1
|
Zhang X, Guo Z, Li Y, Xu Y. Splicing to orchestrate cell fate. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102416. [PMID: 39811494 PMCID: PMC11729663 DOI: 10.1016/j.omtn.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M. The review also examines AS in cell differentiation, highlighting its effects on mesenchymal stem cells and neurogenesis, and how it regulates differentiation into adipocytes, osteoblasts, and chondrocytes. Additionally, we discuss the role of AS in programmed cell death, including apoptosis and pyroptosis, and its contribution to cancer progression. Importantly, targeting aberrant splicing mechanisms presents promising therapeutic opportunities for restoring normal cellular function. By synthesizing recent findings, this review provides insights into how AS governs cellular fate and offers directions for future research into splicing regulatory networks.
Collapse
Affiliation(s)
- Xurui Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Zhonghao Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yachen Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| |
Collapse
|
2
|
Tzaban S, Stern O, Zisman E, Eisenberg G, Klein S, Frankenburg S, Lotem M. Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy. Front Immunol 2025; 15:1490035. [PMID: 39845971 PMCID: PMC11752881 DOI: 10.3389/fimmu.2024.1490035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Abstract
Alternative splicing (AS) is a mechanism that generates translational diversity within a genome. Equally important is the dynamic adaptability of the splicing machinery, which can give preference to one isoform over others encoded by a single gene. These isoform preferences change in response to the cell's state and function. Particularly significant is the impact of physiological alternative splicing in T lymphocytes, where specific isoforms can enhance or reduce the cells' reactivity to stimuli. This process makes splicing isoforms defining features of cell states, exemplified by CD45 splice isoforms, which characterize the transition from naïve to memory states. Two developments have accelerated the use of AS dynamics for therapeutic interventions: advancements in long-read RNA sequencing and progress in nucleic acid chemical modifications. Improved oligonucleotide stability has enabled their use in directing splicing to specific sites or modifying sequences to enhance or silence particular splicing events. This review highlights immune regulatory splicing patterns with potential significance for enhancing anticancer immunotherapy.
Collapse
Affiliation(s)
- Shay Tzaban
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Stern
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Zisman
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Eisenberg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shiri Klein
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shoshana Frankenburg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Lotem
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
- Hadassah Cancer Research Institute, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
3
|
Rogalska ME, Mancini E, Bonnal S, Gohr A, Dunyak BM, Arecco N, Smith PG, Vaillancourt FH, Valcárcel J. Transcriptome-wide splicing network reveals specialized regulatory functions of the core spliceosome. Science 2024; 386:551-560. [PMID: 39480945 DOI: 10.1126/science.adn8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
The spliceosome is the complex molecular machinery that sequentially assembles on eukaryotic messenger RNA precursors to remove introns (pre-mRNA splicing), a physiologically regulated process altered in numerous pathologies. We report transcriptome-wide analyses upon systematic knock down of 305 spliceosome components and regulators in human cancer cells and the reconstruction of functional splicing factor networks that govern different classes of alternative splicing decisions. The results disentangle intricate circuits of splicing factor cross-regulation, reveal that the precise architecture of late-assembling U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) complexes regulates splice site pairing, and discover an unprecedented division of labor among protein components of U1 snRNP for regulating exon definition and alternative 5' splice site selection. Thus, we provide a resource to explore physiological and pathological mechanisms of splicing regulation.
Collapse
Affiliation(s)
- Malgorzata E Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - André Gohr
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Niccolò Arecco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
4
|
Schmok JC, Jain M, Street LA, Tankka AT, Schafer D, Her HL, Elmsaouri S, Gosztyla ML, Boyle EA, Jagannatha P, Luo EC, Kwon EJ, Jovanovic M, Yeo GW. Large-scale evaluation of the ability of RNA-binding proteins to activate exon inclusion. Nat Biotechnol 2024; 42:1429-1441. [PMID: 38168984 PMCID: PMC11389820 DOI: 10.1038/s41587-023-02014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
RNA-binding proteins (RBPs) modulate alternative splicing outcomes to determine isoform expression and cellular survival. To identify RBPs that directly drive alternative exon inclusion, we developed tethered function luciferase-based splicing reporters that provide rapid, scalable and robust readouts of exon inclusion changes and used these to evaluate 718 human RBPs. We performed enhanced cross-linking immunoprecipitation, RNA sequencing and affinity purification-mass spectrometry to investigate a subset of candidates with no prior association with splicing. Integrative analysis of these assays indicates surprising roles for TRNAU1AP, SCAF8 and RTCA in the modulation of hundreds of endogenous splicing events. We also leveraged our tethering assays and top candidates to identify potent and compact exon inclusion activation domains for splicing modulation applications. Using these identified domains, we engineered programmable fusion proteins that outperform current artificial splicing factors at manipulating inclusion of reporter and endogenous exons. This tethering approach characterizes the ability of RBPs to induce exon inclusion and yields new molecular parts for programmable splicing control.
Collapse
Affiliation(s)
- Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Manya Jain
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alex T Tankka
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sara Elmsaouri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Evan A Boyle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Best AJ, Braunschweig U, Wu M, Farhangmehr S, Pasculescu A, Lim JJ, Comsa LC, Jen M, Wang J, Datti A, Wrana JL, Cordes SP, Al-Awar R, Han H, Blencowe BJ. High-throughput sensitive screening of small molecule modulators of microexon alternative splicing using dual Nano and Firefly luciferase reporters. Nat Commun 2024; 15:6328. [PMID: 39068192 PMCID: PMC11283458 DOI: 10.1038/s41467-024-50399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Disruption of alternative splicing frequently causes or contributes to human diseases and disorders. Consequently, there is a need for efficient and sensitive reporter assays capable of screening chemical libraries for compounds with efficacy in modulating important splicing events. Here, we describe a screening workflow employing dual Nano and Firefly luciferase alternative splicing reporters that affords efficient, sensitive, and linear detection of small molecule responses. Applying this system to a screen of ~95,000 small molecules identified compounds that stimulate or repress the splicing of neuronal microexons, a class of alternative exons often disrupted in autism and activated in neuroendocrine cancers. One of these compounds rescues the splicing of several analyzed microexons in the cerebral cortex of an autism mouse model haploinsufficient for Srrm4, a major activator of brain microexons. We thus describe a broadly applicable high-throughput screening system for identifying candidate splicing therapeutics, and a resource of small molecule modulators of microexons with potential for further development in correcting aberrant splicing patterns linked to human disorders and disease.
Collapse
Affiliation(s)
- Andrew J Best
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.
| | | | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Justin J Lim
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lim Caden Comsa
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jenny Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Alessandro Datti
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sabine P Cordes
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rima Al-Awar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Hong Han
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Crescenzi E, Mellone S, Gragnano G, Iaccarino A, Leonardi A, Pacifico F. NGAL Mediates Anaplastic Thyroid Carcinoma Cells Survival Through FAS/CD95 Inhibition. Endocrinology 2023; 165:bqad190. [PMID: 38091978 DOI: 10.1210/endocr/bqad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 12/27/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL), a siderophore-mediated iron binding protein, is highly expressed in human anaplastic thyroid carcinomas (ATCs) where it plays pleiotropic protumorigenic roles including that of a prosurvival protein. Here we show that NGAL inhibits FAS/CD95 death receptor to control ATC cell survival. FAS/CD95 expression in human specimens from patients with ATC and in ATC-derived cell lines negatively correlate with NGAL expression. Silencing of NGAL in ATC cells leads to FAS/CD95 upregulation, whereas NGAL overexpression determines the opposite effect. As a result, an agonist anti-FAS/CD95 antibody induces cell death in NGAL-silenced cells while it is ineffective on NGAL-overexpressing cells. Interestingly, the inhibitory activity of NGAL on FAS/CD95 is due to its iron carrier property given that perturbing iron homeostasis of NGAL-proficient and -deficient ATC cells directly influences FAS/CD95 expression. Accordingly, conditioned media containing a mutant form of NGAL unable to bind siderophores cannot rescue cells from FAS/CD95-dependent death, whereas NGAL wild type-containing conditioned media abolish the effects of the agonist antibody. We also find that downregulation of FAS/CD95 expression is mediated by iron-dependent NGAL suppression of p53 transcriptional activity. Our results indicate that NGAL contributes to ATC cell survival by iron-mediated inhibition of p53-dependent FAS/CD95 expression and suggest that restoring FAS/CD95 by NGAL suppression could be a helpful strategy to kill ATC cells.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Gianluca Gragnano
- Dipartimento di Salute Pubblica, "Federico II" University of Naples, 80131 Naples, Italy
| | - Antonino Iaccarino
- Dipartimento di Salute Pubblica, "Federico II" University of Naples, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| |
Collapse
|
7
|
Steffens Reinhardt L, Groen K, Newton C, Avery-Kiejda KA. The role of truncated p53 isoforms in the DNA damage response. Biochim Biophys Acta Rev Cancer 2023; 1878:188882. [PMID: 36977456 DOI: 10.1016/j.bbcan.2023.188882] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/28/2023]
Abstract
The tumour suppressor p53 is activated following genotoxic stress and regulates the expression of target genes involved in the DNA damage response (DDR). The discovery that p53 isoforms alter the transcription of p53 target genes or p53 protein interactions unveiled an alternative DDR. This review will focus on the role p53 isoforms play in response to DNA damage. The expression of the C-terminally truncated p53 isoforms may be modulated via DNA damage-induced alternative splicing, whereas alternative translation plays an important role in modulating the expression of N-terminally truncated isoforms. The DDR induced by p53 isoforms may enhance the canonical p53 DDR or block cell death mechanisms in a DNA damage- and cell-specific manner, which could contribute to chemoresistance in a cancer context. Thus, a better understanding of the involvement of p53 isoforms in the cell fate decisions could uncover potential therapeutic targets in cancer and other diseases.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cheryl Newton
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
8
|
Aktas Samur A, Fulciniti M, Avet-Loiseau H, Lopez MA, Derebail S, Corre J, Minvielle S, Magrangeas F, Moreau P, Anderson KC, Parmigiani G, Samur MK, Munshi NC. In-depth analysis of alternative splicing landscape in multiple myeloma and potential role of dysregulated splicing factors. Blood Cancer J 2022; 12:171. [PMID: 36535935 PMCID: PMC9763261 DOI: 10.1038/s41408-022-00759-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Splicing changes are common in cancer and are associated with dysregulated splicing factors. Here, we analyzed RNA-seq data from 323 newly diagnosed multiple myeloma (MM) patients and described the alternative splicing (AS) landscape. We observed a large number of splicing pattern changes in MM cells compared to normal plasma cells (NPC). The most common events were alterations of mutually exclusive exons and exon skipping. Most of these events were observed in the absence of overall changes in gene expression and often impacted the coding potential of the alternatively spliced genes. To understand the molecular mechanisms driving frequent aberrant AS, we investigated 115 splicing factors (SFs) and associated them with the AS events in MM. We observed that ~40% of SFs were dysregulated in MM cells compared to NPC and found a significant enrichment of SRSF1, SRSF9, and PCB1 binding motifs around AS events. Importantly, SRSF1 overexpression was linked with shorter survival in two independent MM datasets and was correlated with the number of AS events, impacting tumor cell proliferation. Together with the observation that MM cells are vulnerable to splicing inhibition, our results may lay the foundation for developing new therapeutic strategies for MM. We have developed a web portal that allows custom alternative splicing event queries by using gene symbols and visualizes AS events in MM and subgroups. Our portals can be accessed at http://rconnect.dfci.harvard.edu/mmsplicing/ and https://rconnect.dfci.harvard.edu/mmleafcutter/ .
Collapse
Affiliation(s)
- Anil Aktas Samur
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, Boston, MA, 02115, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Herve Avet-Loiseau
- University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Michael A Lopez
- Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Sanika Derebail
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jill Corre
- University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Stephane Minvielle
- Inserm UMR892, CNRS 6299, Université de Nantes; Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Florence Magrangeas
- Inserm UMR892, CNRS 6299, Université de Nantes; Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Philippe Moreau
- Inserm UMR892, CNRS 6299, Université de Nantes; Centre Hospitalier Universitaire de Nantes, Unité Mixte de Genomique du Cancer, Nantes, France
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Giovanni Parmigiani
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, Boston, MA, 02115, USA.
| | - Mehmet K Samur
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, Boston, MA, 02115, USA.
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- VA Boston Healthcare System, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Lemaitre F, Chakrama F, O’Grady T, Peulen O, Rademaker G, Deward A, Chabot B, Piette J, Colige A, Lambert C, Dequiedt F, Habraken Y. The transcription factor c-Jun inhibits RBM39 to reprogram pre-mRNA splicing during genotoxic stress. Nucleic Acids Res 2022; 50:12768-12789. [PMID: 36477312 PMCID: PMC9825188 DOI: 10.1093/nar/gkac1130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
Genotoxic agents, that are used in cancer therapy, elicit the reprogramming of the transcriptome of cancer cells. These changes reflect the cellular response to stress and underlie some of the mechanisms leading to drug resistance. Here, we profiled genome-wide changes in pre-mRNA splicing induced by cisplatin in breast cancer cells. Among the set of cisplatin-induced alternative splicing events we focused on COASY, a gene encoding a mitochondrial enzyme involved in coenzyme A biosynthesis. Treatment with cisplatin induces the production of a short isoform of COASY lacking exons 4 and 5, whose depletion impedes mitochondrial function and decreases sensitivity to cisplatin. We identified RBM39 as a major effector of the cisplatin-induced effect on COASY splicing. RBM39 also controls a genome-wide set of alternative splicing events partially overlapping with the cisplatin-mediated ones. Unexpectedly, inactivation of RBM39 in response to cisplatin involves its interaction with the AP-1 family transcription factor c-Jun that prevents RBM39 binding to pre-mRNA. Our findings therefore uncover a novel cisplatin-induced interaction between a splicing regulator and a transcription factor that has a global impact on alternative splicing and contributes to drug resistance.
Collapse
Affiliation(s)
| | | | - Tina O’Grady
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, B34, University of Liège, Liège 4000, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, B23, University of Liège, Liège 4000, Belgium
| | - Gilles Rademaker
- Metastasis Research Laboratory, GIGA-Cancer, B23, University of Liège, Liège 4000, Belgium
| | - Adeline Deward
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, B34, University of Liège, Liège 4000, Belgium
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences. Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, B34, University of Liège, Liège 4000, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, B23, University of Liège, Liège 4000, Belgium
| | - Charles Lambert
- Laboratory of Connective Tissues Biology, GIGA-Cancer, B23, University of Liège, Liège 4000, Belgium
| | - Franck Dequiedt
- Correspondence may also be addressed to Franck Dequiedt. Tel: +32 366 9028;
| | - Yvette Habraken
- To whom correspondence should be addressed. Tel: +32 4 366 2447; Fax: +32 4 366 4198;
| |
Collapse
|
10
|
Han H, Best AJ, Braunschweig U, Mikolajewicz N, Li JD, Roth J, Chowdhury F, Mantica F, Nabeel-Shah S, Parada G, Brown KR, O'Hanlon D, Wei J, Yao Y, Zid AA, Comsa LC, Jen M, Wang J, Datti A, Gonatopoulos-Pournatzis T, Weatheritt RJ, Greenblatt JF, Wrana JL, Irimia M, Gingras AC, Moffat J, Blencowe BJ. Systematic exploration of dynamic splicing networks reveals conserved multistage regulators of neurogenesis. Mol Cell 2022; 82:2982-2999.e14. [PMID: 35914530 PMCID: PMC10686216 DOI: 10.1016/j.molcel.2022.06.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.
Collapse
Affiliation(s)
- Hong Han
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Andrew J Best
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fuad Chowdhury
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guillermo Parada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kevin R Brown
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Dave O'Hanlon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jiarun Wei
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yuxi Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abdelrahman Abou Zid
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Lim Caden Comsa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jenny Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Alessandro Datti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Thomas Gonatopoulos-Pournatzis
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Center for Cancer Research National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
12
|
Hao Y, Zhang S, Shao C, Li J, Zhao G, Zhang DE, Fu XD. ZetaSuite: computational analysis of two-dimensional high-throughput data from multi-target screens and single-cell transcriptomics. Genome Biol 2022; 23:162. [PMID: 35879727 PMCID: PMC9310463 DOI: 10.1186/s13059-022-02729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Two-dimensional high-throughput data have become increasingly common in functional genomics studies, which raises new challenges in data analysis. Here, we introduce a new statistic called Zeta, initially developed to identify global splicing regulators from a two-dimensional RNAi screen, a high-throughput screen coupled with high-throughput functional readouts, and ZetaSuite, a software package to facilitate general application of the Zeta statistics. We compare our approach with existing methods using multiple benchmarked datasets and then demonstrate the broad utility of ZetaSuite in processing public data from large-scale cancer dependency screens and single-cell transcriptomics studies to elucidate novel biological insights.
Collapse
Affiliation(s)
- Yajing Hao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shuyang Zhang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Junhui Li
- , 29 Rosedale Ave, MA 01545, Shrewsbury, USA
| | - Guofeng Zhao
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dong-Er Zhang
- Moores Cancer Center, Department of Biological Sciences, Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Ganapathy K, Ngo C, Andl T, Coppola D, Park J, Chakrabarti R. Anti-cancer function of microRNA-30e is mediated by negative regulation of HELLPAR, a noncoding macroRNA, and genes involved in ubiquitination and cell cycle progression in prostate cancer. Mol Oncol 2022; 16:2936-2958. [PMID: 35612714 PMCID: PMC9394257 DOI: 10.1002/1878-0261.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022] Open
Abstract
Prostate cancer (PCa) progression relies on androgen receptor (AR) function, making AR a top candidate for PCa therapy. However, development of drug resistance is common, which eventually leads to development of castration‐resistant PCa. This warrants a better understanding of the pathophysiology of PCa that facilitates the aberrant activation of key signaling pathways including AR. MicroRNAs (miRNAs) function as regulators of cancer progression as they modulate various cellular processes. Here, we demonstrate a multidimensional function of miR‐30e through the regulation of genes involved in various signaling pathways. We noted loss of miR‐30e expression in prostate tumors, which, when restored, led to cell cycle arrest, induction of apoptosis, improved drug sensitivity of PCa cells and reduced tumor progression in xenograft models. We show that experimental upregulation of miR‐30e reduces expression of mRNAs including AR, FBXO45, SRSF7 and MYBL2 and a novel long noncoding RNA (lncRNA) HELLPAR, which are involved in cell cycle, apoptosis and ubiquitination, and the effects could be rescued by inhibition of miR‐30e expression. RNA immunoprecipitation analysis confirmed direct interactions between miR‐30e and its RNA targets. We noted a newly identified reciprocal relationship between miR‐30e and HELLPAR, as inhibition of HELLPAR improved stabilization of miR‐30e. Transcriptome profiling and quantitative real‐time PCR (qRT‐PCR) validation of miR‐30e‐expressing PCa cells showed differential expression of genes involved in cell cycle progression, apoptosis and ubiquitination, which supports our in vitro study. This study demonstrates an integrated function of miR‐30e on dysregulation of miRNA/lncRNA/mRNA axes that may have diagnostic and therapeutic significance in aggressive PCa.
Collapse
Affiliation(s)
- Kavya Ganapathy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Christopher Ngo
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Domenico Coppola
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, USA.,Florida Digestive Health Specialists, Bradenton, Florida, USA
| | - Jong Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
14
|
Iron metabolism protein transferrin receptor 1 involves in cervical cancer progression by affecting gene expression and alternative splicing in HeLa cells. Genes Genomics 2022; 44:637-650. [DOI: 10.1007/s13258-021-01205-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
|
15
|
Exploring the multifunctionality of SR proteins. Biochem Soc Trans 2021; 50:187-198. [PMID: 34940860 PMCID: PMC9022966 DOI: 10.1042/bst20210325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
Members of the arginine–serine-rich protein family (SR proteins) are multifunctional RNA-binding proteins that have emerged as key determinants for mRNP formation, identity and fate. They bind to pre-mRNAs early during transcription in the nucleus and accompany bound transcripts until they are translated or degraded in the cytoplasm. SR proteins are mostly known for their essential roles in constitutive splicing and as regulators of alternative splicing. However, many additional activities of individual SR proteins, beyond splicing, have been reported in recent years. We will summarize the different functions of SR proteins and discuss how multifunctionality can be achieved. We will also highlight the difficulties of studying highly versatile SR proteins and propose approaches to disentangle their activities, which is transferrable to other multifunctional RBPs.
Collapse
|
16
|
Zeidan RS, Han SM, Leeuwenburgh C, Xiao R. Iron homeostasis and organismal aging. Ageing Res Rev 2021; 72:101510. [PMID: 34767974 DOI: 10.1016/j.arr.2021.101510] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Iron is indispensable for normal body functions across species because of its critical roles in red blood cell function and many essential proteins and enzymes required for numerous physiological processes. Regulation of iron homeostasis is an intricate process involving multiple modulators at the systemic, cellular, and molecular levels. Interestingly, emerging evidence has demonstrated that many modulators of iron homeostasis contribute to organismal aging and longevity. On the other hand, the age-related dysregulation of iron homeostasis is often associated with multiple age-related pathologies including bone resorption and neurodegenerative diseases such as Alzheimer's disease. Thus, a thorough understanding on the interconnections between systemic and cellular iron balance and organismal aging may help decipher the etiologies of multiple age-related diseases, which could ultimately lead to developing therapeutic strategies to delay aging and treat various age-related diseases. Here we present the current understanding on the mechanisms of iron homeostasis. We also discuss the impacts of aging on iron homeostatic processes and how dysregulated iron metabolism may affect aging and organismal longevity.
Collapse
|
17
|
Mabin JW, Lewis PW, Brow DA, Dvinge H. Human spliceosomal snRNA sequence variants generate variant spliceosomes. RNA (NEW YORK, N.Y.) 2021; 27:1186-1203. [PMID: 34234030 PMCID: PMC8457000 DOI: 10.1261/rna.078768.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/29/2021] [Indexed: 06/02/2023]
Abstract
Human pre-mRNA splicing is primarily catalyzed by the major spliceosome, comprising five small nuclear ribonucleoprotein complexes, U1, U2, U4, U5, and U6 snRNPs, each of which contains the corresponding U-rich snRNA. These snRNAs are encoded by large gene families exhibiting significant sequence variation, but it remains unknown if most human snRNA genes are untranscribed pseudogenes or produce variant snRNAs with the potential to differentially influence splicing. Since gene duplication and variation are powerful mechanisms of evolutionary adaptation, we sought to address this knowledge gap by systematically profiling human U1, U2, U4, and U5 snRNA variant gene transcripts. We identified 55 transcripts that are detectably expressed in human cells, 38 of which incorporate into snRNPs and spliceosomes in 293T cells. All U1 snRNA variants are more than 1000-fold less abundant in spliceosomes than the canonical U1, whereas at least 1% of spliceosomes contain a variant of U2 or U4. In contrast, eight U5 snRNA sequence variants occupy spliceosomes at levels of 1% to 46%. Furthermore, snRNA variants display distinct expression patterns across five human cell lines and adult and fetal tissues. Different RNA degradation rates contribute to the diverse steady state levels of snRNA variants. Our findings suggest that variant spliceosomes containing noncanonical snRNAs may contribute to different tissue- and cell-type-specific alternative splicing patterns.
Collapse
Affiliation(s)
- Justin W Mabin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Heidi Dvinge
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Loss of erythroblasts in acute myeloid leukemia causes iron redistribution with clinical implications. Blood Adv 2021; 5:3102-3112. [PMID: 34402883 DOI: 10.1182/bloodadvances.2021004373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with poor prognosis and limited treatment strategies. Determining the role of cell-extrinsic regulators of leukemic cells is vital to gain clinical insights into the biology of AML. Iron is a key extrinsic regulator of cancer, but its systemic regulation remains poorly explored in AML. To address this question, we studied iron metabolism in patients with AML at diagnosis and explored the mechanisms involved using the syngeneic MLL-AF9-induced AML mouse model. We found that AML is a disorder with a unique iron profile, not associated with inflammation or transfusion, characterized by high ferritin, low transferrin, high transferrin saturation (TSAT), and high hepcidin. The increased TSAT in particular, contrasts with observations in other cancer types and in anemia of inflammation. Using the MLL-AF9 mouse model of AML, we demonstrated that the AML-induced loss of erythroblasts is responsible for iron redistribution and increased TSAT. We also show that AML progression is delayed in mouse models of systemic iron overload and that elevated TSAT at diagnosis is independently associated with increased overall survival in AML. We suggest that TSAT may be a relevant prognostic marker in AML.
Collapse
|
19
|
Blake D, Lynch KW. The three as: Alternative splicing, alternative polyadenylation and their impact on apoptosis in immune function. Immunol Rev 2021; 304:30-50. [PMID: 34368964 DOI: 10.1111/imr.13018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The latest advances in next-generation sequencing studies and transcriptomic profiling over the past decade have highlighted a surprising frequency of genes regulated by RNA processing mechanisms in the immune system. In particular, two control steps in mRNA maturation, namely alternative splicing and alternative polyadenylation, are now recognized to occur in the vast majority of human genes. Both have the potential to alter the identity of the encoded protein, as well as control protein abundance or even protein localization or association with other factors. In this review, we will provide a summary of the general mechanisms by which alternative splicing (AS) and alternative polyadenylation (APA) occur, their regulation within cells of the immune system, and their impact on immunobiology. In particular, we will focus on how control of apoptosis by AS and APA is used to tune cell fate during an immune response.
Collapse
Affiliation(s)
- Davia Blake
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen W Lynch
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Wang Y, Yu Y, Pang Y, Yu H, Zhang W, Zhao X, Yu J. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol 2021; 18:2107-2126. [PMID: 33787465 DOI: 10.1080/15476286.2021.1909320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The zinc finger CCHC-type (ZCCHC) superfamily proteins, characterized with the consensus sequence C-X2-C-X4-H-X4-C, are accepted to have high-affinity binding to single-stranded nucleic acids, especially single-stranded RNAs. In human beings 25 ZCCHC proteins have been annotated in the HGNC database. Of interest is that among the family, most members are involved in the multiple steps of RNA metabolism. In this review, we focus on the diverged roles of human ZCCHC proteins on RNA transcription, biogenesis, splicing, as well as translation and degradation.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojun Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Zhang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Buratti E, Peruzzo P, Braga L, Zanin I, Stuani C, Goina E, Romano M, Giacca M, Dardis A. Deferoxamine mesylate improves splicing and GAA activity of the common c.-32-13T>G allele in late-onset PD patient fibroblasts. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:227-236. [PMID: 33426149 PMCID: PMC7782201 DOI: 10.1016/j.omtm.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Pompe disease (PD) is an autosomal recessive lysosomal storage disorder due to deficient activity of the acid alpha glucosidase enzyme (GAA). As a consequence of the enzymatic defect, undigested glycogen accumulates within lysosomes. Most patients affected by the late-onset (LO) phenotype carry in at least one allele the c.-32-13T>G variant, which leads to exon 2 exclusion from the pre-mRNA. These patients display a variable and suboptimal response to enzyme replacement therapy. To identify novel therapeutic approaches, we developed a fluorescent GAA exon 2 splicing assay and screened a library of US Food and Drug Administration (FDA)-approved compounds. This led to the identification of several drugs able to restore normal splicing. Among these, we further validated the effects of the iron chelator deferoxamine (Defe) in c.-32-13T>G fibroblasts. Defe treatment resulted in a 2-fold increase of GAA exon 2 inclusion and a 40% increase in enzymatic activity. Preliminary results suggest that this effect is mediated by the regulation of iron availability, at least partially. RNA-seq experiments also showed that Defe might shift the balance of splicing factor levels toward a profile promoting GAA exon 2 inclusion. This work provides the basis for drug repurposing and development of new chemically modified molecules aimed at improving the clinical outcome in LO-PD patients.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy
| | - Paolo Peruzzo
- Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy.,Department of Life Sciences, Via Valerio 28, University of Trieste, 34127 Trieste, Italy
| | - Irene Zanin
- Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy
| | - Elisa Goina
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, Via Valerio 28, University of Trieste, 34127 Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Andrea Dardis
- Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| |
Collapse
|
22
|
Cieśla M, Ngoc PCT, Cordero E, Martinez ÁS, Morsing M, Muthukumar S, Beneventi G, Madej M, Munita R, Jönsson T, Lövgren K, Ebbesson A, Nodin B, Hedenfalk I, Jirström K, Vallon-Christersson J, Honeth G, Staaf J, Incarnato D, Pietras K, Bosch A, Bellodi C. Oncogenic translation directs spliceosome dynamics revealing an integral role for SF3A3 in breast cancer. Mol Cell 2021; 81:1453-1468.e12. [PMID: 33662273 DOI: 10.1016/j.molcel.2021.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/02/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Splicing is a central RNA-based process commonly altered in human cancers; however, how spliceosomal components are co-opted during tumorigenesis remains poorly defined. Here we unravel the core splice factor SF3A3 at the nexus of a translation-based program that rewires splicing during malignant transformation. Upon MYC hyperactivation, SF3A3 levels are modulated translationally through an RNA stem-loop in an eIF3D-dependent manner. This ensures accurate splicing of mRNAs enriched for mitochondrial regulators. Altered SF3A3 translation leads to metabolic reprogramming and stem-like properties that fuel MYC tumorigenic potential in vivo. Our analysis reveals that SF3A3 protein levels predict molecular and phenotypic features of aggressive human breast cancers. These findings unveil a post-transcriptional interplay between splicing and translation that governs critical facets of MYC-driven oncogenesis.
Collapse
Affiliation(s)
- Maciej Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Eugenia Cordero
- Division of Translational Cancer Research, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22363 Lund, Sweden
| | - Álvaro Sejas Martinez
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Mikkel Morsing
- Division of Translational Cancer Research, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22363 Lund, Sweden
| | - Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Giulia Beneventi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Magdalena Madej
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Terese Jönsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Kristina Lövgren
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Ebbesson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Björn Nodin
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Jirström
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Gabriella Honeth
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Danny Incarnato
- Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22363 Lund, Sweden
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
23
|
Cao Y, Di X, Zhang Q, Li R, Wang K. RBM10 Regulates Tumor Apoptosis, Proliferation, and Metastasis. Front Oncol 2021; 11:603932. [PMID: 33718153 PMCID: PMC7943715 DOI: 10.3389/fonc.2021.603932] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The RNA-binding motif protein 10 (RBM10) is involved in alternative splicing and modifies mRNA post-transcriptionally. RBM10 is abnormally expressed in the lung, breast, and colorectal cancer, female genital tumors, osteosarcoma, and other malignant tumors. It can inhibit proliferation, promote apoptosis, and inhibit invasion and metastasis. RBM10 has long been considered a tumor suppressor because it promotes apoptosis through the regulation of the MDM2-p53 negative feedback loop, Bcl-2, Bax, and other apoptotic proteins and inhibits proliferation through the Notch signaling and rap1a/Akt/CREB pathways. However, it has been recently demonstrated that RBM10 can also promote cancer. Given these different views, it is necessary to summarize the research progress of RBM10 in various fields to reasonably analyze the underlying molecular mechanisms, and provide new ideas and directions for the clinical research of RBM10 in various cancer types. In this review, we provide a new perspective on the reasons for these opposing effects on cancer biology, molecular mechanisms, research progress, and clinical value of RBM10.
Collapse
Affiliation(s)
- Yingshu Cao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Mleczko‐Sanecka K, Silvestri L. Cell-type-specific insights into iron regulatory processes. Am J Hematol 2021; 96:110-127. [PMID: 32945012 DOI: 10.1002/ajh.26001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Despite its essential role in many biological processes, iron is toxic when in excess due to its propensity to generate reactive oxygen species. To prevent diseases associated with iron deficiency or iron loading, iron homeostasis must be tightly controlled. Intracellular iron content is regulated by the Iron Regulatory Element-Iron Regulatory Protein (IRE-IRP) system, whereas systemic iron availability is adjusted to body iron needs chiefly by the hepcidin-ferroportin (FPN) axis. Here, we aimed to review advances in the field that shed light on cell-type-specific regulatory mechanisms that control or modify systemic and local iron balance, and how shifts in cellular iron levels may affect specialized cell functions.
Collapse
Affiliation(s)
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| |
Collapse
|
25
|
Feng W, Zhao P, Zheng X, Hu Z, Liu J. Profiling Novel Alternative Splicing within Multiple Tissues Provides Useful Insights into Porcine Genome Annotation. Genes (Basel) 2020; 11:genes11121405. [PMID: 33255998 PMCID: PMC7760890 DOI: 10.3390/genes11121405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing (AS) is a process during gene expression that results in a single gene coding for different protein variants. AS contributes to transcriptome and proteome diversity. In order to characterize AS in pigs, genome-wide transcripts and AS events were detected using RNA sequencing of 34 different tissues in Duroc pigs. In total, 138,403 AS events and 29,270 expressed genes were identified. An alternative donor site was the most common AS form and accounted for 44% of the total AS events. The percentage of the other three AS forms (exon skipping, alternative acceptor site, and intron retention) was approximately 19%. The results showed that the most common AS events involving alternative donor sites could produce different transcripts or proteins that affect the biological processes. The expression of genes with tissue-specific AS events showed that gene functions were consistent with tissue functions. AS increased proteome diversity and resulted in novel proteins that gained or lost important functional domains. In summary, these findings extend porcine genome annotation and highlight roles that AS could play in determining tissue identity.
Collapse
|
26
|
Gosavi U, Srivastava A, Badjatia N, Günzl A. Rapid block of pre-mRNA splicing by chemical inhibition of analog-sensitive CRK9 in Trypanosoma brucei. Mol Microbiol 2020; 113:1225-1239. [PMID: 32068297 PMCID: PMC7299817 DOI: 10.1111/mmi.14489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Trypanosoma brucei CRK9 is an essential cyclin-dependent kinase for the parasite-specific mode of pre-mRNA processing. In trypanosomes, protein coding genes are arranged in directional arrays that are transcribed polycistronically, and individual mRNAs are generated by spliced leader trans-splicing and polyadenylation, processes that are functionally linked. Since CRK9 silencing caused a decline of mRNAs, a concomitant increase of unspliced pre-mRNAs and the disappearance of the trans-splicing Y structure intermediate, CRK9 is essential for the first step of splicing. CRK9 depletion also caused a loss of phosphorylation in RPB1, the largest subunit of RNA polymerase (pol) II. Here, we established cell lines that exclusively express analog-sensitive CRK9 (CRK9AS ). Inhibition of CRK9AS in these cells by the ATP-competitive inhibitor 1-NM-PP1 reproduced the splicing defects and proved that it is the CKR9 kinase activity that is required for pre-mRNA processing. Since defective trans-splicing was detected as early as 5 min after inhibitor addition, CRK9 presumably carries out reversible phosphorylation on the pre-mRNA processing machinery. Loss of RPB1 phosphorylation, however, took 12-24 hr. Surprisingly, RNA pol II-mediated RNA synthesis in 24 hr-treated cells was upregulated, indicating that, in contrast to other eukaryotes, RPB1 phosphorylation is not a prerequisite for transcription in trypanosomes.
Collapse
Affiliation(s)
- Ujwala Gosavi
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Ankita Srivastava
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Nitika Badjatia
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
- Current address: Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Arthur Günzl
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
27
|
Chiloff DM, de Almeida DC, Dalboni MA, Canziani ME, George SK, Morsi AM, El-Akabawy N, Porada CD, Durao MS, Zarjou A, Almeida-Porada G, Goes MA. Soluble Fas affects erythropoiesis in vitro and acts as a potential predictor of erythropoiesis-stimulating agent therapy in patients with chronic kidney disease. Am J Physiol Renal Physiol 2020; 318:F861-F869. [PMID: 32003597 PMCID: PMC7474254 DOI: 10.1152/ajprenal.00433.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 01/06/2023] Open
Abstract
Serum soluble Fas (sFas) levels are associated with erythropoietin (Epo) hyporesponsiveness in patients with chronic kidney disease (CKD). Whether sFas could predict the need for erythropoiesis-stimulating agent (ESA) usage and its influence in erythropoiesis remain unclear. We evaluated the relation between sFas and ESA therapy in patients with CKD with anemia and its effect on erythropoiesis in vitro. First, we performed a retrospective cohort study with 77 anemic patients with nondialysis CKD. We performed in vitro experiments to investigate whether sFas could interfere with the behavior of hematopoietic stem cells (HSCs). HSCs were isolated from umbilical cord blood and incubated with recombinant sFas protein in a dose-dependent manner. Serum sFas positively correlated with Epo levels (r = 0.30, P = 0.001) but negatively with hemoglobin (r = -0.55, P < 0.001) and glomerular filtration rate (r = -0.58, P < 0.001) in patients with CKD at baseline. Elevated sFas serum levels (4,316 ± 897 vs. 2,776 ± 749, P < 0.001) with lower estimated glomerular filtration rate (26.2 ± 10.1 vs. 33.5 ± 14.3, P = 0.01) and reduced hemoglobin concentration (11.1 ± 0.9 vs. 12.5 ± 1.2, P < 0.001) were identified in patients who required ESA therapy compared with patients with non-ESA. Afterward, we detected that the sFas level was slight correlated with a necessity of ESA therapy in patients with nondialysis CKD and anemia. In vitro assays demonstrated that the erythroid progenitor cell frequency negatively correlated with sFas concentration (r = -0.72, P < 0.001). There was decreased erythroid colony formation in vitro when CD34+ HSCs were incubated with a higher concentration of sFas protein (1.56 ± 0.29, 4.33 ± 0.53, P < 0.001). Our findings suggest that sFas is a potential predictor for ESA therapy in patients with nondialysis CKD and that elevated sFas could affect erythropoiesis in vitro.
Collapse
Affiliation(s)
| | | | - Maria A Dalboni
- Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| | | | - Sunil K George
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina
| | | | - Nadia El-Akabawy
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina
- Zagazig University, Zagazig, Egypt
| | | | | | | | | | - Miguel Angelo Goes
- Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina
| |
Collapse
|
28
|
SRSF7 maintains its homeostasis through the expression of Split-ORFs and nuclear body assembly. Nat Struct Mol Biol 2020; 27:260-273. [PMID: 32123389 PMCID: PMC7096898 DOI: 10.1038/s41594-020-0385-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
SRSF7 is an essential RNA-binding protein whose misexpression promotes cancer. Here, we describe how SRSF7 maintains its protein homeostasis in murine P19 cells using an intricate negative feedback mechanism. SRSF7 binding to its premessenger RNA promotes inclusion of a poison cassette exon and transcript degradation via nonsense-mediated decay (NMD). However, elevated SRSF7 levels inhibit NMD and promote translation of two protein halves, termed Split-ORFs, from the bicistronic SRSF7-PCE transcript. The first half acts as dominant-negative isoform suppressing poison cassette exon inclusion and instead promoting the retention of flanking introns containing repeated SRSF7 binding sites. Massive SRSF7 binding to these sites and its oligomerization promote the assembly of large nuclear bodies, which sequester SRSF7 transcripts at their transcription site, preventing their export and restoring normal SRSF7 protein levels. We further show that hundreds of human and mouse NMD targets, especially RNA-binding proteins, encode potential Split-ORFs, some of which are expressed under specific cellular conditions.
Collapse
|
29
|
Abstract
High-throughput sequencing-based methods and their applications in the study of transcriptomes have revolutionized our understanding of alternative splicing. Networks of functionally coordinated and biologically important alternative splicing events continue to be discovered in an ever-increasing diversity of cell types in the context of physiologically normal and disease states. These studies have been complemented by efforts directed at defining sequence codes governing splicing and their cognate trans-acting factors, which have illuminated important combinatorial principles of regulation. Additional studies have revealed critical roles of position-dependent, multivalent protein-RNA interactions that direct splicing outcomes. Investigations of evolutionary changes in RNA binding proteins, splice variants, and associated cis elements have further shed light on the emergence, mechanisms, and functions of splicing networks. Progress in these areas has emphasized the need for a coordinated, community-based effort to systematically address the functions of individual splice variants associated with normal and disease biology.
Collapse
|
30
|
Sharad S, Dillman AA, Sztupinszki ZM, Szallasi Z, Rosner I, Cullen J, Srivastava S, Srinivasan A, Li H. Characterization of unique PMEPA1 gene splice variants (isoforms d and e) from RNA Seq profiling provides novel insights into prognostic evaluation of prostate cancer. Oncotarget 2020; 11:362-377. [PMID: 32064040 PMCID: PMC6996919 DOI: 10.18632/oncotarget.27406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer is a disease with heterogeneity of multiple gene transcriptomes and biological signaling pathways involved in tumor development. The prostate transmembrane protein, androgen induced 1 (PMEPA1), a multifunctional protein played critical roles in prostate tumorigenesis. The pleiotropic nature of PMEPA1 in modulating androgen and TGF-β signaling as well as splice variants mechanisms for functional regulations of cancer-associated genes prompted us to investigate the biological roles of PMEPA1 isoforms in prostate cancer. In addition to 4 reported PMEPA1 isoforms (a, b, c and d), one novel isoform PMEPA1-e was identified with RNA Seq analysis of hormone responsive VCaP, LNCaP cells and human prostate cancer samples from The Cancer Genome Atlas (TCGA) dataset. We analyzed the structures, expressions, biological functions and clinical relevance of PMEPA1-e isoform and less characterized isoforms c and d in the context of prostate cancer and AR/TGF-β signaling. The expression of PMEPA1-e was induced by androgen and AR. In contrast, PMEPA1-d was responsive to TGF-β and inhibited TGF-β signaling. Both PMEPA1-d and PMPEA1-e promoted the growth of androgen independent prostate cancer cells. Although PMEPA1-c was responsive to TGF-β, it was found to have no impacts on cell growth and androgen/TGF-β signaling. The TCGA data analysis from 499 patients showed higher expression ratios of PMEAP1-b versus -d or -e strongly associated with enhanced Gleason score. Taken together, our findings first time defined the prostate tumorigenesis mediated by PMEPA1-d and -e isoforms, providing novel insights into the new strategies for prognostic evaluation and therapeutics of prostate tumor.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA.,These authors contributed equally to this work
| | - Allissa Amanda Dillman
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | | | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark.,Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.,SE-NAP Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, 1085, Hungary
| | - Inger Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Urology Service, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,These authors contributed equally to this work
| |
Collapse
|
31
|
Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj 2019; 1863:1398-1409. [DOI: 10.1016/j.bbagen.2019.06.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023]
|
32
|
Keiper S, Papasaikas P, Will CL, Valcárcel J, Girard C, Lührmann R. Smu1 and RED are required for activation of spliceosomal B complexes assembled on short introns. Nat Commun 2019; 10:3639. [PMID: 31409787 PMCID: PMC6692369 DOI: 10.1038/s41467-019-11293-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/01/2019] [Indexed: 12/02/2022] Open
Abstract
Human pre-catalytic spliceosomes contain several proteins that associate transiently just prior to spliceosome activation and are absent in yeast, suggesting that this critical step is more complex in higher eukaryotes. We demonstrate via RNAi coupled with RNA-Seq that two of these human-specific proteins, Smu1 and RED, function both as alternative splicing regulators and as general splicing factors and are required predominantly for efficient splicing of short introns. In vitro splicing assays reveal that Smu1 and RED promote spliceosome activation, and are essential for this step when the distance between the pre-mRNA’s 5′ splice site (SS) and branch site (BS) is sufficiently short. This Smu1-RED requirement can be bypassed when the 5′ and 3′ regions of short introns are physically separated. Our observations suggest that Smu1 and RED relieve physical constraints arising from a short 5′SS-BS distance, thereby enabling spliceosomes to overcome structural challenges associated with the splicing of short introns. Human spliceosome components Smu1 and RED regulate alternative splicing. Here the authors show that Smu1 and RED are also required for constitutive splicing of short introns.
Collapse
Affiliation(s)
- Sandra Keiper
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Panagiotis Papasaikas
- Centre de Regulació Genòmica, The Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain.,Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058, Basel, Switzerland
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Juan Valcárcel
- Centre de Regulació Genòmica, The Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, 08010, Barcelona, Spain
| | - Cyrille Girard
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
33
|
Abstract
This review explores the multifaceted role that iron has in cancer biology. Epidemiological studies have demonstrated an association between excess iron and increased cancer incidence and risk, while experimental studies have implicated iron in cancer initiation, tumor growth, and metastasis. The roles of iron in proliferation, metabolism, and metastasis underpin the association of iron with tumor growth and progression. Cancer cells exhibit an iron-seeking phenotype achieved through dysregulation of iron metabolic proteins. These changes are mediated, at least in part, by oncogenes and tumor suppressors. The dependence of cancer cells on iron has implications in a number of cell death pathways, including ferroptosis, an iron-dependent form of cell death. Uniquely, both iron excess and iron depletion can be utilized in anticancer therapies. Investigating the efficacy of these therapeutic approaches is an area of active research that promises substantial clinical impact.
Collapse
Affiliation(s)
- Suzy V Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - David H Manz
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA; .,School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Bibbin T Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - Nicole Blanchette-Farra
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
34
|
Cheng Y, Qin K, Huang N, Zhou Z, Xiong H, Zhao J, Zhang Y, Yu S. Cytokeratin 18 regulates the transcription and alternative splicing of apoptotic‑related genes and pathways in HeLa cells. Oncol Rep 2019; 42:301-312. [PMID: 31115582 PMCID: PMC6549092 DOI: 10.3892/or.2019.7166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cytokeratin 18 (CK18), one of the major components of intermediate filaments (IF) in simple epithelial cells, undergoes caspase-mediated cleavage upon epithelial cell necrosis and apoptosis. CK18 has been used as a biomarker of several cancers and has been reported to be dysregulated in cervical cancers. The effects of dysregulated expression of CK18 at a molecular level are, however, unclear. In the present study, the function of CK18 in HeLa cells, a cell line derived from a cervical cancer cells, was investigated using shRNA knockdown. Reduced levels of CK18 led to a significant decrease in cell apoptosis, compared with control cells. Notably, RNA-seq analysis of the transcriptomes of HeLa cells, with or without CK18 knockdown, revealed that genes in the NF-κB pathway, and certain apoptosis pathways, were under global transcriptional and alternative splicing regulation. Quantitative RT-PCR confirmed the CK18-regulated transcription of apoptotic genes FAS and FADD, as well as immune genes CXCL2 and CD79B, in addition to alternative splicing of FAS and CTNNB1. Western blot analysis further revealed that CK18 knockdown led to reduced expression of CASP8. In conclusion, the present study indicated that CK18 played a role in apoptosis, which may be mediated via a feed-back regulation loop and may involve regulation of transcription and alternative splicing of a number of genes in apoptotic pathways.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Nan Huang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhipeng Zhou
- Laboratory for Genome Regulation and Human Health, ABLife, Inc., Optics Valley International Biomedical Park, East Lake High‑Tech Development Zone, Wuhan, Hubei 430075, P.R. China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yi Zhang
- Laboratory for Genome Regulation and Human Health, ABLife, Inc., Optics Valley International Biomedical Park, East Lake High‑Tech Development Zone, Wuhan, Hubei 430075, P.R. China
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
35
|
Peciuliene I, Vilys L, Jakubauskiene E, Zaliauskiene L, Kanopka A. Hypoxia alters splicing of the cancer associated Fas gene. Exp Cell Res 2019; 380:29-35. [PMID: 31002816 DOI: 10.1016/j.yexcr.2019.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 02/02/2023]
Abstract
The removal of introns from mRNA precursors (pre-mRNAs) is an essential step in eukaryotic gene expression. The splicing machinery heavily contributes to biological complexity and especially to the ability of cells to adapt to altered cellular conditions. Hypoxia also plays a key role in the pathophysiology of many disease states. Recent studies have revealed that tumorigenesis and hypoxia involve large-scale alterations in alternative pre-mRNA splicing. Cancer associated Fas protein plays a central role in the physiological regulation of programmed cell death and has been implicated in the pathogenesis of various malignancies and diseases of the immune system. Fas pre-mRNA is alternatively spliced by excluding exon 6 to produce soluble Fas (sFas) protein that lacks a transmembrane domain and acts by inhibiting Fas mediated apoptosis. Another cancer related protein Rac1 plays an important regulatory role specifically in cells' motility, growth and survival. Rac pre-mRNA is alternatively spliced to produce Rac1b protein, which is upregulated in metastatic diseases. In the present study we, for the first time, show that anti-apoptotic Fas mRNA isoform formation is regulated by cellular microenvironment - hypoxia. Hypoxic microenvironment, however, does not influence Rac1 pre-mRNAs alternative splicing. Also our presented results indicate that splicing factors hnRNP A1 and SPF45, previously shown to regulate Fas alternative splicing in normoxic cells, are not involved in hypoxia dependent alternative Fas pre-mRNA splicing regulation in an amount dependent manner. Our observations on hypoxia dependent alternative Fas pre-mRNA splicing regulation indicate a probable involvement of other, yet unidentified splicing factors. Presented data also shows the contribution of pre-mRNA splicing to cell survival under unfavorable conditions.
Collapse
Affiliation(s)
- Inga Peciuliene
- Department of Immunology and Cell Biology, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| | - Laurynas Vilys
- Department of Immunology and Cell Biology, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| | - Egle Jakubauskiene
- Department of Immunology and Cell Biology, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| | | | - Arvydas Kanopka
- Department of Immunology and Cell Biology, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania.
| |
Collapse
|
36
|
Carbonell C, Ulsamer A, Vivori C, Papasaikas P, Böttcher R, Joaquin M, Miñana B, Tejedor JR, de Nadal E, Valcárcel J, Posas F. Functional Network Analysis Reveals the Relevance of SKIIP in the Regulation of Alternative Splicing by p38 SAPK. Cell Rep 2019; 27:847-859.e6. [PMID: 30995481 PMCID: PMC6484779 DOI: 10.1016/j.celrep.2019.03.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 01/03/2023] Open
Abstract
Alternative splicing is a prevalent mechanism of gene regulation that is modulated in response to a wide range of extracellular stimuli. Stress-activated protein kinases (SAPKs) play a key role in controlling several steps of mRNA biogenesis. Here, we show that osmostress has an impact on the regulation of alternative splicing (AS), which is partly mediated through the action of p38 SAPK. Splicing network analysis revealed a functional connection between p38 and the spliceosome component SKIIP, whose depletion abolished a significant fraction of p38-mediated AS changes. Importantly, p38 interacted with and directly phosphorylated SKIIP, thereby altering its activity. SKIIP phosphorylation regulated AS of GADD45α, the upstream activator of the p38 pathway, uncovering a negative feedback loop involving AS regulation. Our data reveal mechanisms and targets of SAPK function in stress adaptation through the regulation of AS.
Collapse
Affiliation(s)
- Caterina Carbonell
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Arnau Ulsamer
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Claudia Vivori
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Panagiotis Papasaikas
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - René Böttcher
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Manel Joaquin
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Belén Miñana
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Ramón Tejedor
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Juan Valcárcel
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.
| |
Collapse
|
37
|
Recalcati S, Correnti M, Gammella E, Raggi C, Invernizzi P, Cairo G. Iron Metabolism in Liver Cancer Stem Cells. Front Oncol 2019; 9:149. [PMID: 30941302 PMCID: PMC6433741 DOI: 10.3389/fonc.2019.00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSC) which have been identified in several tumors, including liver cancer, represent a particular subpopulation of tumor cells characterized by properties similar to those of adult stem cells. Importantly, CSC are resistant to standard therapies, thereby leading to metastatic dissemination and tumor relapse. Given the increasing evidence that iron homeostasis is deregulated in cancer, here we describe the iron homeostasis alterations in cancer cells, particularly in liver CSC. We also discuss two paradoxically opposite iron manipulation-strategies for tumor therapy based either on iron chelation or iron overload-mediated oxidant production leading to ferroptosis. A better understanding of iron metabolism modifications occurring in hepatic tumors and particularly in liver CSC cells may offer new therapeutic options for this cancer, which is characterized by increasing incidence and unfavorable prognosis.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Chiara Raggi
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Department of Medicine and Surgery, Center for Autoimmune Liver Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Baeza-Centurion P, Miñana B, Schmiedel JM, Valcárcel J, Lehner B. Combinatorial Genetics Reveals a Scaling Law for the Effects of Mutations on Splicing. Cell 2019; 176:549-563.e23. [PMID: 30661752 DOI: 10.1016/j.cell.2018.12.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/29/2018] [Accepted: 12/07/2018] [Indexed: 02/08/2023]
Abstract
Despite a wealth of molecular knowledge, quantitative laws for accurate prediction of biological phenomena remain rare. Alternative pre-mRNA splicing is an important regulated step in gene expression frequently perturbed in human disease. To understand the combined effects of mutations during evolution, we quantified the effects of all possible combinations of exonic mutations accumulated during the emergence of an alternatively spliced human exon. This revealed that mutation effects scale non-monotonically with the inclusion level of an exon, with each mutation having maximum effect at a predictable intermediate inclusion level. This scaling is observed genome-wide for cis and trans perturbations of splicing, including for natural and disease-associated variants. Mathematical modeling suggests that competition between alternative splice sites is sufficient to cause this non-linearity in the genotype-phenotype map. Combining the global scaling law with specific pairwise interactions between neighboring mutations allows accurate prediction of the effects of complex genotype changes involving >10 mutations.
Collapse
Affiliation(s)
- Pablo Baeza-Centurion
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Belén Miñana
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Jörn M Schmiedel
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Juan Valcárcel
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
39
|
View from an mRNP: The Roles of SR Proteins in Assembly, Maturation and Turnover. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:83-112. [PMID: 31811631 DOI: 10.1007/978-3-030-31434-7_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Serine- and arginine-rich proteins (SR proteins) are a family of multitasking RNA-binding proteins (RBPs) that are key determinants of messenger ribonucleoprotein (mRNP) formation, identity and fate. Apart from their essential functions in pre-mRNA splicing, SR proteins display additional pre- and post-splicing activities and connect nuclear and cytoplasmic gene expression machineries. Through changes in their post-translational modifications (PTMs) and their subcellular localization, they provide functional specificity and adjustability to mRNPs. Transcriptome-wide UV crosslinking and immunoprecipitation (CLIP-Seq) studies revealed that individual SR proteins are present in distinct mRNPs and act in specific pairs to regulate different gene expression programmes. Adopting an mRNP-centric viewpoint, we discuss the roles of SR proteins in the assembly, maturation, quality control and turnover of mRNPs and describe the mechanisms by which they integrate external signals, coordinate their multiple tasks and couple subsequent mRNA processing steps.
Collapse
|
40
|
Structural and Functional Insights into Human Nuclear Cyclophilins. Biomolecules 2018; 8:biom8040161. [PMID: 30518120 PMCID: PMC6315705 DOI: 10.3390/biom8040161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023] Open
Abstract
The peptidyl prolyl isomerases (PPI) of the cyclophilin type are distributed throughout human cells, including eight found solely in the nucleus. Nuclear cyclophilins are involved in complexes that regulate chromatin modification, transcription, and pre-mRNA splicing. This review collects what is known about the eight human nuclear cyclophilins: peptidyl prolyl isomerase H (PPIH), peptidyl prolyl isomerase E (PPIE), peptidyl prolyl isomerase-like 1 (PPIL1), peptidyl prolyl isomerase-like 2 (PPIL2), peptidyl prolyl isomerase-like 3 (PPIL3), peptidyl prolyl isomerase G (PPIG), spliceosome-associated protein CWC27 homolog (CWC27), and peptidyl prolyl isomerase domain and WD repeat-containing protein 1 (PPWD1). Each “spliceophilin” is evaluated in relation to the spliceosomal complex in which it has been studied, and current work studying the biological roles of these cyclophilins in the nucleus are discussed. The eight human splicing complexes available in the Protein Data Bank (PDB) are analyzed from the viewpoint of the human spliceophilins. Future directions in structural and cellular biology, and the importance of developing spliceophilin-specific inhibitors, are considered.
Collapse
|
41
|
Genome-wide CRISPR-Cas9 Interrogation of Splicing Networks Reveals a Mechanism for Recognition of Autism-Misregulated Neuronal Microexons. Mol Cell 2018; 72:510-524.e12. [DOI: 10.1016/j.molcel.2018.10.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
|
42
|
El Marabti E, Younis I. The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer. Front Mol Biosci 2018; 5:80. [PMID: 30246013 PMCID: PMC6137424 DOI: 10.3389/fmolb.2018.00080] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing allows for the expression of multiple RNA and protein isoforms from one gene, making it a major contributor to transcriptome and proteome diversification in eukaryotes. Advances in next generation sequencing technologies and genome-wide analyses have recently underscored the fact that the vast majority of multi-exon genes under normal physiology engage in alternative splicing in tissue-specific and developmental-specific manner. On the other hand, cancer cells exhibit remarkable transcriptome alterations partly by adopting cancer-specific splicing isoforms. These isoforms and their encoded proteins are not insignificant byproducts of the abnormal physiology of cancer cells, but either drivers of cancer progression or small but significant contributors to specific cancer hallmarks. Thus, it is paramount that the pathways that regulate alternative splicing in cancer, including the splicing factors that bind to pre-mRNAs and modulate spliceosome recruitment. In this review, we present a few distinct cases of alternative splicing in cancer, with an emphasis on their regulation as well as their contribution to cancer cell phenotype. Several categories of splicing aberrations are highlighted, including alterations in cancer-related genes that directly affect their pre-mRNA splicing, mutations in genes encoding splicing factors or core spliceosomal subunits, and the seemingly mutation-free disruptions in the balance of the expression of RNA-binding proteins, including components of both the major (U2-dependent) and minor (U12-dependent) spliceosomes. Given that the latter two classes cause global alterations in splicing that affect a wide range of genes, it remains a challenge to identify the ones that contribute to cancer progression. These challenges necessitate a systematic approach to decipher these aberrations and their impact on cancer. Ultimately, a sufficient understanding of splicing deregulation in cancer is predicted to pave the way for novel and innovative RNA-based therapies.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Biological Sciences Program, Carnegie Mellon University in Qatar, Doha, Qatar
| | - Ihab Younis
- Biological Sciences Program, Carnegie Mellon University in Qatar, Doha, Qatar
| |
Collapse
|
43
|
Li J, Tseng CS, Federico A, Ivankovic F, Huang YS, Ciccodicola A, Swanson MS, Yu P. SFMetaDB: a comprehensive annotation of mouse RNA splicing factor RNA-Seq datasets. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:4161772. [PMID: 29220461 PMCID: PMC5737203 DOI: 10.1093/database/bax071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
Although the number of RNA-Seq datasets deposited publicly has increased over the past few years, incomplete annotation of the associated metadata limits their potential use. Because of the importance of RNA splicing in diseases and biological processes, we constructed a database called SFMetaDB by curating datasets related with RNA splicing factors. Our effort focused on the RNA-Seq datasets in which splicing factors were knocked-down, knocked-out or over-expressed, leading to 75 datasets corresponding to 56 splicing factors. These datasets can be used in differential alternative splicing analysis for the identification of the potential targets of these splicing factors and other functional studies. Surprisingly, only ∼15% of all the splicing factors have been studied by loss- or gain-of-function experiments using RNA-Seq. In particular, splicing factors with domains from a few dominant Pfam domain families have not been studied. This suggests a significant gap that needs to be addressed to fully elucidate the splicing regulatory landscape. Indeed, there are already mouse models available for ∼20 of the unstudied splicing factors, and it can be a fruitful research direction to study these splicing factors in vitro and in vivo using RNA-Seq. Database URL:http://sfmetadb.ece.tamu.edu/
Collapse
Affiliation(s)
- Jin Li
- Department of Electrical and Computer Engineering.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ching-San Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Antonio Federico
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy.,Department of Science and Technology, University of Naples "Parthenope", Naples, Italy
| | - Franjo Ivankovic
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy.,Department of Science and Technology, University of Naples "Parthenope", Naples, Italy
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
44
|
Urbanski L, Leclair N, Anczuków O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1476. [PMID: 29693319 PMCID: PMC6002934 DOI: 10.1002/wrna.1476] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Defects in alternative splicing are frequently found in human tumors and result either from mutations in splicing-regulatory elements of specific cancer genes or from changes in the regulatory splicing machinery. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA isoforms involved in the hallmark cancer pathways. Thus, dysregulation of alternative RNA splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic targets. Here, we review the alterations in splicing regulatory factors detected in human tumors, as well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, the regulators are themselves tightly regulated. Differential transcriptional and posttranscriptional regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the composition of the tumor microenvironment can also influence which isoforms are expressed in a given cell type and impact drug responses. Finally, we summarize current efforts in targeting alternative splicing, including global splicing inhibition using small molecules blocking the spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based therapeutics to modulate cancer-specific splicing isoforms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
|
45
|
Fernandez JP, Moreno-Mateos MA, Gohr A, Miao L, Chan SH, Irimia M, Giraldez AJ. RES complex is associated with intron definition and required for zebrafish early embryogenesis. PLoS Genet 2018; 14:e1007473. [PMID: 29969449 PMCID: PMC6047831 DOI: 10.1371/journal.pgen.1007473] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/16/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
Pre-mRNA splicing is a critical step of gene expression in eukaryotes. Transcriptome-wide splicing patterns are complex and primarily regulated by a diverse set of recognition elements and associated RNA-binding proteins. The retention and splicing (RES) complex is formed by three different proteins (Bud13p, Pml1p and Snu17p) and is involved in splicing in yeast. However, the importance of the RES complex for vertebrate splicing, the intronic features associated with its activity, and its role in development are unknown. In this study, we have generated loss-of-function mutants for the three components of the RES complex in zebrafish and showed that they are required during early development. The mutants showed a marked neural phenotype with increased cell death in the brain and a decrease in differentiated neurons. Transcriptomic analysis of bud13, snip1 (pml1) and rbmx2 (snu17) mutants revealed a global defect in intron splicing, with strong mis-splicing of a subset of introns. We found these RES-dependent introns were short, rich in GC and flanked by GC depleted exons, all of which are features associated with intron definition. Using these features, we developed and validated a predictive model that classifies RES dependent introns. Altogether, our study uncovers the essential role of the RES complex during vertebrate development and provides new insights into its function during splicing.
Collapse
Affiliation(s)
- Juan Pablo Fernandez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | | | - Andre Gohr
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Liyun Miao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Shun Hang Chan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Antonio J. Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States of America
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
46
|
Dvinge H. Regulation of alternative
mRNA
splicing: old players and new perspectives. FEBS Lett 2018; 592:2987-3006. [DOI: 10.1002/1873-3468.13119] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Heidi Dvinge
- Department of Biomolecular Chemistry School of Medicine and Public Health University of Wisconsin‐Madison WI USA
| |
Collapse
|
47
|
Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics 2018; 9:1367-1375. [PMID: 28671201 DOI: 10.1039/c7mt00143f] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transferrin receptor (TfR1), which mediates cellular iron uptake through clathrin-dependent endocytosis of iron-loaded transferrin, plays a key role in iron homeostasis. Since the number of TfR1 molecules at the cell surface is the rate-limiting step for iron entry into cells and is essential to prevent iron overload, TfR1 expression is precisely controlled at multiple levels. In this review, we have discussed the latest advances in the molecular regulation of TfR1 expression and we have considered current understanding of TfR1 function beyond its canonical role in providing iron for erythroid precursors and rapidly proliferating cells.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
48
|
Fu Y, Wang Y. SRSF7 knockdown promotes apoptosis of colon and lung cancer cells. Oncol Lett 2018; 15:5545-5552. [PMID: 29556298 PMCID: PMC5844074 DOI: 10.3892/ol.2018.8072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/10/2018] [Indexed: 02/04/2023] Open
Abstract
Serine/arginine-rich (SR) proteins are a family of important splicing factors, which are involved in multiple aspects of RNA processing, including splicing, mRNA nuclear export, mRNA stability and translation. Previous studies have identified a number of SR proteins that exhibit abnormal expression in various tumor types. In the present study, the expression and function of serine/arginine-rich splicing factor 7 (SRSF7) were investigated in colon and lung cancer. Using tissue immunohistochemistry, it was observed that SRSF7 was overexpressed in colon and lung cancer tissues. As the role of SRSF7 in cancer remains to be fully elucidated, the expression of SRSF7 was knocked down in the present study by transfecting SRSF7-specific small interfering RNAs (siRNAs) into the HCT116 colon cancer cell line and A549 lung cancer cell line, which exhibited elevated expression of SRSF7. MTS assays, western blot analysis, flow cytometry and spectrofluorometer analyses were performed to assess the effects of SRSF7 knockdown on the proliferation and apoptosis of cells. The results demonstrated that the expression of SRSF7 was efficiently knocked down by SRSF7 siRNA, and that SRSF7 knockdown inhibited proliferation and enhanced apoptosis of HCT116 and A549 cells. Further experiments involving BEAS-2B cells stably overexpressing SRSF7, and A549 cells with stable knockdown of SRSF7 revealed that SRSF7 regulated the splicing of the apoptosis regulator Fas. Collectively, these data indicated that SRSF7 is critical for the survival of colon and lung cancer cells, and may be a potential therapeutic target for the treatment of colon and lung cancer.
Collapse
Affiliation(s)
- Yu Fu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yingze Wang
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| |
Collapse
|
49
|
Abstract
RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.
Collapse
|
50
|
Brissot P, Cavey T, Ropert M, Gaboriau F, Loréal O. Hemochromatosis: a model of metal-related human toxicosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2007-2013. [PMID: 27628916 DOI: 10.1007/s11356-016-7576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Many environmental agents, such as excessive alcohol intake, xenobiotics, and virus, are able to damage the human body, targeting especially the liver. Metal excess may also assault the liver. Thus, chronic iron overload may cause, especially when associated with cofactors, diffuse organ damage that is a source of significant morbidity and mortality. Iron excess can be either of acquired (mostly transfusional) or of genetic origin. Hemochromatosis is the archetype of genetic iron overload diseases and represents a serious health problem. A better understanding of iron metabolism has deeply modified the hemochromatosis field which today benefits from much more efficient diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Pierre Brissot
- Hepatology, Faculty of Medicine, University of Rennes1, 2, avenue Pr. Léon BERNARD, 35043, Rennes, France.
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France.
- Inserm-UMR 991, University of Rennes1, Rennes, France.
| | - Thibault Cavey
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France
- Inserm-UMR 991, University of Rennes1, Rennes, France
| | - Martine Ropert
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France
- Inserm-UMR 991, University of Rennes1, Rennes, France
| | | | | |
Collapse
|