing a signaling vulnerability that can be exploited as a multimodal precision therapy against mUM.
Collapse
Affiliation(s)
- Nadia Arang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Simone Lubrano
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | | | | | - Farhoud Faraji
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sydney I Ramirez
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Daehwan Kim
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Frances A Tosto
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Julius Bogomolovas
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alfredo A Molinolo
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jing Yang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dario R Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Cervantes-Villagrana RD, Color-Aparicio VM, Castillo-Kauil A, García-Jiménez I, Beltrán-Navarro YM, Reyes-Cruz G, Vázquez-Prado J. Oncogenic Gαq activates RhoJ through PDZ-RhoGEF. Int J Mol Sci 2023; 24:15734. [PMID: 37958718 PMCID: PMC10647656 DOI: 10.3390/ijms242115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Oncogenic Gαq causes uveal melanoma via non-canonical signaling pathways. This constitutively active mutant GTPase is also found in cutaneous melanoma, lung adenocarcinoma, and seminoma, as well as in benign vascular tumors, such as congenital hemangiomas. We recently described that PDZ-RhoGEF (also known as ARHGEF11), a canonical Gα12/13 effector, is enabled by Gαs Q227L to activate CdcIn addition, and we demonstrated that constitutively active Gαq interacts with the PDZ-RhoGEF DH-PH catalytic module, but does not affect its binding to RhoA or Cdc. This suggests that it guides this RhoGEF to gain affinity for other GTPases. Since RhoJ, a small GTPase of the Cdc42 subfamily, has been involved in tumor-induced angiogenesis and the metastatic dissemination of cancer cells, we hypothesized that it might be a target of oncogenic Gαq signaling via PDZ-RhoGEF. Consistent with this possibility, we found that Gαq Q209L drives full-length PDZ-RhoGEF and a DH-PH construct to interact with nucleotide-free RhoJ-G33A, a mutant with affinity for active RhoJ-GEFs. Gαq Q209L binding to PDZ-RhoGEF was mapped to the PH domain, which, as an isolated construct, attenuated the interaction of this mutant GTPase with PDZ-RhoGEF's catalytic module (DH-PH domains). Expression of these catalytic domains caused contraction of endothelial cells and generated fine cell sprouts that were inhibited by co-expression of dominant negative RhoJ. Using relational data mining of uveal melanoma patient TCGA datasets, we got an insight into the signaling landscape that accompanies the Gαq/PDZ-RhoGEF/RhoJ axis. We identified three transcriptional signatures statistically linked with shorter patient survival, including GPCRs and signaling effectors that are recognized as vulnerabilities in cancer cell synthetic lethality datasets. In conclusion, we demonstrated that an oncogenic Gαq mutant enables the PDZ-RhoGEF DH-PH module to recognize RhoJ, suggesting an allosteric mechanism by which this constitutively active GTPase stimulates RhoJ via PDZ-RhoGEF. These findings highlight PDZ-RhoGEF and RhoJ as potential targets in tumors driven by mutant Gαq.
Collapse
Affiliation(s)
- Rodolfo Daniel Cervantes-Villagrana
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico; (R.D.C.-V.)
| | - Víctor Manuel Color-Aparicio
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico; (R.D.C.-V.)
| | - Alejandro Castillo-Kauil
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico; (R.D.C.-V.)
| | - Irving García-Jiménez
- Department of Cell Biology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Yarely Mabell Beltrán-Navarro
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico; (R.D.C.-V.)
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional, Col San Pedro Zacatenco, Mexico City 07360, Mexico; (R.D.C.-V.)
| |
Collapse
|
10
|
Glinkina KA, Teunisse AF, Gelmi MC, de Vries J, Jager MJ, Jochemsen AG. Combined Mcl-1 and YAP1/TAZ inhibition for treatment of metastatic uveal melanoma. Melanoma Res 2023; 33:345-356. [PMID: 37467061 PMCID: PMC10470438 DOI: 10.1097/cmr.0000000000000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/21/2023]
Abstract
Uveal melanoma is the most common intraocular tumor in adults, representing approximately 5% of all melanoma cases. Up to 50% of uveal melanoma patients develop metastases that are resistant to most of the commonly used antineoplastic treatments. Virtually all uveal melanoma tumors harbor activating mutations in GNAQ or GNA11 , encoding Gαq and Gα11, respectively. Constant activity of these proteins causes deregulation of multiple downstream signaling pathways including PKC, MAPK and YAP1/TAZ. While the importance of YAP1 signaling for the proliferation of uveal melanoma has recently been demonstrated, much less is known about the paralog of YAP1 transcriptional coactivator, named TAZ; however, similar to YAP1, TAZ is expected to be a therapeutic target in uveal melanoma. We performed a small-scale drug screen to discover a compound synergistically inhibiting uveal melanoma proliferation/survival in combination with YAP1/TAZ inhibition. We found that the combination of genetic depletion of YAP1/TAZ together with Mcl-1 inhibition demonstrates a synergistic inhibitory effect on the viability of uveal melanoma cell lines. Similarly, indirect attenuation of the YAP1/TAZ signaling pathway with an inhibitor of the mevalonate pathway, that is, the geranyl-geranyl transferase inhibitor GGTI-298, synergizes with Mcl-1 inhibition. This combination could be potentially used as a treatment for metastatic uveal melanoma.
Collapse
Affiliation(s)
| | | | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
11
|
Kichina JV, Maslov A, Kandel ES. PAK1 and Therapy Resistance in Melanoma. Cells 2023; 12:2373. [PMID: 37830586 PMCID: PMC10572217 DOI: 10.3390/cells12192373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Malignant melanoma claims more lives than any other skin malignancy. While primary melanomas are usually cured via surgical excision, the metastatic form of the disease portents a poor prognosis. Decades of intense research has yielded an extensive armamentarium of anti-melanoma therapies, ranging from genotoxic chemo- and radiotherapies to targeted interventions in specific signaling pathways and immune functions. Unfortunately, even the most up-to-date embodiments of these therapies are not curative for the majority of metastatic melanoma patients, and the need to improve their efficacy is widely recognized. Here, we review the reports that implicate p21-regulated kinase 1 (PAK1) and PAK1-related pathways in the response of melanoma to various therapeutic modalities. Ample data suggest that PAK1 may decrease cell sensitivity to programmed cell death, provide additional stimulation to growth-promoting molecular pathways, and contribute to the creation of an immunosuppressive tumor microenvironment. Accordingly, there is mounting evidence that the concomitant inhibition of PAK1 enhances the potency of various anti-melanoma regimens. Overall, the available information suggests that a safe and effective inhibition of PAK1-dependent molecular processes would enhance the potency of the currently available anti-melanoma treatments, although considerable challenges in implementing such strategies still exist.
Collapse
Affiliation(s)
- Julia V. Kichina
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Eugene S. Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| |
Collapse
|
12
|
Hamid R, Alaziz M, Mahal AS, Ashton AW, Halama N, Jaeger D, Jiao X, Pestell RG. The Role and Therapeutic Targeting of CCR5 in Breast Cancer. Cells 2023; 12:2237. [PMID: 37759462 PMCID: PMC10526962 DOI: 10.3390/cells12182237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The G-protein-coupled receptor C-C chemokine receptor 5 (CCR5) functions as a co-receptor for the entry of HIV into immune cells. CCR5 binds promiscuously to a diverse array of ligands initiating cell signaling that includes guided migration. Although well known to be expressed on immune cells, recent studies have shown the induction of CCR5 on the surface of breast cancer epithelial cells. The function of CCR5 on breast cancer epithelial cells includes the induction of aberrant cell survival signaling and tropism towards chemo attractants. As CCR5 is not expressed on normal epithelium, the receptor provides a potential useful target for therapy. Inhibitors of CCR5 (CCR5i), either small molecules (maraviroc, vicriviroc) or humanized monoclonal antibodies (leronlimab) have shown anti-tumor and anti-metastatic properties in preclinical studies. In early clinical studies, reviewed herein, CCR5i have shown promising results and evidence for effects on both the tumor and the anti-tumor immune response. Current clinical studies have therefore included combination therapy approaches with checkpoint inhibitors.
Collapse
Affiliation(s)
- Rasha Hamid
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
| | - Mustafa Alaziz
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
| | | | - Anthony W. Ashton
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Lankenau Institute for Medical Research Philadelphia, Wynnewood, PA 19096, USA
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.H.); (D.J.)
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dirk Jaeger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.H.); (D.J.)
- Clinical Cooperation Unit Applied Tumor-Immunity, 69120 Heidelberg, Germany
| | - Xuanmao Jiao
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
| | - Richard G. Pestell
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
14
|
Hewitt N, Ma N, Arang N, Martin SA, Prakash A, DiBerto JF, Knight KM, Ghosh S, Olsen RHJ, Roth BL, Gutkind JS, Vaidehi N, Campbell SL, Dohlman HG. Catalytic site mutations confer multiple states of G protein activation. Sci Signal 2023; 16:eabq7842. [PMID: 36787384 PMCID: PMC10021883 DOI: 10.1126/scisignal.abq7842] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) that function as molecular switches for cellular growth and metabolism are activated by GTP and inactivated by GTP hydrolysis. In uveal melanoma, a conserved glutamine residue critical for GTP hydrolysis in the G protein α subunit is often mutated in Gαq or Gα11 to either leucine or proline. In contrast, other glutamine mutations or mutations in other Gα subtypes are rare. To uncover the mechanism of the genetic selection and the functional role of this glutamine residue, we analyzed all possible substitutions of this residue in multiple Gα isoforms. Through cell-based measurements of activity, we showed that some mutants were further activated and inactivated by G protein-coupled receptors. Through biochemical, molecular dynamics, and nuclear magnetic resonance-based structural studies, we showed that the Gα mutants were functionally distinct and conformationally diverse, despite their shared inability to hydrolyze GTP. Thus, the catalytic glutamine residue contributes to functions beyond GTP hydrolysis, and these functions include subtype-specific, allosteric modulation of receptor-mediated subunit dissociation. We conclude that G proteins do not function as simple on-off switches. Rather, signaling emerges from an ensemble of active states, a subset of which are favored in disease and may be uniquely responsive to receptor-directed ligands.
Collapse
Affiliation(s)
- Natalie Hewitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nadia Arang
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sarah A. Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin M. Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Current address: Illumina Inc, 5200 Illumina Way, San Diego, CA 92037, USA
| | - Reid H. J. Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Current address: GPCR Pharmacology, Discovery Biology, Exscientia Ai, Oxford, UK OX4 4GE
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Silvio Gutkind
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Whole-genome CRISPR screening identifies PI3K/AKT as a downstream component of the oncogenic GNAQ-focal adhesion kinase signaling circuitry. J Biol Chem 2023; 299:102866. [PMID: 36596361 PMCID: PMC9922814 DOI: 10.1016/j.jbc.2022.102866] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
G proteins and G protein-coupled receptors activate a diverse array of signal transduction pathways that promote cell growth and survival. Indeed, hot spot-activating mutations in GNAQ/GNA11, encoding Gαq proteins, are known to be driver oncogenes in uveal melanoma (UM), for which there are limited effective therapies currently available. Focal adhesion kinase (FAK) has been recently shown to be a central mediator of Gαq-driven signaling in UM, and as a result, is being explored clinically as a therapeutic target for UM, both alone and in combination therapies. Despite this, the repertoire of Gαq/FAK-regulated signaling mechanisms have not been fully elucidated. Here, we used a whole-genome CRISPR screen in GNAQ-mutant UM cells to identify mechanisms that, when overactivated, lead to reduced sensitivity to FAK inhibition. In this way, we found that the PI3K/AKT signaling pathway represented a major resistance driver. Our dissection of the underlying mechanisms revealed that Gαq promotes PI3K/AKT activation via a conserved signaling circuitry mediated by FAK. Further analysis demonstrated that FAK activates PI3K through the association and tyrosine phosphorylation of the p85 regulatory subunit of PI3K and that UM cells require PI3K/AKT signaling for survival. These findings establish a novel link between Gαq-driven signaling and the stimulation of PI3K as well as demonstrate aberrant activation of signaling networks underlying the growth and survival of UM and other Gαq-driven malignancies.
Collapse
|
16
|
Velagala V, Soundarrajan DK, Unger MF, Gazzo D, Kumar N, Li J, Zartman J. The multimodal action of G alpha q in coordinating growth and homeostasis in the Drosophila wing imaginal disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523049. [PMID: 36711848 PMCID: PMC9881979 DOI: 10.1101/2023.01.08.523049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background G proteins mediate cell responses to various ligands and play key roles in organ development. Dysregulation of G-proteins or Ca 2+ signaling impacts many human diseases and results in birth defects. However, the downstream effectors of specific G proteins in developmental regulatory networks are still poorly understood. Methods We employed the Gal4/UAS binary system to inhibit or overexpress Gαq in the wing disc, followed by phenotypic analysis. Immunohistochemistry and next-gen RNA sequencing identified the downstream effectors and the signaling cascades affected by the disruption of Gαq homeostasis. Results Here, we characterized how the G protein subunit Gαq tunes the size and shape of the wing in the larval and adult stages of development. Downregulation of Gαq in the wing disc reduced wing growth and delayed larval development. Gαq overexpression is sufficient to promote global Ca 2+ waves in the wing disc with a concomitant reduction in the Drosophila final wing size and a delay in pupariation. The reduced wing size phenotype is further enhanced when downregulating downstream components of the core Ca 2+ signaling toolkit, suggesting that downstream Ca 2+ signaling partially ameliorates the reduction in wing size. In contrast, Gαq -mediated pupariation delay is rescued by inhibition of IP 3 R, a key regulator of Ca 2+ signaling. This suggests that Gαq regulates developmental phenotypes through both Ca 2+ -dependent and Ca 2+ -independent mechanisms. RNA seq analysis shows that disruption of Gαq homeostasis affects nuclear hormone receptors, JAK/STAT pathway, and immune response genes. Notably, disruption of Gαq homeostasis increases expression levels of Dilp8, a key regulator of growth and pupariation timing. Conclusion Gαq activity contributes to cell size regulation and wing metamorphosis. Disruption to Gαq homeostasis in the peripheral wing disc organ delays larval development through ecdysone signaling inhibition. Overall, Gαq signaling mediates key modules of organ size regulation and epithelial homeostasis through the dual action of Ca 2+ -dependent and independent mechanisms.
Collapse
|
17
|
Sriramareddy SN, Faião-Flores F, Emmons MF, Saha B, Chellappan S, Wyatt C, Smalley I, Licht JD, Durante MA, Harbour JW, Smalley KS. HDAC11 activity contributes to MEK inhibitor escape in uveal melanoma. Cancer Gene Ther 2022; 29:1840-1846. [PMID: 35332245 PMCID: PMC9508287 DOI: 10.1038/s41417-022-00452-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 01/25/2023]
Abstract
We previously demonstrated that pan-HDAC inhibitors could limit escape from MEK inhibitor (MEKi) therapy in uveal melanoma (UM) through suppression of AKT and YAP/TAZ signaling. Here, we focused on the role of specific HDACs in therapy adaptation. Class 2 UM displayed higher expression of HDACs 1, 2, and 3 than Class 1, whereas HDACs 6, 8, and 11 were uniformly expressed. Treatment of UM cells with MEKi led to modulation of multiple HDACs, with the strongest increases observed in HDAC11. RNA-seq analysis showed MEKi to decrease the expression of multiple HDAC11 target genes. Silencing of HDAC11 significantly reduced protein deacetylation, enhanced the apoptotic response to MEKi and reduced growth in long-term colony formation assays across multiple UM cell lines. Knockdown of HDAC11 led to decreased expression of TAZ in some UM cell lines, accompanied by decreased YAP/TAZ transcriptional activity and reduced expression of multiple YAP/TAZ target genes. Further studies showed this decrease in TAZ expression to be associated with increased LKB1 activation and modulation of glycolysis. In an in vivo model of uveal melanoma, silencing of HDAC11 limited the escape to MEKi therapy, an effect associated with reduced levels of Ki67 staining and increased cleaved caspase-3. We have demonstrated a novel role for adaptive HDAC11 activity in UM cells, that in some cases modulates YAP/TAZ signaling leading to MEKi escape.
Collapse
Affiliation(s)
- Sathya Neelature Sriramareddy
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Fernanda Faião-Flores
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Michael F. Emmons
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Biswarup Saha
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Srikumar Chellappan
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Clayton Wyatt
- Department of Cancer Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Inna Smalley
- Department of Cancer Physiology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | | | | | | | - Keiran S.M. Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.,To whom correspondence should be addressed, Tel: 813-745-8725, Fax: 813-449-8260,
| |
Collapse
|
18
|
Eriksson H, Rössler OG, Thiel G. Tyrosine hydroxylase gene promoter activity is upregulated in female catecholaminergic neuroblastoma cells following activation of a Gαq-coupled designer receptor. Neurochem Int 2022; 160:105407. [PMID: 35995267 DOI: 10.1016/j.neuint.2022.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 10/31/2022]
Abstract
Tyrosine hydroxylase is the rate-limiting enzyme of catecholamine biosynthesis that catalyzes the conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine. The tyrosine hydroxylase gene is regulated by extracellular signaling molecules such as epidermal growth factor, nerve growth factor and steroids. Here, we investigated whether the activity of the tyrosine hydroxylase gene promoter is upregulated by activation of G protein-coupled receptors, the largest group of plasma membrane receptors. We used catecholaminergic neuroblastoma cells as a cellular model and chromatin-integrated tyrosine hydroxylase promoter-luciferase reporter genes. The results show that stimulation of Rαq, a Gαq-coupled designer receptor, triggered transcription of a reporter gene driven by the tyrosine hydroxylase promoter. Transcription was attenuated by overexpression of regulator of G-protein signaling-2, which activates the GTPase activity of the G protein α-subunit, and by a truncated, dominant-negative mutant of phospholipase Cβ3. Extracellular signal-regulated protein kinase was identified as the signal transducer. At the transcriptional level, tyrosine hydroxylase promoter activity was found to be controlled by the transcription factor CREB. Expression experiments with the adenoviral regulator protein E1A, an inhibitor of CBP/p300 histone acetyltransferases, showed that transcription of the reporter gene controlled by the tyrosine hydroxylase is under epigenetic control. We identified the protein phosphatases MAP kinase phosphatase-1 and calcineurin as part of a shutdown device of the signaling cascade linking Rαq designer receptor activation to tyrosine hydroxylase gene transcription. We conclude that tyrosine hydroxylase promoter activity is controlled by Gαq-coupled receptors.
Collapse
Affiliation(s)
- Helen Eriksson
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421, Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421, Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421, Homburg, Germany.
| |
Collapse
|
19
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|
20
|
Bandekar SJ, Chen CL, Ravala SK, Cash JN, Avramova LV, Zhalnina MV, Gutkind JS, Li S, Tesmer JJG. Structural/functional studies of Trio provide insights into its configuration and show that conserved linker elements enhance its activity for Rac1. J Biol Chem 2022; 298:102209. [PMID: 35779635 PMCID: PMC9372627 DOI: 10.1016/j.jbc.2022.102209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/20/2023] Open
Abstract
Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio1284-1959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.
Collapse
Affiliation(s)
- Sumit J Bandekar
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Chun-Liang Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Sandeep K Ravala
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer N Cash
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, USA
| | - Larisa V Avramova
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Mariya V Zhalnina
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, San Diego, California, USA
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - John J G Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
21
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
23
|
Huang L, Bichsel C, Norris A, Thorpe J, Pevsner J, Alexandrescu S, Pinto A, Zurakowski D, Kleiman RJ, Sahin M, Greene AK, Bischoff J. Endothelial GNAQ p.R183Q Increases ANGPT2 (Angiopoietin-2) and Drives Formation of Enlarged Blood Vessels. Arterioscler Thromb Vasc Biol 2022; 42:e27-e43. [PMID: 34670408 PMCID: PMC8702487 DOI: 10.1161/atvbaha.121.316651] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Capillary malformation (CM) occurs sporadically and is associated with Sturge-Weber syndrome. The somatic mosaic mutation in GNAQ (c.548G>A, p.R183Q) is enriched in endothelial cells (ECs) in skin CM and Sturge-Weber syndrome brain CM. Our goal was to investigate how the mutant Gαq (G-protein αq subunit) alters EC signaling and disrupts capillary morphogenesis. Approach and Results: We used lentiviral constructs to express p.R183Q or wild-type GNAQ in normal human endothelial colony forming cells (EC-R183Q and EC-WT, respectively). EC-R183Q constitutively activated PLC (phospholipase C) β3, a downstream effector of Gαq. Activated PLCβ3 was also detected in human CM tissue sections. Bulk RNA sequencing analyses of mutant versus wild-type EC indicated constitutive activation of PKC (protein kinase C), NF-κB (nuclear factor kappa B) and calcineurin signaling in EC-R183Q. Increased expression of downstream targets in these pathways, ANGPT2 (angiopoietin-2) and DSCR (Down syndrome critical region protein) 1.4 were confirmed by quantitative PCR and immunostaining of human CM tissue sections. The Gαq inhibitor YM-254890 as well as siRNA targeted to PLCβ3 reduced mRNA expression levels of these targets in EC-R183Q while the pan-PKC inhibitor AEB071 reduced ANGPT2 but not DSCR1.4. EC-R183Q formed enlarged blood vessels in mice, reminiscent of those found in human CM. shRNA knockdown of ANGPT2 in EC-R183Q normalized the enlarged vessels to sizes comparable those formed by EC-WT. CONCLUSIONS Gαq-R183Q, when expressed in ECs, establishes constitutively active PLCβ3 signaling that leads to increased ANGPT2 and a proangiogenic, proinflammatory phenotype. EC-R183Q are sufficient to form enlarged CM-like vessels in mice, and suppression of ANGPT2 prevents the enlargement. Our study provides the first evidence that endothelial Gαq-R183Q is causative for CM and identifies ANGPT2 as a contributor to CM vascular phenotype.
Collapse
Affiliation(s)
- Lan Huang
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Colette Bichsel
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Alexis Norris
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jeremy Thorpe
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Anna Pinto
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine Research, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Robin J. Kleiman
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Arin K. Greene
- Department of Plastic and Oral Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Vascular Anomalies Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
24
|
Phan HTN, Kim NH, Wei W, Tall GG, Smrcka AV. Uveal melanoma-associated mutations in PLCβ4 are constitutively activating and promote melanocyte proliferation and tumorigenesis. Sci Signal 2021; 14:eabj4243. [PMID: 34905385 DOI: 10.1126/scisignal.abj4243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hoa T N Phan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nam Hoon Kim
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenhui Wei
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Lapadula D, Benovic JL. Targeting Oncogenic Gα q/11 in Uveal Melanoma. Cancers (Basel) 2021; 13:6195. [PMID: 34944815 PMCID: PMC8699590 DOI: 10.3390/cancers13246195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36-50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric G proteins, Gq and G11, and mutations result in activation of several important signaling pathways, including phospholipase C and activation of the transcription factor YAP. In this review, we discuss current efforts to target various signaling pathways in the treatment of uveal melanoma including recent efforts to target Gq and G11 in mouse models. While selective targeting of Gq and G11 provides a potential therapeutic strategy to treat uveal melanoma, it is evident that improved inhibitors and methods of delivery are needed.
Collapse
Affiliation(s)
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
26
|
Potential of miRNA-Based Nanotherapeutics for Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13205192. [PMID: 34680340 PMCID: PMC8534265 DOI: 10.3390/cancers13205192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Human uveal melanoma (UM) is the most common primary intraocular tumor with high metastatic risk in adults. Currently, no effective treatment is available for metastatic UM; therefore, new therapeutic approaches are needed to improve overall survival. Given the increased understanding of microRNAs (miRNAs) and their roles in UM tumorigenesis and metastasis, miRNA-based therapy may offer the hope of improving therapeutic outcomes. This review summarizes the actions of select miRNAs examined in preclinical studies using miRNAs as therapeutic targets in UM. The focus of this review is the application of established nanotechnology-assisted delivery systems to overcome the limitations of therapeutic miRNAs. A blend of therapeutic miRNAs and nanodelivery systems may facilitate the translation of miRNA therapies to clinical settings. Abstract Uveal melanoma (UM) is the most common adult intraocular cancer, and metastatic UM remains deadly and incurable. UM is a complex disease associated with the deregulation of numerous genes and redundant intracellular signaling pathways. As understanding of epigenetic dysregulation in the oncogenesis of UM has increased, the abnormal expression of microRNAs (miRNAs) has been found to be an epigenetic mechanism underlying UM tumorigenesis. A growing number of miRNAs are being found to be associated with aberrant signaling pathways in UM, and some have been investigated and functionally characterized in preclinical settings. This review summarizes the miRNAs with promising therapeutic potential for UM treatment, paying special attention to the therapeutic miRNAs (miRNA mimics or inhibitors) used to restore dysregulated miRNAs to their normal levels. However, several physical and physiological limitations associated with therapeutic miRNAs have prevented their translation to cancer therapeutics. With the advent of nanotechnology delivery systems, the development of effective targeted therapies for patients with UM has received great attention. Therefore, this review provides an overview of the use of nanotechnology drug delivery systems, particularly nanocarriers that can be loaded with therapeutic miRNAs for effective delivery into target cells. The development of miRNA-based therapeutics with nanotechnology-based delivery systems may overcome the barriers of therapeutic miRNAs, thereby enabling their translation to therapeutics, enabling more effective targeting of UM cells and consequently improving therapeutic outcomes.
Collapse
|
27
|
The RhoGEF Trio: A Protein with a Wide Range of Functions in the Vascular Endothelium. Int J Mol Sci 2021; 22:ijms221810168. [PMID: 34576329 PMCID: PMC8467920 DOI: 10.3390/ijms221810168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
Many cellular processes are controlled by small GTPases, which can be activated by guanine nucleotide exchange factors (GEFs). The RhoGEF Trio contains two GEF domains that differentially activate the small GTPases such as Rac1/RhoG and RhoA. These small RhoGTPases are mainly involved in the remodeling of the actin cytoskeleton. In the endothelium, they regulate junctional stabilization and play a crucial role in angiogenesis and endothelial barrier integrity. Multiple extracellular signals originating from different vascular processes can influence the activity of Trio and thereby the regulation of the forementioned small GTPases and actin cytoskeleton. This review elucidates how various signals regulate Trio in a distinct manner, resulting in different functional outcomes that are crucial for endothelial cell function in response to inflammation.
Collapse
|
28
|
Norgard RJ, Pitarresi JR, Maddipati R, Aiello‐Couzo NM, Balli D, Li J, Yamazoe T, Wengyn MD, Millstein ID, Folkert IW, Rosario‐Berrios DN, Kim I, Bassett JB, Payne R, Berry CT, Feng X, Sun K, Cioffi M, Chakraborty P, Jolly MK, Gutkind JS, Lyden D, Freedman BD, Foskett JK, Rustgi AK, Stanger BZ. Calcium signaling induces a partial EMT. EMBO Rep 2021; 22:e51872. [PMID: 34324787 PMCID: PMC8419705 DOI: 10.15252/embr.202051872] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/15/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
Epithelial plasticity, or epithelial-to-mesenchymal transition (EMT), is a well-recognized form of cellular plasticity, which endows tumor cells with invasive properties and alters their sensitivity to various agents, thus representing a major challenge to cancer therapy. It is increasingly accepted that carcinoma cells exist along a continuum of hybrid epithelial-mesenchymal (E-M) states and that cells exhibiting such partial EMT (P-EMT) states have greater metastatic competence than those characterized by either extreme (E or M). We described recently a P-EMT program operating in vivo by which carcinoma cells lose their epithelial state through post-translational programs. Here, we investigate the underlying mechanisms and report that prolonged calcium signaling induces a P-EMT characterized by the internalization of membrane-associated E-cadherin (ECAD) and other epithelial proteins as well as an increase in cellular migration and invasion. Signaling through Gαq-associated G-protein-coupled receptors (GPCRs) recapitulates these effects, which operate through the downstream activation of calmodulin-Camk2b signaling. These results implicate calcium signaling as a trigger for the acquisition of hybrid/partial epithelial-mesenchymal states in carcinoma cells.
Collapse
Affiliation(s)
- Robert J Norgard
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jason R Pitarresi
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ravikanth Maddipati
- Department of Internal Medicine and Children’s Research InstituteUT Southwestern Medical CenterDallasTXUSA
| | - Nicole M Aiello‐Couzo
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - David Balli
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jinyang Li
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Taiji Yamazoe
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Maximilian D Wengyn
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ian D Millstein
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ian W Folkert
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of SurgeryHospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | | | - Il‐Kyu Kim
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jared B Bassett
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Riley Payne
- Department of PhysiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Corbett T Berry
- Department of PathobiologySchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Xiaodong Feng
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCAUSA
- State Key Laboratory of Oral DiseasesNational Clinical Research for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kathryn Sun
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Michele Cioffi
- Children’s Cancer and Blood Foundation LaboratoriesDepartments of Pediatrics, and Cell and Developmental BiologyDrukier Institute for Children’s HealthMeyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Priyanka Chakraborty
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBangaloreIndia
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBangaloreIndia
| | - J Silvio Gutkind
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCAUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation LaboratoriesDepartments of Pediatrics, and Cell and Developmental BiologyDrukier Institute for Children’s HealthMeyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Bruce D Freedman
- Department of PathobiologySchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - J Kevin Foskett
- Department of PhysiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Cell and Developmental BiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Anil K Rustgi
- Division of Digestive and Liver DiseasesDepartment of MedicineHerbert Irving Comprehensive Cancer CenterVagelos College of Physicians and SurgeonsColumbia University Irving Medical CenterNew YorkNYUSA
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Cell and Developmental BiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
29
|
Park BO, Kim SH, Kim JH, Kim SY, Park BC, Han SB, Park SG, Kim JH, Kim S. The Short-Chain Fatty Acid Receptor GPR43 Modulates YAP/TAZ via RhoA. Mol Cells 2021; 44:458-467. [PMID: 34112743 PMCID: PMC8334349 DOI: 10.14348/molcells.2021.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 01/21/2023] Open
Abstract
GPR43 (also known as FFAR2 or FFA2) is a G-protein-coupled receptor primarily expressed in immune cells, enteroendocrine cells and adipocytes that recognizes short-chain fatty acids, such as acetate, propionate, and butyrate, likely to be implicated in innate immunity and host energy homeostasis. Activated GPR43 suppresses the cAMP level and induces Ca2+ flux via coupling to Gαi and Gαq families, respectively. Additionally, GPR43 is reported to facilitate phosphorylation of ERK through G-protein-dependent pathways and interacts with β-arrestin 2 to inhibit NF-κB signaling. However, other G-protein-dependent and independent signaling pathways involving GPR43 remain to be established. Here, we have demonstrated that GPR43 augments Rho GTPase signaling. Acetate and a synthetic agonist effectively activated RhoA and stabilized YAP/TAZ transcriptional coactivators through interactions of GPR43 with Gαq/11 and Gα12/13. Acetate-induced nuclear accumulation of YAP was blocked by a GPR43-specific inverse agonist. The target genes induced by YAP/TAZ were further regulated by GPR43. Moreover, in THP-1-derived M1-like macrophage cells, the Rho-YAP/TAZ pathway was activated by acetate and a synthetic agonist. Our collective findings suggest that GPR43 acts as a mediator of the Rho-YAP/TAZ pathway.
Collapse
Affiliation(s)
- Bi-Oh Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Seong Heon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biomolecular Science, KRIBB School of Biological Science, UST, Daejeon 34113, Korea
| | - Jong Hwan Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Biological Science, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Proteome Structural Biology, KRIBB School of Biological Science, UST, Daejeon 34113, Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Biological Science, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Biological Science, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biomolecular Science, KRIBB School of Biological Science, UST, Daejeon 34113, Korea
- Present address: Drug Discovery Center, Life Sciences, LG Chem., Seoul 07796, Korea
| |
Collapse
|
30
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Paradis JS, Acosta M, Saddawi-Konefka R, Kishore A, Gomes F, Arang N, Tiago M, Coma S, Lubrano S, Wu X, Ford K, Day CP, Merlino G, Mali P, Pachter JA, Sato T, Aplin AE, Gutkind JS. Synthetic Lethal Screens Reveal Cotargeting FAK and MEK as a Multimodal Precision Therapy for GNAQ-Driven Uveal Melanoma. Clin Cancer Res 2021; 27:3190-3200. [PMID: 33568347 PMCID: PMC8895627 DOI: 10.1158/1078-0432.ccr-20-3363] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/17/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Uveal melanoma is the most common eye cancer in adults. Approximately 50% of patients with uveal melanoma develop metastatic uveal melanoma (mUM) in the liver, even after successful treatment of the primary lesions. mUM is refractory to current chemo- and immune-therapies, and most mUM patients die within a year. Uveal melanoma is characterized by gain-of-function mutations in GNAQ/GNA11, encoding Gαq proteins. We have recently shown that the Gαq-oncogenic signaling circuitry involves a noncanonical pathway distinct from the classical activation of PLCβ and MEK-ERK. GNAQ promotes the activation of YAP1, a key oncogenic driver, through focal adhesion kinase (FAK), thereby identifying FAK as a druggable signaling hub downstream from GNAQ. However, targeted therapies often activate compensatory resistance mechanisms leading to cancer relapse and treatment failure. EXPERIMENTAL DESIGN We performed a kinome-wide CRISPR-Cas9 sgRNA screen to identify synthetic lethal gene interactions that can be exploited therapeutically. Candidate adaptive resistance mechanisms were investigated by cotargeting strategies in uveal melanoma and mUM in vitro and in vivo experimental systems. RESULTS sgRNAs targeting the PKC and MEK-ERK signaling pathways were significantly depleted after FAK inhibition, with ERK activation representing a predominant resistance mechanism. Pharmacologic inhibition of MEK and FAK showed remarkable synergistic growth-inhibitory effects in uveal melanoma cells and exerted cytotoxic effects, leading to tumor collapse in uveal melanoma xenograft and liver mUM models in vivo. CONCLUSIONS Coupling the unique genetic landscape of uveal melanoma with the power of unbiased genetic screens, our studies reveal that FAK and MEK-ERK cotargeting may provide a new network-based precision therapeutic strategy for mUM treatment.See related commentary by Harbour, p. 2967.
Collapse
Affiliation(s)
- Justine S Paradis
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Monica Acosta
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Robert Saddawi-Konefka
- Moores Cancer Center, University of California San Diego, La Jolla, California
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California
| | - Ayush Kishore
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Frederico Gomes
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Nadia Arang
- Moores Cancer Center, University of California San Diego, La Jolla, California
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Simone Lubrano
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kyle Ford
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Maryland
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, San Diego, California
| | | | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, California.
- Department of Pharmacology, University of California San Diego, La Jolla, California
| |
Collapse
|
32
|
Johnstone EKM, Abhayawardana RS, See HB, Seeber RM, O'Brien SL, Thomas WG, Pfleger KDG. Complex interactions between the angiotensin II type 1 receptor, the epidermal growth factor receptor and TRIO-dependent signaling partners. Biochem Pharmacol 2021; 188:114521. [PMID: 33741329 DOI: 10.1016/j.bcp.2021.114521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Transactivation of the epidermal growth factor receptor (EGFR) by the angiotensin II (AngII) type 1 (AT1) receptor is involved in AT1 receptor-dependent growth effects and cardiovascular pathologies, however the mechanisms underpinning this transactivation are yet to be fully elucidated. Recently, a potential intermediate of this process was identified following the discovery that a kinase called TRIO was involved in AngII/AT1 receptor-mediated transactivation of EGFR. To investigate the mechanisms by which TRIO acts as an intermediate in AngII/AT1 receptor-mediated EGFR transactivation we used bioluminescence resonance energy transfer (BRET) assays to investigate proximity between the AT1 receptor, EGFR, TRIO and other proteins of interest. We found that AngII/AT1 receptor activation caused a Gαq-dependent increase in proximity of TRIO with Gγ2 and the AT1-EGFR heteromer, as well as trafficking of TRIO towards the Kras plasma membrane marker and into early, late and recycling endosomes. In contrast, we found that AngII/AT1 receptor activation caused a Gαq-independent increase in proximity of TRIO with Grb2, GRK2 and PKCζ, as well as trafficking of TRIO up to the plasma membrane from the Golgi. Furthermore, we confirmed the proximity between the AT1 receptor and the EGFR using the Receptor-Heteromer Investigation Technology, which showed AngII-induced recruitment of Grb2, GRK2, PKCζ, Gγ2 and TRIO to the EGFR upon AT1 coexpression. In summary, our results provide further evidence for the existence of the AT1-EGFR heteromer and reveal potential mechanisms by which TRIO contributes to the transactivation process.
Collapse
Affiliation(s)
- Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Rekhati S Abhayawardana
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Heng B See
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Ruth M Seeber
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Shannon L O'Brien
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia; Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Walter G Thomas
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; Dimerix Limited, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
33
|
Bircher JE, Koleske AJ. Trio family proteins as regulators of cell migration and morphogenesis in development and disease - mechanisms and cellular contexts. J Cell Sci 2021; 134:jcs248393. [PMID: 33568469 PMCID: PMC7888718 DOI: 10.1242/jcs.248393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The well-studied members of the Trio family of proteins are Trio and kalirin in vertebrates, UNC-73 in Caenorhabditis elegans and Trio in Drosophila Trio proteins are key regulators of cell morphogenesis and migration, tissue organization, and secretion and protein trafficking in many biological contexts. Recent discoveries have linked Trio and kalirin to human disease, including neurological disorders and cancer. The genes for Trio family proteins encode a series of large multidomain proteins with up to three catalytic activities and multiple scaffolding and protein-protein interaction domains. As such, Trio family proteins engage a wide array of cell surface receptors, substrates and interaction partners to coordinate changes in cytoskeletal regulatory and protein trafficking pathways. We provide a comprehensive review of the specific mechanisms by which Trio family proteins carry out their functions in cells, highlight the biological and cellular contexts in which they occur, and relate how alterations in these functions contribute to human disease.
Collapse
Affiliation(s)
- Josie E Bircher
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| | - Anthony J Koleske
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| |
Collapse
|
34
|
Kim ST, Sa JK, Oh SY, Kim K, Hong JY, Kang WK, Kim KM, Lee J. Comprehensive molecular characterization of gastric cancer patients from phase II second-line ramucirumab plus paclitaxel therapy trial. Genome Med 2021; 13:11. [PMID: 33494793 PMCID: PMC7836461 DOI: 10.1186/s13073-021-00826-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a heterogenous disease consisted of several subtypes with distinct molecular traits. The clinical implication of molecular classification has been limited especially in association with treatment efficacy of ramucirumab or various targeted agents. METHODS We conducted a prospective non-randomized phase II single-arm trial of ramucirumab plus paclitaxel as second-line chemotherapy in 62 patients with metastatic GC who failed to respond to first-line fluoropyrimidine plus platinum treatment. For integrative molecular characterization, all patients underwent pre-ramucirumab treatment tissue biopsy for whole-exome/whole-transcriptome sequencing to categorize patients based on molecular subtypes. We also systematically performed integrative analysis, combining genomic, transcriptomic, and clinical features, to identify potential molecular predictors of sensitivity and resistance to ramucirumab treatment. RESULTS Sixty-two patients were enrolled in this study between May 2016 and October 2017. Survival follow-up in all patients was completed as of the date of cut-off on January 2, 2019. No patient attained complete response (CR), while 22 patients achieved confirmed partial response (PR), resulting in a response rate (RR) of 35.5% (95% CI, 23.6-47.4). According to TCGA molecular classification, there were 30 GS, 18 CIN, 3 EBV, and 0 MSI tumors. The RR was 33% in GS (10/30), 33% in CIN (6/18), and 100% in EBV-positive GC patients with significant statistical difference for EBV(+) against EBV(-) tumors (P = 0.016; chi-squared test). Moreover, responsive patients were marked by activation of angiogenesis, VEGF, and TCR-associated pathways, while non-responder patients demonstrated enrichments of sonic hedgehog signaling pathway and metabolism activity. Integrative multi-layer data analysis further identified molecular determinants, including EBV status, and somatic mutation in GNAQ to ramucirumab activity. CONCLUSIONS Prospective molecular characterization identified a subset of GC patients with distinct clinical response to ramucirumab therapy, and our results demonstrate the feasibility of personalized therapeutic opportunities in gastric cancer. TRIAL REGISTRATION The study was registered on ClinicalTrial.gov ( NCT02628951 ) on June 12, 2015.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jason K Sa
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung Yong Oh
- Dong-A University School of Medicine, Busan, Republic of Korea
| | - Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
35
|
Vergara IA, Wilmott JS, Long GV, Scolyer RA. Genetic drivers of non-cutaneous melanomas: Challenges and opportunities in a heterogeneous landscape. Exp Dermatol 2021; 31:13-30. [PMID: 33455025 DOI: 10.1111/exd.14287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Non-cutaneous melanomas most frequently involve the uveal tract and mucosal membranes, including the conjunctiva. In contrast to cutaneous melanoma, they often present at an advanced clinical stage, are associated with worse clinical outcomes and show poorer responses to immunotherapy. The mutational load within most non-cutaneous melanomas reflects their lower ultraviolet light (UV) exposure. The genetic drivers within non-cutaneous melanomas are heterogeneous. Within ocular melanomas, posterior uveal tract melanomas typically harbour one of two distinct, sets of driver mutations and alterations of clinical and biological significance. In contrast to posterior uveal tract melanomas, anterior uveal tract melanomas of the iris and conjunctival melanomas frequently carry both a higher mutational burden and specific mutations linked with UV exposure. The genetic drivers in iris melanomas more closely resemble those of the posterior uveal tract, whereas conjunctival melanomas harbour similar genetic driver mutations to cutaneous melanomas. Mucosal melanomas occur in sun-shielded sites including sinonasal and oral cavities, nasopharynx, oesophagus, genitalia, anus and rectum, and their mutational landscape is frequently associated with a dominant process of spontaneous deamination and infrequent presence of UV mutation signatures. Genetic drivers of mucosal melanomas are diverse and vary with anatomic location. Further understanding of the causes of already identified recurrent molecular events in non-cutaneous melanomas, identification of additional drivers in specific subtypes, integrative multi-omics analyses and analysis of the tumor immune microenvironment will expand knowledge in this field. Furthermore, such data will likely uncover new therapeutic strategies which will lead to improved clinical outcomes in non-cutaneous melanoma patients.
Collapse
Affiliation(s)
- Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
36
|
Yang C, Wang Y, Hardy P. Emerging roles of microRNAs and their implications in uveal melanoma. Cell Mol Life Sci 2021; 78:545-559. [PMID: 32783068 PMCID: PMC11072399 DOI: 10.1007/s00018-020-03612-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor in adults with an extremely high mortality rate. Genetic and epigenetic dysregulation contribute to the development of UM. Recent discoveries have revealed dysregulation of the expression levels of microRNAs (miRNAs) as one of the epigenetic mechanisms underlying UM tumorigenesis. Based on their roles, miRNAs are characterized as either oncogenic or tumor suppressive. This review focuses on the roles of miRNAs in UM tumorigenesis, diagnosis, and prognosis, as well as their therapeutic potentials. Particularly, the actions of collective miRNAs are summarized with respect to their involvement in major, aberrant signaling pathways that are implicated in the development and progression of UM. Elucidation of the underlying functional mechanisms and biological aspects of miRNA dysregulation in UM is invaluable in the development of miRNA-based therapeutics, which may be used in combination with conventional treatments to improve therapeutic outcomes. In addition, the expression levels of some miRNAs are correlated with UM initiation and progression and, therefore, may be used as biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Chun Yang
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada
| | - Yuejiao Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Pierre Hardy
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada.
- Research Center of CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, H3T 1C5, Canada.
| |
Collapse
|
37
|
Li Y, Shi J, Yang J, Ge S, Zhang J, Jia R, Fan X. Uveal melanoma: progress in molecular biology and therapeutics. Ther Adv Med Oncol 2020; 12:1758835920965852. [PMID: 33149769 PMCID: PMC7586035 DOI: 10.1177/1758835920965852] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. So far, no systemic therapy or standard treatment exists to reduce the risk of metastasis and improve overall survival of patients. With the increased knowledge regarding the molecular pathways that underlie the oncogenesis of UM, it is expected that novel therapeutic approaches will be available to conquer this disease. This review provides a summary of the current knowledge of, and progress made in understanding, the pathogenesis, genetic mutations, epigenetics, and immunology of UM. With the advent of the omics era, multi-dimensional big data are publicly available, providing an innovation platform to develop effective targeted and personalized therapeutics for UM patients. Indeed, recently, a great number of therapies have been reported specifically for UM caused by oncogenic mutations, as well as other etiologies. In this review, special attention is directed to advancements in targeted therapies. In particular, we discuss the possibilities of targeting: GNAQ/GNA11, PLCβ, and CYSLTR2 mutants; regulators of G-protein signaling; the secondary messenger adenosine diphosphate (ADP)-ribosylation factor 6 (ARF6); downstream pathways, such as those involving mitogen-activated protein kinase/MEK/extracellular signal-related kinase, protein kinase C (PKC), phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (mTOR), Trio/Rho/Rac/Yes-associated protein, and inactivated BAP1; and immune-checkpoint proteins cytotoxic T-lymphocyte antigen 4 and programmed cell-death protein 1/programmed cell-death ligand 1. Furthermore, we conducted a survey of completed and ongoing clinical trials applying targeted and immune therapies for UM. Although drug combination therapy based on the signaling pathways involved in UM has made great progress, targeted therapy is still an unmet medical need.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jianming Zhang
- National Research Center for Translational Medicine, Shanghai State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Huangpu District, Shanghai 200001, China
| |
Collapse
|
38
|
Hoy JJ, Parra NS, Park J, Kuhn S, Iglesias-Bartolome R. Protein kinase A inhibitor proteins (PKIs) divert GPCR-Gαs-cAMP signaling toward EPAC and ERK activation and are involved in tumor growth. FASEB J 2020; 34:13900-13917. [PMID: 32830375 PMCID: PMC7722164 DOI: 10.1096/fj.202001515r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023]
Abstract
The PKA-inhibitor (PKI) family members PKIα, PKIβ, and PKIγ bind with high affinity to PKA and block its kinase activity, modulating the extent, and duration of PKA-mediated signaling events. While PKA is a well-known regulator of physiological and oncogenic events, the role of PKI proteins in these pathways has remained elusive. Here, by measuring activation of the MAPK pathway downstream of GPCR-Gαs-cAMP signaling, we show that the expression levels of PKI proteins can alter the balance of activation of two major cAMP targets: PKA and EPAC. Our results indicate that PKA maintains repressive control over MAPK signaling as well as a negative feedback on cAMP concentration. Overexpression of PKI and its subsequent repression of PKA dysregulates these signaling pathways, resulting in increased intracellular cAMP, and enhanced activation of EPAC and MAPK. We also find that amplifications of PKIA are common in prostate cancer and are associated with reduced progression free survival. Depletion of PKIA in prostate cancer cells leads to reduced migration, increased sensitivity to anoikis and reduced tumor growth. By altering PKA activity PKI can act as a molecular switch, driving GPCR-Gαs-cAMP signaling toward activation of EPAC-RAP1 and MAPK, ultimately modulating tumor growth.
Collapse
Affiliation(s)
- James J. Hoy
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Natalia Salinas Parra
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeannie Park
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Skyler Kuhn
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
39
|
Li H, Li Q, Dang K, Ma S, Cotton JL, Yang S, Zhu LJ, Deng AC, Ip YT, Johnson RL, Wu X, Punzo C, Mao J. YAP/TAZ Activation Drives Uveal Melanoma Initiation and Progression. Cell Rep 2020; 29:3200-3211.e4. [PMID: 31801083 PMCID: PMC7871510 DOI: 10.1016/j.celrep.2019.03.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/16/2018] [Accepted: 03/06/2019] [Indexed: 02/03/2023] Open
Abstract
Uveal melanoma (UM), the most common ocular malignancy, is characterized by GNAQ/11 mutations. Hippo/YAP and Ras/mitogen-activated protein kinase (MAPK) emerge as two important signaling pathways downstream of G protein alpha subunits of the Q class (GαQ/11)-mediated transformation, although whether and how they contribute to UM genesis in vivo remain unclear. Here, we adapt an adeno-associated virus (AAV)-based ocular injection method to directly deliver Cre recombinase into the mouse uveal tract and demonstrate that Lats1/2 kinases suppress UM formation specifically in uveal melanocytes. We find that genetic activation of YAP, but not Kras, is sufficient to initiate UM. We show that YAP/TAZ activation induced by Lats1/2 deletion cooperates with Kras to promote UM progression via downstream transcriptional reinforcement. Furthermore, dual inhibition of YAP/TAZ and Ras/MAPK synergizes to suppress oncogenic growth of human UM cells. Our data highlight the functional significance of Lats-YAP/TAZ in UM initiation and progression in vivo and suggest combination inhibition of YAP/TAZ and Ras/MAPK as a new therapeutic strategy for UM.
Collapse
Affiliation(s)
- Huapeng Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kyvan Dang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shan Ma
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Neurobiology & Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sun Yang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - April C Deng
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Randy L Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Claudio Punzo
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Neurobiology & Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
40
|
Pedro MP, Lund K, Iglesias-Bartolome R. The landscape of GPCR signaling in the regulation of epidermal stem cell fate and skin homeostasis. Stem Cells 2020; 38:1520-1531. [PMID: 32896043 DOI: 10.1002/stem.3273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Continuous integration of signals from the micro and macro-environment is necessary for somatic stem cells to adapt to changing conditions, maintain tissue homeostasis and activate repair mechanisms. G-protein coupled receptors (GPCRs) facilitate this integration by binding to numerous hormones, metabolites and inflammatory mediators, influencing a diverse network of pathways that regulate stem cell fate. This adaptive mechanism is particularly relevant for tissues that are exposed to environmental assault, like skin. The skin is maintained by a set of basal keratinocyte stem and progenitor cells located in the hair follicle and interfollicular epidermis, and several GPCRs and their signaling partners serve as makers and regulators of epidermal stem cell activity. GPCRs utilize heterotrimeric G protein dependent and independent pathways to translate extracellular signals into intracellular molecular cascades that dictate the activation of keratinocyte proliferative and differentiation networks, including Hedgehog GLI, Hippo YAP1 and WNT/β-catenin, ultimately regulating stem cell identity. Dysregulation of GPCR signaling underlines numerous skin inflammatory diseases and cancer, with smoothened-driven basal cell carcinoma being a main example of a GPCR associated cancer. In this review, we discuss the impact of GPCRs and their signaling partners in skin keratinocyte biology, particularly in the regulation of the epidermal stem cell compartment.
Collapse
Affiliation(s)
- M Pilar Pedro
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Lund
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Taylor MJ, Ullenbruch MR, Frucci EC, Rege J, Ansorge MS, Gomez-Sanchez CE, Begum S, Laufer E, Breault DT, Rainey WE. Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. J Clin Invest 2020; 130:83-93. [PMID: 31738186 DOI: 10.1172/jci127429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/18/2019] [Indexed: 02/04/2023] Open
Abstract
The mineralocorticoid aldosterone is produced in the adrenal zona glomerulosa (ZG) under the control of the renin-angiotensin II (AngII) system. Primary aldosteronism (PA) results from renin-independent production of aldosterone and is a common cause of hypertension. PA is caused by dysregulated localization of the enzyme aldosterone synthase (Cyp11b2), which is normally restricted to the ZG. Cyp11b2 transcription and aldosterone production are predominantly regulated by AngII activation of the Gq signaling pathway. Here, we report the generation of transgenic mice with Gq-coupled designer receptors exclusively activated by designer drugs (DREADDs) specifically in the adrenal cortex. We show that adrenal-wide ligand activation of Gq DREADD receptors triggered disorganization of adrenal functional zonation, with induction of Cyp11b2 in glucocorticoid-producing zona fasciculata cells. This result was consistent with increased renin-independent aldosterone production and hypertension. All parameters were reversible following termination of DREADD-mediated Gq signaling. These findings demonstrate that Gq signaling is sufficient for adrenocortical aldosterone production and implicate this pathway in the determination of zone-specific steroid production within the adrenal cortex. This transgenic mouse also provides an inducible and reversible model of hyperaldosteronism to investigate PA therapeutics and the mechanisms leading to the damaging effects of aldosterone on the cardiovascular system.
Collapse
Affiliation(s)
- Matthew J Taylor
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew R Ullenbruch
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily C Frucci
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark S Ansorge
- The Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York, USA
| | - Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center and the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Salma Begum
- Department of Obstetrics, Gynecology and Women's Health, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Edward Laufer
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - David T Breault
- Department of Pediatrics, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
42
|
Larribère L, Utikal J. Update on GNA Alterations in Cancer: Implications for Uveal Melanoma Treatment. Cancers (Basel) 2020; 12:E1524. [PMID: 32532044 PMCID: PMC7352965 DOI: 10.3390/cancers12061524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is correlated with abnormal expression and activity of G protein-coupled receptors (GPCRs) and associated G proteins. Oncogenic mutations in both GPCRs and G proteins (GNAS, GNAQ or GNA11) encoding genes have been identified in a significant number of tumors. Interestingly, uveal melanoma driver mutations in GNAQ/GNA11 were identified for a decade, but their discovery did not lead to mutation-specific drug development, unlike it the case for BRAF mutations in cutaneous melanoma which saw enormous success. Moreover, new immunotherapies strategies such as immune checkpoint inhibitors have given underwhelming results. In this review, we summarize the current knowledge on cancer-associated alterations of GPCRs and G proteins and we focus on the case of uveal melanoma. Finally, we discuss the possibilities that this signaling might represent in regard to novel drug development for cancer prevention and treatment.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
43
|
Yuan Y, Park J, Feng A, Awasthi P, Wang Z, Chen Q, Iglesias-Bartolome R. YAP1/TAZ-TEAD transcriptional networks maintain skin homeostasis by regulating cell proliferation and limiting KLF4 activity. Nat Commun 2020; 11:1472. [PMID: 32193376 PMCID: PMC7081327 DOI: 10.1038/s41467-020-15301-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/27/2020] [Indexed: 02/05/2023] Open
Abstract
The Hippo TEAD-transcriptional regulators YAP1 and TAZ are central for cell renewal and cancer growth; however, the specific downstream gene networks involved in their activity are not completely understood. Here we introduce TEADi, a genetically encoded inhibitor of the interaction of YAP1 and TAZ with TEAD, as a tool to characterize the transcriptional networks and biological effects regulated by TEAD transcription factors. Blockage of TEAD activity by TEADi in human keratinocytes and mouse skin leads to reduced proliferation and rapid activation of differentiation programs. Analysis of gene networks affected by TEADi and YAP1/TAZ knockdown identifies KLF4 as a central transcriptional node regulated by YAP1/TAZ-TEAD in keratinocyte differentiation. Moreover, we show that TEAD and KLF4 can regulate the activity of each other, indicating that these factors are part of a transcriptional regulatory loop. Our study establishes TEADi as a resource for studying YAP1/TAZ-TEAD dependent effects.
Collapse
Affiliation(s)
- Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jeannie Park
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amber Feng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Parirokh Awasthi
- Laboratory of Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, USA
| | - Zhiyong Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
Richards JR, Yoo JH, Shin D, Odelberg SJ. Mouse models of uveal melanoma: Strengths, weaknesses, and future directions. Pigment Cell Melanoma Res 2020; 33:264-278. [PMID: 31880399 PMCID: PMC7065156 DOI: 10.1111/pcmr.12853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022]
Abstract
Uveal melanoma is the most common primary malignancy of the eye, and a number of discoveries in the last decade have led to a more thorough molecular characterization of this cancer. However, the prognosis remains dismal for patients with metastases, and there is an urgent need to identify treatments that are effective for this stage of disease. Animal models are important tools for preclinical studies of uveal melanoma. A variety of models exist, and they have specific advantages, disadvantages, and applications. In this review article, these differences are explored in detail, and ideas for new models that might overcome current challenges are proposed.
Collapse
Affiliation(s)
- Jackson R. Richards
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUTUSA
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Jae Hyuk Yoo
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Donghan Shin
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Shannon J. Odelberg
- Program in Molecular MedicineUniversity of UtahSalt Lake CityUTUSA
- Department of Internal MedicineDivision of Cardiovascular MedicineUniversity of UtahSalt Lake CityUTUSA
- Department of Neurobiology and AnatomyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
45
|
Pedro MP, Salinas Parra N, Gutkind JS, Iglesias-Bartolome R. Activation of G-Protein Coupled Receptor-Gαi Signaling Increases Keratinocyte Proliferation and Reduces Differentiation, Leading to Epidermal Hyperplasia. J Invest Dermatol 2019; 140:1195-1203.e3. [PMID: 31707029 DOI: 10.1016/j.jid.2019.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/28/2022]
Abstract
G-protein coupled receptors (GPCRs) and their associated heterotrimeric G proteins impinge on pathways that control epithelial cell self-renewal and differentiation. Although it is known that Gαs protein signaling regulates skin homeostasis in vivo, the role of GPCR-coupled Gαi proteins in the skin is unclear. Here, by using a chemogenetic approach, we demonstrate that GPCR-Gαi activation can regulate keratinocyte proliferation and differentiation and that overactivation of Gαi-signaling in the basal compartment of the mouse skin can lead to epidermal hyperplasia. Our results expand our understanding of the role of GPCR-cAMP signaling in skin homeostasis and reveal overlapping and divergent roles of the cAMP-regulating heterotrimeric Gαs and Gαi proteins in keratinocytes.
Collapse
Affiliation(s)
- M Pilar Pedro
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalia Salinas Parra
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
46
|
Zhang Y. Exploring the autoinhibition mechanism of the C-terminal guanine nucleotide exchange factor module of Trio through molecular dynamics simulations. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
van Weeghel C, Wierenga APA, Versluis M, van Hall T, van der Velden PA, Kroes WGM, Pfeffer U, Luyten GPM, Jager MJ. Do GNAQ and GNA11 Differentially Affect Inflammation and HLA Expression in Uveal Melanoma? Cancers (Basel) 2019; 11:cancers11081127. [PMID: 31394807 PMCID: PMC6721447 DOI: 10.3390/cancers11081127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation, characterized by high numbers of infiltrating leukocytes and a high HLA Class I expression, is associated with a bad prognosis in uveal melanoma (UM). We wondered whether mutations in GNA11 or GNAQ differentially affect inflammation and HLA expression, and thereby progression of the disease. We analyzed data of 59 primarily enucleated UM eyes. The type of GNAQ/11 mutation was analyzed using dPCR; chromosome aberrations were determined by Fluorescence in Situ Hybridization (FISH), karyotyping, and single nucleotide polymorphism (SNP) analysis, and mRNA expression by Illumina PCR. Comparing tumors with a GNAQ mutation with those with a GNA11 mutation yielded no significant differences in histopathological characteristics, infiltrate, or HLA expression. When comparing the Q209L mutations with Q209P mutations in tumors with monosomy of chromosome 3, a higher mitotic count was found in the Q209P/M3 tumors (p = 0.007). The Kaplan-Meier (KM) curves between the patients of the different groups were not significantly different. We conclude that the type (Q209P/Q209L) or location of the mutation (GNA11/GNAQ) do not have a significant effect on the immunological characteristics of the tumors, such as infiltrate and HLA Class I expression. Chromosome 3 status was the main determinant in explaining the difference in infiltrate and HLA expression.
Collapse
Affiliation(s)
- Christiaan van Weeghel
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Annemijn P A Wierenga
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Clinical Oncology, LUMC, 2333 ZA Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Wilma G M Kroes
- Department of Clinical Genetics, LUMC, 2333 ZA Leiden, The Netherlands
| | - Ulrich Pfeffer
- Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
48
|
Uwada J, Yazawa T, Nakazawa H, Mikami D, Krug SM, Fromm M, Sada K, Muramatsu I, Taniguchi T. Store-operated calcium entry (SOCE) contributes to phosphorylation of p38 MAPK and suppression of TNF-α signalling in the intestinal epithelial cells. Cell Signal 2019; 63:109358. [PMID: 31295519 DOI: 10.1016/j.cellsig.2019.109358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/25/2019] [Accepted: 07/06/2019] [Indexed: 01/31/2023]
Abstract
Calcium influx via store-operated calcium entry (SOCE) has an important role for regulation of vast majority of cellular physiological events. MAPK signalling is also another pivotal modulator of many cellular functions. However, the relationship between SOCE and MAPK is not well understood. In this study, we elucidated the involvement of SOCE in Gαq/11 protein-mediated activation of p38 MAPK in an intestinal epithelial cell line HT-29/B6. In this cell line, we previously showed that the stimulation of M3 muscarinic acetylcholine receptor (M3-mAChR) but not histamine H1 receptor (H1R) led to phosphorylation of p38 MAPK which suppressed tumor necrosis factor-α (TNF-α)-induced NF-κB signalling through ADAM17 protease-mediated shedding of TNF receptor-1 (TNFR1). First, we found that stimulation of M3-mAChR and protease-activated receptor-2 (PAR-2) but not H1R induced persistent upregulation of cytosolic Ca2+ concentration through SOCE. Activation of M3-mAChR or PAR-2 also suppressed TNF-α-induced NF-κB phosphorylation, which was dependent on the p38 MAPK activity. Time course experiments revealed that M3-mAChR stimulation evoked intracellular Ca2+-dependent early phase p38 MAPK phosphorylation and extracellular Ca2+-dependent later phase p38 MAPK phosphorylation. This later phase p38 MAPK phosphorylation, evoked by M3-mAChRs or PAR-2, was abolished by inhibition of SOCE. Thapsigargin or ionomycin also phosphorylate p38 MAPK by Ca2+ influx through SOCE, leading to suppression of TNF-α-induced NF-κB phosphorylation. Finally, we showed that p38 MAPK was essential for thapsigargin-induced cleavage of TNFR1 and suppression of TNF-α-induced NF-κB phosphorylation. In conclusion, SOCE is important for p38 MAPK phosphorylation and is involved in TNF-α signalling suppression.
Collapse
Affiliation(s)
- Junsuke Uwada
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan.
| | - Takashi Yazawa
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Hitomi Nakazawa
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Daisuke Mikami
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Susanne M Krug
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, University of Fukui, Fukui 910-1193, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, Kanazawa Medical University, Kanazawa 920-0293, Japan
| | - Takanobu Taniguchi
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| |
Collapse
|
49
|
Wu V, Yeerna H, Nohata N, Chiou J, Harismendy O, Raimondi F, Inoue A, Russell RB, Tamayo P, Gutkind JS. Illuminating the Onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J Biol Chem 2019; 294:11062-11086. [PMID: 31171722 DOI: 10.1074/jbc.rev119.005601] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest gene family of cell membrane-associated molecules mediating signal transmission, and their involvement in key physiological functions is well-established. The ability of GPCRs to regulate a vast array of fundamental biological processes, such as cardiovascular functions, immune responses, hormone and enzyme release from endocrine and exocrine glands, neurotransmission, and sensory perception (e.g. vision, odor, and taste), is largely due to the diversity of these receptors and the layers of their downstream signaling circuits. Dysregulated expression and aberrant functions of GPCRs have been linked to some of the most prevalent human diseases, which renders GPCRs one of the top targets for pharmaceutical drug development. However, the study of the role of GPCRs in tumor biology has only just begun to make headway. Recent studies have shown that GPCRs can contribute to the many facets of tumorigenesis, including proliferation, survival, angiogenesis, invasion, metastasis, therapy resistance, and immune evasion. Indeed, GPCRs are widely dysregulated in cancer and yet are underexploited in oncology. We present here a comprehensive analysis of GPCR gene expression, copy number variation, and mutational signatures in 33 cancer types. We also highlight the emerging role of GPCRs as part of oncocrine networks promoting tumor growth, dissemination, and immune evasion, and we stress the potential benefits of targeting GPCRs and their signaling circuits in the new era of precision medicine and cancer immunotherapies.
Collapse
Affiliation(s)
- Victoria Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Huwate Yeerna
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Nijiro Nohata
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Olivier Harismendy
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093.,Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Francesco Raimondi
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Robert B Russell
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Pablo Tamayo
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| |
Collapse
|
50
|
Rushton JG, Korb M, Kummer S, Reichart U, Fuchs-Baumgartinger A, Tichy A, Nell B. Protein expression of KIT, BRAF, GNA11, GNAQ and RASSF1 in feline diffuse iris melanomas. Vet J 2019; 249:33-40. [PMID: 31239162 DOI: 10.1016/j.tvjl.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 10/19/2018] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Feline iris melanoma, the most common feline intraocular tumour, has a reported metastatic rate of 19-63%. However, there is a lack of knowledge about its molecular biology. Previous studies have reported that feline iris melanomas do not harbour mutations comparable to common mutations found in their human counterpart. Nevertheless, there are differences in the gene expression patterns. The aim of this study was to investigate the protein expression of B-RAF oncogene serine/threonine kinase (BRAF), G protein subunit alpha q (GNAQ) and 11 (GNA11), KIT proto-oncogene receptor tyrosine kinase (KIT), and Ras association family member 1 (RASSF1) in feline iris melanomas. Fifty-seven formalin-fixed paraffin embedded (FFPE) iris melanomas and 25 FFPE eyes without ocular abnormalities were stained with antibodies against the respective proteins using immunofluorescence. Averaged pixel intensities/μm2 and percentage of stained area from total tissue area were measured and the results were compared. Compared to the control group, iris melanomas showed overexpression of BRAF, GNAQ, GNA11 and KIT. The higher expression of BRAF, GNAQ, GNA11 and KIT in feline iris melanomas suggest that these proteins may play a key role in the development of feline iris melanomas and KIT may present a possible target for future therapies in cats with feline iris melanomas.
Collapse
Affiliation(s)
- J G Rushton
- Department for Companion Animals and Horses, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - M Korb
- VetCore Facility for Research, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - S Kummer
- VetCore Facility for Research, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - U Reichart
- VetCore Facility for Research, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - A Fuchs-Baumgartinger
- Department of Pathobiology, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - A Tichy
- Department of Biomedical Science, Vetmeduni Veterinaerplatz 1, 1210 Vienna, Austria
| | - B Nell
- Department for Companion Animals and Horses, Vetmeduni Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|