1
|
Wang F, Mehta P, Bach I. How does the Xist activator Rlim/Rnf12 regulate Xist expression? Biochem Soc Trans 2024; 52:1099-1107. [PMID: 38747697 PMCID: PMC11346418 DOI: 10.1042/bst20230573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The long non-coding RNA (lncRNA) Xist is crucially involved in a process called X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female mammals to achieve X dosage compensation between the sexes. Because Xist RNA silences the X chromosome from which it is transcribed, the activation of Xist transcription marks the initiation of the XCI process and thus, mechanisms and players that activate this gene are of central importance to the XCI process. During female mouse embryogenesis, XCI occurs in two steps. At the 2-4 cell stages imprinted XCI (iXCI) silences exclusively the paternally inherited X chromosome (Xp). While extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo random XCI (rXCI) around implantation. Both iXCI and rXCI are dependent on Xist. Rlim, also known as Rnf12, is an X-linked E3 ubiquitin ligase that is involved in the transcriptional activation of Xist. However, while data on the crucial involvement of Rlim during iXCI appear clear, its role in rXCI has been controversial. This review discusses data leading to this disagreement and recent evidence for a regulatory switch of Xist transcription in epiblasts of implanting embryos, partially reconciling the roles of Rlim during Xist activation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, U.S.A
| | - Poonam Mehta
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, U.S.A
| | - Ingolf Bach
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, U.S.A
| |
Collapse
|
2
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
3
|
Malcore RM, Kalantry S. A Comparative Analysis of Mouse Imprinted and Random X-Chromosome Inactivation. EPIGENOMES 2024; 8:8. [PMID: 38390899 PMCID: PMC10885068 DOI: 10.3390/epigenomes8010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The mammalian sexes are distinguished by the X and Y chromosomes. Whereas males harbor one X and one Y chromosome, females harbor two X chromosomes. To equalize X-linked gene expression between the sexes, therian mammals have evolved X-chromosome inactivation as a dosage compensation mechanism. During X-inactivation, most genes on one of the two X chromosomes in females are transcriptionally silenced, thus equalizing X-linked gene expression between the sexes. Two forms of X-inactivation characterize eutherian mammals, imprinted and random. Imprinted X-inactivation is defined by the exclusive inactivation of the paternal X chromosome in all cells, whereas random X-inactivation results in the silencing of genes on either the paternal or maternal X chromosome in individual cells. Both forms of X-inactivation have been studied intensively in the mouse model system, which undergoes both imprinted and random X-inactivation early in embryonic development. Stable imprinted and random X-inactivation requires the induction of the Xist long non-coding RNA. Following its induction, Xist RNA recruits proteins and complexes that silence genes on the inactive-X. In this review, we present a current understanding of the mechanisms of Xist RNA induction, and, separately, the establishment and maintenance of gene silencing on the inactive-X by Xist RNA during imprinted and random X-inactivation.
Collapse
Affiliation(s)
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
4
|
Luchsinger-Morcelle SJ, Gribnau J, Mira-Bontenbal H. Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation. EPIGENOMES 2024; 8:6. [PMID: 38390897 PMCID: PMC10885031 DOI: 10.3390/epigenomes8010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Compensation for the gene dosage disequilibrium between sex chromosomes in mammals is achieved in female cells by repressing one of its X chromosomes through a process called X chromosome inactivation (XCI), exemplifying the control of gene expression by epigenetic mechanisms. A critical player in this mechanism is Xist, a long, non-coding RNA upregulated from a single X chromosome during early embryonic development in female cells. Over the past few decades, many factors involved at different levels in the regulation of Xist have been discovered. In this review, we hierarchically describe and analyze the different layers of Xist regulation operating concurrently and intricately interacting with each other to achieve asymmetric and monoallelic upregulation of Xist in murine female cells. We categorize these into five different classes: DNA elements, transcription factors, other regulatory proteins, long non-coding RNAs, and the chromatin and topological landscape surrounding Xist.
Collapse
Affiliation(s)
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hegias Mira-Bontenbal
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
5
|
Schwämmle T, Schulz EG. Regulatory principles and mechanisms governing the onset of random X-chromosome inactivation. Curr Opin Genet Dev 2023; 81:102063. [PMID: 37356341 PMCID: PMC10465972 DOI: 10.1016/j.gde.2023.102063] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023]
Abstract
X-chromosome inactivation (XCI) has evolved in mammals to compensate for the difference in X-chromosomal dosage between the sexes. In placental mammals, XCI is initiated during early embryonic development through upregulation of the long noncoding RNA Xist from one randomly chosen X chromosome in each female cell. The Xist locus must thus integrate both X-linked and developmental trans-regulatory factors in a dosage-dependent manner. Furthermore, the two alleles must coordinate to ensure inactivation of exactly one X chromosome per cell. In this review, we summarize the regulatory principles that govern the onset of XCI. We go on to provide an overview over the factors that have been implicated in Xist regulation and discuss recent advances in our understanding of how Xist's cis-regulatory landscape integrates information in a precise fashion.
Collapse
Affiliation(s)
- Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany. https://twitter.com/@TSchwammle
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
6
|
Rosspopoff O, Cazottes E, Huret C, Loda A, Collier A, Casanova M, Rugg-Gunn P, Heard E, Ouimette JF, Rougeulle C. Species-specific regulation of XIST by the JPX/FTX orthologs. Nucleic Acids Res 2023; 51:2177-2194. [PMID: 36727460 PMCID: PMC10018341 DOI: 10.1093/nar/gkad029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/08/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
X chromosome inactivation (XCI) is an essential process, yet it initiates with remarkable diversity in various mammalian species. XIST, the main trigger of XCI, is controlled in the mouse by an interplay of lncRNA genes (LRGs), some of which evolved concomitantly to XIST and have orthologues across all placental mammals. Here, we addressed the functional conservation of human orthologues of two such LRGs, FTX and JPX. By combining analysis of single-cell RNA-seq data from early human embryogenesis with various functional assays in matched human and mouse pluripotent stem- or differentiated post-XCI cells, we demonstrate major functional differences for these orthologues between species, independently of primary sequence conservation. While the function of FTX is not conserved in humans, JPX stands as a major regulator of XIST expression in both species. However, we show that different entities of JPX control the production of XIST at various steps depending on the species. Altogether, our study highlights the functional versatility of LRGs across evolution, and reveals that functional conservation of orthologous LRGs may involve diversified mechanisms of action. These findings represent a striking example of how the evolvability of LRGs can provide adaptative flexibility to constrained gene regulatory networks.
Collapse
Affiliation(s)
- Olga Rosspopoff
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Emmanuel Cazottes
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Christophe Huret
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Agnese Loda
- Directors' research, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Amanda J Collier
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Miguel Casanova
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Edith Heard
- Directors' research, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collège de France, Paris, France
| | | | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| |
Collapse
|
7
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
8
|
Samanta MK, Gayen S, Harris C, Maclary E, Murata-Nakamura Y, Malcore RM, Porter RS, Garay PM, Vallianatos CN, Samollow PB, Iwase S, Kalantry S. Activation of Xist by an evolutionarily conserved function of KDM5C demethylase. Nat Commun 2022; 13:2602. [PMID: 35545632 PMCID: PMC9095838 DOI: 10.1038/s41467-022-30352-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
XX female and XY male therian mammals equalize X-linked gene expression through the mitotically-stable transcriptional inactivation of one of the two X chromosomes in female somatic cells. Here, we describe an essential function of the X-linked homolog of an ancestral X-Y gene pair, Kdm5c-Kdm5d, in the expression of Xist lncRNA, which is required for stable X-inactivation. Ablation of Kdm5c function in females results in a significant reduction in Xist RNA expression. Kdm5c encodes a demethylase that enhances Xist expression by converting histone H3K4me2/3 modifications into H3K4me1. Ectopic expression of mouse and human KDM5C, but not the Y-linked homolog KDM5D, induces Xist in male mouse embryonic stem cells (mESCs). Similarly, marsupial (opossum) Kdm5c but not Kdm5d also upregulates Xist in male mESCs, despite marsupials lacking Xist, suggesting that the KDM5C function that activates Xist in eutherians is strongly conserved and predates the divergence of eutherian and metatherian mammals. In support, prototherian (platypus) Kdm5c also induces Xist in male mESCs. Together, our data suggest that eutherian mammals co-opted the ancestral demethylase KDM5C during sex chromosome evolution to upregulate Xist for the female-specific induction of X-inactivation.
Collapse
Affiliation(s)
- Milan Kumar Samanta
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Srimonta Gayen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yumie Murata-Nakamura
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Rebecca M Malcore
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Robert S Porter
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Patricia M Garay
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Christina N Vallianatos
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Paul B Samollow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
| |
Collapse
|
9
|
Galupa R, Picard C, Servant N, Nora EP, Zhan Y, van Bemmel JG, El Marjou F, Johanneau C, Borensztein M, Ancelin K, Giorgetti L, Heard E. Inversion of a topological domain leads to restricted changes in its gene expression and affects interdomain communication. Development 2022; 149:275259. [PMID: 35502750 PMCID: PMC9148567 DOI: 10.1242/dev.200568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023]
Abstract
The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.
Collapse
Affiliation(s)
- Rafael Galupa
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Christel Picard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Nicolas Servant
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, PSL Research University, INSERM U900, Paris 75005, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris 75006, France
| | - Elphège P Nora
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland.,University of Basel, Basel 4001, Switzerland
| | - Joke G van Bemmel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | | | | | - Maud Borensztein
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Katia Ancelin
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France.,Collège de France, Paris 75231, France
| |
Collapse
|
10
|
Long noncoding RNA LUCAT1 enhances the survival and therapeutic effects of mesenchymal stromal cells post-myocardial infarction. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:412-426. [PMID: 35036054 PMCID: PMC8733180 DOI: 10.1016/j.omtn.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
Mesenchymal stromal cell (MSC) transplantation has been a promising therapeutic strategy for repairing heart tissues post-myocardial infarction (MI). Nevertheless, its therapeutic efficacy remains low, which is mainly ascribed to the low viability of transplanted MSCs. Recently, long noncoding RNAs (lncRNAs) have been reported to participate in diverse physiological and pathological processes, but little is known about their role in MSC survival. Using unbiased transcriptome profiling of hypoxia-preconditioned MSCs (HP-MSCs) and normoxic MSCs (N-MSCs), we identified a lncRNA named lung cancer-associated transcript 1 (LUCAT1) under hypoxia. LUCAT1 knockdown reduced the survival of engrafted MSCs and decreased the MSC-based therapeutic potency, as shown by impaired cardiac function, reduced cardiomyocyte survival, and increased fibrosis post-MI. Conversely, LUCAT1 overexpression had the opposite results. Mechanistically, LUCAT1 bound with and recruited jumonji domain-containing 6 (JMJD6) to the promoter of forkhead box Q1 (FOXQ1), which demethylated FOXQ1 at H4R3me2(s) and H3R2me2(a), thus downregulating Bax expression and upregulating Bcl-2 expression to attenuate MSC apoptosis. Therefore, our findings revealed the protective effects of LUCAT1 on MSC apoptosis and demonstrated that the LUCAT1-mediated JMJD6-FOXQ1 pathway might represent a novel target to potentiate the therapeutic effect of MSC-based therapy for ischemic cardiovascular diseases.
Collapse
|
11
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
12
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|
13
|
Gjaltema RAF, Schwämmle T, Kautz P, Robson M, Schöpflin R, Ravid Lustig L, Brandenburg L, Dunkel I, Vechiatto C, Ntini E, Mutzel V, Schmiedel V, Marsico A, Mundlos S, Schulz EG. Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Mol Cell 2022; 82:190-208.e17. [PMID: 34932975 DOI: 10.1016/j.molcel.2021.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Pauline Kautz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Michael Robson
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh EH4 2XU, Edinburgh, UK
| | - Robert Schöpflin
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Liat Ravid Lustig
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lennart Brandenburg
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Carolina Vechiatto
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Evgenia Ntini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vera Schmiedel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center München, 85764 Neuherberg, Germany
| | - Stefan Mundlos
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
14
|
Aizawa E, Kaufmann C, Sting S, Boigner S, Freimann R, Di Minin G, Wutz A. Haploid mouse germ cell precursors from embryonic stem cells reveal Xist activation from a single X chromosome. Stem Cell Reports 2021; 17:43-52. [PMID: 34919812 PMCID: PMC8758942 DOI: 10.1016/j.stemcr.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Mammalian haploid cells have applications for genetic screening and substituting gametic genomes. Here, we characterize a culture system for obtaining haploid primordial germ cell-like cells (PGCLCs) from haploid mouse embryonic stem cells (ESCs). We find that haploid cells show predisposition for PGCLCs, whereas a large fraction of somatic cells becomes diploid. Characterization of the differentiating haploid ESCs (haESCs) reveals that Xist is activated from and colocalizes with the single X chromosome. This observation suggests that X chromosome inactivation (XCI) is initiated in haploid cells consistent with a model where autosomal blocking factors set a threshold for X-linked activators. We further find that Xist expression is lost at later timepoints in differentiation, which likely reflects the loss of X-linked activators. In vitro differentiation of haploid PGCLCs can be a useful approach for future studies of potential X-linked activators of Xist. A culture system for obtaining haploid PGCLCs Predisposition of haploid cells in the germline over somatic lineages A single X chromosome in haploid cells leads to activation of Xist Mutation of Xist is insufficient to prevent diploidization of haESCs
Collapse
Affiliation(s)
- Eishi Aizawa
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Corinne Kaufmann
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Sarah Sting
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Sarah Boigner
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Remo Freimann
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Giulio Di Minin
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin Conformation in Development and Disease. Front Cell Dev Biol 2021; 9:723859. [PMID: 34422840 PMCID: PMC8371409 DOI: 10.3389/fcell.2021.723859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.
Collapse
Affiliation(s)
- Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
- Cancer Research Center of Lyon – INSERM U1052, Lyon, France
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
16
|
Quesada-Espinosa JF, Garzón-Lorenzo L, Lezana-Rosales JM, Gómez-Rodríguez MJ, Sánchez-Calvin MT, Palma-Milla C, Gómez-Manjón I, Hidalgo-Mayoral I, Pérez de la Fuente R, Arteche-López A, Álvarez-Mora MI, Camacho-Salas A, Cruz-Rojo J, Lázaro-Rodríguez I, Morales-Conejo M, Nuñez-Enamorado N, Bustamante-Aragones A, Simón de Las Heras R, Gomez-Cano MA, Ramos-Gómez P, Sierra-Tomillo O, Juárez-Rufián A, Gallego-Merlo J, Rausell-Sánchez L, Moreno-García M, Sánchez Del Pozo J. First female with Allan-Herndon-Dudley syndrome and partial deletion of X-inactivation center. Neurogenetics 2021; 22:343-346. [PMID: 34296368 DOI: 10.1007/s10048-021-00660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Allan-Herndon-Dudley is an X-linked recessive syndrome caused by pathogenic variants in the SLC16A2 gene. Clinical manifestations are a consequence of impaired thyroid metabolism and aberrant transport of thyroid hormones to the brain. Carrier females are generally asymptomatic and may show subtle symptoms of the disease. We describe a female with a complete Allan-Herndon-Dudley phenotype, carrying a de novo 543-kb deletion of the X chromosome. The deletion encompasses exon 1 of the SLC16A2 gene and JPX and FTX genes; it is known that the latter two genes participate in the X-inactivation process upregulating XIST gene expression. Subsequent studies in the patient demonstrated the preferential expression of the X chromosome with the JPX and FTX deletion.
Collapse
Affiliation(s)
- Juan F Quesada-Espinosa
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain. .,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.
| | - Lucía Garzón-Lorenzo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain. .,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain.
| | - José M Lezana-Rosales
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - María J Gómez-Rodríguez
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Cancer Research Network (CIBERONC), 28029, Madrid, Spain
| | - María T Sánchez-Calvin
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Carmen Palma-Milla
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Irene Gómez-Manjón
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Irene Hidalgo-Mayoral
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Rubén Pérez de la Fuente
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Ana Arteche-López
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - María I Álvarez-Mora
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Fundació Clínic Per La Recerca Biomèdica, Barcelona, Spain
| | - Ana Camacho-Salas
- Pediatrics Department, Neurology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Jaime Cruz-Rojo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Irene Lázaro-Rodríguez
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Montserrat Morales-Conejo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Internal Medicine Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Noemí Nuñez-Enamorado
- Pediatrics Department, Neurology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | | | | | - María A Gomez-Cano
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Patricia Ramos-Gómez
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Ollalla Sierra-Tomillo
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Alexandra Juárez-Rufián
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Jesús Gallego-Merlo
- Department of Genetics, IIS-Fundación Jiménez Díaz UAM, CIBERER, Madrid, Spain
| | | | - Marta Moreno-García
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Jaime Sánchez Del Pozo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| |
Collapse
|
17
|
Yin H, Wei C, Lee JT. Revisiting the consequences of deleting the X inactivation center. Proc Natl Acad Sci U S A 2021; 118:e2102683118. [PMID: 34161282 PMCID: PMC8237661 DOI: 10.1073/pnas.2102683118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian cells equalize X-linked dosages between the male (XY) and female (XX) sexes by silencing one X chromosome in the female sex. This process, known as "X chromosome inactivation" (XCI), requires a master switch within the X inactivation center (Xic). The Xic spans several hundred kilobases in the mouse and includes a number of regulatory noncoding genes that produce functional transcripts. Over three decades, transgenic and deletional analyses have demonstrated both the necessity and sufficiency of the Xic to induce XCI, including the steps of X chromosome counting, choice, and initiation of whole-chromosome silencing. One recent study, however, reported that deleting the noncoding sequences of the Xic surprisingly had no effect for XCI and attributed a sufficiency to drive counting to the coding gene, Rnf12/Rlim Here, we revisit the question by creating independent Xic deletion cell lines. Multiple independent clones carrying heterozygous deletions of the Xic display an inability to up-regulate Xist expression, consistent with a counting defect. This defect is rescued by a second site mutation in Tsix occurring in trans, bypassing the defect in counting. These findings reaffirm the essential nature of noncoding Xic elements for the initiation of XCI.
Collapse
Affiliation(s)
- Hao Yin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114;
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
18
|
Pacini G, Dunkel I, Mages N, Mutzel V, Timmermann B, Marsico A, Schulz EG. Integrated analysis of Xist upregulation and X-chromosome inactivation with single-cell and single-allele resolution. Nat Commun 2021; 12:3638. [PMID: 34131144 PMCID: PMC8206119 DOI: 10.1038/s41467-021-23643-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
To ensure dosage compensation between the sexes, one randomly chosen X chromosome is silenced in each female cell in the process of X-chromosome inactivation (XCI). XCI is initiated during early development through upregulation of the long non-coding RNA Xist, which mediates chromosome-wide gene silencing. Cell differentiation, Xist upregulation and gene silencing are thought to be coupled at multiple levels to ensure inactivation of exactly one out of two X chromosomes. Here we perform an integrated analysis of all three processes through allele-specific single-cell RNA-sequencing. Specifically, we assess the onset of random XCI in differentiating mouse embryonic stem cells, and develop dedicated analysis approaches. By exploiting the inter-cellular heterogeneity of XCI onset, we identify putative Xist regulators. Moreover, we show that transient Xist upregulation from both X chromosomes results in biallelic gene silencing right before transitioning to the monoallelic state, confirming a prediction of the stochastic model of XCI. Finally, we show that genetic variation modulates the XCI process at multiple levels, providing a potential explanation for the long-known X-controlling element (Xce) effect, which leads to preferential inactivation of a specific X chromosome in inter-strain crosses. We thus draw a detailed picture of the different levels of regulation that govern the initiation of XCI. The experimental and computational strategies we have developed here will allow us to profile random XCI in more physiological contexts, including primary human cells in vivo.
Collapse
Affiliation(s)
- Guido Pacini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Norbert Mages
- Sequencing core facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing core facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annalisa Marsico
- Institute for Computational Biology, Helmholtz Center, München, Germany.
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
19
|
Mutzel V, Schulz EG. Dosage Sensing, Threshold Responses, and Epigenetic Memory: A Systems Biology Perspective on Random X-Chromosome Inactivation. Bioessays 2021; 42:e1900163. [PMID: 32189388 DOI: 10.1002/bies.201900163] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/27/2020] [Indexed: 02/06/2023]
Abstract
X-chromosome inactivation ensures dosage compensation between the sexes in mammals by randomly choosing one out of the two X chromosomes in females for inactivation. This process imposes a plethora of questions: How do cells count their X chromosome number and ensure that exactly one stays active? How do they randomly choose one of two identical X chromosomes for inactivation? And how do they stably maintain this state of monoallelic expression? Here, different regulatory concepts and their plausibility are evaluated in the context of theoretical studies that have investigated threshold behavior, ultrasensitivity, and bistability through mathematical modeling. It is discussed how a twofold difference between a single and a double dose of X-linked genes might be converted to an all-or-nothing response and how mutually exclusive expression can be initiated and maintained. Finally, candidate factors that might mediate the proposed regulatory principles are reviewed.
Collapse
Affiliation(s)
- Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| |
Collapse
|
20
|
Cidral AL, de Mello JCM, Gribnau J, Pereira LV. Concurrent X chromosome inactivation and upregulation during non-human primate preimplantation development revealed by single-cell RNA-sequencing. Sci Rep 2021; 11:9624. [PMID: 33953270 PMCID: PMC8100148 DOI: 10.1038/s41598-021-89175-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, dosage compensation of X-linked gene expression between males and females is achieved by inactivation of a single X chromosome in females, while upregulation of the single active X in males and females leads to X:autosome dosage balance. Studies in human embryos revealed that random X chromosome inactivation starts at the preimplantation stage and is not complete by day 12 of development. Alternatively, others proposed that dosage compensation in human preimplantation embryos is achieved by dampening expression from the two X chromosomes in females. Here, we characterize X-linked dosage compensation in another primate, the marmoset (Callithrix jacchus). Analyzing scRNA-seq data from preimplantation embryos, we detected upregulation of XIST at the morula stage, where female embryos presented a significantly higher expression of XIST than males. Moreover, we show an increase of X-linked monoallelically expressed genes in female embryos between the morula and late blastocyst stages, indicative of XCI. Nevertheless, dosage compensation was not achieved by the late blastocyst stage. Finally, we show that X:autosome dosage compensation is achieved at the 8-cell stage, and demonstrate that X chromosome dampening in females does not take place in the marmoset. Our work contributes to the elucidation of primate X-linked dosage compensation.
Collapse
Affiliation(s)
- Ana Luíza Cidral
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Joana C Moreira de Mello
- Department of Developmental Biology, Oncode Institute, Erasmus MC University Medical Center, 3015GE, Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Oncode Institute, Erasmus MC University Medical Center, 3015GE, Rotterdam, The Netherlands
| | - Lygia V Pereira
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
21
|
Cerase A, Young AN, Ruiz NB, Buness A, Sant GM, Arnold M, Di Giacomo M, Ascolani M, Kumar M, Hierholzer A, Trigiante G, Marzi SJ, Avner P. Chd8 regulates X chromosome inactivation in mouse through fine-tuning control of Xist expression. Commun Biol 2021; 4:485. [PMID: 33859315 PMCID: PMC8050208 DOI: 10.1038/s42003-021-01945-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/25/2021] [Indexed: 01/22/2023] Open
Abstract
Female mammals achieve dosage compensation by inactivating one of their two X chromosomes during development, a process entirely dependent on Xist, an X-linked long non-coding RNA (lncRNA). At the onset of X chromosome inactivation (XCI), Xist is up-regulated and spreads along the future inactive X chromosome. Contextually, it recruits repressive histone and DNA modifiers that transcriptionally silence the X chromosome. Xist regulation is tightly coupled to differentiation and its expression is under the control of both pluripotency and epigenetic factors. Recent evidence has suggested that chromatin remodelers accumulate at the X Inactivation Center (XIC) and here we demonstrate a new role for Chd8 in Xist regulation in differentiating ES cells, linked to its control and prevention of spurious transcription factor interactions occurring within Xist regulatory regions. Our findings have a broader relevance, in the context of complex, developmentally-regulated gene expression.
Collapse
Affiliation(s)
- Andrea Cerase
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Alexander N Young
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nerea Blanes Ruiz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andreas Buness
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Core Unit for Bioinformatics Data Analysis Universitätsklinikum Bonn, Bonn, Germany
| | - Gabrielle M Sant
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Mirjam Arnold
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Berlin, Germany
| | | | - Michela Ascolani
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
| | - Manish Kumar
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Department of Allied Health Science, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE, Vijaypura, Karnataka, India
| | - Andreas Hierholzer
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Giuseppe Trigiante
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Philip Avner
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy.
| |
Collapse
|
22
|
Giaimo BD, Robert-Finestra T, Oswald F, Gribnau J, Borggrefe T. Chromatin Regulator SPEN/SHARP in X Inactivation and Disease. Cancers (Basel) 2021; 13:cancers13071665. [PMID: 33916248 PMCID: PMC8036811 DOI: 10.3390/cancers13071665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Carcinogenesis is a multistep process involving not only the activation of oncogenes and disabling tumor suppressor genes, but also epigenetic modulation of gene expression. X chromosome inactivation (XCI) is a paradigm to study heterochromatin formation and maintenance. The double dosage of X chromosomal genes in female mammals is incompatible with early development. XCI is an excellent model system for understanding the establishment of facultative heterochromatin initiated by the expression of a 17,000 nt long non-coding RNA, known as Xinactivespecifictranscript (Xist), on the X chromosome. This review focuses on the molecular mechanisms of how epigenetic modulators act in a step-wise manner to establish facultative heterochromatin, and we put these in the context of cancer biology and disease. An in depth understanding of XCI will allow a better characterization of particular types of cancer and hopefully facilitate the development of novel epigenetic therapies. Abstract Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| | - Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| |
Collapse
|
23
|
Lobato R. A quantum mechanical approach to random X chromosome inactivation. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>The X chromosome inactivation is an essential mechanism in mammals' development, that despite having been investigated for 60 years, many questions about its choice process have yet to be fully answered. Therefore, a theoretical model was proposed here for the first time in an attempt to explain this puzzling phenomenon through a quantum mechanical approach. Based on previous data, this work theoretically demonstrates how a shared delocalized proton at a key base pair position could explain the random, instantaneous, and mutually exclusive nature of the choice process in X chromosome inactivation. The main purpose of this work is to contribute to a comprehensive understanding of the X inactivation mechanism with a model proposal that can complement the existent ones, along with introducing a quantum mechanical approach that could be applied to other cell differentiation mechanisms.</p>
</abstract>
Collapse
|
24
|
Aeby E, Lee HG, Lee YW, Kriz A, del Rosario BC, Oh HJ, Boukhali M, Haas W, Lee JT. Decapping enzyme 1A breaks X-chromosome symmetry by controlling Tsix elongation and RNA turnover. Nat Cell Biol 2020; 22:1116-1129. [PMID: 32807903 DOI: 10.1038/s41556-020-0558-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
How allelic asymmetry is generated remains a major unsolved problem in epigenetics. Here we model the problem using X-chromosome inactivation by developing "BioRBP", an enzymatic RNA-proteomic method that enables probing of low-abundance interactions and an allelic RNA-depletion and -tagging system. We identify messenger RNA-decapping enzyme 1A (DCP1A) as a key regulator of Tsix, a noncoding RNA implicated in allelic choice through X-chromosome pairing. DCP1A controls Tsix half-life and transcription elongation. Depleting DCP1A causes accumulation of X-X pairs and perturbs the transition to monoallelic Tsix expression required for Xist upregulation. While ablating DCP1A causes hyperpairing, forcing Tsix degradation resolves pairing and enables Xist upregulation. We link pairing to allelic partitioning of CCCTC-binding factor (CTCF) and show that tethering DCP1A to one Tsix allele is sufficient to drive monoallelic Xist expression. Thus, DCP1A flips a bistable switch for the mutually exclusive determination of active and inactive Xs.
Collapse
|
25
|
Wang F, Bach I. Rlim/Rnf12, Rex1, and X Chromosome Inactivation. Front Cell Dev Biol 2019; 7:258. [PMID: 31737626 PMCID: PMC6834644 DOI: 10.3389/fcell.2019.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022] Open
Abstract
RLIM/Rnf12 is an E3 ubiquitin ligase that has originally been identified as a transcriptional cofactor associated with LIM domain transcription factors. Indeed, this protein modulates transcriptional activities and multiprotein complexes recruited by several classes of transcription factors thereby enhancing or repressing transcription. Around 10 years ago, RLIM/Rnf12 has been identified as a major regulator for the process of X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female mice and ESCs. However, the precise roles of RLIM during XCI have been controversial. Here, we discuss the cellular and developmental functions of RLIM as an E3 ubiquitin ligase and its roles during XCI in conjunction with its target protein Rex1.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ingolf Bach
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
26
|
Frints SGM, Ozanturk A, Rodríguez Criado G, Grasshoff U, de Hoon B, Field M, Manouvrier-Hanu S, E Hickey S, Kammoun M, Gripp KW, Bauer C, Schroeder C, Toutain A, Mihalic Mosher T, Kelly BJ, White P, Dufke A, Rentmeester E, Moon S, Koboldt DC, van Roozendaal KEP, Hu H, Haas SA, Ropers HH, Murray L, Haan E, Shaw M, Carroll R, Friend K, Liebelt J, Hobson L, De Rademaeker M, Geraedts J, Fryns JP, Vermeesch J, Raynaud M, Riess O, Gribnau J, Katsanis N, Devriendt K, Bauer P, Gecz J, Golzio C, Gontan C, Kalscheuer VM. Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder. Mol Psychiatry 2019; 24:1748-1768. [PMID: 29728705 DOI: 10.1038/s41380-018-0065-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.
Collapse
Affiliation(s)
- Suzanna G M Frints
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands. .,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands.
| | - Aysegul Ozanturk
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | | | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Bas de Hoon
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands.,Department of Gynaecology and Obstetrics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Michael Field
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, NSW, 2298, Australia
| | - Sylvie Manouvrier-Hanu
- Clinique de Génétique médicale Guy Fontaine, Centre de référence maladies rares Anomalies du développement Hôpital Jeanne de Flandre, Lille, 59000, France.,EA 7364 RADEME Maladies Rares du Développement et du Métabolisme, Faculté de Médecine, Université de Lille, Lille, 59000, France
| | - Scott E Hickey
- Division of Molecular & Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Molka Kammoun
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Karen W Gripp
- Alfred I. duPont Hospital for Children Nemours, Wilmington, DE, 19803, USA
| | - Claudia Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Annick Toutain
- Service de Génétique, Hôpital Bretonneau, CHU de Tours, Tours, 37044, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, 37032, France
| | - Theresa Mihalic Mosher
- Division of Molecular & Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Benjamin J Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Eveline Rentmeester
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Sungjin Moon
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | - Daniel C Koboldt
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Kees E P van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Hao Hu
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Lucinda Murray
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, NSW, 2298, Australia
| | - Eric Haan
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, 5006, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renee Carroll
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, 5006, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, 5006, Australia
| | - Lynne Hobson
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, 5006, Australia
| | - Marjan De Rademaeker
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), UZ Brussel, 1090, Brussels, Belgium
| | - Joep Geraedts
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Jean-Pierre Fryns
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Joris Vermeesch
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Martine Raynaud
- Service de Génétique, Hôpital Bretonneau, CHU de Tours, Tours, 37044, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, 37032, France
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas Katsanis
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Christelle Golzio
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics; Centre National de la Recherche Scientifique, UMR7104; Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, 67400, Illkirch, France
| | - Cristina Gontan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany.
| |
Collapse
|
27
|
The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nat Genet 2019; 51:1024-1034. [PMID: 31133748 PMCID: PMC6551226 DOI: 10.1038/s41588-019-0412-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/04/2019] [Indexed: 01/08/2023]
Abstract
The mouse X-inactivation center (Xic) locus represents a powerful model for understanding the links between genome architecture and gene regulation, with the non-coding genes Xist and Tsix showing opposite developmental expression patterns while being organized as an overlapping sense/antisense unit. The Xic is organized into two topologically associating domains (TADs) but the role of this architecture in orchestrating cis-regulatory information remains elusive. To explore this, we generated genomic inversions that swap the Xist/Tsix transcriptional unit and place their promoters in each other’s TAD. We found that this led to a switch in their expression dynamics: Xist became precociously and ectopically up-regulated, both in male and female pluripotent cells, while Tsix expression aberrantly persisted during differentiation. The topological partitioning of the Xic is thus critical to ensure proper developmental timing of X inactivation. Our study illustrates how the genomic architecture of cis-regulatory landscapes can affect the regulation of mammalian developmental processes.
Collapse
|
28
|
Mutzel V, Okamoto I, Dunkel I, Saitou M, Giorgetti L, Heard E, Schulz EG. A symmetric toggle switch explains the onset of random X inactivation in different mammals. Nat Struct Mol Biol 2019; 26:350-360. [PMID: 30962582 PMCID: PMC6558282 DOI: 10.1038/s41594-019-0214-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022]
Abstract
Gene-regulatory networks control establishment and maintenance of alternative gene expression states during development. A particular challenge is the acquisition of opposing states by two copies of the same gene, as it is the case in mammals for Xist at the onset of random X-chromosome inactivation (XCI). The regulatory principles that lead to stable mono-allelic expression of Xist remain unknown. Here, we uncovered the minimal Xist regulatory network, by combining mathematical modeling and experimental validation of central model predictions. We identified a symmetric toggle switch as the basis for random mono-allelic Xist up-regulation, which reproduces data from several mutant, aneuploid and polyploid murine cell lines with various Xist expression patterns. Moreover, this toggle switch explains the diversity of strategies employed by different species at the onset of XCI. In addition to providing a unifying conceptual framework to explore X-chromosome inactivation across mammals, our study sets the stage for identifying the molecular mechanisms required to initiate random XCI.
Collapse
Affiliation(s)
- Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ikuhiro Okamoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Science and Technology (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Edith Heard
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.,European Molecular Biology Laboratory (EMBL), Directors' research unit, Heidelberg, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
29
|
Wang F, McCannell KN, Bošković A, Zhu X, Shin J, Yu J, Gallant J, Byron M, Lawrence JB, Zhu LJ, Jones SN, Rando OJ, Fazzio TG, Bach I. Rlim-Dependent and -Independent Pathways for X Chromosome Inactivation in Female ESCs. Cell Rep 2019; 21:3691-3699. [PMID: 29281819 DOI: 10.1016/j.celrep.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/02/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022] Open
Abstract
During female mouse embryogenesis, two forms of X chromosome inactivation (XCI) ensure dosage compensation from sex chromosomes. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X (Xp), and this pattern is maintained in extraembryonic cell types. Epiblast cells, which give rise to the embryo proper, reactivate the Xp (XCR) and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI depend on the long non-coding RNA Xist. The ubiquitin ligase RLIM is required for iXCI in vivo and occupies a central role in current models of rXCI. Here, we demonstrate the existence of Rlim-dependent and Rlim-independent pathways for rXCI in differentiating female ESCs. Upon uncoupling these pathways, we find more efficient Rlim-independent XCI in ESCs cultured under physiological oxygen conditions. Our results revise current models of rXCI and suggest that caution must be taken when comparing XCI studies in ESCs and mice.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kurtis N McCannell
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiaochun Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - JongDae Shin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Judith Gallant
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Meg Byron
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen N Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ingolf Bach
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
30
|
Furlan G, Gutierrez Hernandez N, Huret C, Galupa R, van Bemmel JG, Romito A, Heard E, Morey C, Rougeulle C. The Ftx Noncoding Locus Controls X Chromosome Inactivation Independently of Its RNA Products. Mol Cell 2019; 70:462-472.e8. [PMID: 29706539 DOI: 10.1016/j.molcel.2018.03.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/21/2018] [Accepted: 03/22/2018] [Indexed: 01/26/2023]
Abstract
Accumulation of the Xist long noncoding RNA (lncRNA) on one X chromosome is the trigger for X chromosome inactivation (XCI) in female mammals. Xist expression, which needs to be tightly controlled, involves a cis-acting region, the X-inactivation center (Xic), containing many lncRNA genes that evolved concomitantly to Xist from protein-coding ancestors through pseudogeneization and loss of coding potential. Here, we uncover an essential role for the Xic-linked noncoding gene Ftx in the regulation of Xist expression. We show that Ftx is required in cis to promote Xist transcriptional activation and establishment of XCI. Importantly, we demonstrate that this function depends on Ftx transcription and not on the RNA products. Our findings illustrate the multiplicity of layers operating in the establishment of XCI and highlight the diversity in the modus operandi of the noncoding players.
Collapse
Affiliation(s)
- Giulia Furlan
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| | - Nancy Gutierrez Hernandez
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| | - Christophe Huret
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| | - Rafael Galupa
- Institut Curie, PSL Research University, CNRS, INSERM, UMR3215/U934 Genetics and Developmental Biology Unit, Mammalian Developmental Epigenetics Group, F-75005 Paris, France
| | - Joke Gerarda van Bemmel
- Institut Curie, PSL Research University, CNRS, INSERM, UMR3215/U934 Genetics and Developmental Biology Unit, Mammalian Developmental Epigenetics Group, F-75005 Paris, France; Department of Developmental Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Antonio Romito
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| | - Edith Heard
- Institut Curie, PSL Research University, CNRS, INSERM, UMR3215/U934 Genetics and Developmental Biology Unit, Mammalian Developmental Epigenetics Group, F-75005 Paris, France
| | - Céline Morey
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France.
| | - Claire Rougeulle
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France.
| |
Collapse
|
31
|
Pollex T, Heard E. Nuclear positioning and pairing of X-chromosome inactivation centers are not primary determinants during initiation of random X-inactivation. Nat Genet 2019; 51:285-295. [PMID: 30643252 DOI: 10.1038/s41588-018-0305-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/02/2018] [Indexed: 01/29/2023]
Abstract
During X-chromosome inactivation (XCI), one of the two X-inactivation centers (Xics) upregulates the noncoding RNA Xist to initiate chromosomal silencing in cis. How one Xic is chosen to upregulate Xist remains unclear. Models proposed include localization of one Xic at the nuclear envelope or transient homologous Xic pairing followed by asymmetric transcription factor distribution at Xist's antisense Xite/Tsix locus. Here, we use a TetO/TetR system that can inducibly relocate one or both Xics to the nuclear lamina in differentiating mouse embryonic stem cells. We find that neither nuclear lamina localization nor reduction of Xic homologous pairing influences monoallelic Xist upregulation or choice-making. We also show that transient pairing is associated with biallelic expression, not only at Xist/Tsix but also at other X-linked loci that can escape XCI. Finally, we show that Xic pairing occurs in wavelike patterns, coinciding with genome dynamics and the onset of global regulatory programs during early differentiation.
Collapse
Affiliation(s)
- Tim Pollex
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.,European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.
| |
Collapse
|
32
|
REX1 is the critical target of RNF12 in imprinted X chromosome inactivation in mice. Nat Commun 2018; 9:4752. [PMID: 30420655 PMCID: PMC6232137 DOI: 10.1038/s41467-018-07060-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/05/2018] [Indexed: 01/15/2023] Open
Abstract
In mice, imprinted X chromosome inactivation (iXCI) of the paternal X in the pre-implantation embryo and extraembryonic tissues is followed by X reactivation in the inner cell mass (ICM) of the blastocyst to facilitate initiation of random XCI (rXCI) in all embryonic tissues. RNF12 is an E3 ubiquitin ligase that plays a key role in XCI. RNF12 targets pluripotency protein REX1 for degradation to initiate rXCI in embryonic stem cells (ESCs) and loss of the maternal copy of Rnf12 leads to embryonic lethality due to iXCI failure. Here, we show that loss of Rex1 rescues the rXCI phenotype observed in Rnf12−/− ESCs, and that REX1 is the prime target of RNF12 in ESCs. Genetic ablation of Rex1 in Rnf12−/− mice rescues the Rnf12−/− iXCI phenotype, and results in viable and fertile Rnf12−/−:Rex1−/− female mice displaying normal iXCI and rXCI. Our results show that REX1 is the critical target of RNF12 in XCI. REX1 has been shown to regulate pluripotency of ESCs, genomic imprinting and preimplantation development in mice. Here the authors provide evidence that REX1 is the prime target of RNF12 E3 ubiquitin ligase and that Rex1 removal rescues the Rnf12 knockout phenotype in imprinted X chromosome inactivation in mice.
Collapse
|
33
|
Galupa R, Heard E. X-Chromosome Inactivation: A Crossroads Between Chromosome Architecture and Gene Regulation. Annu Rev Genet 2018; 52:535-566. [PMID: 30256677 DOI: 10.1146/annurev-genet-120116-024611] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In somatic nuclei of female therian mammals, the two X chromosomes display very different chromatin states: One X is typically euchromatic and transcriptionally active, and the other is mostly silent and forms a cytologically detectable heterochromatic structure termed the Barr body. These differences, which arise during female development as a result of X-chromosome inactivation (XCI), have been the focus of research for many decades. Initial approaches to define the structure of the inactive X chromosome (Xi) and its relationship to gene expression mainly involved microscopy-based approaches. More recently, with the advent of genomic techniques such as chromosome conformation capture, molecular details of the structure and expression of the Xi have been revealed. Here, we review our current knowledge of the 3D organization of the mammalian X-chromosome chromatin and discuss its relationship with gene activity in light of the initiation, spreading, and maintenance of XCI, as well as escape from gene silencing.
Collapse
Affiliation(s)
- Rafael Galupa
- Genetics and Developmental Biology Unit and Mammalian Developmental Epigenetics Group, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75248 Paris, France; .,Current affiliation: Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Edith Heard
- Genetics and Developmental Biology Unit and Mammalian Developmental Epigenetics Group, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75248 Paris, France; .,Collège de France, 75231 Paris, France
| |
Collapse
|
34
|
de Hoon B, Splinter E, Eussen B, Douben JCW, Rentmeester E, van de Heijning M, Laven JSE, de Klein JEMM, Liebelt J, Gribnau J. X chromosome inactivation in a female carrier of a 1.28 Mb deletion encompassing the human X inactivation centre. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0359. [PMID: 28947658 PMCID: PMC5627161 DOI: 10.1098/rstb.2016.0359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 11/12/2022] Open
Abstract
X chromosome inactivation (XCI) is a mechanism specifically initiated in female cells to silence one X chromosome, thereby equalizing the dose of X-linked gene products between male and female cells. XCI is regulated by a locus on the X chromosome termed the X-inactivation centre (XIC). Located within the XIC is XIST, which acts as a master regulator of XCI. During XCI, XIST is upregulated on the inactive X chromosome and chromosome-wide cis spreading of XIST leads to inactivation. In mouse, the Xic comprises Xist and all cis-regulatory elements and genes involved in Xist regulation. The activity of the XIC is regulated by trans-acting factors located elsewhere in the genome: X-encoded XCI activators positively regulating XCI, and autosomally encoded XCI inhibitors providing the threshold for XCI initiation. Whether human XCI is regulated through a similar mechanism, involving trans-regulatory factors acting on the XIC has remained elusive so far. Here, we describe a female individual with ovarian dysgenesis and a small X chromosomal deletion of the XIC. SNP-array and targeted locus amplification (TLA) analysis defined the deletion to a 1.28 megabase region, including XIST and all elements and genes that perform cis-regulatory functions in mouse XCI. Cells carrying this deletion still initiate XCI on the unaffected X chromosome, indicating that XCI can be initiated in the presence of only one XIC. Our results indicate that the trans-acting factors required for XCI initiation are located outside the deletion, providing evidence that the regulatory mechanisms of XCI are conserved between mouse and human. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.
Collapse
Affiliation(s)
- B de Hoon
- Department of Developmental Biology, Rotterdam, The Netherlands
| | | | - B Eussen
- Department of Clinical Genetics, Rotterdam, The Netherlands
| | - J C W Douben
- Department of Clinical Genetics, Rotterdam, The Netherlands
| | - E Rentmeester
- Department of Developmental Biology, Rotterdam, The Netherlands
| | | | - J S E Laven
- Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, The Netherlands
| | | | - J Liebelt
- Division of Genetics and Molecular Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - J Gribnau
- Department of Developmental Biology, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Carmona S, Lin B, Chou T, Arroyo K, Sun S. LncRNA Jpx induces Xist expression in mice using both trans and cis mechanisms. PLoS Genet 2018; 14:e1007378. [PMID: 29734339 PMCID: PMC5957434 DOI: 10.1371/journal.pgen.1007378] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/17/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022] Open
Abstract
Mammalian X chromosome dosage compensation balances X-linked gene products between sexes and is coordinated by the long noncoding RNA (lncRNA) Xist. Multiple cis and trans-acting factors modulate Xist expression; however, the primary competence factor responsible for activating Xist remains a subject of dispute. The lncRNA Jpx is a proposed competence factor, yet it remains unknown if Jpx is sufficient to activate Xist expression in mice. Here, we utilize a novel transgenic mouse system to demonstrate a dose-dependent relationship between Jpx copy number and ensuing Jpx and Xist expression. By localizing transcripts of Jpx and Xist using RNA Fluorescence in situ Hybridization (FISH) in mouse embryonic cells, we provide evidence of Jpx acting in both trans and cis to activate Xist. Our data contribute functional and mechanistic insight for lncRNA activity in mice, and argue that Jpx is a competence factor for Xist activation in vivo. Long noncoding RNA (lncRNA) have been identified in all eukaryotes but mechanisms of lncRNA function remain challenging to study in vivo. A classic model of lncRNA function and mechanism is X-Chromosome Inactivation (XCI): an essential process which balances X-linked gene expression between male and female mammals. The “master regulator” of XCI is lncRNA Xist, which is responsible for silencing one of the two X chromosomes in females. Another lncRNA, Jpx, has been proposed to activate Xist gene expression in mouse embryonic stem cells; however, no mouse models exist to address Jpx function in vivo. In this study, we developed a novel transgenic mouse system to demonstrate the regulatory mechanisms of lncRNA Jpx. We observed a dose-dependent relationship between Jpx copy number and Xist expression in transgenic mice, suggesting that Jpx is sufficient to activate Xist expression in vivo. In addition, we analyzed Jpx’s allelic origin and have provided evidence for Jpx inducing Xist transcription using both trans and cis mechanisms. Our work provides a framework for lncRNA functional studies in mice, which will help us understand how lncRNA regulate eukaryotic gene expression.
Collapse
Affiliation(s)
- Sarah Carmona
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Benjamin Lin
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Tristan Chou
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Katti Arroyo
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Sha Sun
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2017; 19:143-157. [PMID: 29138516 DOI: 10.1038/nrm.2017.104] [Citation(s) in RCA: 888] [Impact Index Per Article: 126.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long intergenic non-coding RNA (lincRNA) genes have diverse features that distinguish them from mRNA-encoding genes and exercise functions such as remodelling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Some genes currently annotated as encoding lincRNAs include small open reading frames (smORFs) and encode functional peptides and thus may be more properly classified as coding RNAs. lincRNAs may broadly serve to fine-tune the expression of neighbouring genes with remarkable tissue specificity through a diversity of mechanisms, highlighting our rapidly evolving understanding of the non-coding genome.
Collapse
Affiliation(s)
- Julia D Ransohoff
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Yuning Wei
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304, USA
| |
Collapse
|
37
|
Syrett CM, Sindhava V, Hodawadekar S, Myles A, Liang G, Zhang Y, Nandi S, Cancro M, Atchison M, Anguera MC. Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells. PLoS Genet 2017; 13:e1007050. [PMID: 28991910 PMCID: PMC5648283 DOI: 10.1371/journal.pgen.1007050] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/19/2017] [Accepted: 09/28/2017] [Indexed: 12/05/2022] Open
Abstract
X-chromosome inactivation (XCI) in female lymphocytes is uniquely regulated, as the inactive X (Xi) chromosome lacks localized Xist RNA and heterochromatin modifications. Epigenetic profiling reveals that Xist RNA is lost from the Xi at the pro-B cell stage and that additional heterochromatic modifications are gradually lost during B cell development. Activation of mature B cells restores Xist RNA and heterochromatin to the Xi in a dynamic two-step process that differs in timing and pattern, depending on the method of B cell stimulation. Finally, we find that DNA binding domain of YY1 is necessary for XCI in activated B cells, as ex-vivo YY1 deletion results in loss of Xi heterochromatin marks and up-regulation of X-linked genes. Ectopic expression of the YY1 zinc finger domain is sufficient to restore Xist RNA localization during B cell activation. Together, our results indicate that Xist RNA localization is critical for maintaining XCI in female lymphocytes, and that chromatin changes on the Xi during B cell development and the dynamic nature of YY1-dependent XCI maintenance in mature B cells predisposes X-linked immunity genes to reactivation. Females are predisposed to develop various autoimmune disorders, and the genetic basis for this susceptibility is the X-chromosome. X-linked genes are dosage compensated between sexes by X-chromosome Inactivation (XCI) during embryogenesis and maintained into adulthood. Here we show that the chromatin of the inactive X loses epigenetic modifications during B cell lineage development. We found that female mature B cells, which are the pathogenic cells in autoimmunity, have a dynamic two-step mechanism of maintaining XCI during stimulation. The transcription factor YY1, which regulates DNA looping during V(D)J recombination in B cells, is necessary for relocalizing Xist RNA back to the inactive X in activated B cells. YY1 deletion ex vivo in mature B cells impairs heterochromatin mark enrichment on the inactive X, and results in increased X-linked gene expression. We demonstrate that the DNA binding domain of YY1 is sufficient for localizing Xist RNA to the inactive X during B cell stimulation. Our study indicates that Xist RNA localization is critical for maintaining XCI in female lymphocytes. We propose that chromatin changes on the Xi during B cell development and the dynamic nature of YY1-dependent XCI maintenance in mature B cells predisposes X-linked immunity genes to reactivation.
Collapse
Affiliation(s)
- Camille M. Syrett
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
| | - Vishal Sindhava
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
- Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Suchita Hodawadekar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
| | - Arpita Myles
- Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Guanxiang Liang
- Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Yue Zhang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
| | - Satabdi Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
| | - Michael Cancro
- Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
| | - Montserrat C. Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, United States of America
- * E-mail:
| |
Collapse
|
38
|
Chu HP, Froberg JE, Kesner B, Oh HJ, Ji F, Sadreyev R, Pinter SF, Lee JT. PAR-TERRA directs homologous sex chromosome pairing. Nat Struct Mol Biol 2017; 24:620-631. [PMID: 28692038 PMCID: PMC5553554 DOI: 10.1038/nsmb.3432] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 06/09/2017] [Indexed: 12/25/2022]
Abstract
In mammals, homologous chromosomes rarely pair outside of meiosis. An exception is the X-chromosome, which transiently pairs during X-chromosome inactivation (XCI). How two chromosomes find each other in 3D space is not known. Here, we reveal a required interaction between the X-inactivation center (Xic) and the telomere in mouse embryonic stem cells. The sub-telomeric, pseudoautosomal region (PAR) of both sex chromosomes (X,Y) also undergoes pairing. PAR transcribes a class of telomeric RNA, dubbed “PAR-TERRA”, which accounts for a vast majority of all TERRA transcripts. PAR-TERRA binds throughout the genome, including PAR and Xic. PAR-TERRA anchors the Xic to PAR, creating a “tetrad” of pairwise homologous interactions (Xic:Xic, PAR:PAR, Xic:PAR). Xic pairing occurs within the tetrad. Depleting PAR-TERRA abrogates pairing and blocks initiation of XCI, whereas autosomal PAR-TERRA induces ectopic pairing. We proposed a Constrained Diffusion Model in which PAR-TERRA creates an interaction hub to guide Xic homology searching during XCI.
Collapse
Affiliation(s)
- Hsueh-Ping Chu
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - John E Froberg
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Barry Kesner
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hyun Jung Oh
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stefan F Pinter
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Abstract
Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.
Collapse
|
40
|
Yang T, Yildirim E. Epigenetic and LncRNA-Mediated Regulation of X Chromosome Inactivation and Its Impact on Pathogenesis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Fukuda A, Mitani A, Miyashita T, Sado T, Umezawa A, Akutsu H. Maintenance of Xist Imprinting Depends on Chromatin Condensation State and Rnf12 Dosage in Mice. PLoS Genet 2016; 12:e1006375. [PMID: 27788132 PMCID: PMC5082930 DOI: 10.1371/journal.pgen.1006375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/20/2016] [Indexed: 12/30/2022] Open
Abstract
In female mammals, activation of Xist (X-inactive specific transcript) is essential for establishment of X chromosome inactivation. During early embryonic development in mice, paternal Xist is preferentially expressed whereas maternal Xist (Xm-Xist) is silenced. Unlike autosomal imprinted genes, Xist imprinting for Xm-Xist silencing was erased in cloned or parthenogenetic but not fertilized embryos. However, the molecular mechanism underlying the variable nature of Xm-Xist imprinting is poorly understood. Here, we revealed that Xm-Xist silencing depends on chromatin condensation states at the Xist/Tsix genomic region and on Rnf12 expression levels. In early preimplantation, chromatin decondensation via H3K9me3 loss and histone acetylation gain caused Xm-Xist derepression irrespective of embryo type. Although the presence of the paternal genome during pronuclear formation impeded Xm-Xist derepression, Xm-Xist was robustly derepressed when the maternal genome was decondensed before fertilization. Once Xm-Xist was derepressed by chromatin alterations, the derepression was stably maintained and rescued XmXpΔ lethality, indicating that loss of Xm-Xist imprinting was irreversible. In late preimplantation, Oct4 served as a chromatin opener to create transcriptional permissive states at Xm-Xist/Tsix genomic loci. In parthenogenetic embryos, Rnf12 overdose caused Xm-Xist derepression via Xm-Tsix repression; physiological Rnf12 levels were essential for Xm-Xist silencing maintenance in fertilized embryos. Thus, chromatin condensation and fine-tuning of Rnf12 dosage were crucial for Xist imprint maintenance by silencing Xm-Xist. X-inactive specific transcript (Xist) is essential a large non-coding RNA for establishment of X chromosome inactivation in female mammals. The aberrant X chromosome inactivation critically affects cellular viability. Therefore, spatiotemporal regulation of Xist expression is required for proper development. In mice, Xist expression is imprinted in early embryonic development and maternal Xist is never expressed during preimplantation phases irrespective of the presence of Xist activator, maternal Rnf12. Generally, parental origin-specific expression pattern of autosomal imprinted genes is maintained in various types of embryos. However, Xist imprinting for transcriptional silencing of maternal Xist was erased in cloned or parthenogenetic but not fertilized embryos. Here, we dissect the molecular mechanism underlying the variable nature of Xist imprinting. We show that in fertilized embryos, chromatin condensation states are essential maternal Xist repression in early preimplantation phases, whereas at late preimplantation stages, pluripotency factor Oct4 serves as a chromatin opener and the maintenance of Xist silencing depends on Rnf12 expression dosage. Although the Oct4 mediated chromatin decondensation also occurs in parthenogetic embryos, Rnf12 overdose causes maternal Xist derepression at late preimplantation phases. Thus these findings reveal that the chromatin regulation by pluripotency factor and Xist activator dose define Xist imprinting state.
Collapse
Affiliation(s)
- Atsushi Fukuda
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Okura, Setagaya, Tokyo, Japan
| | - Atsushi Mitani
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Okura, Setagaya, Tokyo, Japan
- Department of Molecular Genetics, Kitasato University Graduate School of Medical Sciences, Kitasato, Minami, Sagamihara, Kanagawa, Japan
| | - Toshiyuki Miyashita
- Department of Molecular Genetics, Kitasato University Graduate School of Medical Sciences, Kitasato, Minami, Sagamihara, Kanagawa, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Okura, Setagaya, Tokyo, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Okura, Setagaya, Tokyo, Japan
- Department of Stem Cell Research, Fukushima Medical University, Hikarigaoka, Fukushima City, Fukushima, Japan
- * E-mail:
| |
Collapse
|
42
|
Xist and Tsix Transcription Dynamics Is Regulated by the X-to-Autosome Ratio and Semistable Transcriptional States. Mol Cell Biol 2016; 36:2656-2667. [PMID: 27528619 PMCID: PMC5064214 DOI: 10.1128/mcb.00183-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022] Open
Abstract
In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist. Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation. Our results revealed mutually antagonistic roles for Tsix on Xist and vice versa and indicate the presence of semistable transcriptional states of the Xic locus predicting the outcome of XCI. These transcriptional states are instructed by the X-to-autosome ratio, directed by regulators of XCI, and can be modulated by tissue culture conditions.
Collapse
|
43
|
Li C, Hong T, Webb CH, Karner H, Sun S, Nie Q. A self-enhanced transport mechanism through long noncoding RNAs for X chromosome inactivation. Sci Rep 2016; 6:31517. [PMID: 27527711 PMCID: PMC4985753 DOI: 10.1038/srep31517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/21/2016] [Indexed: 11/09/2022] Open
Abstract
X-chromosome inactivation (XCI) is the mammalian dosage compensation strategy for balancing sex chromosome content between females and males. While works exist on initiation of symmetric breaking, the underlying allelic choice mechanisms and dynamic regulation responsible for the asymmetric fate determination of XCI remain elusive. Here we combine mathematical modeling and experimental data to examine the mechanism of XCI fate decision by analyzing the signaling regulatory circuit associated with long noncoding RNAs (lncRNAs) involved in XCI. We describe three plausible gene network models that incorporate features of lncRNAs in their localized actions and rapid transcriptional turnovers. In particular, we show experimentally that Jpx (a lncRNA) is transcribed biallelically, escapes XCI, and is asymmetrically dispersed between two X's. Subjecting Jpx to our test of model predictions against previous experimental observations, we identify that a self-enhanced transport feedback mechanism is critical to XCI fate decision. In addition, the analysis indicates that an ultrasensitive response of Jpx signal on CTCF is important in this mechanism. Overall, our combined modeling and experimental data suggest that the self-enhanced transport regulation based on allele-specific nature of lncRNAs and their temporal dynamics provides a robust and novel mechanism for bi-directional fate decisions in critical developmental processes.
Collapse
Affiliation(s)
- Chunhe Li
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Tian Hong
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Chiu-Ho Webb
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Heather Karner
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Sha Sun
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
44
|
Goodrich L, Panning B, Leung KN. Activators and repressors: A balancing act for X-inactivation. Semin Cell Dev Biol 2016; 56:3-8. [DOI: 10.1016/j.semcdb.2016.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|
45
|
Furlan G, Rougeulle C. Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:702-22. [PMID: 27173581 DOI: 10.1002/wrna.1359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
X-chromosome inactivation (XCI) is a chromosome-wide regulatory process that ensures dosage compensation for X-linked genes in Theria. XCI is established during early embryogenesis and is developmentally regulated. Different XCI strategies exist in mammalian infraclasses and the regulation of this process varies also among closely related species. In Eutheria, initiation of XCI is orchestrated by a cis-acting locus, the X-inactivation center (Xic), which is particularly enriched in genes producing long noncoding RNAs (lncRNAs). Among these, Xist generates a master transcript that coats and propagates along the future inactive X-chromosome in cis, establishing X-chromosome wide transcriptional repression through interaction with several protein partners. Other lncRNAs also participate to the regulation of X-inactivation but the extent to which their function has been maintained in evolution is still poorly understood. In Metatheria, Xist is not conserved, but another, evolutionary independent lncRNA with similar properties, Rsx, has been identified, suggesting that lncRNA-mediated XCI represents an evolutionary advantage. Here, we review current knowledge on the interplay of X chromosome-encoded lncRNAs in ensuring proper establishment and maintenance of chromosome-wide silencing, and discuss the evolutionary implications of the emergence of species-specific lncRNAs in the control of XCI within Theria. WIREs RNA 2016, 7:702-722. doi: 10.1002/wrna.1359 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Giulia Furlan
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216 CNRS, Université Paris Diderot, Paris, France
| | - Claire Rougeulle
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216 CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
46
|
Dekker J, Mirny L. The 3D Genome as Moderator of Chromosomal Communication. Cell 2016; 164:1110-1121. [PMID: 26967279 PMCID: PMC4788811 DOI: 10.1016/j.cell.2016.02.007] [Citation(s) in RCA: 606] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
Abstract
Proper expression of genes requires communication with their regulatory elements that can be located elsewhere along the chromosome. The physics of chromatin fibers imposes a range of constraints on such communication. The molecular and biophysical mechanisms by which chromosomal communication is established, or prevented, have become a topic of intense study, and important roles for the spatial organization of chromosomes are being discovered. Here we present a view of the interphase 3D genome characterized by extensive physical compartmentalization and insulation on the one hand and facilitated long-range interactions on the other. We propose the existence of topological machines dedicated to set up and to exploit a 3D genome organization to both promote and censor communication along and between chromosomes.
Collapse
Affiliation(s)
- Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-0103, USA.
| | - Leonid Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-526C, Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
Maduro C, de Hoon B, Gribnau J. Fitting the Puzzle Pieces: the Bigger Picture of XCI. Trends Biochem Sci 2016; 41:138-147. [DOI: 10.1016/j.tibs.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
|
48
|
Abstract
X-inactive specific transcript (Xist) long noncoding RNA (lncRNA) is thought to catalyze silencing of X-linked genes in cis during X-chromosome inactivation, which equalizes X-linked gene dosage between male and female mammals. To test the impact of Xist RNA on X-linked gene silencing, we ectopically induced endogenous Xist by ablating the antisense repressor Tsix in mice. We find that ectopic Xist RNA induction and subsequent X-linked gene silencing is sex specific in embryos and in differentiating embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). A higher frequency of X(ΔTsix)Y male cells displayed ectopic Xist RNA coating compared with X(ΔTsix)X female cells. This increase reflected the inability of X(ΔTsix)Y cells to efficiently silence X-linked genes compared with X(ΔTsix)X cells, despite equivalent Xist RNA induction and coating. Silencing of genes on both Xs resulted in significantly reduced proliferation and increased cell death in X(ΔTsix)X female cells relative to X(ΔTsix)Y male cells. Thus, whereas Xist RNA can inactivate the X chromosome in females it may not do so in males. We further found comparable silencing in differentiating X(ΔTsix)Y and 39,X(ΔTsix) (X(ΔTsix)O) ESCs, excluding the Y chromosome and instead implicating the X-chromosome dose as the source of the sex-specific differences. Because X(ΔTsix)X female embryonic epiblast cells and EpiSCs harbor an inactivated X chromosome prior to ectopic inactivation of the active X(ΔTsix) X chromosome, we propose that the increased expression of one or more X-inactivation escapees activates Xist and, separately, helps trigger X-linked gene silencing.
Collapse
|
49
|
Yue M, Charles Richard JL, Ogawa Y. Dynamic interplay and function of multiple noncoding genes governing X chromosome inactivation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:112-20. [PMID: 26260844 DOI: 10.1016/j.bbagrm.2015.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/07/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022]
Abstract
There is increasing evidence for the emergence of long noncoding RNAs (lncRNAs) as important components, especially in the regulation of gene expression. In the event of X chromosome inactivation, robust epigenetic marks are established in a long noncoding Xist RNA-dependent manner, giving rise to a distinct epigenetic landscape on the inactive X chromosome (Xi). The X inactivation center (Xic) is essential for induction of X chromosome inactivation and harbors two topologically associated domains (TADs) to regulate monoallelic Xist expression: one at the noncoding Xist gene and its upstream region, and the other at the antisense Tsix and its upstream region. The monoallelic expression of Xist is tightly regulated by these two functionally distinct TADs as well as their constituting lncRNAs and proteins. In this review, we summarize recent updates in our knowledge of lncRNAs found at the Xic and discuss their overall mechanisms of action. We also discuss our current understanding of the molecular mechanism behind Xist RNA-mediated induction of the repressive epigenetic landscape at the Xi. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Minghui Yue
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - John Lalith Charles Richard
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yuya Ogawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
50
|
Marks H, Kerstens HHD, Barakat TS, Splinter E, Dirks RAM, van Mierlo G, Joshi O, Wang SY, Babak T, Albers CA, Kalkan T, Smith A, Jouneau A, de Laat W, Gribnau J, Stunnenberg HG. Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biol 2015; 16:149. [PMID: 26235224 PMCID: PMC4546214 DOI: 10.1186/s13059-015-0698-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/18/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND During early embryonic development, one of the two X chromosomes in mammalian female cells is inactivated to compensate for a potential imbalance in transcript levels with male cells, which contain a single X chromosome. Here, we use mouse female embryonic stem cells (ESCs) with non-random X chromosome inactivation (XCI) and polymorphic X chromosomes to study the dynamics of gene silencing over the inactive X chromosome by high-resolution allele-specific RNA-seq. RESULTS Induction of XCI by differentiation of female ESCs shows that genes proximal to the X-inactivation center are silenced earlier than distal genes, while lowly expressed genes show faster XCI dynamics than highly expressed genes. The active X chromosome shows a minor but significant increase in gene activity during differentiation, resulting in complete dosage compensation in differentiated cell types. Genes escaping XCI show little or no silencing during early propagation of XCI. Allele-specific RNA-seq of neural progenitor cells generated from the female ESCs identifies three regions distal to the X-inactivation center that escape XCI. These regions, which stably escape during propagation and maintenance of XCI, coincide with topologically associating domains (TADs) as present in the female ESCs. Also, the previously characterized gene clusters escaping XCI in human fibroblasts correlate with TADs. CONCLUSIONS The gene silencing observed during XCI provides further insight in the establishment of the repressive complex formed by the inactive X chromosome. The association of escape regions with TADs, in mouse and human, suggests that TADs are the primary targets during propagation of XCI over the X chromosome.
Collapse
Affiliation(s)
- Hendrik Marks
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Hindrik H D Kerstens
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Tahsin Stefan Barakat
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Erik Splinter
- Hubrecht Institute, University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| | - René A M Dirks
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Guido van Mierlo
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Onkar Joshi
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Shuang-Yin Wang
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Tomas Babak
- Biology Department, Queen's University, Kingston, ON, Canada.
| | - Cornelis A Albers
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| | - Tüzer Kalkan
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Alice Jouneau
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350, Jouy-en-Josas, France.
| | - Wouter de Laat
- Hubrecht Institute, University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Hendrik G Stunnenberg
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), 6500HB, Nijmegen, The Netherlands.
| |
Collapse
|