1
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Kaleem M, Thool M, Dumore NG, Abdulrahman AO, Ahmad W, Almostadi A, Alhashmi MH, Kamal MA, Tabrez S. Management of triple-negative breast cancer by natural compounds through different mechanistic pathways. Front Genet 2024; 15:1440430. [PMID: 39130753 PMCID: PMC11310065 DOI: 10.3389/fgene.2024.1440430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most severe form of breast cancer, characterized by the loss of estrogen, progesterone, and human epidermal growth factor receptors. It is caused by various genetic and epigenetic factors, resulting in poor prognosis. Epigenetic changes, such as DNA methylation and histone modification, are the leading mechanisms responsible for TNBC progression and metastasis. This review comprehensively covers the various subtypes of TNBC and their epigenetic causes. In addition, the genetic association of TNBC with all significant genes and signaling pathways linked to the progression of this form of cancer has been enlisted. Furthermore, the possible uses of natural compounds through different mechanistic pathways have also been discussed in detail for the successful management of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mandar Thool
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Nitin G. Dumore
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | | | - Wasim Ahmad
- Department of KuliyateTib, National Institute of Unani Medicine, Bengaluru, India
| | - Amal Almostadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for High Altitude Medicine, Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Enzymoics, Hebersham, NSW, Australia; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Poltronieri P. Regulatory RNAs: role as scaffolds assembling protein complexes and their epigenetic deregulation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:841-876. [PMID: 39280246 PMCID: PMC11390297 DOI: 10.37349/etat.2024.00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, new data have been added to the interaction between non-coding RNAs (ncRNAs) and epigenetic machinery. Epigenetics includes enzymes involved in DNA methylation, histone modifications, and RNA modifications, and mechanisms underlying chromatin structure, repressive states, and active states operating in transcription. The main focus is on long ncRNAs (lncRNAs) acting as scaffolds to assemble protein complexes. This review does not cover RNA's role in sponging microRNAs, or decoy functions. Several lncRNAs were shown to regulate chromatin activation and repression by interacting with Polycomb repressive complexes and mixed-lineage leukemia (MLL) activating complexes. Various groups reported on enhancer of zeste homolog 2 (EZH2) interactions with regulatory RNAs. Knowledge of the function of these complexes opens the perspective to develop new therapeutics for cancer treatment. Lastly, the interplay between lncRNAs and epitranscriptomic modifications in cancers paves the way for new targets in cancer therapy. The approach to inhibit lncRNAs interaction with protein complexes and perspective to regulate epitrascriptomics-regulated RNAs may bring new compounds as therapeuticals in various types of cancer.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Agrofood Department, National Research Council, CNR-ISPA, 73100 Lecce, Italy
| |
Collapse
|
4
|
Di Martino P, Marcozzi V, Bibbò S, Ghinassi B, Di Baldassarre A, Gaggi G, Di Credico A. Unraveling the Epigenetic Landscape: Insights into Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Brain Sci 2024; 14:553. [PMID: 38928553 PMCID: PMC11202179 DOI: 10.3390/brainsci14060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) are examples of neurodegenerative movement disorders (NMDs), which are defined by a gradual loss of motor function that is frequently accompanied by cognitive decline. Although genetic abnormalities have long been acknowledged as significant factors, new research indicates that epigenetic alterations are crucial for the initiation and development of disease. This review delves into the complex interactions that exist between the pathophysiology of NMDs and epigenetic mechanisms such DNA methylation, histone modifications, and non-coding RNAs. Here, we examine how these epigenetic changes could affect protein aggregation, neuroinflammation, and gene expression patterns, thereby influencing the viability and functionality of neurons. Through the clarification of the epigenetic terrain underpinning neurodegenerative movement disorders, this review seeks to enhance comprehension of the underlying mechanisms of the illness and augment the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Pierpaolo Di Martino
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
| | - Valentina Marcozzi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
| | - Sandra Bibbò
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Wernig-Zorc S, Schwartz U, Martínez-Rodríguez P, Inalef J, Pavicic F, Ehrenfeld P, Längst G, Maldonado R. The Long Non-Coding RNA MALAT1 Modulates NR4A1 Expression through a Downstream Regulatory Element in Specific Cancer Cell Types. Int J Mol Sci 2024; 25:5515. [PMID: 38791553 PMCID: PMC11121914 DOI: 10.3390/ijms25105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to modulate gene expression and are involved in the initiation and progression of various cancer types. Despite the wealth of studies describing transcriptome changes upon lncRNA knockdown, there is limited information describing lncRNA-mediated effects on regulatory elements (REs) modulating gene expression. In this study, we investigated how the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) lncRNA regulates primary target genes using time-resolved MALAT1 knockdown followed by parallel RNA-seq and ATAC-seq assays. The results revealed that MALAT1 primarily regulates specific protein-coding genes and a substantial decrease in the accessibility downstream of the NR4A1 gene that was associated with a decreased NR4A1 expression. Moreover, the presence of an NR4A1-downstream RE was demonstrated by CRISPR-i assays to define a functional MALAT1/NR4A1 axis. By analyzing TCGA data, we identified a positive correlation between NR4A1 expression and NR4A1-downstream RE accessibility in breast cancer but not in pancreatic cancer. Accordingly, this regulatory mechanism was experimentally validated in breast cancer cells (MCF7) but not in pancreatic duct epithelial carcinoma (PANC1) cells. Therefore, our results demonstrated that MALAT1 is involved in a molecular mechanism that fine-tunes NR4A1 expression by modulating the accessibility of a downstream RE in a cell type-specific manner.
Collapse
Affiliation(s)
- Sara Wernig-Zorc
- Regensburg Center for Biochemistry [RCB], Universität Regensburg, 93053 Regensburg, Germany; (S.W.-Z.)
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria
| | - Uwe Schwartz
- NGS Analysis Center, Biology and Pre-Clinical Medicine, Universität Regensburg, 93053 Regensburg, Germany
| | - Paulina Martínez-Rodríguez
- Programa de Doctorado en Ciencias, mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Josefa Inalef
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile (P.E.)
| | - Francisca Pavicic
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile (P.E.)
| | - Pamela Ehrenfeld
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile (P.E.)
- Center for Interdisciplinary Studies of the Nervous System [CISNe], Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Gernot Längst
- Regensburg Center for Biochemistry [RCB], Universität Regensburg, 93053 Regensburg, Germany; (S.W.-Z.)
| | - Rodrigo Maldonado
- Facultad de Medicina y Ciencias, Universidad San Sebastián, 5110246 Valdivia, Chile
| |
Collapse
|
6
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
7
|
Liao X, Wei R, Zhou J, Wu K, Li J. Emerging roles of long non-coding RNAs in osteosarcoma. Front Mol Biosci 2024; 11:1327459. [PMID: 38516191 PMCID: PMC10955361 DOI: 10.3389/fmolb.2024.1327459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Osteosarcoma (OS) is a highly aggressive and lethal malignant bone tumor that primarily afflicts children, adolescents, and young adults. However, the molecular mechanisms underlying OS pathogenesis remain obscure. Mounting evidence implicates dysregulated long non-coding RNAs (lncRNAs) in tumorigenesis and progression. These lncRNAs play a pivotal role in modulating gene expression at diverse epigenetic, transcriptional, and post-transcriptional levels. Uncovering the roles of aberrant lncRNAs would provide new insights into OS pathogenesis and novel tools for its early diagnosis and treatment. In this review, we summarize the significance of lncRNAs in controlling signaling pathways implicated in OS development, including the Wnt/β-catenin, PI3K/AKT/mTOR, NF-κB, Notch, Hippo, and HIF-1α. Moreover, we discuss the multifaceted contributions of lncRNAs to drug resistance in OS, as well as their potential to serve as biomarkers and therapeutic targets. This review aims to encourage further research into lncRNA field and the development of more effective therapeutic strategies for patients with OS.
Collapse
Affiliation(s)
- Xun Liao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiu Zhou
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ke Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Abstract
Long non-coding RNAs (lncRNAs) are significant contributors in maintaining genomic integrity through epigenetic regulation. LncRNAs can interact with chromatin-modifying complexes in both cis and trans pathways, drawing them to specific genomic loci and influencing gene expression via DNA methylation, histone modifications, and chromatin remodeling. They can also operate as building blocks to assemble different chromatin-modifying components, facilitating their interactions and gene regulatory functions. Deregulation of these molecules has been associated with various human diseases, including cancer, cardiovascular disease, and neurological disorders. Thus, lncRNAs are implicated as potential diagnostic indicators and therapeutic targets. This review discusses the current understanding of how lncRNAs mediate epigenetic control, genomic integrity, and their putative functions in disease pathogenesis.
Collapse
Affiliation(s)
- Ganesan Arunkumar
- The LncRNA, Epigenetics, and Genome Organization Laboratory, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
10
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. CELL GENOMICS 2024; 4:100465. [PMID: 38190101 PMCID: PMC10794848 DOI: 10.1016/j.xgen.2023.100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/07/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWASs, and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotypes to identify quantitative trait loci for expression (eQTLs) and splicing (sQTLs) in coronary arteries from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary artery; 19% exhibited cell-type-specific expression. Colocalization revealed subgroups of eGenes unique to CAD and blood pressure GWAS. Fine-mapping highlighted additional eGenes, including TBX20 and IL5. We also identified sQTLs for 1,690 genes, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing to accurately identify disease-relevant isoform expression. Our work provides a patient-derived coronary artery eQTL resource and exemplifies the need for diverse study populations and multifaceted approaches to characterize gene regulation in disease processes.
Collapse
Affiliation(s)
- Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nelson B Barrientos
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ruben Methorst
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicolas G Lopez
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Feng Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48019, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
11
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
12
|
Eun JW, Cheong JY, Jeong JY, Kim HS. A New Understanding of Long Non-Coding RNA in Hepatocellular Carcinoma-From m 6A Modification to Blood Biomarkers. Cells 2023; 12:2272. [PMID: 37759495 PMCID: PMC10528438 DOI: 10.3390/cells12182272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
With recent advancements in biological research, long non-coding RNAs (lncRNAs) with lengths exceeding 200 nucleotides have emerged as pivotal regulators of gene expression and cellular phenotypic modulation. Despite initial skepticism due to their low sequence conservation and expression levels, their significance in various biological processes has become increasingly apparent. We provided an overview of lncRNAs and discussed their defining features and modes of operation. We then explored their crucial function in the hepatocarcinogenesis process, elucidating their complex involvement in hepatocellular carcinoma (HCC). The influential role of lncRNAs within the HCC tumor microenvironment is emphasized, illustrating their potential as key modulators of disease dynamics. We also investigated the significant influence of N6-methyladenosine (m6A) modification on lncRNA function in HCC, enhancing our understanding of both their roles and their upstream regulators. Additionally, the potential of lncRNAs as promising biomarkers was discussed in liver cancer diagnosis, suggesting a novel avenue for future research and clinical application. Finally, our work underscored the dual potential of lncRNAs as both contributors to HCC pathogenesis and innovative tools for its diagnosis. Existing challenges and prospective trajectories in lncRNA research are also discussed, emphasizing their potential in advancing liver cancer research.
Collapse
Affiliation(s)
- Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; (J.W.E.); (J.Y.C.)
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; (J.W.E.); (J.Y.C.)
| | - Jee-Yeong Jeong
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea;
- Institute for Medical Science, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| | - Hyung Seok Kim
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea;
| |
Collapse
|
13
|
Tran T, Cruz C, Chan A, Awad S, Rajasingh J, Deth R, Gurusamy N. Mesenchymal Stem Cell-Derived Long Noncoding RNAs in Cardiac Injury and Repair. Cells 2023; 12:2268. [PMID: 37759491 PMCID: PMC10527806 DOI: 10.3390/cells12182268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiac injury, such as myocardial infarction and heart failure, remains a significant global health burden. The limited regenerative capacity of the adult heart poses a challenge for restoring its function after injury. Mesenchymal stem cells (MSCs) have emerged as promising candidates for cardiac regeneration due to their ability to differentiate into various cell types and secrete bioactive molecules. In recent years, attention has been given to noncoding RNAs derived from MSCs, particularly long noncoding RNAs (lncRNAs), and their potential role in cardiac injury and repair. LncRNAs are RNA molecules that do not encode proteins but play critical roles in gene regulation and cellular responses including cardiac repair and regeneration. This review focused on MSC-derived lncRNAs and their implications in cardiac regeneration, including their effects on cardiac function, myocardial remodeling, cardiomyocyte injury, and angiogenesis. Understanding the molecular mechanisms of MSC-derived lncRNAs in cardiac injury and repair may contribute to the development of novel therapeutic strategies for treating cardiovascular diseases. However, further research is needed to fully elucidate the potential of MSC-derived lncRNAs and address the challenges in this field.
Collapse
Affiliation(s)
- Talan Tran
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Claudia Cruz
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Anthony Chan
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Salma Awad
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, USA
| | - Richard Deth
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
14
|
Roy L, Chatterjee O, Bose D, Roy A, Chatterjee S. Noncoding RNA as an influential epigenetic modulator with promising roles in cancer therapeutics. Drug Discov Today 2023; 28:103690. [PMID: 37379906 DOI: 10.1016/j.drudis.2023.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The epigenetic landscape has an important role in cellular homeostasis and its deregulation leads to cancer. Noncoding (nc)RNA networks function as major regulators of cellular epigenetic hallmarks via regulation of vital processes, such as histone modification and DNA methylation. They are integral intracellular components affecting multiple oncogenic pathways. Thus, it is important to elucidate the effects of ncRNA networks on epigenetic programming that lead to the initiation and progression of cancer. In this review, we summarize the effects of epigenetic modification influenced by ncRNA networks and crosstalk between diverse classes of ncRNA, which could aid the development of patient-specific cancer therapeutics targeting ncRNAs, thereby altering cellular epigenetics.
Collapse
Affiliation(s)
- Laboni Roy
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | | | - Debopriya Bose
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | - Ananya Roy
- Department of Biophysics, Bose Institute, Kolkata 700091, India
| | | |
Collapse
|
15
|
Segal D, Dostie J. The Talented LncRNAs: Meshing into Transcriptional Regulatory Networks in Cancer. Cancers (Basel) 2023; 15:3433. [PMID: 37444543 DOI: 10.3390/cancers15133433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of diseases characterized by uncontrollable cell growth, cancer is highly multifaceted in how it overrides checkpoints controlling proliferation. Amongst the regulators of these checkpoints, long non-coding RNAs (lncRNAs) can have key roles in why natural biological processes go haywire. LncRNAs represent a large class of regulatory transcripts that can localize anywhere in cells. They were found to affect gene expression on many levels from transcription to mRNA translation and even protein stability. LncRNA participation in such control mechanisms can depend on cell context, with given transcripts sometimes acting as oncogenes or tumor suppressors. Importantly, the tissue-specificity and low expression levels of lncRNAs make them attractive therapeutic targets or biomarkers. Here, we review the various cellular processes affected by lncRNAs and outline molecular strategies they use to control gene expression, particularly in cancer and in relation to transcription factors.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
16
|
Zhang W, Wei C, Huang F, Huang W, Xu X, Zhu X. A tumor mutational burden-derived immune computational framework selects sensitive immunotherapy/chemotherapy for lung adenocarcinoma populations with different prognoses. Front Oncol 2023; 13:1104137. [PMID: 37456238 PMCID: PMC10349266 DOI: 10.3389/fonc.2023.1104137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) kills millions of people every year. Recently, FDA and researchers proved the significance of high tumor mutational burden (TMB) in treating solid tumors. But no scholar has constructed a TMB-derived computing framework to select sensitive immunotherapy/chemotherapy for the LUAD population with different prognoses. Methods The datasets were collected from TCGA, GTEx, and GEO. We constructed the TMB-derived immune lncRNA prognostic index (TILPI) computing framework based on TMB-related genes identified by weighted gene co-expression network analysis (WGCNA), oncogenes, and immune-related genes. Furthermore, we mapped the immune landscape based on eight algorithms. We explored the immunotherapy sensitivity of different prognostic populations based on immunotherapy response, tumor immune dysfunction and exclusion (TIDE), and tumor inflammation signature (TIS) model. Furthermore, the molecular docking models were constructed for sensitive drugs identified by the pRRophetic package, oncopredict package, and connectivity map (CMap). Results The TILPI computing framework was based on the expression of TMB-derived immune lncRNA signature (TILncSig), which consisted of AC091057.1, AC112721.1, AC114763.1, AC129492.1, LINC00592, and TARID. TILPI divided all LUAD patients into two populations with different prognoses. The random grouping verification, survival analysis, 3D PCA, and ROC curve (AUC=0.74) firmly proved the reliability of TILPI. TILPI was associated with clinical characteristics, including smoking and pathological stage. Furthermore, we estimated three types of immune cells threatening the survival of patients based on multiple algorithms. They were macrophage M0, T cell CD4 Th2, and T cell CD4 memory activated. Nevertheless, five immune cells, including B cell, endothelial cell, eosinophil, mast cell, and T cell CD4 memory resting, prolonged the survival. In addition, the immunotherapy response and TIDE model proved the sensitivity of the low-TILPI population to immunotherapy. We also identified seven intersected drugs for the LUAD population with poor prognosis, which included docetaxel, gemcitabine, paclitaxel, palbociclib, pyrimethamine, thapsigargin, and vinorelbine. Their molecular docking models and best binding energy were also constructed and calculated. Conclusions We divided all LUAD patients into two populations with different prognoses. The good prognosis population was sensitive to immunotherapy, while the people with poor prognosis benefitted from 7 drugs.
Collapse
Affiliation(s)
- Wenlong Zhang
- Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Chuzhong Wei
- Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Fengyu Huang
- Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Wencheng Huang
- Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Xiaoxin Xu
- Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Xiao Zhu
- Computational Oncology Laboratory, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
17
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
18
|
Zhang F, Wei L, Wang L, Wang T, Xie Z, Luo H, Li F, Zhang J, Dong W, Liu G, Kang Q, Zhu X, Peng W. FAR591 promotes the pathogenesis and progression of SONFH by regulating Fos expression to mediate the apoptosis of bone microvascular endothelial cells. Bone Res 2023; 11:27. [PMID: 37217464 PMCID: PMC10203311 DOI: 10.1038/s41413-023-00259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
The specific pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) is still not fully understood, and there is currently no effective early cure. Understanding the role and mechanism of long noncoding RNAs (lncRNAs) in the pathogenesis of SONFH will help reveal the pathogenesis of SONFH and provide new targets for its early prevention and treatment. In this study, we first confirmed that glucocorticoid (GC)-induced apoptosis of bone microvascular endothelial cells (BMECs) is a pre-event in the pathogenesis and progression of SONFH. Then, we identified a new lncRNA in BMECs via lncRNA/mRNA microarray, termed Fos-associated lincRNA ENSRNOT00000088059.1 (FAR591). FAR591 is highly expressed during GC-induced BMEC apoptosis and femoral head necrosis. Knockout of FAR591 effectively blocked the GC-induced apoptosis of BMECs, which then alleviated the damage of GCs to the femoral head microcirculation and inhibited the pathogenesis and progression of SONFH. In contrast, overexpression of FAR591 significantly promoted the GC-induced apoptosis of BMECs, which then aggravated the damage of GCs to the femoral head microcirculation and promoted the pathogenesis and progression of SONFH. Mechanistically, GCs activate the glucocorticoid receptor, which translocates to the nucleus and directly acts on the FAR591 gene promoter to induce FAR591 gene overexpression. Subsequently, FAR591 binds to the Fos gene promoter (-245∼-51) to form a stable RNA:DNA triplet structure and then recruits TATA-box binding protein associated factor 15 and RNA polymerase II to promote Fos expression through transcriptional activation. Fos activates the mitochondrial apoptotic pathway by regulating the expression of Bcl-2 interacting mediator of cell death (Bim) and P53 upregulated modulator of apoptosis (Puma) to mediate GC-induced apoptosis of BMECs, which leads to femoral head microcirculation dysfunction and femoral head necrosis. In conclusion, these results confirm the mechanistic link between lncRNAs and the pathogenesis of SONFH, which helps reveal the pathogenesis of SONFH and provides a new target for the early prevention and treatment of SONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University, Providence, Rhode Island, 02903, USA
| | - Lei Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Fanchao Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jian Zhang
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wentao Dong
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Gang Liu
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Wuxun Peng
- Department of Emergency Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
19
|
Chen X, Lv Q, Liu Y. A Comprehensive Genome-Wide Analysis of lncRNA Expression Profile during Hepatic Carcinoma Cell Proliferation Promoted by Phospholipase Cγ2. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
20
|
Shi H, Nguyen T, Zhao Q, Cheng P, Sharma D, Kim HJ, Kim JB, Wirka R, Weldy CS, Monteiro JP, Quertermous T. Discovery of Transacting Long Noncoding RNAs That Regulate Smooth Muscle Cell Phenotype. Circ Res 2023; 132:795-811. [PMID: 36852690 PMCID: PMC11056793 DOI: 10.1161/circresaha.122.321960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Smooth muscle cells (SMC), the major cell type in atherosclerotic plaques, are vital in coronary artery diseases (CADs). SMC phenotypic transition, which leads to the formation of various cell types in atherosclerotic plaques, is regulated by a network of genetic and epigenetic mechanisms and governs the risk of disease. The involvement of long noncoding RNAs (lncRNAs) has been increasingly identified in cardiovascular disease. However, SMC lncRNAs have not been comprehensively characterized, and their regulatory role in SMC state transition remains unknown. METHODS A discovery pipeline was constructed and applied to deeply strand-specific RNA sequencing from perturbed human coronary artery SMC with different disease-related stimuli, to allow for the detection of novel lncRNAs. The functional relevance of a select few novel lncRNAs were verified in vitro. RESULTS We identified 4579 known and 13 655 de novo lncRNAs in human coronary artery SMC. Consistent with previous long noncoding RNA studies, these lncRNAs overall have fewer exons, are shorter in length than protein-coding genes (pcGenes), and have relatively low expression level. Genomic location of these long noncoding RNA is disproportionately enriched near CAD-related TFs (transcription factors), genetic loci, and gene regulators of SMC identity, suggesting the importance of their function in disease. Two de novo lncRNAs, ZIPPOR (ZEB-interacting suppressor) and TNS1-AS2 (TNS1-antisense 2), were identified by our screen. Combining transcriptional data and in silico modeling along with in vitro validation, we identified CAD gene ZEB2 as a target through which these lncRNAs exert their function in SMC phenotypic transition. CONCLUSIONS Expression of a large and diverse set of lncRNAs in human coronary artery SMC are highly dynamic in response to CAD-related stimuli. The dynamic changes in expression of these lncRNAs correspond to alterations in transcriptional programs that are relevant to CAD, suggesting a critical role for lncRNAs in SMC phenotypic transition and human atherosclerotic disease.
Collapse
Affiliation(s)
- Huitong Shi
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Paul Cheng
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Disha Sharma
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Hyun-Jung Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Robert Wirka
- Departments of Medicine and Cell Biology and Physiology, and McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Chad S Weldy
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - João P. Monteiro
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| |
Collapse
|
21
|
Tao X, Li S, Chen G, Wang J, Xu S. Approaches for Modes of Action Study of Long Non-Coding RNAs: From Single Verification to Genome-Wide Determination. Int J Mol Sci 2023; 24:ijms24065562. [PMID: 36982636 PMCID: PMC10054671 DOI: 10.3390/ijms24065562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides (nt) that are not translated into known functional proteins. This broad definition covers a large collection of transcripts with diverse genomic origins, biogenesis, and modes of action. Thus, it is very important to choose appropriate research methodologies when investigating lncRNAs with biological significance. Multiple reviews to date have summarized the mechanisms of lncRNA biogenesis, their localization, their functions in gene regulation at multiple levels, and also their potential applications. However, little has been reviewed on the leading strategies for lncRNA research. Here, we generalize a basic and systemic mind map for lncRNA research and discuss the mechanisms and the application scenarios of ‘up-to-date’ techniques as applied to molecular function studies of lncRNAs. Taking advantage of documented lncRNA research paradigms as examples, we aim to provide an overview of the developing techniques for elucidating lncRNA interactions with genomic DNA, proteins, and other RNAs. In the end, we propose the future direction and potential technological challenges of lncRNA studies, focusing on techniques and applications.
Collapse
Affiliation(s)
- Xiaoyuan Tao
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengchun Xu
- Xianghu Laboratory, Hangzhou 311231, China
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence:
| |
Collapse
|
22
|
McGregor LA, Zhu B, Goetz AM, Sczepanski JT. Thymine DNA Glycosylase is an RNA-Binding Protein with High Selectivity for G-Rich Sequences. J Biol Chem 2023; 299:104590. [PMID: 36889585 PMCID: PMC10124917 DOI: 10.1016/j.jbc.2023.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifaceted enzyme involved in several critical biological pathways, including transcriptional activation, DNA demethylation, and DNA repair. Recent studies have established regulatory relationships between TDG and RNA, but the molecular interactions underlying these relationships is poorly understood. Herein, we now demonstrate that TDG binds directly to RNA with nanomolar affinity. Using synthetic oligonucleotides of defined length and sequence, we show that TDG has a strong preference for binding G-rich sequences in single-stranded RNA but binds weakly to single-stranded DNA and duplex RNA. TDG also binds tightly to endogenous RNA sequences. Studies with truncated proteins indicate that TDG binds RNA primarily through its structured catalytic domain and that its disordered C-terminal domain plays a key role in regulating TDG's affinity and selectivity for RNA. Finally, we show that RNA competes with DNA for binding to TDG, resulting in inhibition of TDG-mediated excision in the presence of RNA. Together, this work provides support for and insights into a mechanism wherein TDG-mediated processes (e.g., DNA demethylation) are regulated through the direct interactions of TDG with RNA.
Collapse
Affiliation(s)
- Lauren A McGregor
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Baiyu Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Allison M Goetz
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | | |
Collapse
|
23
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Integrative multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.09.23285622. [PMID: 36824883 PMCID: PMC9949190 DOI: 10.1101/2023.02.09.23285622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genetic risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWAS and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotype information to identify quantitative trait loci (QTL) for gene expression and splicing in coronary arteries obtained from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary arteries and 19% exhibited cell-type-specific expression. Colocalization analysis with GWAS identified subgroups of eGenes unique to CAD and blood pressure. Fine-mapping highlighted additional eGenes of interest, including TBX20 and IL5 . Splicing (s)QTLs for 1,690 genes were also identified, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing events to accurately identify disease-relevant gene expression. Our work provides the first human coronary artery eQTL resource from a patient sample and exemplifies the necessity of diverse study populations and multi-omic approaches to characterize gene regulation in critical disease processes. Study Design Overview
Collapse
|
24
|
Emerging role for R-loop formation in hepatocellular carcinoma. Genes Genomics 2023; 45:543-551. [PMID: 36635460 DOI: 10.1007/s13258-022-01360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
The pathophysiological characteristics of hepatocellular carcinoma (HCC) is closely associated with genomic instability. Genomic instability has long been considered to be a hallmark of both human genetic disease and cancers. It is now well accepted that regulating R-loop formation to minimized levels is one of critical modulation to maintain genome integrity, and that improper regulation of R-loop metabolism causes genomic instability via DNA breakage, ultimately resulting in replicative senescence and even tumorigenesis. Given that R-loop is natural by-product formed during normal transcription condition, and that several types of cancer have defense mechanism against the genomic instability resulted from R-loop formation, modulating functional implication of proteins involved in the intrinsic and specific mechanisms of abnormal R-loop formation in cancers therefore could play an important part in appropriated therapeutic strategies for HCC cohorts. In this review, we highlight the latest understanding on how R-loops promote genomic instability and address how alterations in these pathways link to human HCC.
Collapse
|
25
|
Wang M, An G, Wang B, Chen Y, Liu G, Wang X, Liu S, Zhang D, Sun D, Zhang Y, Shen T, Li X. Integrated analysis of the lncRNA-miRNA-mRNA network based on competing endogenous RNA in atrial fibrillation. Front Cardiovasc Med 2023; 10:1099124. [PMID: 37180786 PMCID: PMC10174322 DOI: 10.3389/fcvm.2023.1099124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Objective Long non-coding RNAs (lncRNAs) play pivotal roles in the transcriptional regulation of atrial fibrillation (AF) by acting as competing endogenous RNAs (ceRNAs). In the present study, the expression levels of lncRNAs of sinus rhythm (SR) patients and AF patients were investigated with transcriptomics technology, and the lncRNA-miRNA-mRNA network based on the ceRNA theory in AF was elaborated. Methods Left atrial appendage (LAA) tissues were obtained from patients with valvular heart disease during cardiac surgery, and they were divided into SR and AF groups. The expression characterizations of differentially expressed (DE) lncRNAs in the two groups were revealed by high-throughput sequencing methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and the lncRNA-miRNA-mRNA-mediated ceRNA network was constructed. Results A total of differentially expressed 82 lncRNAs, 18 miRNAs, and 495 mRNAs in human atrial appendage tissues were targeted. Compared to SR patients, the following changes were found in AF patients: 32 upregulated and 50 downregulated lncRNAs; 7 upregulated and 11 downregulated miRNAs; and 408 upregulated and 87 downregulated mRNAs. A lncRNA-miRNA-mRNA network was constructed, which included 44 lncRNAs, 18 miRNAs, and 347 mRNAs. qRT-PCR was performed to verify these findings. GO and KEGG analyses suggested that inflammatory response, chemokine signaling pathway, and other biological processes play important roles in the pathogenesis of AF. Network analysis based on the ceRNA theory identified that lncRNA XR_001750763.2 and Toll-like receptor 2 (TLR2) compete for binding to miR-302b-3p. In AF patients, lncRNA XR_001750763.2 and TLR2 were upregulated, and miR-302b-3p was downregulated. Conclusion We identified a lncRNA XR_001750763.2/miR-302b-3p/TLR2 network based on the ceRNA theory in AF. The present study shed light on the physiological functions of lncRNAs and provided information for exploring potential treatments for AF.
Collapse
Affiliation(s)
- Manman Wang
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
- Correspondence: Manman Wang Xiangting Li
| | - Guoying An
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Department of Cardiac Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Benxuan Wang
- Department of Neurology, Jinnan Hospital, Tianjin, China
| | - Yuanyuan Chen
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Genli Liu
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xin Wang
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shuai Liu
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Daozou Zhang
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Dandan Sun
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yanyan Zhang
- Admission and Patient Service Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Tong Shen
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiangting Li
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
- Correspondence: Manman Wang Xiangting Li
| |
Collapse
|
26
|
Yang Z, Xu F, Teschendorff AE, Zhao Y, Yao L, Li J, He Y. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci 2022; 9:1067406. [PMID: 36533073 PMCID: PMC9755597 DOI: 10.3389/fmolb.2022.1067406] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms that governing regulation of gene expression, aberrant DNA methylation patterns are strongly associated with human malignancies. Long non-coding RNAs (lncRNAs) have being discovered as a significant regulator on gene expression at the epigenetic level. Emerging evidences have indicated the intricate regulatory effects between lncRNAs and DNA methylation. On one hand, transcription of lncRNAs are controlled by the promoter methylation, which is similar to protein coding genes, on the other hand, lncRNA could interact with enzymes involved in DNA methylation to affect the methylation pattern of downstream genes, thus regulating their expression. In addition, circular RNAs (circRNAs) being an important class of noncoding RNA are also found to participate in this complex regulatory network. In this review, we summarize recent research progress on this crosstalk between lncRNA, circRNA, and DNA methylation as well as their potential functions in complex diseases including cancer. This work reveals a hidden layer for gene transcriptional regulation and enhances our understanding for epigenetics regarding detailed mechanisms on lncRNA regulatory function in human cancers.
Collapse
Affiliation(s)
- Zhen Yang
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Xu
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Li
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yungang He
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Liu X, Li Y, Jiang X, Deng Y, Ma C, Yu Q, Gao D. Long non-coding RNA: Multiple effects on the differentiation, maturity and cell function of dendritic cells. Clin Immunol 2022; 245:109167. [DOI: 10.1016/j.clim.2022.109167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 10/15/2022] [Indexed: 11/15/2022]
|
28
|
Liao L, Liu M, Gao Y, Wei X, Yin Y, Gao L, Zhou R. The long noncoding RNA TARID regulates the CXCL3/ERK/MAPK pathway in trophoblasts and is associated with preeclampsia. Reprod Biol Endocrinol 2022; 20:159. [PMID: 36401313 PMCID: PMC9675252 DOI: 10.1186/s12958-022-01036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The widely accepted explanation of preeclampsia (PE) pathogenesis is insufficient trophoblast invasion and impaired uterine spiral artery remodeling. However, the underlying molecular mechanism remains unclear. METHODS We performed transcriptome sequencing on placentas of normal and PE patients and identified 976 differentially expressed long noncoding RNAs (lncRNAs). TCF21 antisense RNA inducing demethylation (TARID) was one of the most significantly differentially expressed lncRNAs and was negatively correlated with the systolic and diastolic blood pressure in PE patients. Furthermore, we verified the effect of TARID on the biological behavior of trophoblasts and performed UID mRNA-seq to identify the effectors downstream of TARID. Then, co-transfection experiments were used to better illustrate the interaction between TARID and its downstream effector. RESULTS We concluded that the downregulation of TARID expression may inhibit trophoblast infiltration and spiral artery remodeling through inhibition of cell migration, invasion, and tube formation mediated through the CXCL3/ERK/MAPK pathway. CONCLUSIONS Overall, these findings suggested that TARID may be a therapeutic target for PE through the CXCL3/ERK/MAPK pathway.
Collapse
Affiliation(s)
- Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Min Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Yijie Gao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Xiaohong Wei
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Linbo Gao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Kerachian MA, Azghandi M. Identification of long non-coding RNA using single nucleotide epimutation analysis: a novel gene discovery approach. Cancer Cell Int 2022; 22:337. [PMID: 36333783 PMCID: PMC9636742 DOI: 10.1186/s12935-022-02752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are involved in a variety of mechanisms related to tumorigenesis by functioning as oncogenes or tumor-suppressors or even harboring oncogenic and tumor-suppressing effects; representing a new class of cancer biomarkers and therapeutic targets. It is predicted that more than 35,000 ncRNA especially lncRNA are positioned at the intergenic regions of the human genome. Emerging research indicates that one of the key pathways controlling lncRNA expression and tissue specificity is epigenetic regulation. METHODS In the current article, a novel approach for lncRNA discovery based on the intergenic position of most lncRNAs and a single CpG site methylation level representing epigenetic characteristics has been suggested. RESULTS Using this method, a novel antisense lncRNA named LINC02892 presenting three transcripts without the capacity of coding a protein was found exhibiting nuclear, cytoplasmic, and exosome distributions. CONCLUSION The current discovery strategy could be applied to identify novel non-coding RNAs influenced by methylation aberrations.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
30
|
Roessner A, Franke S, Schreier J, Ullmann S, Karras F, Jechorek D. Genetics and epigenetics in conventional chondrosarcoma with focus on non-coding RNAs. Pathol Res Pract 2022; 239:154172. [DOI: 10.1016/j.prp.2022.154172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
|
31
|
Faltus C, Lahnsteiner A, Barrdahl M, Assenov Y, Hüsing A, Bogatyrova O, Laplana M, Johnson T, Muley T, Meister M, Warth A, Thomas M, Plass C, Kaaks R, Risch A. Identification of NHLRC1 as a Novel AKT Activator from a Lung Cancer Epigenome-Wide Association Study (EWAS). Int J Mol Sci 2022; 23:ijms231810699. [PMID: 36142605 PMCID: PMC9505874 DOI: 10.3390/ijms231810699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Changes in DNA methylation identified by epigenome-wide association studies (EWAS) have been recently linked to increased lung cancer risk. However, the cellular effects of these differentially methylated positions (DMPs) are often unclear. Therefore, we investigated top differentially methylated positions identified from an EWAS study. This included a putative regulatory region of NHLRC1. Hypomethylation of this gene was recently linked with decreased survival rates in lung cancer patients. HumanMethylation450 BeadChip array (450K) analysis was performed on 66 lung cancer case-control pairs from the European Prospective Investigation into Cancer and Nutrition Heidelberg lung cancer EWAS (EPIC HD) cohort. DMPs identified in these pre-diagnostic blood samples were then investigated for differential DNA methylation in lung tumor versus adjacent normal lung tissue from The Cancer Genome Atlas (TCGA) and replicated in two independent lung tumor versus adjacent normal tissue replication sets with MassARRAY. The EPIC HD top hypermethylated DMP cg06646708 was found to be a hypomethylated region in multiple data sets of lung tumor versus adjacent normal tissue. Hypomethylation within this region caused increased mRNA transcription of the closest gene NHLRC1 in lung tumors. In functional assays, we demonstrate attenuated proliferation, viability, migration, and invasion upon NHLRC1 knock-down in lung cancer cells. Furthermore, diminished AKT phosphorylation at serine 473 causing expression of pro-apoptotic AKT-repressed genes was detected in these knock-down experiments. In conclusion, this study demonstrates the powerful potential for discovery of novel functional mechanisms in oncogenesis based on EWAS DNA methylation data. NHLRC1 holds promise as a new prognostic biomarker for lung cancer survival and prognosis, as well as a target for novel treatment strategies in lung cancer patients.
Collapse
Affiliation(s)
- Christian Faltus
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Myrto Barrdahl
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yassen Assenov
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anika Hüsing
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Olga Bogatyrova
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marina Laplana
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, 25198 Lleida, Spain
| | - Theron Johnson
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
| | - Thomas Muley
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, University of Heidelberg, 69126 Heidelberg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, University of Heidelberg, 69126 Heidelberg, Germany
| | - Arne Warth
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, University of Heidelberg, 69126 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Angela Risch
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +43-662-8044-7220
| |
Collapse
|
32
|
Fonouni-Farde C, Christ A, Blein T, Legascue MF, Ferrero L, Moison M, Lucero L, Ramírez-Prado JS, Latrasse D, Gonzalez D, Benhamed M, Quadrana L, Crespi M, Ariel F. The Arabidopsis APOLO and human UPAT sequence-unrelated long noncoding RNAs can modulate DNA and histone methylation machineries in plants. Genome Biol 2022; 23:181. [PMID: 36038910 PMCID: PMC9422110 DOI: 10.1186/s13059-022-02750-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/17/2022] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND RNA-DNA hybrid (R-loop)-associated long noncoding RNAs (lncRNAs), including the Arabidopsis lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO), are emerging as important regulators of three-dimensional chromatin conformation and gene transcriptional activity. RESULTS Here, we show that in addition to the PRC1-component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), APOLO interacts with the methylcytosine-binding protein VARIANT IN METHYLATION 1 (VIM1), a conserved homolog of the mammalian DNA methylation regulator UBIQUITIN-LIKE CONTAINING PHD AND RING FINGER DOMAINS 1 (UHRF1). The APOLO-VIM1-LHP1 complex directly regulates the transcription of the auxin biosynthesis gene YUCCA2 by dynamically determining DNA methylation and H3K27me3 deposition over its promoter during the plant thermomorphogenic response. Strikingly, we demonstrate that the lncRNA UHRF1 Protein Associated Transcript (UPAT), a direct interactor of UHRF1 in humans, can be recognized by VIM1 and LHP1 in plant cells, despite the lack of sequence homology between UPAT and APOLO. In addition, we show that increased levels of APOLO or UPAT hamper VIM1 and LHP1 binding to YUCCA2 promoter and globally alter the Arabidopsis transcriptome in a similar manner. CONCLUSIONS Collectively, our results uncover a new mechanism in which a plant lncRNA coordinates Polycomb action and DNA methylation through the interaction with VIM1, and indicates that evolutionary unrelated lncRNAs with potentially conserved structures may exert similar functions by interacting with homolog partners.
Collapse
Affiliation(s)
- Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Aurélie Christ
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - Thomas Blein
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - María Florencia Legascue
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Lucía Ferrero
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Michaël Moison
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Juan Sebastián Ramírez-Prado
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - Daniel Gonzalez
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Moussa Benhamed
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - Leandro Quadrana
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France.,Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, 91405, Orsay, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| |
Collapse
|
33
|
Yang K, Liang X, Wen K. Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 2022; 48:175. [PMID: 36004472 PMCID: PMC9478986 DOI: 10.3892/or.2022.8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Genomic instability, a feature of most cancers, contributes to malignant cell transformation and cancer progression due to the accumulation of genetic alterations. Genomic instability is reflected at numerous levels, from single nucleotide to the chromosome levels. However, the exact molecular mechanisms and regulators of genomic instability in cancer remain unclear. Growing evidence indicates that the binding of long non-coding RNAs (lncRNAs) to protein chaperones confers a variety of regulatory functions, including managing of genomic instability. The aim of the present review was to examine the roles of mitosis, telomeres, DNA repair, and epigenetics in genomic instability, and the mechanisms by which lncRNAs regulate them by binding proteins in cancer cells. This review contributes to our understanding of the role of lncRNAs and genomic instability in cancer and can potentially provide entry points and molecular targets for cancer therapies.
Collapse
Affiliation(s)
- Kai Yang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoxiang Liang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
34
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
35
|
Miller HE, Ilieva M, Bishop AJR, Uchida S. Current Status of Epitranscriptomic Marks Affecting lncRNA Structures and Functions. Noncoding RNA 2022; 8:ncrna8020023. [PMID: 35447886 PMCID: PMC9025719 DOI: 10.3390/ncrna8020023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) belong to a class of non-protein-coding RNAs with their lengths longer than 200 nucleotides. Most of the mammalian genome is transcribed as RNA, yet only a small percent of the transcribed RNA corresponds to exons of protein-coding genes. Thus, the number of lncRNAs is predicted to be several times higher than that of protein-coding genes. Because of sheer number of lncRNAs, it is often difficult to elucidate the functions of all lncRNAs, especially those arising from their relationship to their binding partners, such as DNA, RNA, and proteins. Due to their binding to other macromolecules, it has become evident that the structures of lncRNAs influence their functions. In this regard, the recent development of epitranscriptomics (the field of study to investigate RNA modifications) has become important to further elucidate the structures and functions of lncRNAs. In this review, the current status of lncRNA structures and functions influenced by epitranscriptomic marks is discussed.
Collapse
Affiliation(s)
- Henry E. Miller
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA; (H.E.M.); (A.J.R.B.)
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Bioinformatics Research Network, Atlanta, GA 30317, USA
| | - Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark;
| | - Alexander J. R. Bishop
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA; (H.E.M.); (A.J.R.B.)
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- May’s Cancer Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark;
- Correspondence: or
| |
Collapse
|
36
|
Cheng Z, Zhang Y, Zhuo Y, Fan J, Xu Y, Li M, Chen H, Zhou L. LncRNA TARID induces cell proliferation through cell cycle pathway associated with coronary artery disease. Mol Biol Rep 2022; 49:4573-4581. [PMID: 35304681 DOI: 10.1007/s11033-022-07304-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND/AIM Long non-coding RNA TARID (lncRNA TARID) can activate the tumor suppressor TCF21 in tumorigenesis by inducing promoter demethylation. However, the impact on lncRNA TARID and its variants of coronary artery disease (CAD) are poorly understood. METHODS We performed a case-control study enrolling 949 cases and 892 controls to assess genotype. Five variants were genotyped by TaqMan assay. 20 cases and 20 controls were used to evaluate the expression of lncRNA TARID. The cell proliferation rate was evaluated by CCK-8. The RT-qPCR and cell cycle analysis were applied to examine cell proliferation-related mRNA and cell distribution. RESULTS This study indicated that rs2327433 GG genotype was associated with CAD risk adjusting for traditional risk factors (OR = 2.74, 95%CI: 1.10-6.83, P = 0.03). Our results analyses revealed that the genotype of rs2327433 was related to the proportion of CAD patients with left anterior descending artery disease and left circumflex artery disease (P = 0.025 and P = 0.025, respectively). The results showed that the minor allele frequency of rs2327433 was significantly correlated with the severity of the disease (P = 0.029). The eQTL analysis showed that rs2327433 may affect the transcription factors TCF21 regulated by lncRNA TARID. We found that TARID silencing regulated cell proliferation and altered cell cycle progression by induced upregulation of CDK1 and PCNA. CONCLUSIONS SNP rs2327433 in lncRNA TARID was associated with CAD risk and the severity of CAD in the Chinese Han population. Furthermore, SNP rs2327433 may affect the expression of atherosclerosis-related transcription factor TCF21 regulated by lncRNA TARID. Finally, our study provided a new lncRNA-dictated regulatory mechanism participating in cell proliferation.
Collapse
Affiliation(s)
- Zheng Cheng
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yang Zhuo
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Jie Fan
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Ying Xu
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Mengmeng Li
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Hao Chen
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China.
| |
Collapse
|
37
|
LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res 2022; 41:100. [PMID: 35292092 PMCID: PMC8922926 DOI: 10.1186/s13046-022-02319-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms to regulate gene expression, which is highly dynamic during development and specifically maintained in somatic cells. Aberrant DNA methylation patterns are strongly associated with human diseases including cancer. How are the cell-specific DNA methylation patterns established or disturbed is a pivotal question in developmental biology and cancer epigenetics. Currently, compelling evidence has emerged that long non-coding RNA (lncRNA) mediates DNA methylation in both physiological and pathological conditions. In this review, we provide an overview of the current understanding of lncRNA-mediated DNA methylation, with emphasis on the roles of this mechanism in cancer, which to the best of our knowledge, has not been systematically summarized. In addition, we also discuss the potential clinical applications of this mechanism in RNA-targeting drug development.
Collapse
|
38
|
LINC01128 facilitates the progression of pancreatic cancer through up-regulation of LDHA by targeting miR-561-5p. Cancer Cell Int 2022; 22:93. [PMID: 35193567 PMCID: PMC8862213 DOI: 10.1186/s12935-022-02490-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) regulate tumor development and metastasis in several types of cancers through various molecular mechanisms. However, the biological role of most lncRNAs in pancreatic cancer (PC) remains unclear. Here, we explored the expression, biological functions, and molecular mechanism of LINC01128 in PC. Methods Quantitive reverse transcription PCR was used to detect the expression level of LINC01128 in PC tissues and different PC cell lines. A loss-of-function and gain-of-function experiment was used to explore the biological effects of LINC01128 on PC carcinogenesis in vitro and in vivo. Western blot analysis, subcellular fractionation experiment, luciferase reporter gene assay, and MS2-RNA immunoprecipitation experiment were used to study the potential molecular mechanism of LINC01128 during carcinogenesis. Results The expression of LINC01128 was upregulated in PC tissues and cell lines, and overexpression of LINC01128 was significantly related to the poor prognosis of patients with PC. Furthermore, silencing LINC01128 significantly inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of PC cells in vitro and tumor growth in vivo, while LINC01128 overexpression promoted these processes. Further research showed that LINC01128 acted as a sponge for microRNA miR-561-5p, and lactate dehydrogenase A (LDHA) was the downstream target gene of miR-561-5p. It was also revealed that the expression of miR-561-5p in PC was decreased, and a negative correlation between miR-561-5p and LINC01128 was revealed. Based on rescue experiments, LDHA overexpression partially restored the inhibitory effect of LINC01128 knockdown on proliferation, migration, and invasion of PC cells. Conclusions LINC01128 promotes the proliferation, migration, invasion, and EMT of PC by regulating the miR-561-5p/LDHA axis, suggesting LINC01128 may be a new prognostic marker and therapeutic target in PC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02490-5.
Collapse
|
39
|
Roy S, Ganguly N, Banerjee S. Exploring clinical implications and role of non-coding RNAs in lung carcinogenesis. Mol Biol Rep 2022; 49:6871-6883. [PMID: 35076850 DOI: 10.1007/s11033-022-07159-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer is the utmost familiar category of cancer with greatest fatality rate worldwide and several regulatory mechanisms exercise cellular control on critical oncogenic trails implicated in lung associated carcinogenesis. The non-coding RNAs (ncRNAs) are shown to play a variety of regulatory roles, including stimulating cell proliferation, inhibiting programmed cell death, enhancing cancer cell metastatic ability and acquiring resistance to drugs. Furthermore, ncRNAs exhibit tissue-specific expression as well as great stability in bodily fluids. As a consequence, they are strong contenders for cancer based theragnostics. microRNA (miRNA) alters gene expression primarily by either degrading or interfering with the translation of targeted mRNA and long non-coding RNAs (lncRNAs) can influence gene expression by targeting transcriptional activators or repressors, RNA polymers and even DNA-duplex. lncRNAs are typically found to be dysregulated in lung cancer and hence targeting ncRNAs could be a viable strategy for developing potential therapies as well as for overcoming chemoresistance in lung cancer. The purpose of this review is to elucidate the role of ncRNAs, revisiting the recent studies in lung cancer.
Collapse
Affiliation(s)
- Swagata Roy
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Neeldeep Ganguly
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Satarupa Banerjee
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
40
|
Zhang L, Li Q, Wang H, Wu Y, Ye X, Gong Z, Li Q, Xuan A. Gadd45g, a novel antidepressant target, mediates metformin-induced neuronal differentiation of neural stem cells via DNA demethylation. Stem Cells 2022; 40:59-73. [DOI: 10.1093/stmcls/sxab001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Increased neurogenesis elicits antidepressive-like effects. The antidiabetic drug metformin (Met) reportedly promotes hippocampal neurogenesis, which ameliorates spatial memory deficits and depression-like behaviors. However, the precise molecular mechanisms underpinning Met-induced neuronal differentiation of neural stem cells (NSCs) remain unclear. We showed that Met enhanced neuronal differentiation of NSCs via Gadd45g but not Gadd45a and Gadd45b. We further found that Gadd45g increased demethylation of neurogenic differentiation 1 (NeuroD1) promoter by regulating the activity of passive and active DNA demethylation enzymes through an AMPK-independent mechanism in Met-treated NSCs. Importantly, genetic deficiency of Gadd45g decreased hippocampal neurogenesis, which could contribute to spatial memory decline, and depression-like behaviors in the adult mice, whereas forced expression of Gadd45g alleviated the depressive-like behaviors. Our findings provide a model that Gadd45g-mediated DNA demethylation contributes to Met-induced neuronal genesis and its antidepressant-like effects, and propose the concept that targeting Gadd45g regulation of neurogenesis might serve as a novel antidepressant strategy.
Collapse
Affiliation(s)
- Le Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingfeng Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huan Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuanfei Wu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiujuan Ye
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhuo Gong
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingqing Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Aiguo Xuan
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|
41
|
García-Padilla C, Dueñas Á, García-López V, Aránega A, Franco D, Garcia-Martínez V, López-Sánchez C. Molecular Mechanisms of lncRNAs in the Dependent Regulation of Cancer and Their Potential Therapeutic Use. Int J Mol Sci 2022; 23:764. [PMID: 35054945 PMCID: PMC8776057 DOI: 10.3390/ijms23020764] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Ángel Dueñas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
42
|
DUBR suppresses migration and invasion of human lung adenocarcinoma cells via ZBTB11-mediated inhibition of oxidative phosphorylation. Acta Pharmacol Sin 2022; 43:157-166. [PMID: 33758355 PMCID: PMC8724295 DOI: 10.1038/s41401-021-00624-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/07/2021] [Indexed: 01/03/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in a variety of cancers, but the role of LncRNA DUBR in lung adenocarcinoma (LUAD), the most prevalent form of lung cancer, remains unclear. In this study we investigated the expression of DUBR in LUAD to ascertain its association with the clinical pathology and prognosis of LUAD. Analysis of mRNA expression in The Cancer Genome Atlas (TCGA) LUAD database and in-house LUAD cohort (n = 94) showed that DUBR was significantly downregulated in LUAD, and was associated with poor prognosis. In LUAD cell lines (H1975, A549), overexpression of DUBR significantly suppressed the migration and invasion of the LUAD cells. We demonstrated that c-Myc could bind to the promoter of DUBR, and transcriptionally suppressed its expression. Knockdown of c-Myc almost completely blocked the invasion and migration of LUAD cells, whereas knockdown of DUBR partially rescued c-Myc-knockdown suppressed cell migration and invasion. Furthermore, DUBR overexpression significantly increased the expression of a downstream protein of DUBR, zinc finger, and BTB domain containing 11 (ZBTB11), in H1975 and A549 cells; knockdown of ZBTB11 partially rescued the DUBR-overexpression suppressed cell migration and invasion; knockdown of c-Myc significantly upregulated the expression of ZBTB11 in LUAD cells. Finally, we revealed that DUBR/ZBTB11 axis suppressed oxidative phosphorylation in LUAD cells. In short, we demonstrate that c-Myc/DUBR/ZBTB11 axis suppresses migration and invasion of LUAD by attenuating cell oxidative phosphorylation, which provides new insights into the regulatory mechanism of DUBR.
Collapse
|
43
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
44
|
Abstract
Although long noncoding RNAs (lncRNAs) are generally expressed at low levels, emerging evidence has revealed that many play important roles in gene regulation by a variety of mechanisms as they engage with proteins. Given that the abundance of proteins often greatly exceeds that of their interacting lncRNAs, quantification of the relative abundance, or even the exact stoichiometry in some cases, within lncRNA-protein complexes is helpful for understanding of the mechanism(s) of action of lncRNAs. We discuss methods used to examine lncRNA and protein expression at the single cell, subcellular, and suborganelle levels, the average and local lncRNA concentration in cells, as well as how lncRNAs can modulate the functions of their interacting proteins even at a low stoichiometric concentration.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
45
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
46
|
Braný D, Dvorská D, Strnádel J, Matáková T, Halašová E, Škovierová H. Effect of Cold Atmospheric Plasma on Epigenetic Changes, DNA Damage, and Possibilities for Its Use in Synergistic Cancer Therapy. Int J Mol Sci 2021; 22:ijms222212252. [PMID: 34830132 PMCID: PMC8617606 DOI: 10.3390/ijms222212252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
Cold atmospheric plasma has great potential for use in modern medicine. It has been used in the clinical treatment of skin diseases and chronic wounds, and in laboratory settings it has shown effects on selective decrease in tumour-cell viability, reduced tumour mass in animal models and stem-cell proliferation. Many researchers are currently focusing on its application to internal structures and the use of plasma-activated liquids in tolerated and effective human treatment. There has also been analysis of plasma's beneficial synergy with standard pharmaceuticals to enhance their effect. Cold atmospheric plasma triggers various responses in tumour cells, and this can result in epigenetic changes in both DNA methylation levels and histone modification. The expression and activity of non-coding RNAs with their many important cell regulatory functions can also be altered by cold atmospheric plasma action. Finally, there is ongoing debate whether plasma-produced radicals can directly affect DNA damage in the nucleus or only initiate apoptosis or other forms of cell death. This article therefore summarises accepted knowledge of cold atmospheric plasma's influence on epigenetic changes, the expression and activity of non-coding RNAs, and DNA damage and its effect in synergistic treatment with routinely used pharmaceuticals.
Collapse
Affiliation(s)
- Dušan Braný
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Dana Dvorská
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
- Correspondence:
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Tatiana Matáková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, 036 01 Martin, Slovakia;
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| |
Collapse
|
47
|
Jiang J, Lu Y, Zhang F, Huang J, Ren XL, Zhang R. The Emerging Roles of Long Noncoding RNAs as Hallmarks of Lung Cancer. Front Oncol 2021; 11:761582. [PMID: 34692550 PMCID: PMC8529012 DOI: 10.3389/fonc.2021.761582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Noncoding ribonucleic acids (ncRNAs) are closely associated with tumor initiation, growth, and progress in lung cancer. Long ncRNAs (lncRNAs), as one of the three subclasses of ncRNAs, play important roles in chromatin modification, transcription, and post-transcriptional processing. Various lncRNAs have recently been reported to be dysfunctional or dysregulated in cancers and have pro- or anti-tumor potential. Importantly, as a new class of cancer biomarkers, studies have demonstrated the plausibility of using certain subsets of lncRNAs as promising diagnostic, therapeutic, or prognostic strategies to manage cancers. This review focuses on lncRNAs associated with hallmarks of lung cancer, especially those discovered in the last five years. The expression levels of these lncRNAs in tumor samples are discussed, alongside their mechanisms of action, drug resistance, and potential as diagnostic and prognostic markers for lung cancer.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Health Service, Fourth Military Medical University, Xi'an, China.,Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yuan Lu
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Respiratory and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Fang Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Huang
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xin-Ling Ren
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pulmonary Medicine, Shenzhen General Hospital, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
48
|
The evolutionary acquisition and mode of functions of promoter-associated non-coding RNAs (pancRNAs) for mammalian development. Essays Biochem 2021; 65:697-708. [PMID: 34328174 DOI: 10.1042/ebc20200143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Increasing evidence has shown that many long non-coding RNAs (lncRNAs) are involved in gene regulation in a variety of ways such as transcriptional, post-transcriptional and epigenetic regulation. Promoter-associated non-coding RNAs (pancRNAs), which are categorized into the most abundant single-copy lncRNA biotype, play vital regulatory roles in finely tuning cellular specification at the epigenomic level. In short, pancRNAs can directly or indirectly regulate downstream genes to participate in the development of organisms in a cell-specific manner. In this review, we will introduce the evolutionarily acquired characteristics of pancRNAs as determined by comparative epigenomics and elaborate on the research progress on pancRNA-involving processes in mammalian embryonic development, including neural differentiation.
Collapse
|
49
|
Kremer JL, Auricino TB, Dos Santos Passaia B, Lotfi CFP. Upregulation of TCF21 inhibits migration of adrenocortical carcinoma cells. Discov Oncol 2021; 12:23. [PMID: 35201460 PMCID: PMC8777580 DOI: 10.1007/s12672-021-00417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Adrenocortical carcinomas (ACC) are rare and aggressive cancer. Our previous study has revealed that the transcription factor 21, TCF21, is downregulated in ACC and regulates steroidogenic factor 1 (SF-1) binding to the SF-1 E-box promoter. In addition, it could be found that TCF21 is a predictor of overall survival (OS) in adult carcinomas. METHODS In this study, it was investigated the correlation between TCF21 expression and the promoter methylation status in adrenocortical tumor cells, carcinomas and adenoma. The biological function and potential molecular mechanism of TCF21 restoration in migration and invasion of ACC cells was examined. RESULTS We could be demonstrated a negative correlation between the level of TCF21 expression and methylation of its promoter in adenoma and carcinoma cells indicating the epigenetic control of TCF21 expression. It was also demonstrated that the expression of TCF21 inhibits migration and invasion in the ACC cell line, H295R cells, using plasmid transfection to express TCF21. Furthermore, it could be investigated the TCF21 function as tumor suppressor probably through Kisspeptin 1 (KISS-1) expression and epithelial-mesenchymal transition (EMT) reversion, as well as the modulation of several metalloproteinases in ACC cells. CONCLUSIONS Our results suggest that enhancement of TCF21 expression levels may be a potential strategy to revert invasive abilities in adrenocortical carcinomas.
Collapse
Affiliation(s)
- Jean Lucas Kremer
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Barabba Auricino
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
50
|
Growth arrest and DNA damage-inducible proteins (GADD45) in psoriasis. Sci Rep 2021; 11:14579. [PMID: 34272424 PMCID: PMC8285512 DOI: 10.1038/s41598-021-93780-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
The interplay between T cells, dendritic cells and keratinocytes is crucial for the development and maintenance of inflammation in psoriasis. GADD45 proteins mediate DNA repair in different cells including keratinocytes. In the immune system, GADD45a and GADD45b regulate the function and activation of both T lymphocytes and dendritic cells and GADD45a links DNA repair and epigenetic regulation through its demethylase activity. Here, we analyzed the expression of GADD45a and GADD45b in the skin, dendritic cells and circulating T cells in a cohort of psoriasis patients and their regulation by inflammatory signals. Thirty patients (17 male/13 female) with plaque psoriasis and 15 controls subjects (7 male/8 female), were enrolled. Psoriasis patients exhibited a lower expression of GADD45a at the epidermis but a higher expression in dermal infiltrating T cells in lesional skin. The expression of GADD45a and GADD45b was also higher in peripheral T cells from psoriasis patients, although no differences were observed in p38 activation. The expression and methylation state of the GADD45a target UCHL1 were evaluated, revealing a hypermethylation of its promoter in lesional skin compared to controls. Furthermore, reduced levels of GADD45a correlated with a lower expression UCHL1 in lesional skin. We propose that the demethylase function of GADD45a may account for its pleiotropic effects, and the complex and heterogeneous pattern of expression observed in psoriatic disease.
Collapse
|